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We propose a novel and simple spectral method based on the semi-discrete Fourier transforms to discretize 
the fractional Laplacian (−Δ)

ÿ

2 . Numerical analysis and experiments are provided to study its performance. Our 
method has the same symbol |ÿ|ÿ as the fractional Laplacian (−Δ) ÿ2 at the discrete level, and thus it can be viewed 
as the exact discrete analogue of the fractional Laplacian. This unique feature distinguishes our method from other 
existing methods for the fractional Laplacian. Note that our method is different from the Fourier pseudospectral 
methods in the literature which are usually limited to periodic boundary conditions (see Remark 1.1). Numerical 
analysis shows that our method can achieve a spectral accuracy. The stability and convergence of our method 
in solving the fractional Poisson equations were analyzed. Our scheme yields a multilevel Toeplitz stiffness 
matrix, and thus fast algorithms can be developed for efficient matrix-vector multiplications. The computational 
complexity is (2ý log(2ý)), and the memory storage is (ý) with ý the total number of points. Extensive 
numerical experiments verify our analytical results and demonstrate the effectiveness of our method in solving 
various problems.

1. Introduction

The fractional Laplacian (−Δ)
ÿ
2 , representing the infinitesimal gen-

erator of a symmetric ÿ-stable Lévy process, can be viewed as a nonlocal 
generalization of the classical Laplacian. It has found applications in 
many areas, including quantum mechanics, turbulence, plasma, finance, 
and so on. Compared to its classical counterpart, the nonlocality of the 
fractional Laplacian introduces considerable challenges in numerical 
approximation and computer implementation. Over the past decades, 
many numerical studies have been reported for the fractional Laplacian; 
see [2–6,8,10,12,16–19,24,28,30,38–40,43–45] and references therein. 
In this paper, we propose a novel and simple spectral method based on 
the semi-discrete Fourier transforms to discretize the fractional Lapla-
cian (−Δ)

ÿ
2 . Note that our method is essentially different from the 

Fourier pseudospectral methods in the literature [11,24]; see more dis-
cussion in Remark 1.1.

The fractional Laplacian can be defined as a pseudo-differential op-
erator with symbol |ÿ|ÿ [25,26,37], i.e.,

(−Δ)
ÿ
2 ÿ(ý) = −1

[|ÿ|ÿ [ÿ]
]
, for ÿ > 0, (1.1)
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where  represents the Fourier transform over ℝý with its associated 
inverse transform denoted as −1. In the special case of ÿ = 2, the 
definition in (1.1) reduces to the spectral representation of the clas-
sical negative Laplacian −Δ. In the literature [25,26,37], the fractional 
Laplacian is also defined in the form of a hypersingular integral:

(−Δ)
ÿ
2 ÿ(ý) = ýý,ÿ P.V.∫

ℝý

ÿ(ý) − ÿ(ÿ)

|ý − ÿ|ý+ÿ dÿ, for ÿ ∈ (0,2), (1.2)

where P.V. stands for the Cauchy principal value, and the normalization 
constant ýý,ÿ is given by ýý,ÿ = 2ÿ−1ÿ Γ

( ÿ+ý
2

)
∕
[√
ÿý Γ

(
1 −

ÿ
2

)]
with Γ(⋅)

denoting the Gamma function. Note that the hypersingular integral def-
inition in (1.2) holds only for power 0 < ÿ < 2. For ÿ ∈ (0, 2), the two 
definitions (1.1) and (1.2) of the fractional Laplacian are equivalent in 
the Schwartz space ÿ(ℝý ) [25,37]. More discussion on the fractional 
Laplacian and its relation to other nonlocal operators can be found in 
[9,25] and references therein. In this work, we will focus on the pseudo-
differential representation of the fractional Laplacian (−Δ)

ÿ
2 in (1.1).

In the literature, numerical methods for the fractional Laplacian 
(−Δ)

ÿ
2 can be roughly classified into three groups: finite element 

methods, finite difference methods, and spectral methods. Finite ele-
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Fig. 1. Comparison of our method and the existing Fourier pseudo-spectral methods in [11,24] for approximating (−Δ)
ÿ

2 ÿ(ý) on bounded domain.

ment/difference methods are usually developed based on the hyper-
singular integral definition in (1.2). For example, various finite ele-
ment methods are proposed in [2–4,15,41] to solve nonlocal PDEs with 
the fractional Laplacian. In [8,12,13,16,18–20,30,44], finite difference 
methods are introduced based on different discretization strategies, and 
most of them have a second-order accuracy. On the other side, spectral 
methods have recently gained a lot of attention in solving nonlocal/frac-
tional PDEs. They can achieve high accuracy with less number of points 
and thus may overcome the challenges caused by the nonlocality. In 
[11,24], the Fourier pseudospectral methods are proposed for fractional 
PDEs with periodic boundary conditions. The Jacobi spectral methods 
are introduced in [17,45] for problems defined on a unit ball with ex-
tended homogeneous Dirichlet boundary conditions. Spectral methods 
based on Hermite functions are proposed in [28,40] for fractional PDEs 
on unbounded domains, while the generalized Laguerre functions are 
used in [6]. Later, the spectral method with rational basis is proposed in 
[39]. It is pointed out in [38] that due to the singular and nonseparable 
factor |ÿ|ÿ in the Fourier definition, these methods become extremely 
complicated for ý ≥ 2. Moreover, a new class of meshfree spectral 
methods are proposed based on radial basis functions [5,43,44]. They 
combine both definitions (1.1) and (1.2) of the fractional Laplacian and 
thus can solve problems with nonhomogeneous Dirichlet boundary con-
ditions.

In this paper, we propose a new and simple spectral method to 
discretize the fractional Laplacian (−Δ)

ÿ
2 and apply it to study non-

local elliptic problems. The key idea of our method is to apply the 
semi-discrete Fourier transforms to approximate the pseudo-differential 
representation of the fractional Laplacian in (1.1). Our scheme can be 
viewed as a discrete pseudo-differential operator with symbol |ÿ|ÿ , 
and it provides an exact discrete analogue of the fractional Lapla-
cian (−Δ)

ÿ
2 . This unique feature distinguishes our method from other 

existing methods in the literature. The implementation of our method is 
simple and efficient. It yields a multilevel Toeplitz stiffness matrix, and 
thus fast algorithms can be developed for matrix-vector multiplications 
with computational cost of (2ý log(2ý)) and memory cost of (ý), 
where ý is the total number of spatial points. Numerical analysis is 

provided to study the performance of our method. We prove that our 
method has an accuracy of (ℎý+ÿ−ÿ+1∕2) in approximating the frac-
tional Laplacian, if ÿ ∈ ÿý,ÿ (ℝ) with ý ∈ ℕ

0 and ÿ ∈ (0, 1]. Particularly, 
it has a spectral accuracy if ÿ ∈ ÿ∞(ℝý ). Moreover, the stability and 
convergence analysis are provided for solving the fractional Poisson 
equations. These analytical results are verified and confirmed by our 
extensive numerical experiments. We also apply our method to solve 
fractional elliptic problems and study the coexistence of normal and 
anomalous diffusion problems.

Remark 1.1. We remark that our method is essentially different from 
the Fourier pseudospectral methods in the literature [11,24]. These ex-
isting methods are based on the discrete (instead of semi-discrete)
Fourier transforms and limited to periodic boundary conditions. Fig. 1
compares our method with these existing methods in approximating 
(−Δ)

ÿ
2 ÿ. It clearly shows that the existing methods in [11,24] require 

periodic boundary conditions to provide accurate approximation; see 
Fig. 1 (d).

The paper is organized as follows. In Section 2, we introduce our 
new spectral method for the one-dimensional Laplacian. Numerical 
analysis is presented in Section 3. The generalizations of our method 
to high dimensions (i.e. ý > 1) are addressed in Section 4. In Section 5, 
we conduct numerical experiments to examine the performance of our 
method in approximating the classical and fractional Laplacians and 
in solving the fractional elliptic problems. Finally, some concluding re-
marks are made in Section 6.

2. Spectral method

Due to the pseudo-differential definition in (1.1), it is natural to 
introduce the Fourier transform-based methods to approximate the frac-
tional Laplacian. For example, the Fourier pseudospectral methods are 
introduced to solve the fractional Schrödinger equations in [11,7,24]
and the reaction-diffusion systems in [23]. These methods can be di-
rectly implemented via the fast Fourier transforms, but they are limited 
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to periodic bounded domains. In this section, we introduce a new and 
simple spectral method to discretize the fractional Laplacian (−Δ)

ÿ
2 . 

Our method is developed based on the semi-discrete Fourier transforms. 
In contrast to those Fourier pseudospectral methods in [11,24], our 
method is free of the constraint of periodic boundary conditions.

To facilitate the discussion, we will first introduce our method for 
one-dimensional (i.e. ý = 1) fractional Laplacian (−Δ)

ÿ
2 . The general-

ization to high dimensions (i.e. ý > 1) will be presented in Section 4. 
Let ℎ > 0 denote the mesh size. In the one-dimensional cases, we de-
fine the grid points ýÿ = ÿℎ for ÿ ∈ℤ. Denote the one-dimensional grid 
function ÿ = {ÿÿ}ÿ∈ℤ, which may or may not be an approximation to a 
continuous function. For grid functions ÿ and ÿ, we define the discrete 
inner product and associated norm as

ïÿ, ÿðℎ ∶= ℎ
∑
ÿ∈ℤ

ÿÿ ÿÿ , ‖ÿ‖ý2 =
√ïÿ, ÿðℎ,

where ÿÿ represents the complex conjugate of ÿÿ . Let ý
2(ℝ)=

{
ÿ ||| ‖ÿ‖ý2 <

∞
}
. In the following, we will first introduce the definitions of semi-

discrete Fourier transform and generalized hypergeometric functions, 
which play an important role in constructing our method.

Definition 2.1 (Semi-discrete Fourier transform). For a grid function ÿ ∈
ý2(ℝ), the semi-discrete Fourier transform ℎ is defined as
ÿ̌(ÿ) =

(ℎ[ÿ])(ÿ) = ℎ
∞∑

ÿ=−∞

ÿÿ ÿ
−ÿÿýÿ , for ÿ ∈

[
−
ÿ
ℎ
,
ÿ
ℎ

]
, (2.1)

where ÿ =
√
−1, and the inverse semi-discrete Fourier transform is de-

fined as

ÿÿ = −1
ℎ, ÿ [ÿ̌] =

1

2ÿ

ÿ∕ℎ

∫
−ÿ∕ℎ

ÿ̌(ÿ) ÿÿÿýÿ dÿ, for ÿ ∈ℤ. (2.2)

Here, we use ÿ̌(ÿ) to represent the semi-discrete Fourier transform 
of grid function ÿ, distinguishing it from ̂ÿ(ÿ) – the Fourier transform of 
continuous function ÿ(ý). Different from the continuous Fourier trans-
forms, the Fourier space in the semi-discrete transform is bounded, i.e., 
ÿ ∈ [−ÿ∕ℎ, ÿ∕ℎ]. This can be explained by the aliasing formula (see 
Lemma 3.2).

Definition 2.2 (Generalized hypergeometric function). For ý, ÿ ∈ ℕ
0, the 

generalized hypergeometric function is defined as

ýýÿ
(
ÿ1,… , ÿý; ÿ1,… , ÿÿ ; ÿ

)
=

∞∑
ý=0

(ÿ1)ý(ÿ2)ý⋯ (ÿý)ý

(ÿ1)ý(ÿ2)ý⋯ (ÿÿ)ý

ÿý

ý!
, (2.3)

where ÿý ∈ℂ (for 1 ≤ ý ≤ ý), ÿÿ ∈ℂ but ÿÿ ∉
(
ℤ
−∪{0}

)
(for 1 ≤ÿ ≤ ÿ), 

and (ÿ)ý denotes the rising Pochhammer symbol, i.e.,

(ÿ)ý =

{
1, for ý = 0

ÿ(ÿ+ 1)⋯ (ÿ+ ý− 1), for ý > 0.

If ý ≤ ÿ, the series in (2.3) is convergent for all values of ÿ ∈ ℂ. If 
ý = ÿ + 1, it converges for |ÿ| < 1. Particularly, if ý = 2 and ÿ = 1, (2.3)
reduces to the well-known Gauss hypergeometric function 2ý1. For ý =
ÿ = 1, 1ý1 is often called as the confluent hypergeometric function. For 
more discussion of the generalized hypergeometric functions, we refer 
the reader to references [34,36].

Now we introduce our method. Denote (−Δ)
ÿ
2

ℎ
as the numerical ap-

proximation of the fractional Laplacian (−Δ)
ÿ
2 , and let ÿÿ = ÿ(ýÿ ) for 

ÿ ∈ ℤ. At point ý = ýý, we can approximate the Fourier transforms in 
definition (1.1) by the semi-discrete Fourier transforms and then obtain 
the approximation:

(−Δ)
ÿ
2

ℎ
ÿý =

1

2ÿ

ÿ∕ℎ

∫
−ÿ∕ℎ

|ÿ|ÿ
(
ℎ

∞∑
ÿ=−∞

ÿÿ ÿ
−ÿÿýÿ

)
ÿÿÿýý dÿ

=
ℎ
ÿ

ÿ∕ℎ

∫
0

ÿÿ
( ∞∑
ÿ=−∞

ÿÿ cos
(
ÿ(ýý − ýÿ )

))
dÿ

=

∞∑
ÿ=−∞

(
ℎ
ÿ

ÿ∕ℎ

∫
0

ÿÿ cos
(
(ý− ÿ)ℎÿ

)
dÿ

)
ÿÿ , for ý ∈ℤ. (2.4)

It is clear that the evaluation of function (−Δ)
ÿ
2 ÿ(ý) at point ýý depends 

on all points ýÿ ∈ ℝ, consistent with the nonlocality of the fractional 

Laplacian (−Δ)
ÿ
2 . More precisely, the approximation in (2.4) can be 

viewed as a weighted summation of ÿÿ for ÿ ∈ ℤ, and the weight coef-
ficients depend on the distance between points ýý and ýÿ . To calculate 
these coefficients, we first expand cos

(
(ý − ÿ)ℎ ÿ

)
into the Taylor series 

and then integrate each term to obtain

ÿ(1)

ÿ,ℎ
(ý− ÿ) ∶=

ℎ
ÿ

ÿ∕ℎ

∫
0

ÿÿ cos
(
(ý− ÿ)ℎÿ

)
dÿ

=
ℎ
ÿ

ÿ∕ℎ

∫
0

ÿÿ
( ∞∑
ÿ=0

(−1)ÿ
[(ý− ÿ)ℎÿ

]2ÿ
(2ÿ)!

)
dÿ

=
(
ÿ
ℎ

)ÿ ∞∑
ÿ=0

(−1)ÿ
[
ÿ(ý− ÿ)

]2ÿ
(2ÿ)!(2ÿ+ ÿ + 1)

, for ÿ, ý ∈ℤ.

Note that the right-hand side can be reformulated in terms of the rising 
Pochhammer symbols, i.e.,

ÿ(1)

ÿ,ℎ
(ý− ÿ) =

ÿÿ

(ÿ + 1)ℎÿ

∞∑
ÿ=0

( ÿ+1
2

)
ÿ( ÿ+3

2

)
ÿ

( 1
2

)
ÿ
ÿ!

(
−ÿ2(ý− ÿ)2

4

)ÿ
,

=
ÿÿ

(ÿ + 1)ℎÿ 1ý2

(
ÿ + 1

2
;
ÿ + 3

2
,
1

2
;
−ÿ2(ý− ÿ)2

4

)
, (2.5)

for ÿ, ý ∈ ℤ, by the definition of generalized hypergeometric function 
in (2.3). It shows that the weight ÿ(1)

ÿ,ℎ
is an even function of (ý − ÿ), 

depending on parameters ÿ and ℎ, especially ÿ(1)

ÿ,ℎ
(0) = (ÿ∕ℎ)ÿ∕(ÿ + 1). 

Substituting (2.5) into (2.4), we obtain our numerical approximation to 
the one-dimensional fractional Laplacian as:

(−Δ)
ÿ
2

ℎ
ÿý =

ÿÿ

(ÿ + 1)ℎÿ

∞∑
ÿ=−∞

1ý2

(
ÿ + 1

2
;
ÿ + 3

2
,
1

2
;
−ÿ2(ý− ÿ)2

4

)
ÿÿ ,

(2.6)

for ý ∈ ℤ. Note that the same scheme is obtained in [20] by matching 
the fractional Laplacian with a discrete operator on an infinite lattice. 
Our scheme (2.6) holds for any ÿ ≥ 0, including ÿ = 2. In the special 
cases of ÿ ∈ ℕ

0, the coefficient function ÿ(1)

ÿ,ℎ
in (2.5) can be simpli-

fied to elementary functions. In fact, for any ÿ ∈ℕ and ÿ ∈ℤ∖{0}, the 
integral

ÿ∕ℎ

∫
0

ÿÿ cos(ÿℎÿ) dÿ

=
ÿ!

(ÿℎ)ÿ+1

[( +(ÿ−1)∕2,∑
ý=0

(−1)ÿ+ý
(ÿÿ)ÿ−1−2ý

(ÿ− 1 − 2ý)!

)
−mod(ÿ,2)

]
. (2.7)

Choosing ÿ =ÿ = 1 or 2, we thus get the coefficients

ÿ(1)

ÿ,ℎ
(ý− ÿ) =

1

ℎÿ(ý− ÿ)2

{ (
(−1)ý−ÿ − 1

)
∕ÿ, if ÿ = 1,

2(−1)ý−ÿ , if ÿ = 2,

for (ý− ÿ) ∈ℤ∖{0}.
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If ÿ = 0, the integral in (2.7) is zero for any ÿ ∈ ℤ∖{0}, and thus the 
scheme (2.4) reduces to the identity operator for ÿ = 0. It is consistent 
with the analytical property of the fractional Laplacian.

Lemma 2.1. The discretized operator (−Δ)
ÿ
2

ℎ
from our scheme (2.6) has 

exactly the same symbol |ÿ|ÿ as the fractional Laplacian (−Δ) ÿ2 , i.e.,
ℎ[(−Δ)

ÿ
2

ℎ
ÿ
]
= |ÿ|ÿℎ[ÿ], for ÿ > 0, (2.8)

independent of mesh size ℎ.

Proof. By scheme (2.6) and the definition of semi-discrete Fourier 
transform, we obtain

ℎ[(−Δ)
ÿ
2

ℎ
ÿ
]
= ℎ

∞∑
ý=−∞

( ∞∑
ÿ=−∞

ÿ(1)

ÿ,ℎ
(ý− ÿ)ÿÿ

)
ÿ−ÿÿýý

= ℎ
∞∑

ÿ=−∞

ÿÿ

( ∞∑
ý=−∞

ÿ(1)

ÿ,ℎ
(ý− ÿ)ÿ−ÿÿýý−ÿ

)
ÿ−ÿÿýÿ

= ℎ
∞∑

ÿ=−∞

ÿÿ

(
1

ℎ
ℎ[ÿÿ,ℎ]

)
ÿ−ÿÿýÿ , (2.9)

where we denote ÿÿ,ℎ =
{
ÿ(1)

ÿ,ℎ
(ý)
}
ý∈ℤ

. The definition of ÿ(1)

ÿ,ℎ
shows 

that

ÿ(1)

ÿ,ℎ
(ý) =

ℎ
2ÿ

ÿ∕ℎ

∫
−ÿ∕ℎ

|ÿ|ÿÿÿÿýý dÿ = ℎ−1
ℎ,ý

[|ÿ|ÿ], for ý ∈ℤ,

which implies that ℎ[ÿÿ,ℎ] = ℎ|ÿ|ÿ . Substituting it into (2.9) and using 
the definition of the semi-discrete Fourier transform again immediately 
yields (2.8), which holds for any mesh size ℎ. □

Remark 2.1. Let (−̃Δ)
ÿ
2

ℎ
represent the finite difference approximation 

of the fractional Laplacian in [18,47]. Then it satisfies

ℎ[(−̃Δ)
ÿ
2

ℎ
ÿ
]
=
[|ÿ|ÿ +(|ÿ|2+ÿℎ2)]ℎ[ÿ], (2.10)

for small mesh size ℎ > 0. It suggests that the approximation (−̃Δ)
ÿ
2

ℎ
has 

different symbol from the fractional Laplacian (−Δ)
ÿ
2 . But, its leading 

order term is |ÿ|ÿ if mesh size ℎ is small.

Lemma 2.1 suggests that our scheme (2.6) can be viewed as a dis-
crete pseudo-differential operator with symbol |ÿ|ÿ – an exact discrete 
analogue of the Laplace operator (−Δ)

ÿ
2 for ÿ > 0. This unique prop-

erty of our method distinguishes it from other existing methods of the 
fractional Laplacian. Note that the formulation and implementation of 
our method are similar to the finite difference methods [8,18,19,30], 
but our method can achieve significantly higher accuracy. Moreover, 
our method has much lower computational cost when assembling the 
stiffness matrix, particularly in high dimensions. More numerical com-
parison can be found in Section 5.1.

3. Error analysis

In this section, we first study the numerical errors of our method 
in discretizing the fractional Laplacian (−Δ)

ÿ
2 , and detailed error esti-

mates are provided under different conditions of function ÿ. Then the 
stability and convergence of our method in solving the fractional Pois-
son equations are discussed in Section 3.1.

Let ÿý,ÿ (ℝ) denote the Hölder space, for ý ∈ℕ
0 and ÿ ∈ (0, 1]. First, 

we introduce the following lemmas on the continuous and semi-discrete 
Fourier transforms [31,42]:

Lemma 3.1. Suppose ÿ ∈ÿ2(ℝ), and ÿ̂ denotes its Fourier transform.

(i) Suppose ÿ ∈ ÿý,ÿ (ℝ) for ý ∈ ℕ
0 and ÿ ∈ (0, 1]. Furthermore, if ÿ(ý) ∈

ÿ2(ℝ) for ý ≤ ý − 1, and ÿ(ý) has bounded variation, then there is

ÿ̂(ÿ) =(|ÿ|−(ý+1+ÿ)), as |ÿ|→∞. (3.1)

(ii) If ÿ ∈ ÿ∞(ℝ), and ÿ(ý) ∈ÿ2(ℝ) for ý ∈ℕ, then there is

ÿ̂(ÿ) = ý
(|ÿ|−ÿ), as |ÿ|→∞, (3.2)

for any ÿ ≥ 0, and the converse also holds.

Lemma 3.1 shows that the smoother the function ÿ is, the faster 
the Fourier transform ÿ̂ decays. In the following, we denote ÿ as a grid 
function on ℎℤ with ÿÿ = ÿ(ýÿ ) for ÿ ∈ ℤ, and ÿ̌(ÿ) represents its semi-
discrete Fourier transform.

Lemma 3.2. (Aliasing formula) Suppose ÿ ∈ÿ2(ℝ) has a first derivative of 
bounded variation, and ÿ̂ denotes its Fourier transform. Then there is

ÿ̌(ÿ) =
∞∑

ÿ=−∞

ÿ̂
(
ÿ +

2ÿÿ

ℎ

)
, for ÿ ∈

[
−
ÿ
ℎ
,
ÿ
ℎ

]
, (3.3)

for any ℎ > 0.

From Lemmas 3.1–3.2, we immediately obtain the following results.

Lemma 3.3. Suppose ÿ ∈ÿ2(ℝ) has a first derivative of bounded variation, 
and ÿ̂ is its Fourier transform.

(i) Let ý ∈ ℕ
0 and ÿ ∈ (0, 1]. If ÿ ∈ ÿý,ÿ (ℝ), ÿ(ý) ∈ ÿ2(ℝ) for ý ≤ ý − 1, 

and ÿ(ý) has bounded variation, then there is

|||ÿ̌(ÿ) − ÿ̂(ÿ)
||| =(ℎý+1+ÿ ), as ℎ→ 0, (3.4)

for ÿ ∈
[
− ÿ∕ℎ, ÿ∕ℎ

]
.

(ii) If ÿ ∈ ÿ∞(ℝ), and ÿ(ý) ∈ÿ2(ℝ) for ý ∈ℕ, then there is

|||ÿ̌(ÿ) − ÿ̂(ÿ)
||| = ý(ℎ

ÿ), as ℎ→ 0, (3.5)

for any ÿ ≥ 0 and ÿ ∈
[
− ÿ∕ℎ, ÿ∕ℎ

]
.

Proof. Let’s focus on the proof of (3.4). Using the aliasing formula (3.3)
and then the triangle inequality, we get

|||ÿ̌(ÿ) − ÿ̂(ÿ)
||| =

||||
∞∑
ÿ=1

[
ÿ̂
(
ÿ −

2ÿÿ

ℎ

)
+ ÿ̂

(
ÿ +

2ÿÿ

ℎ

)]||||

≤
∞∑
ÿ=1

(|||ÿ̂
(
ÿ −

2ÿÿ

ℎ

)|||+
|||ÿ̂
(
ÿ +

2ÿÿ

ℎ

)|||
)
,

for ÿ ∈
[
−
ÿ
ℎ
,
ÿ
ℎ

]
.

Lemma 3.1 (i) shows that |ÿ̂(ÿ)| ≤ ÿ|ÿ|−(ý+1+ÿ) as |ÿ| →∞. From it, we 
can further obtain:

|||ÿ̌(ÿ) − ÿ̂(ÿ)
||| ≤ ÿ

∞∑
ÿ=1

[(
2ÿ + 1

)ÿ
ℎ

]−(ý+1+ÿ)

= ÿℎý+1+ÿ
∞∑
ÿ=1

1

(2ÿ + 1)ý+1+ÿ
≤ ÿℎý+1+ÿ , as ℎ→ 0

where the constant ÿ > 0 is independent of ℎ. The proof of (3.5) can 
be done by following the similar arguments, which we will omit for 
brevity. □

For grid function ÿ, define the norm ‖ÿ‖ý∞ = supÿ∈ℤ |ÿÿ |. Then we 
present the error estimates of our method in the following theorem.
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Theorem 3.1. Suppose ÿ ∈ ÿ2(ℝ). Denote ÿ as a grid function with ÿÿ =

ÿ(ýÿ ) for ÿ ∈ ℤ. Let (−Δ)
ÿ
2

ℎ
represent the numerical approximation of the 

fractional Laplacian, as defined in (2.4).

(i) Let ý ∈ ℕ
0 and ÿ ∈ (0, 1]. If ÿ ∈ ÿý,ÿ (ℝ), ÿ(ý) ∈ ÿ2(ℝ) for ý ≤ ý − 1, 

and ÿ(ý) has bounded variation, then there is

‖‖‖(−Δ)
ÿ
2 ÿ− (−Δ)

ÿ
2

ℎ
ÿ
‖‖‖ý∞ ≤ ÿℎý+ÿ−ÿ , (3.6)

‖‖‖(−Δ)
ÿ
2 ÿ− (−Δ)

ÿ
2

ℎ
ÿ
‖‖‖ý2 ≤ ÿℎý+ÿ−ÿ+1∕2 (3.7)

with ÿ a positive constant independent of ℎ.
(ii) If ÿ ∈ ÿ∞(ℝ), and ÿ(ý) ∈ÿ2(ℝ) for ý ∈ℕ, then there is

‖‖‖(−Δ)
ÿ
2 ÿ− (−Δ)

ÿ
2

ℎ
ÿ
‖‖‖ < ÿℎ

ÿ, for any ÿ ≥ 0, (3.8)

which holds for both ý∞- and ý2-norm.

Theorem 3.1 suggests that the accuracy of our method depends on 
the smoothness of function ÿ – the smoother the function ÿ, the higher 
the accuracy. If ÿ ∈ ÿ∞(ℝ), our method has a spectral accuracy. In the 
following, we will provide the proof mainly for (3.6) and (3.7), while 
the proof of (3.8) can be done by following the similar lines.

Proof. Note that ÿý = ÿ(ýý) for ý ∈ ℤ. By the definition of (−Δ)
ÿ
2 in 

(1.1) and the scheme of (−Δ)
ÿ
2

ℎ
in (2.4), we obtain

|||(−Δ)
ÿ
2 ÿ(ýý) − (−Δ)

ÿ
2

ℎ
ÿý
|||

=
1

2ÿ

||||

∞

∫
−∞

|ÿ|ÿ ÿ̂(ÿ) ÿÿÿýý dÿ −
ÿ∕ℎ

∫
−ÿ∕ℎ

|ÿ|ÿ ÿ̌(ÿ) ÿÿÿýý dÿ||||

≤ 1

2ÿ

ÿ∕ℎ

∫
−ÿ∕ℎ

|ÿ̂(ÿ) − ÿ̌(ÿ)||ÿ|ÿ dÿ + 1

2ÿ ∫
|ÿ|> ÿ

ℎ

|ÿ̂(ÿ)||ÿ|ÿ dÿ

= ý + ýý, for ý ∈ℤ.

Now we estimate terms ý and ýý separately. For term ý , we use 
Lemma 3.3 (i) and obtain

ý ∶=
1

2ÿ

ÿ∕ℎ

∫
−ÿ∕ℎ

|ÿ̂(ÿ) − ÿ̌(ÿ)||ÿ|ÿ dÿ ≤ ÿℎý+1+ÿ
ÿ∕ℎ

∫
−ÿ∕ℎ

|ÿ|ÿ dÿ ≤ ÿℎý+ÿ−ÿ

with constant ÿ > 0 independent of ℎ. While using Lemma 3.1 (i) to 
term ýý yields

ýý ∶=
1

2ÿ ∫
|ÿ|> ÿ

ℎ

|ÿ̂(ÿ)||ÿ|ÿ dÿ ≤ ÿ ∫
|ÿ|> ÿ

ℎ

|ÿ|ÿ−(ý+1+ÿ) dÿ ≤ ÿℎý+ÿ−ÿ .

Combining the estimates of terms ý and ýý immediately yields the re-
sult in (3.6).

Next, we prove (3.7). Using the definition in (1.1) and the scheme 
in (2.4), we get

‖‖‖(−Δ)
ÿ
2 ÿ− (−Δ)

ÿ
2

ℎ
ÿ
‖‖‖
2

ý2

= ℎ
∑
ý∈ℤ

|||(−Δ)
ÿ
2 ÿ(ýý) − (−Δ)

ÿ
2

ℎ
ÿý
|||
2

=
ℎ

4ÿ2

∑
ý∈ℤ

|||| ∫
|ÿ|> ÿ

ℎ

|ÿ|ÿ ÿ̂(ÿ)ÿÿÿýý dÿ

⏟ÿÿÿÿÿÿÿÿÿÿÿÿĀÿÿÿÿÿÿÿÿÿÿÿÿ⏟
ý1,ý

+

ÿ∕ℎ

∫
−ÿ∕ℎ

|ÿ|ÿ[ÿ̂(ÿ) − ÿ̌(ÿ)]ÿÿÿýý dÿ

⏟ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿĀÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ⏟
ý2,ý

||||
2

=
ℎ

4ÿ2

∑
ý∈ℤ

(
|ý1,ý|2 + |ý2,ý|2 + ý1,ý ⋅ ý̄2,ý + ý̄1,ý ⋅ ý2,ý

)
. (3.9)

For term |ý1,ý|2, we obtain
∑
ý∈ℤ

|ý1,ý|2 ∶=
∑
ý∈ℤ

(
∫

|ÿ|> ÿ
ℎ

ÿ̂(ÿ)|ÿ|ÿÿÿÿýý dÿ
)(

∫
|ÿ |> ÿ

ℎ

ÿ̂(ÿ)|ÿ |ÿÿÿÿýý dÿ
)

= ∫
|ÿ|> ÿ

ℎ

ÿ̂(ÿ)|ÿ|ÿ ∫
|ÿ |> ÿ

ℎ

ÿ̂(ÿ)|ÿ |ÿ
(∑
ý∈ℤ

ÿÿ(ÿ−ÿ)ýý
)
dÿ dÿ.

Noticing that the Dirac delta function ÿ(ÿ − ÿ) = (ℎ∕2ÿ) 
∑
ý∈ℤ ÿ

ÿ(ÿ−ÿ)ýý , 
we then further obtain
∑
ý∈ℤ

|ý1,ý|2 = 2ÿ
ℎ ∫
|ÿ|> ÿ

ℎ

|ÿ̂(ÿ)|2|ÿ|2ÿ dÿ

≤ ÿ
ℎ ∫
|ÿ|> ÿ

ℎ

|ÿ|2(ÿ−ý−ÿ−1) dÿ ≤ ÿℎ2(ý+ÿ−ÿ), (3.10)

by Lemma 3.1 (i). Following the similar lines and using Lemma 3.3 (i), 
we get

∑
ý∈ℤ

|ý2,ý|2 = 2ÿ
ℎ

( ÿ∕ℎ

∫
−ÿ∕ℎ

|||ÿ̂(ÿ) − ÿ̌(ÿ)
|||
2|ÿ|2ÿ dÿ

)

≤ ÿℎ2(ý+ÿ)+1
ÿ∕ℎ

∫
−ÿ∕ℎ

|ÿ|2ÿ dÿ ≤ ÿℎ2(ý+ÿ−ÿ). (3.11)

The estimate of term ý1,ý ⋅ ý̄2,ý can be obtained by first using the 
Cauchy–Schwarz inequality and then (3.10)–(3.11), i.e.,

∑
ý∈ℤ

ý1,ý ⋅ ý̄2,ý ≤
(∑
ý∈ℤ

|ý1,ý|2
) 1

2
(∑
ý∈ℤ

|ý2,ý|2
) 1

2 ≤ ÿℎ2(ý+ÿ−ÿ). (3.12)

We can similarly obtain the estimates of term ý̄1,ý ⋅ý2,ý. Substituting the 
estimates of the four terms in (3.9) and after simple calculation, we can 
immediately obtain the result in (3.7). □

Theorem 3.1 provides the error estimates of our method in approx-
imating the fractional Laplacian over ℝ. If a bounded domain Ω ⊂ℝ is 
considered, we introduce the norms

‖ÿ‖ý∞(Ω) = max
ÿ∈Ωℎ

|ÿÿ |, ‖ÿ‖ý2(Ω) =
(
ℎ
∑
ÿ∈Ωℎ

|ÿÿ |2
)1∕2

, (3.13)

and the inner product

ïÿ, ÿðΩ ∶= ℎ
∑
ÿ∈Ωℎ

ÿÿ ÿ̄ÿ .

Here, the index set is defined as Ωℎ =
{
ÿ | ÿ ∈ ℤ, and ýÿ ∈ Ω

}
. It is 

obvious that under the same conditions, the estimates in Theorem 3.1
also hold if the norm over ℎℤ (i.e., ý∞ or ý2) is replaced with the norms 
in (3.13) on Ωℎ.

3.1. Stability and convergence

The fractional Poisson equation is one important building block in 
the study of nonlocal/fractional PDEs. It has been widely studied and 
often used as the benchmark to test numerical methods for the frac-
tional Laplacian [8,18,19,30]. Here, we consider the fractional Poisson 
equation of the form [2,35]:

(−Δ)
ÿ
2 ÿ(ý) = ÿ (ý), for ý ∈Ω,

ÿ(ý) = 0, for ý ∈Ωý ,
(3.14)
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where Ωý = ℝ∖Ω. In the following, we study the stability and conver-
gence of our method in solving (3.14). The direct application of our 
method to (3.14) yields the system of difference equations:

(−Δ)
ÿ
2

ℎ
ÿℎÿ = ÿ (ýÿ ), for ÿ ∈Ωℎ, (3.15)

ÿℎÿ = 0, for ÿ ∈Ωý
ℎ
, (3.16)

where ÿℎÿ represents the numerical approximation to solution ÿ(ýÿ ).

Lemma 3.4 (Parseval’s identity). For grid function ÿ, ÿ ∈ ý2(ℝ), there is

ïÿ, ÿðℎ = 1

2ÿ

ÿ∕ℎ

∫
−ÿ∕ℎ

ÿ̌(ÿ) ÿ̌(ÿ) dÿ. (3.17)

It can be proved by using the definition of the semi-discrete Fourier 
transforms.

Lemma 3.5. Suppose ÿℎ =
{
ÿℎÿ
}
ÿ∈ℤ

is the solution of the discrete problem 
(3.15)–(3.16). Then there is

‖ÿℎ‖ý2 ≤ ÿ‖(−Δ)
ÿ
2

ℎ
ÿℎ‖ý2(Ω) (3.18)

with ÿ a positive constant independent of ℎ.

Proof. By Parseval’s identity, we obtain

‖ÿℎ‖2ý2 =
1

2ÿ

ÿ∕ℎ

∫
−ÿ∕ℎ

|ÿ̌(ÿ)|2 dÿ

=
1

2ÿ

( ÿ

∫
−ÿ

|ÿ̌(ÿ)|2 dÿ + ∫
ÿ<|ÿ|< ÿ

ℎ

|ÿ̌(ÿ)|2 dÿ
)
,

where ÿ > 0 will be discussed later. Due to the homogeneous boundary 
conditions in (3.16), we get

|||ÿ̌(ÿ)
||| =

|||ℎ
∑
ÿ∈Ωℎ

ÿÿÿ
−ÿÿýÿ ||| ≤ ℎ

∑
ÿ∈Ωℎ

|ÿÿ | ≤
√|Ω|‖ÿℎ‖ý2 ,

by the triangle and Hölder’s inequalities. It immediately leads to the 
estimate

ÿ

∫
−ÿ

|ÿ̌(ÿ)|2 dÿ ≤
ÿ

∫
−ÿ

|Ω|‖ÿℎ‖2ý2 dÿ =
(
2ÿ|Ω|)‖ÿℎ‖2ý2 .

Choose ÿ such that 2ÿ|Ω| < 1

2
, we have

ÿ

∫
−ÿ

|ÿ̌(ÿ)|2 dÿ ≤ 1

2
‖ÿℎ‖2ý2 . (3.19)

On the other hand, we have

∫
ÿ<|ÿ|< ÿ

ℎ

|ÿ̌(ÿ)|2 dÿ = ∫
ÿ<|ÿ|< ÿ

ℎ

1

|ÿ|ÿ
(
|ÿ|ÿ|ÿ̌(ÿ)|2

)
dÿ

≤ ÿ−ÿ ∫
ÿ<|ÿ|< ÿ

ℎ

|ÿ|ÿ|ÿ̌(ÿ)|2 dÿ

≤ ÿ−ÿ ∫
|ÿ|< ÿ

ℎ

|ÿ|ÿ|ÿ̌(ÿ)|2 dÿ = 2ÿÿ−ÿ
ï
ÿℎ, (−Δ)

ÿ
2

ℎ
ÿℎ
ð
ℎ

by the Parseval’s identity. Noticing the homogeneous Dirichlet bound-
ary conditions in (3.16), we further obtain

∫
ÿ<|ÿ|< ÿ

ℎ

|ÿ̌(ÿ)|2 dÿ ≤ 2ÿÿ−ÿ
ï
ÿℎ, (−Δ)

ÿ
2

ℎ
ÿℎ
ð
Ω

≤ 2ÿÿ−ÿ‖ÿℎ‖ý2(Ω)‖(−Δ)
ÿ
2

ℎ
ÿℎ‖ý2(Ω). (3.20)

Combining the estimates in (3.19) and (3.20) and noticing ‖ÿℎ‖ý2 =

‖ÿℎ‖ý2(Ω) for solution of (3.15)–(3.16), we immediately obtain (3.18), 
where ÿ depends on ÿ but independent of ℎ. □

Theorem 3.2 (Stability). Suppose ÿℎ =
{
ÿℎÿ
}
ÿ∈Ωℎ

is the solution of the 
discrete problem (3.15)–(3.16). Then it satisfies

‖ÿℎ‖ý2(Ω) ≤ ÿ‖ÿ‖ý2(Ω), (3.21)

where ÿ is a positive constant independent of ℎ, and ÿ =
{
ÿ (ýÿ )

}
ÿ∈Ωℎ

.

Proof. Multiplying both sides of (3.15) with (−Δ)
ÿ
2

ℎ
ÿ̄ℎÿ and summing it 

for index ÿ ∈Ωℎ, we get
ï
(−Δ)

ÿ
2

ℎ
ÿℎ, (−Δ)

ÿ
2

ℎ
ÿℎ
ð
Ω
=
ï
ÿ , (−Δ)

ÿ
2

ℎ
ÿℎ
ð
Ω
.

We then use the Cauchy–Schwarz inequality and obtain

‖‖‖(−Δ)
ÿ
2

ℎ
ÿℎ
‖‖‖ý2(Ω) ≤

√|Ω| ‖ÿ‖ý2(Ω). (3.22)

From (3.18) and (3.22), we then obtain

‖ÿℎ‖ý2 = ‖ÿℎ‖ý2(Ω) ≤ ÿ‖(−Δ) ÿ2 ÿℎ‖ý2(Ω) ≤ ÿ‖ÿ‖ý2(Ω),
with ÿ > 0 independent of ℎ. □

The result in (3.21) implies that if ÿ (ý) = 0, then ‖ÿ‖ý2(Ω) = 0. There-
fore, we obtain ÿ(ý) ≡ 0 for ý ∈ Ω, which implies that there exists a 
unique solution to (3.15)–(3.16).

Theorem 3.3 (Convergence). Suppose ÿ(ý) is the exact solution of (3.14), 
and denote ÿ = {ÿ(ýÿ )}ÿ∈Ωℎ . Let ÿℎ be the solution of the discrete system 
(3.15)–(3.16).

(i) Suppose ÿ ∈ ÿý,ÿ (Ω̄) for ý ∈ ℕ
0 and ÿ ∈ (0, 1]. Moreover, if ÿ(ý) ∈

ÿ2(Ω̄) for ý ≤ ý − 1, and ÿ(ý) is bounded variation, then

‖ÿ− ÿℎ‖ý2(Ω) ≤ ÿℎý+ÿ−ÿ+1∕2. (3.23)

(ii) If ÿ ∈ ÿ∞(Ω̄) and ÿ(ý) ∈ÿ2(Ω̄), then there is

‖ÿ− ÿℎ‖ý2(Ω) < ÿℎÿ, for any ÿ ≥ 0, (3.24)

that is, our method has a spectral accuracy.

Proof. Denote the grid error function ÿ = {ÿÿ}ÿ∈ℤ with

ÿÿ = ÿ(ýÿ ) − ÿ
ℎ
ÿ , for ÿ ∈ℤ.

From (3.14) and (3.15)–(3.16), we obtain

(−Δ)
ÿ
2

ℎ
ÿÿ = (−Δ)

ÿ
2 ÿ(ýÿ ) − (−Δ)

ÿ
2

ℎ
ÿℎÿ , for ÿ ∈Ωℎ,

ÿÿ = 0, for ÿ ∈Ωýℎ.

Hence, following the similar lines as in proving Theorem 3.2, we obtain

‖ÿ‖ý2(Ω) ≤ ÿ‖(−Δ) ÿ2 ÿ− (−Δ)
ÿ
2

ℎ
ÿℎ‖ý2(Ω)

≤ ÿ‖(−Δ) ÿ2 ÿ− (−Δ)
ÿ
2

ℎ
ÿℎ‖ý2 .

Combining it with the estimates in (3.7) and (3.8), we obtain (3.23) and 
(3.24), respectively. □

Remark 3.1. Our numerical studies show that the observed accu-
racy rate could be much higher than that predicted in (3.23); see 
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Fig. 2. Numerical errors of our method in solving the benchmark Poisson prob-
lem (5.6) with ý = ÿ∕2, where the exact solution ÿ ∈ ÿ0, ÿ

2 (Ω̄).

Figs. 2 and 5. Particularly, for the benchmark fractional Poisson prob-
lem (i.e., ý = ÿ∕2 in (5.6)), our method has the numerical error of 
(ℎmin{1,(ÿ+1)∕2}); see Fig. 2. In this case, the exact solution ÿ ∈ÿ0, ÿ

2 (Ω̄), 
and our method has the same accuracy as the finite element/difference 
methods in [2,1,8,18] since the low regularity of solution at the bound-
ary becomes dominant.

4. Generalization to high dimensions

Compared to one-dimensional cases, it is more challenging to ap-
proximate the fractional Laplacian in high dimensions. In this section, 
we generalize our spectral method for the one-dimensional fractional 
Laplacian to high-dimensional cases with ý ≥ 2. Specifically, we will 
present two generalization approaches in Sections 4.1 and 4.2, with 
their implementation and performance comparison discussed in Sec-
tion 4.3.

Let ÿ = (ÿ1, ÿ2, ⋯ , ÿý ) ∈ ℤ
ý . Define the ý-dimensional grid points 

ýÿ = ÿℎ = (ÿ1ℎ, ÿ2ℎ, ⋯ , ÿýℎ), and denote grid function ÿ
(ý) = {ÿÿ}ÿ∈ℤý . 

In high dimensions, the inner product and associated norm can be de-
fined similarly as in Section 2. First, we generalize the definition of the 
semi-discrete Fourier transform to ý dimensions.

Definition 4.1 (ý-dimensional semi-discrete Fourier transform). For a grid 
function ÿ(ý) ∈ ý2(ℝý ), the semi-discrete Fourier transform ℎ is defined 
as

ÿ̌(ÿ) =
(ℎ[ÿ(ý)])(ÿ) = ℎý

∑
ÿ∈ℤý

ÿÿ ÿ
−ÿÿ⋅ýÿ , for ÿ ∈

[
−
ÿ
ℎ
,
ÿ
ℎ

]ý
, (4.1)

where ÿ ⋅ ýÿ denotes the dot product of vectors ÿ and ýÿ. The inverse 
semi-discrete Fourier transform is defined by

ÿÿ = −1
ℎ, ÿ[ÿ̌] =

1

(2ÿ)ý

ÿ∕ℎ

∫
−ÿ∕ℎ

⋯

ÿ∕ℎ

∫
−ÿ∕ℎ

⏟ÿÿÿÿĀÿÿÿÿ⏟
ý times

ÿ̌(ÿ) ÿÿÿ⋅ýÿ dÿ, for ÿ ∈ℤ
ý . (4.2)

In high dimensions (ý > 1), we can generalize the scheme (2.4) from 
two different aspects.

4.1. Generalization I

Following the same approach as in obtaining (2.4), we can approxi-
mate the ý-dimensional Fourier transforms in definition (1.1) using the 
semi-discrete Fourier transforms and then obtain the approximation at 
point ý = ýý as:

(−Δ)
ÿ
2

ℎ
ÿý =

(
ℎ
2ÿ

)ý ÿ∕ℎ

∫
−ÿ∕ℎ

⋯

ÿ∕ℎ

∫
−ÿ∕ℎ

|ÿ|ÿ
( ∑

ÿ∈ℤý

ÿÿ ÿ
ÿÿ⋅(ýý−ýÿ)

)
dÿ,

for ý ∈ℤ
ý .

Hence, the scheme for the ý-dimensional (ý ≥ 1) fractional Laplacian is 
given by

(−Δ)
ÿ
2

ℎ
ÿý =

∑
ÿ∈ℤý

ÿ(ý)
ÿ,ℎ

(|ý− ÿ|)ÿÿ, for ý ∈ℤ
ý (4.3)

where the coefficients are defined as

ÿ(ý)
ÿ,ℎ

(|ý− ÿ|) =
(
ℎ
2ÿ

)ý
∫

ÿ∈[−
ÿ
ℎ
, ÿ
ℎ
]ý

|ÿ|ÿÿÿÿ⋅(ýý−ýÿ) dÿ, for ý, ÿ ∈ℤ
ý . (4.4)

For ý = 1, the scheme (4.3) reduces to (2.4) for one-dimensional 
cases, and we can analytically formulate ÿ(1)

ÿ,ℎ
(|ý − ÿ|) in terms of gener-

alized hypergeometric functions; see (2.5). In the special case of ÿ = 2, 
the coefficients in (4.4) can be analytically formulated as:

ÿ(ý)
2,ℎ

(|ý− ÿ|) = 1

ℎ2

⎧⎪⎪«⎪⎪¬

ý
3
ÿ2, if ý = ÿ

2
(−1)ýÿ−ÿÿ

(ýÿ − ÿÿ)
2
, if ýÿ ≠ ÿÿ, and ýý = ÿý, for ý ≠ÿ,

0, otherwise,

for any dimension ý ≥ 1. For ÿ = 2, the ý-dimensional semi-discrete 
Fourier transform degenerates to 1-dimensional semi-discrete Fourier 
transform along each direction. However, for ÿ ∈ (0, 2) and ý > 1, it is 
challenging to obtain the analytical form of ÿ(ý)

ÿ,ℎ
(|ý − ÿ|), and thus nu-

merical integrations are required in practical implementations. If the 
value of |ý− ÿ| is large, the integrand in (4.4) is a highly oscillatory 
function. Special numerical integration techniques are needed for ac-
curate computation of (4.4). More discussion on numerical integration 
of highly oscillating functions can be found in [29,32] and references 
therein.

The high-dimensional scheme (4.3) is straightforwardly derived fol-
lowing the approach used in one-dimensional cases. Consequently, its 
error analysis can be conducted similarly to Section 3.

4.2. Generalization II

As previously discussed, numerical integrations are required to com-
pute the coefficients in the high-dimensional scheme (4.3). To avoid 
numerically calculating the coefficients, we introduce a new general-
ization approach in this section. First, we rewrite the one-dimensional 
scheme (2.4) as:

(−Δ)
ÿ
2 ÿý =

∑
ÿ∈ℤ

(
ℎ
2ÿ

ÿ∕ℎ

∫
−ÿ∕ℎ

|ÿ|ÿÿÿÿ(ýý−ýÿ ) dÿ
)
ÿÿ , for ý ∈ℤ, (4.5)

which can be viewed as a weighted summation of all points ÿÿ , for 
ÿ ∈ℤ. Denote ýÿ(ÿ) ∶=

{
ý ∈ℝ

ý ∶ |ý| ≤ ÿ} as a ý-dimensional ball with 
radius ÿ > 0. Then we generalize the one-dimensional weighted summa-
tion in (4.5) to high dimensions as:

(−Δ)
ÿ
2

ℎ
ÿý =

∑
ÿ∈ℤý

ý(ý)
ÿ,ℎ

(|ý− ÿ|)ÿÿ, for ý ∈ℤ
ý , (4.6)

with the ý-dependent weight function

ý(ý)
ÿ,ℎ

(|ý− ÿ|) =
(
ℎ
2ÿ

)ý
∫

ÿ∈ý ÿ
ℎ
(ÿ)

|ÿ|ÿÿÿÿ⋅(ýý−ýÿ) dÿ, for ý, ÿ ∈ℤ
ý , (4.7)

by accounting for the rotational invariance of the fractional Laplacian. 
Note that both schemes (4.3) and (4.6) reduce to the one-dimensional 
scheme (2.4) if ý = 1.

Next we focus on finding the analytical expression of the weight 
function in (4.7). It is well-known that if ÿ(ý) = ÿ(|ý|) is a radial func-
tion, then its Fourier transform ÿ̂(ÿ) is also a radial function. Moreover, 
it can be given in terms of the Hankel transform, i.e.,
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ÿ̂(ÿ) =
(2ÿ)ý∕2

|ÿ|ý∕2−1
∞

∫
0

ÿ(ÿ)ÿý∕2ýý∕2−1(ÿ|ÿ|) dÿ, for ý ≥ 2, (4.8)

where ýÿ(ÿ) denotes the ÿ-th order Bessel function of the first kind. As 
an extension, we have the following lemma [37,36]:

Lemma 4.1. If ÿ(ý) is a summable radial function in a ý-dimensional ball 
ýÿ(ÿ), then we have

∫
ÿ∈ýÿ(ÿ)

ÿ(|ÿ|)ÿÿý⋅ÿ dÿ = (2ÿ)ý∕2

|ý|ý∕2−1
ÿ

∫
0

ÿ(ÿ)ÿý∕2ýý∕2−1(ÿ|ý|) dÿ, (4.9)

for any ÿ > 0.

It is easy to see that if ÿ → ∞, the result in (4.9) collapses to the 
Fourier transform of ÿ(ý) in (4.8). The proof of Lemma 4.1 can be 
found in [37, §25.1]. Particularly, if ÿ(ý) is a radial power function, 
i.e. ÿ(ý) = |ý|ý for ý > 0, the integral at the right hand side of (4.9) can 
be calculated exactly, i.e.,

ÿ

∫
0

ÿÿýÿ(ÿ) dÿ

=
ÿÿ+ÿ+1

2ÿ(ÿ+ ÿ + 1)Γ(ÿ + 1) 1ý2

(
ÿ+ ÿ + 1

2
; ÿ + 1,

ÿ+ ÿ + 3

2
;−
ÿ2

4

)
, (4.10)

for ÿ > 0 and Re(ÿ+ ÿ) > −1. If ÿ →∞, there is

∞

∫
0

ÿÿýÿ(ÿ) dÿ = 2ÿ
Γ
(
(ÿ + ÿ+ 1)∕2

)

Γ
(
(ÿ − ÿ+ 1)∕2

) .

Using Lemma 4.1 with ÿ = ÿ∕ℎ and ÿ(|ÿ|) = |ÿ|ÿ , and noticing |ýý −
ýÿ| = |ý − ÿ|ℎ, we obtain

ý(ý)
ÿ,ℎ

(|ý− ÿ|) =
(
ℎ
2ÿ

)ý (2ÿ)ý∕2

|ýý − ýÿ|(ý−2)∕2

ÿ
ℎ

∫
0

ÿÿ+ý∕2ýý∕2−1
(
ÿ|ýý − ýÿ|

)
dÿ

=
(2ÿ)−ý∕2

|ý− ÿ|ÿ+ýℎÿ
|ý−ÿ|ÿ

∫
0

ÿÿ+ý∕2ýý∕2−1(ÿ) dÿ,

where ÿ = |ý − ÿ|ÿℎ. We can further use the property of the Bessel func-
tions in (4.10) to obtain

ý(ý)
ÿ,ℎ

(|ý− ÿ|)

=
2ÿÿ+3ý∕2

(ÿ + ý)Γ(ý∕2)ℎÿ+ý 1ý2

(
ÿ + ý
2

;
ÿ + ý + 2

2
,
ý
2
; −
ÿ2|ý− ÿ|2

4

)
, (4.11)

i.e., taking ÿ = ÿ|ý − ÿ|, ÿ = ÿ + ý∕2, and ÿ = ý∕2 − 1 in (4.10).
Substituting (4.11) into (4.6) immediately yields the spectral ap-

proximation to the ý-dimensional (ý ≥ 1) fractional Laplacian as:

(−Δ)
ÿ
2

ℎ
ÿý

=
21−ýÿÿ+ý∕2

(ÿ + ý)Γ(ý∕2
)
ℎÿ

∑
ÿ∈ℤý

1ý2

(
ÿ + ý
2

;
ÿ + ý + 2

2
,
ý
2
; −
ÿ2|ý− ÿ|2

4

)
ÿÿ,

(4.12)

for ý ∈ ℤ
ý and ÿ > 0. It shows that the structure of our method 

in (4.12) is similar to finite difference methods. But our method 
can achieve much higher accuracy. Moreover, the coefficients of fi-
nite difference methods are usually given by ý-dimensional integrals 
[12,18,30], which require numerical integration to calculate – the 
larger the dimension ý, the higher the computational cost in computing 
their coefficients. In contrast, dimension ý in our method serves as pa-

Table 1
Numerical errors ‖ÿℎ

Δ
‖ý∞ (Ω) of the two-dimensional schemes (4.3) and (4.6)

in approximating function (−Δ)
ÿ

2 ÿ(ý, ÿ) on Ω = (−1.5, 1.5)2, where ÿ(ý, ÿ) is 
defined in (4.13) with ÿ = 6.

ÿ ℎ = 1∕8 ℎ = 1∕16 ℎ = 1∕32 ℎ = 1∕8 ℎ = 1∕16 ℎ = 1∕32

Generalization I in (4.3) with (4.4) Generalization II in (4.6) with (4.11)

0.5 2.765e-3 4.278e-7 6.427e-7 4.575e-2 1.416e-7 2.700e-15
1.0 2.823e-2 2.212e-6 6.716e-6 0.251 1.024e-6 2.310e-14
1.7 0.474 2.199e-5 8.014e-5 2.703 1.633e-5 3.837e-13
2.0 1.491 1.721e-6 1.089e-12 7.477 5.352e-5 1.677e-12

rameters of function 1ý2, and thus the computational cost in calculating 
ÿ(ý)
ÿ,ℎ

is independent of ý.

4.3. Comparison and discussion

The main difference between schemes (4.3) and (4.6) lies in their 
coefficient functions. In (4.6), the function ÿ(ý)

ÿ,ℎ
(|ý − ÿ|) can be ana-

lytically expressed in terms of generalized hypergeometric functions, 
which can be accurately computed with the algorithms in [22,33]. In 
contrast, computing coefficients ÿ(ý)

ÿ,ℎ
(|ý − ÿ|) in (4.3) requires numerical 

integration. Special numerical integration techniques are particularly 
demanded if |ý − ÿ| is large, as the integrand becomes highly oscillating 
in this case. Clearly, the accuracy of scheme (4.3) depends on the ac-
curacy of coefficient approximations, and the implementation of (4.6)
leads to higher computational costs compared to (4.3).

In the following, we conduct numerical experiments to compare the 
performance of (4.3) and (4.6) in approximating the two- and three-
dimensional fractional Laplacians. Note that if ý = 1, both reduce to the 
same scheme as in (2.4).

Example 4.1 (Two-dimensional cases). Table 1 presents the numerical 
errors in approximating function (−Δ)

ÿ
2 ÿ(ý, ÿ) on (−1.5, 1.5)2, where 

ÿ(ý, ÿ) = ÿ−ÿ
2(ý2+ÿ2) with ÿ = 6. In this case, the exact solution is given 

by

(−Δ)
ÿ
2 ÿ(ý, ÿ) = (2ÿ)ÿΓ

(ÿ + 2

2

)
1ý1

(ÿ + 2

2
; 1; −ÿ2(ý2 + ÿ2)

)
,

for (ý, ÿ) ∈ℝ
2. (4.13)

The scheme (4.6) shows spectral accuracy for any ÿ ∈ (0, 2], while spec-
tral accuracy of (4.3) is only observed when ÿ = 2. For large mesh size 
(e.g. ℎ = 1∕8, 1∕16), both schemes show similar numerical errors. How-
ever, the errors of scheme (4.3) stop decreasing when mesh size reduces 
to ℎ = 1∕32 if ÿ ∈ (0, 2), since they are dominated by the errors in com-
puting coefficients ÿ(ý)

ý,ℎ
. Here, the coefficients in (4.4) for ÿ ∈ (0, 2) are 

numerically computed using the MATLAB built-in function integral with 
a small absolute error tolerance.

Table 2 presents the numerical errors in approximating (−Δ)
ÿ
2 ÿ(ý, ÿ)

on a unit disk ý1(ÿ), where ÿ(ý, ÿ) =
[
1 − (ý2 + ÿ2)

]4
+
is a compactly 

support function. The exact solution is given by

(−Δ)
ÿ
2 ÿ(ý, ÿ) = 24

2ÿΓ
( ÿ+2

2

)

Γ
(
5 −

ÿ
2

) 2ý1
(ÿ + 2

2
,−4 +

ÿ
2
; 1; (ý2 + ÿ2)

)
,

for (ý, ÿ) ∈ý1(ÿ). (4.14)

Compared to (4.13), this function has less smoothness at the bound-
ary of the disk. In this case, scheme (4.6) demonstrates an accuracy of 
(ℎ4−ÿ) for any ÿ ∈ (0, 2]. The same order of accuracy is observed for 
scheme (4.3) only when ÿ = 2. The accuracy of scheme (4.3) is deteri-
orated by the errors of numerical integration if small mesh size is used 
(e.g., ℎ = 1∕64, 1∕128). The performance of the scheme (4.3) can be im-
proved by using more accurate numerical integration (e.g. in [32,29]) 
for highly oscillating functions, which will be explored in our future 
study.
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Table 2
Numerical errors ‖ÿℎ

Δ
‖ý∞(Ω) of the two-dimensional 

schemes (4.3) and (4.6) in approximating function 
(−Δ)

ÿ

2 ÿ(ý, ÿ) on ý1(ÿ), where ÿ(ý, ÿ) is defined in 
(4.14).

ÿ ℎ = 1∕16 ℎ = 1∕32 ℎ = 1∕64 ℎ = 1∕128

Generalization I in (4.3) with (4.4)

0.5 5.584e-6 7.956e-7 1.468e-6 2.516e-6
1.0 8.608e-5 1.300e-5 2.250e-5 4.915e-5
1.7 2.652e-3 6.035e-4 4.373e-4 1.537e-3
2.0 1.095e-2 2.979e-3 7.708e-4 1.974e-4

Generalization II in (4.6) with (4.11)

0.5 3.430e-5 3.007e-6 2.643e-7 2.365e-8
1.0 2.692e-4 3.353e-5 4.214e-6 5.289e-7
1.7 4.859e-3 9.852e-4 2.135e-4 4.206e-5
2.0 1.799e-2 4.211e-3 1.152e-3 2.762e-4

Example 4.2 (Three-dimensional cases). Table 3 further compares 
these two schemes in approximating the three-dimensional function 
(−Δ)

ÿ
2 ÿ(ý, ÿ, ÿ) on (−1, 1)3, where ÿ(ý, ÿ, ÿ) = ýÿÿ−ÿ

2|ý|2 with ÿ = 7. In 
this case, the exact solution is given by

(−Δ)
ÿ
2 ÿ(ý, ÿ, ÿ) =

23+ÿÿÿΓ
( ÿ+7

2

)

15
√
ÿ

ýÿ 1ý1
(ÿ + 7

2
;
7

2
; −ÿ2(ý2 + ÿ2 + ÿ2)

)
,

(4.15)

for (ý, ÿ, ÿ) ∈ ℝ
3. The observations are consistent with those from Ta-

ble 1 for two-dimensional cases. The scheme (4.6) shows spectral ac-
curacy for any ÿ ∈ (0, 2], while the accuracy of scheme (4.3) is sig-
nificantly influenced by the accuracy of numerical integration when 
ÿ ∈ (0, 2). Moreover, compared to two-dimensional cases, the numeri-
cal integration required for evaluating (4.4) in three-dimensional cases 
takes significantly longer time. This again highlights the advantages of 
scheme (4.6), as the coefficients can be calculated more efficiently and 
accurately by expressing them in terms of the generalized hypergeomet-
ric function.

If a bounded domain with extended Dirichlet boundary conditions 
is considered, both scheme in (4.3) and (4.6) can be written into 
matrix-vector form with a (multi-level) Toeplitz matrix. Then the ap-
proximation of the fractional Laplacian can be efficiently evaluated 
via the ý-dimensional fast Fourier transforms with computational cost 
(2ý log(2ý)) and memory cost (ý), where ý denotes the total 
number of grid points in domain.

5. Numerical results

In this section, we examine the performance of our method and 
verify our theoretical results. To this end, we first test the numerical 
accuracy of our method in approximating the classical and fractional 
Laplacian (−Δ)

ÿ
2 (i.e. for 0 < ÿ ≤ 2), and then apply it to study frac-

tional elliptic problems. As discussed previously, our method has the 
similar framework as finite difference methods, but it can achieve much 

higher accuracy. To demonstrate this, we will compare our method 
with some representative finite difference methods in the literature 
[8,18,19,30]. Unless otherwise stated, we will always use the scheme 
(4.6) with (4.11) in the following simulations.

5.1. Discretization of the fractional Laplacian

In the following, we test the accuracy of our method in approxi-
mating (−Δ)

ÿ
2 ÿ under different smoothness conditions of ÿ. The error 

function is defined as

(
ÿℎ
Δ

)
ÿ
= (−Δ)

ÿ
2 ÿ(ýÿ) − (−Δ)

ÿ
2

ℎ,ý
ÿ(ýÿ), for ýÿ ∈Ω,

where (−Δ)
ÿ
2

ℎ,ý
is the numerical approximation of the ý-dimensional 

fractional Laplacian in (4.12).

Example 5.1. Consider an inverse multiquadratic function of the form:

ÿ(ý) =
1

(1 + ý2)7
, for ý ∈ℝ. (5.1)

The exact solution of (−Δ)
ÿ
2 ÿ(ý) is given by [44],

(−Δ)
ÿ
2 ÿ(ý) =

2ÿΓ
( 1+ÿ

2

)
Γ
(
7 +

ÿ
2

)

720
√
ÿ

2ý1

(
ÿ + 1

2
,7 +

ÿ
2
;
1

2
;−ý2

)
,

for ý ∈ℝ, (5.2)

for any ÿ > 0. We will numerically approximate the function (−Δ)
ÿ
2 ÿ(ý)

on Ω = (−1, 1).

Table 4 presents numerical errors ‖ÿℎ
Δ
‖ý∞(Ω) of our method for dif-

ferent power ÿ and mesh size ℎ. Here, the function ÿ ∈ ÿ∞(ℝ). Table 4
shows that our method has a spectral accuracy for any ÿ > 0, confirm-
ing our analytical results in Theorem 3.1 (ii). Moreover, for the same 
mesh size ℎ, the larger the power ÿ, the bigger the numerical errors.

Next, we compare our method with some representative finite dif-
ference methods in the literature [8,18,19,30]. Table 5 shows their 
numerical errors with much smaller mesh size, e.g., ℎ = 1∕256, 1∕512. 
From Tables 4 and 5, we find that our method can achieve the same 
accuracy with much less number of points ý . For instance, to achieve 
errors of (10−6) ∼ (10−8), our method needs around ý = 16 (i.e., 
ℎ = 1∕8), but the methods in Table 5 requireý = 1024 (i.e., ℎ = 1∕512) 
or more. Consequently, the differentiation matrices of these methods 
are much larger than that of our method. Note that the computational 
cost in computing matrix-vector product is (2ý log(2ý)). Hence, our 
method has much lower computational and storage cost. It is known 
that the methods in [8,18] have accuracy of (ℎ2), while the method in 
[19] has (ℎ2−ÿ), which is confirmed by our observations in Table 5.
Example 5.2. We consider a compact support function

ÿ(ý) = (ÿ2 − ý2)ý
+
, for ý ∈ℝ. (5.3)

Table 3
Numerical errors ‖ÿℎ

Δ
‖ý∞(Ω) of the three-dimensional schemes (4.3) and (4.6) in approxi-

mating function (−Δ)
ÿ

2 ÿ(ý, ÿ, ÿ) on Ω = (−1, 1)3, where ÿ(ý, ÿ, ÿ) is defined in (4.15). Note 
that errors in scheme (4.3) stop decreasing for ℎ = 1∕16 due to integration errors when 
ÿ < 2. However, for ÿ = 2, scheme (4.3) can achieve an error of 1.266e-14 for ℎ = 1∕32.

ÿ ℎ = 1∕4 ℎ = 1∕8 ℎ = 1∕16 ℎ = 1∕4 ℎ = 1∕8 ℎ = 1∕16 ℎ = 1∕32

Generalization I in (4.3) with (4.4) Generalization II in (4.6) with (4.11)

0.5 4.784e-4 1.062e-3 2.597e-3 2.900e-4 2.239e-3 2.138e-6 1.100e-17
1.0 3.501e-3 9.083e-3 3.096e-2 2.768e-3 1.120e-2 1.542e-5 1.390e-16
1.7 3.596e-2 0.123 0.666 3.102e-2 0.106 2.454e-4 4.219e-15
2.0 8.933e-2 6.838e-2 4.179e-6 7.920e-2 0.276 8.034e-4 1.177e-14
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Fig. 3. Comparison of our method and others (including Huang in [19], Duo in [8], Minden in [30], and Hao in [18]) in approximating (−Δ)
ÿ

2 ÿ on Ω = (−1, 1), where 
ÿ is defined in (5.3) with ÿ = 1.

Table 4
Numerical errors ‖ÿℎ

Δ
‖ý∞(Ω) of our method in approximat-

ing (−Δ)
ÿ

2 ÿ on Ω = (−1, 1), where ÿ is defined in (5.1).

ℎ = 1∕2 ℎ = 1∕4 ℎ = 1∕8 ℎ = 1∕16

ÿ = 0.5 0.068 9.007e-4 4.641e-8 1.723e-16
ÿ = 1.0 0.325 6.319e-3 4.645e-7 2.112e-16
ÿ = 1.7 2.003 6.301e-2 7.540e-6 5.204e-15
ÿ = 2.0 4.165 1.588e-1 2.335e-5 1.979e-14

Table 5
Numerical errors ‖ÿℎ

Δ
‖ý∞(Ω) of finite difference methods in [19,8,18,30] for 

approximating (−Δ)
ÿ

2 ÿ on Ω = (−1, 1), where ÿ is defined in (5.1).

methods Huang [19] Duo [8] Hao [18] Minden [30]

ÿ = 0.5
ℎ = 1∕256 1.814e-4 5.521e-6 1.085e-5 4.047e-6
ℎ = 1∕512 6.864e-5 1.383e-6 2.712e-6 5.710e-6

ÿ = 1.0
ℎ = 1∕256 2.711e-3 7.336e-7 5.594e-5 5.314e-7
ℎ = 1∕512 1.381e-3 1.170e-7 1.398e-5 6.673e-8

ÿ = 1.7
ℎ = 1∕256 5.423e-2 1.794e-4 3.878e-4 9.800e-5
ℎ = 1∕512 4.430e-2 4.154e-5 9.695e-5 1.940e-5

It is easy to see that ÿ ∈ ÿý−1,1(ℝ) for ý ∈ ℕ. For ý ∉ ℕ, it satisfies 
ÿ ∈ ÿ+ý,, ý−+ý,(ℝ) with +⋅, denoting the floor function. In this case, the 
exact solution of (−Δ)

ÿ
2 ÿ is given by [14,44]:

(−Δ)
ÿ
2 ÿ(ý) =

2ÿΓ
( ÿ+1

2

)
Γ(ý+ 1)ÿ2ý−ÿ

√
ÿ Γ(ý+ 1 −

ÿ
2
)

2ý1

(
ÿ + 1

2
,−ý+

ÿ
2
;
1

2
;
ý2

ÿ2

)
,

(5.4)

for any ÿ ≥ 0 and |ý| < ÿ.

Table 6
Numerical errors ‖ÿℎ

Δ
‖ý∞(Ω) and convergence rate (c.r.) of our method in ap-

proximating (−Δ)
ÿ

2 ÿ(ý) on Ω = (−1, 1), where ÿ is defined in (5.3) with ÿ = 1

and ý = 4.

ℎ = 1∕8 ℎ = 1∕16 ℎ = 1∕32 ℎ = 1∕64 ℎ = 1∕128 ℎ = 1∕256

ÿ = 0.5
5.611e-5 4.963e-6 4.351e-7 3.823e-8 3.367e-9 2.970e-10
c.r. 3.499 3.512 3.509 3.505 3.503

ÿ = 1.0
5.448e-4 6.751e-5 8.330e-6 1.032e-6 1.284e-7 1.601e-8
c.r. 3.013 3.019 3.012 3.007 3.004

ÿ = 1.7
8.537e-3 1.713e-3 3.428e-4 6.895e-5 1.393e-5 2.820e-6
c.r. 2.3171 2.321 2.314 2.308 2.304

ÿ = 2.0
2.610e-2 6.454e-3 1.590e-3 3.939e-4 9.796e-5 2.442e-5
c.r. 2.016 2.021 2.014 2.008 2.004

Take domain Ω = (−1, 1). We study numerical errors in approximat-
ing function (−Δ)

ÿ
2 ÿ(ý) on Ω. If choosing ÿ = 1, the function in (5.3)

also satisfies ÿ ∈ ÿ+ý,, ý−+ý,(Ω̄), and it has less smoothness at points 
ý = ±1. Table 6 presents numerical errors and convergence rates of 
our method, where ÿ is from (5.3) with ÿ = 1 and ý = 4. It is easy to 
verify that ÿ ∈ ÿ3,1(ℝ), and (−Δ)

ÿ
2 ÿ ∈ ÿ3−+ÿ,,1−ÿ++ÿ,(ℝ). Hence, the 

larger the power ÿ, the less smooth the function (−Δ)
ÿ
2 ÿ, and the larger 

the approximation errors. We find that our method has an accuracy of 
(ℎ4−ÿ) for ‖ÿℎ

Δ
‖ý∞(Ω), confirming our analytical results in Theorem 3.1

(i). Moreover, our extensive studies show that: (i) the maximum er-
rors occur around the boundary of Ω, i.e., ý = ±1; (ii) numerical error 
‖ÿℎ

Δ
‖ý2(Ω) is much smaller than ‖ÿℎΔ‖ý∞(Ω), and it has an accuracy of (ℎ4.5−ÿ).
Fig. 3 further compares our method with those representative finite 

difference methods in [8,18,19,30], where ÿ is chosen from (5.3) with 
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Fig. 4. Numerical results of (−Δ)
1

2 ÿ(ý, ÿ), where ÿ is from (5.5) with ý = 2 (a) or ý = 4 (b).

Table 7
Comparison of the accuracy and computational time (in second) of our 
method and those in [8,18,19] when approximating (−Δ)

ÿ

2 ÿ on Ω =
(−1, 1), where ÿ = 1.6 and ÿ is defined in (5.3) with ÿ = 1 and ý = 8.

Method Huang [19] Duo [8] Hao [18] Ours

Error ‖ÿℎ
Δ
‖ý∞ (Ω) 1.148e-2 9.009e-8 3.044e-7 2.055e-8

Number of points ý 16384 16384 16384 64

Time in assembling ý 1.150e-3 6.386e-4 2.477e-4 7.729e-2
Time in computing ýÿ 1.26 1.26 1.26 4.710e-5

ÿ = 1, and ý = 2 + ÿ, or ý = 8. Generally, the larger the value of ý, the 
smoother the function (−Δ)

ÿ
2 ÿ, and the smaller the numerical errors. 

Hence, numerical errors for ý = 8 are smaller than those of ý = 2 + ÿ. 
For ý = 2 + ÿ, the function ÿ ∈ ÿ2++ÿ,, ÿ−+ÿ,(ℝ). Our method and those 
in [8,18,30] all have the second order of accuracy, but the errors of our 
method are much smaller; see Fig. 3 a) & b). While the method in [19]
has the accuracy of (ℎ2−ÿ), which is not improved even for a smoother 
function (e.g., ý = 8). Note that the accuracy of finite difference methods 
in [8,18] and [30] are capped by (ℎ2) and (ℎ4−ÿ), respectively. In 
contrast, the accuracy of our method, depending on function regularity, 
is (ℎý−ÿ); see Fig. 3 c) & d) for ý = 8. This is one main advantage of 
our method in comparison to those in [8,18,19,30].

Moreover, Table 7 compares their computational times. We usu-
ally formulate the task of approximating the function (−Δ)

ÿ
2 ÿ into a 

matrix-vector form as (−Δ)
ÿ
2

ℎ
ÿ = ýÿ. Hence, the computational time of 

approximating (−Δ)
ÿ
2 ÿ comes from two parts: assembling the matrix 

ý and performing the matrix-vector multiplication ýÿ. Table 7 shows 
that to obtain an accuracy of (10−8), our method requires ý = 64

points, while the methods in [8,18,19] require ý = 16384 or more. 
Consequently, their computational time on computing ýÿ is signifi-
cantly longer than ours. To compare their time in assembling matrix ý, 
we note that the discretizations from our method or those in [8,18,19]
all lead to a symmetric (multilevel) Toeplitz matrix ý. Hence, we only 
need to compute the entries of a single column (or row). For meth-
ods in [8,18,19], each entry of matrix ý is typically defined by a 
ý-dimensional integral. In the special case of ý = 1, it can be analyt-
ically integrated and expressed in terms of elementary functions, and 
thus the computational time required for computing entries is insignifi-
cant, as demonstrated in Table 7. However, in high-dimensional (ý ≥ 2) 
cases, each entry needs to be computed through numerical integration. 
Consequently, the computational time required to assemble matrix ý
significantly increases as the dimensions ý increases. In contrast, the 
time of computing each entry of matrix ý in our method is independent 
of the dimension ý.

Hence, to achieve the same accuracy, our method requires a sig-
nificantly smaller number of points, resulting in significantly shorter 
computational time. This advantage of our method becomes even more 
pronounced in higher dimensions.

Table 8
Numerical errors ‖ÿℎ

Δ
‖ý∞(Ω) and ‖ÿℎΔ‖ý2(Ω) and convergence rate (c.r.) of our 

method in approximating (−Δ)
ÿ

2 ÿ on Ω = (−1, 1)2, where ÿ is defined in (5.5)
with ý = 2. Note that for ÿ = 2 the method does not converge in this case.

ℎ = 1∕8 ℎ = 1∕16 ℎ = 1∕32 ℎ = 1∕64 ℎ = 1∕128

ÿ = 0.5

‖ÿℎ
Δ
‖ý∞ (Ω)

1.274e-3 4.432e-4 1.573e-4 5.581e-5 1.977e-5
c.r. 1.523 1.494 1.495 1.497

‖ÿℎ
Δ
‖ý2 (Ω) 8.129e-4 2.028e-4 5.104e-5 1.281e-5 3.210e-6

c.r. 2.003 1.991 1.994 1.997

ÿ = 1.0

‖ÿℎ
Δ
‖ý∞ (Ω)

1.165e-2 5.791e-3 2.904e-3 1.456e-3 7.291e-4
c.r. 1.008 0.996 0.997 0.997

‖ÿℎ
Δ
‖ý2 (Ω) 7.540e-3 2.675e-3 9.507e-4 3.371e-4 1.194e-4

c.r. 1.495 1.492 1.496 1.497

ÿ = 1.7

‖ÿℎ
Δ
‖ý∞ (Ω)

1.712e-1 1.387e-1 1.129e-1 9.189e-2 7.495e-2
c.r. 0.304 0.297 0.297 0.294

‖ÿℎ
Δ
‖ý2 (Ω) 1.121e-1 6.470e-2 3.734e-2 2.151e-2 1.240e-2

c.r. 0.793 0.793 0.796 0.794

ÿ = 2.0 ‖ÿℎ
Δ
‖ý2 (Ω) 0.334 0.238 0.169 0.120 8.531e-2

c.r. 0.492 0.493 0.495 0.490

Example 5.3. We consider a two-dimensional compact support function 
of the form

ÿ(ý, ÿ) =
[
(1 − ý2)(1 − ÿ2)

]ý
+
, for (ý, ÿ) ∈ℝ

2, (5.5)

for ý ∈ ℕ. In this case, the analytical result of (−Δ)
ÿ
2 ÿ is unknown if 

ÿ < 2.

Fig. 4 illustrates the numerical results of (−Δ)
ÿ
2 ÿ on domain Ω =

(−1, 1)2 for ÿ = 1, and ý = 2 or 4 in (5.5). It shows that even though 
ÿ(ý) ≡ 0 for ý ∈ ℝ

2∖Ω, function (−Δ)
ÿ
2 ÿ(ý) is not necessarily zero on 

ℝ
2∖Ω due to the nonlocality of the fractional Laplacian. Tables 8–9

further show numerical errors of our method for different power ÿ and 
mesh size ℎ. Since the exact solution of (−Δ)

ÿ
2 ÿ is unknown, we use the 

numerical solution with a fine mesh size ℎ = 2−10 as the reference to 
compute numerical errors. The function in (5.5) satisfies ÿ ∈ ÿý−1,1(ℝ2). 
It shows that our method has the accuracy of (ℎý−ÿ) for ‖ÿℎ

Δ
‖ý∞(Ω), 

while (ℎý−ÿ+1∕2) for ‖ÿℎ
Δ
‖ý2(Ω); see Table 8. Note that our method 

becomes more advantageous in higher dimensions, as fewer points are 
required to obtain the desired accuracy. Hence, it has significantly less 
computational and storage costs.

5.2. Fractional elliptic problems

In the following, we apply our numerical method to solve the frac-
tional elliptic problems with extended Dirichlet boundary conditions. 
Denote the grid error function
(
ÿℎÿ
)
ÿ
= ÿ(ýÿ) − ÿ

ℎ
ÿ
, for ýÿ ∈Ω,
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Fig. 5. Numerical errors of our method in solving the Poisson problem (5.6).

Fig. 6. Numerical errors of our method in solving the Poisson problem (5.6). (a) Pointwise errors at grid points {ýÿ} (red ‘◦’) and non-grid points {ý̃ý} (blue ‘∙’), 
where ÿ = 1; (b) RMS errors for different ÿ, where ℎ indicates the mesh size used to compute ÿℎÿ in (5.7).

Table 9
Numerical errors ‖ÿℎ

Δ
‖ý∞(Ω) and convergence rate (c.r.) of our method 

in approximating (−Δ)
ÿ

2 ÿ on Ω = (−1, 1)2, where ÿ is defined in (5.5)
with ý = 4.

ℎ = 1∕8 ℎ = 1∕16 ℎ = 1∕32 ℎ = 1∕64 ℎ = 1∕128

ÿ = 0.5
7.497e-5 5.143e-6 4.368e-7 3.824e-8 3.367e-9
c.r. 3.866 3.558 3.514 3.505

ÿ = 1.0
6.383e-4 6.875e-5 8.3453-6 1.033e-6 1.284e-7
c.r. 3.215 3.042 3.015 3.007

ÿ = 1.7
9.453e-3 1.734e-3 3.432e-4 6.896e-5 1.393e-5
c.r. 2.447 2.336 2.315 2.307

ÿ = 2.0
2.856e-2 6.523e-3 1.592e-3 3.940e-4 9.799e-5
c.r. 2.131 2.034 2.015 2.007

with ÿ(ýÿ) and ÿ
ℎ
ÿ
representing the exact and numerical solutions at 

point ýÿ, respectively.

Example 5.4. Consider the one-dimensional Poisson equation with ex-
tended homogeneous Dirichlet boundary conditions:

(−Δ)
ÿ
2 ÿ(ý) = ý 2ý1

(
3 + ÿ
2

,−ý+
ÿ
2
;
3

2
; ý2

)
, for ý ∈ (−1,1),

ÿ(ý) = 0, for ý ∈ℝ∖(−1,1),
(5.6)

where ý > 0. The exact solution of (5.6) is given by [14,44]:

ÿ(ý) =

√
ÿ Γ

(
ý+ 1 −

ÿ
2

)

2ÿ+1Γ
(
ý+ 1

)
Γ
(
(3 + ÿ)∕2

) ý(1 − ý2)ý
+
,

for any ÿ ∈ (0, 2].

Fig. 5 presents the numerical errors and convergence rates of our 
method for various ÿ and ý, where order lines are included for bet-
ter comparison. Here, the solution ÿ ∈ ÿý−1,1(Ω̄) for ý ∈ ℕ, while 
ÿ+ý,, ý−+ý,(Ω̄) for ý ∉ ℕ. It shows that the smoother the solution ÿ, the 
smaller the numerical errors, and the higher the accuracy rate of our 
method. Numerical errors ‖ÿℎÿ‖ý2(Ω) decays with a rate between ý and 
ý +1∕2, confirming our theoretical results in Theorem 3.3 (i). More pre-
cisely, the observed accuracy rate is higher than the predicted rate (i.e., 

(ℎý−ÿ+ 1
2 )). In addition, we find that the convergence rate of ‖ÿℎÿ‖ý∞(Ω)

is (ℎý). Our extensive studies show that our method outperforms those 
in [8,18,19,30]; we omit showing their details for brevity.

Remark 5.1. To further demonstrate the effectiveness of our method, 
we also measure the errors at non-grid points. Let ÿℎÿ represent the nu-
merical approximation of ÿ(ýÿ ), obtained by numerically solving the 
fractional Poisson equation in (5.6) at grid points {ýÿ}ÿ∈Ωℎ . Denote 
ý̃ý = ýℎ for ý ∈ ℝ (instead of ℤ) to distinguish from the grid points ýÿ . 
Setting ÿ = 0 in (2.6), we obtain the approximate solution of (5.6) at 
any point ý̃ý ∈Ω:

ÿ̃ℎý =
∑
ÿ∈Ωℎ

0ý1

(
;
3

2
;
−ÿ2(ý − ÿ)2

4

)
ÿℎÿ

=
∑
ÿ∈Ωℎ

sinc
(
ÿ
ℎ
(ýý − ýÿ )

)
ÿℎÿ , for ý̃ý ∈Ω, (5.7)

where ‘∼’ is included in ÿ̃ℎ
ý
to indicate that it is computed from (5.7). 

Fig. 6 (a) shows the numerical errors at both grid points {ýÿ} and non-
grid points {ý̃ý}, where we set ÿ = 1 and ý = 6 in (5.6). The points 
{ý̃ý}ý∈Ω̃ℎ are uniformly distributed in the interval (−1, 1) with a to-
tal of ý = 1000 points, where the index set Ω̃ℎ = {ý = 2ÿ∕125 ∣ ÿ ∈
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Fig. 7. Solution of the coexistence problem (5.9) for different ÿ1, ÿ1 and ÿ2.

Table 10
Numerical errors ‖ÿℎÿ‖ý2(Ω) of our method in solving the 2D el-
liptic problem (5.8) on Ω = (−1.5, 1.5)2, where ÿ = 6 is chosen 
in (5.8).

ÿ = 0.5 ÿ = 1.0 ÿ = 1.7 ÿ = 2.0

ℎ = 1∕8 3.512e-2 0.0154 1.227 3.013
ℎ = 1∕16 9.835e-8 5.174e-7 5.285e-6 1.438e-5
ℎ = 1∕32 3.100e-15 1.420e-14 3.365e-13 1.288e-12

ℤ, and ýℎ ∈ Ω}. It shows that our method has small errors not only at 
grid points but also at non-grid points. Moreover, we present the root 
mean square errors (RMS) in Fig. 6 (b), in comparison to the ý2-norm 
errors in Fig. 5. Here, the RMS error is defined as

‖ÿℎÿ‖rms =

(
1

ý

∑
ý∈Ω̃ℎ

|||ÿ(ý̃ý) − ÿ̃
ℎ
ý
|||
2
)1∕2

.

Note that ý = 1000 is large enough so that further increasing its value 
does not change the RMS errors. Fig. 6 (b) again shows that our method 
yields good accuracy for all points across the domain, not only at the 
grid points.

Example 5.5. Consider the two-dimensional elliptic problem:

(−Δ)
ÿ
2 ÿ(ý) + ÿ(ý) = ÿ (ý), for ý ∈Ω,

ÿ(ý) = ÿ−ÿ
2|ý|2 , for ý ∈Ωý ,

(5.8)

for ÿ ∈ℝ. Choose the right-hand side function as

ÿ (ý) = (2ÿ)ÿΓ
(
1 +

ÿ
2

)
1ý1

(
1 +

ÿ
2
; 1; −ÿ2|ý|2

)
+ ÿ−ÿ

2|ý|2 , for ý ∈Ω,

such that the exact solution of (5.8) is given by ÿ(ý) = ÿ−ÿ
2|ý|2 , for ý ∈Ω.

Set the domain Ω = (−1.5, 1.5)2. Table 10 presents the numerical er-
rors of our method for different power ÿ and mesh size ℎ, where we 
choose ÿ = 6 in (5.8). It shows that numerical errors decrease quickly 
when reducing the mesh size ℎ, and our method has a spectral accu-
racy. In this case, the solution ÿ ∈ ÿ∞(ℝ2), and the observed spectral 
accuracy confirms our analytical results in Theorem 3.3 (ii). We find 
that the maximum errors in this case occur at the center of the domain, 
i.e., around ý = ÿ.

Example 5.6. Consider the coexistence problem of normal and anoma-
lous diffusion:

[
ÿ1(−Δ)

ÿ1
2 + (1 − ÿ1)(−Δ)

ÿ2
2
]
ÿ(ý) = ÿ−|ý|2 cos4

(
3ÿ
2
|ý|
)
ÿ{|ý|<1}, (5.9)

for ý ∈Ω, with homogeneous Dirichlet boundary conditions, i.e. ÿ(ý) =
0 for ý ∈ Ωý , where ÿ1 ≥ 0, and ÿ1, ÿ2 ∈ (0, 2]. Without loss of gen-
erality, we assume ÿ1 ≤ ÿ2. The characteristic function ÿ{|ý|<1} = 1 if 
|ý| < 1, and otherwise it is 0 if |ý| ≥ 1.

The nonlocal elliptic equation (5.9) can be viewed as the steady state 
of the coexistence of anomalous-anomalous (i.e., both ÿ1, ÿ2 < 2) or 
anomalous-normal (i.e., ÿ1 < ÿ2 ≤ 2) diffusion observed in many fields 
[21,27,46]. The exact solution of (5.9) is unknown. Hence, we use our 
numerical method to study the solution behaviors with Ω = (−1, 1)2. 
Fig. 7 presents the numerical solution for different ÿ1, ÿ1 and ÿ2. It 
shows that the solutions are radially symmetric, and its maximum value 
is reached at the center ý = ÿ.

In pure classical diffusion cases (i.e., ÿ1 = 0 and ÿ2 = 2), the solu-
tion decreases gradually from the center to the boundary due to the 
homogeneous Dirichlet boundary conditions. In contrast, the solutions 
in the fractional cases are very different – an annular layer is formed 
in between the center and boundary. The smaller the power ÿ, the 
sharper the layer (cf. results of ÿ1 = 1, ÿ1 = 1 and ÿ1 = 0.5). The so-
lutions in mixed anomalous-normal or anomalous-anomalous cases are 
more complicated depending on the value of ÿ1. In Fig. 8, we compare 
the solution at ÿ = 0 for different ÿ1 and ÿý (for ý = 1, 2) and also the 
solution mass ‖ÿ‖2 = ∫

Ω
|ÿ(ý)|2 dý. Generally, the smaller the value of 

ÿ1, the smaller the magnitude of solution ÿ, and the lower the solution 
mass ‖ÿ‖2.

6. Conclusions

We proposed a novel and simple spectral method to discretize the 
ý-dimensional (for ý ≥ 1) fractional Laplacian (−Δ)

ÿ
2 . The key idea of 

our method is to apply the semi-discrete Fourier transforms to approxi-
mate the pseudo-differential definition of the fractional Laplacian. Our 
scheme can be viewed as a discrete pseudo-differential operator with 
symbol |ÿ|ÿ and thus provides an exact discrete analogue of the frac-
tional Laplacian (−Δ)

ÿ
2 . Detailed numerical analysis was presented to 

study the truncation errors under different conditions. It showed that 
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Fig. 8. Comparison of solution at ÿ = 0 for different ÿ1, ÿ1 and ÿ2, where ‖ÿ‖2 = ∫
Ω
|ÿ(ý)|2 dý.

our method can achieve a spectral accuracy if the function is smooth 
enough. Moreover, the stability and convergence of our method in 
solving the fractional Poisson equations were analyzed. In contrast to 
the existing Fourier pseudospectral methods in [7,11,24], our method 
evades the constraint of periodic boundary conditions. Moreover, it re-
sults in a multilevel Toeplitz stiffness matrix, and thus fast algorithms 
can be developed for efficient matrix-vector multiplication. The com-
putational complexity is (2ý log(2ý)), while the memory storage is 
(ý) with ý the total number of points.

Extensive numerical experiments were reported to demonstrate the 
effectiveness of our method. Our numerical study showed that the 
smoother the function to approximate, the higher the accuracy of our 
method. The observed accuracy rate verified our analytical results. 
The comparison of our method to finite difference methods further 
demonstrated its effectiveness. It showed that our method can be for-
mulated similarly to finite difference methods. However, our method 
could achieve much higher accuracy, and the cost of computing matrix 
entries is independent of dimension ý. The advantage of our method is 
more significant in high dimensions, as fewer points are demanded to 
obtain the desired accuracy. Consequently, our method considerably re-
duces the computational and storage costs. In addition, the accuracy of 
our method in solving the fractional elliptic equations was numerically 
studied. We found that if the solution ÿ ∈ ÿ+ý,, ý−+ý,(Ω̄), our method 
has errors ‖ÿℎÿ‖ý∞(Ω) ∼ (ℎý). We also applied our method to study 
the coexistence of anomalous-anomalous or anomalous-normal diffu-
sion problems.
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