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We propose a novel and simple spectral method based on the semi-discrete Fourier transforms to discretize
the fractional Laplacian (—A)% . Numerical analysis and experiments are provided to study its performance. Our
method has the same symbol |£|* as the fractional Laplacian (—A)% at the discrete level, and thus it can be viewed
as the exact discrete analogue of the fractional Laplacian. This unique feature distinguishes our method from other
existing methods for the fractional Laplacian. Note that our method is different from the Fourier pseudospectral
methods in the literature which are usually limited to periodic boundary conditions (see Remark 1.1). Numerical
analysis shows that our method can achieve a spectral accuracy. The stability and convergence of our method
in solving the fractional Poisson equations were analyzed. Our scheme yields a multilevel Toeplitz stiffness
matrix, and thus fast algorithms can be developed for efficient matrix-vector multiplications. The computational
complexity is O(2N log(2N)), and the memory storage is O(N) with N the total number of points. Extensive
numerical experiments verify our analytical results and demonstrate the effectiveness of our method in solving

various problems.

1. Introduction

The fractional Laplacian (—A)% , representing the infinitesimal gen-
erator of a symmetric a-stable Lévy process, can be viewed as a nonlocal
generalization of the classical Laplacian. It has found applications in
many areas, including quantum mechanics, turbulence, plasma, finance,
and so on. Compared to its classical counterpart, the nonlocality of the
fractional Laplacian introduces considerable challenges in numerical
approximation and computer implementation. Over the past decades,
many numerical studies have been reported for the fractional Laplacian;
see [2-6,8,10,12,16-19,24,28,30,38-40,43-45] and references therein.
In this paper, we propose a novel and simple spectral method based on
the semi-discrete Fourier transforms to discretize the fractional Lapla-
cian (—A)% . Note that our method is essentially different from the
Fourier pseudospectral methods in the literature [11,24]; see more dis-
cussion in Remark 1.1.

The fractional Laplacian can be defined as a pseudo-differential op-
erator with symbol [£|* [25,26,37], i.e.,

(=) u(x) = F~1 | Flul].,

for a > 0, 1.1)
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where F represents the Fourier transform over R? with its associated
inverse transform denoted as F~!. In the special case of a = 2, the
definition in (1.1) reduces to the spectral representation of the clas-
sical negative Laplacian —A. In the literature [25,26,37], the fractional
Laplacian is also defined in the form of a hypersingular integral:

« u(x) — u(y)
(—A) 2 M(X) =Cda P.V. W
R4

dy, forae€(0,2), (1.2)

where P.V. stands for the Cauchy principal value, and the normalization
constant ¢y, is given by ¢ , = 2"‘1051“(% )/ [\/FF(] - 5)] with ()
denoting the Gamma function. Note that the hypersingular integral def-
inition in (1.2) holds only for power 0 < a < 2. For a € (0,2), the two
definitions (1.1) and (1.2) of the fractional Laplacian are equivalent in
the Schwartz space S(R9) [25,37]. More discussion on the fractional
Laplacian and its relation to other nonlocal operators can be found in
[9,25] and references therein. In this work, we will focus on the pseudo-
differential representation of the fractional Laplacian (—A)% in (1.1).
In the literature, numerical methods for the fractional Laplacian
(—A)% can be roughly classified into three groups: finite element
methods, finite difference methods, and spectral methods. Finite ele-
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Fig. 1. Comparison of our method and the existing Fourier pseudo-spectral methods in [11,24] for approximating (—A) H u(x) on bounded domain.

ment/difference methods are usually developed based on the hyper-
singular integral definition in (1.2). For example, various finite ele-
ment methods are proposed in [2-4,15,41] to solve nonlocal PDEs with
the fractional Laplacian. In [8,12,13,16,18-20,30,44], finite difference
methods are introduced based on different discretization strategies, and
most of them have a second-order accuracy. On the other side, spectral
methods have recently gained a lot of attention in solving nonlocal/frac-
tional PDEs. They can achieve high accuracy with less number of points
and thus may overcome the challenges caused by the nonlocality. In
[11,24], the Fourier pseudospectral methods are proposed for fractional
PDEs with periodic boundary conditions. The Jacobi spectral methods
are introduced in [17,45] for problems defined on a unit ball with ex-
tended homogeneous Dirichlet boundary conditions. Spectral methods
based on Hermite functions are proposed in [28,40] for fractional PDEs
on unbounded domains, while the generalized Laguerre functions are
used in [6]. Later, the spectral method with rational basis is proposed in
[39]. It is pointed out in [38] that due to the singular and nonseparable
factor |£|* in the Fourier definition, these methods become extremely
complicated for d > 2. Moreover, a new class of meshfree spectral
methods are proposed based on radial basis functions [5,43,44]. They
combine both definitions (1.1) and (1.2) of the fractional Laplacian and
thus can solve problems with nonhomogeneous Dirichlet boundary con-
ditions.

In this paper, we propose a new and simple spectral method to
discretize the fractional Laplacian (—A)% and apply it to study non-
local elliptic problems. The key idea of our method is to apply the
semi-discrete Fourier transforms to approximate the pseudo-differential
representation of the fractional Laplacian in (1.1). Our scheme can be
viewed as a discrete pseudo-differential operator with symbol |£|%,
and it provides an exact discrete analogue of the fractional Lapla-
cian (—A)% . This unique feature distinguishes our method from other
existing methods in the literature. The implementation of our method is
simple and efficient. It yields a multilevel Toeplitz stiffness matrix, and
thus fast algorithms can be developed for matrix-vector multiplications
with computational cost of O(2N log(2N)) and memory cost of O(N),
where N is the total number of spatial points. Numerical analysis is
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provided to study the performance of our method. We prove that our
method has an accuracy of @(h?*7~%*1/2) in approximating the frac-
tional Laplacian, if u € C?"(R) with p e NO and y € (0, 1]. Particularly,
it has a spectral accuracy if u € C*(R?). Moreover, the stability and
convergence analysis are provided for solving the fractional Poisson
equations. These analytical results are verified and confirmed by our
extensive numerical experiments. We also apply our method to solve
fractional elliptic problems and study the coexistence of normal and
anomalous diffusion problems.

Remark 1.1. We remark that our method is essentially different from
the Fourier pseudospectral methods in the literature [11,24]. These ex-
isting methods are based on the discrete (instead of semi-discrete)
Fourier transforms and limited to periodic boundary conditions. Fig. 1
compares our method with these existing methods in approximating
(—A)%u. It clearly shows that the existing methods in [11,24] require
periodic boundary conditions to provide accurate approximation; see
Fig. 1 (d).

The paper is organized as follows. In Section 2, we introduce our
new spectral method for the one-dimensional Laplacian. Numerical
analysis is presented in Section 3. The generalizations of our method
to high dimensions (i.e. d > 1) are addressed in Section 4. In Section 5,
we conduct numerical experiments to examine the performance of our
method in approximating the classical and fractional Laplacians and
in solving the fractional elliptic problems. Finally, some concluding re-
marks are made in Section 6.

2. Spectral method

Due to the pseudo-differential definition in (1.1), it is natural to
introduce the Fourier transform-based methods to approximate the frac-
tional Laplacian. For example, the Fourier pseudospectral methods are
introduced to solve the fractional Schrodinger equations in [11,7,24]
and the reaction-diffusion systems in [23]. These methods can be di-
rectly implemented via the fast Fourier transforms, but they are limited
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to periodic bounded domains. In this section, we introduce a new and
simple spectral method to discretize the fractional Laplacian (—A)%.
Our method is developed based on the semi-discrete Fourier transforms.
In contrast to those Fourier pseudospectral methods in [11,24], our
method is free of the constraint of periodic boundary conditions.

To facilitate the discussion, we will first introduce our method for
one-dimensional (i.e. d = 1) fractional Laplacian (—A)%. The general-
ization to high dimensions (i.e. d > 1) will be presented in Section 4.
Let A > 0 denote the mesh size. In the one-dimensional cases, we de-
fine the grid points x; = jh for j € Z. Denote the one-dimensional grid
function u= {u; } ¢z, which may or may not be an approximation to a
continuous function. For grid functions u and v, we define the discrete
inner product and associated norm as

vy i=h Y uwo,  ulle=v(u u),

JjEZ

where U; represents the complex conjugate of v;. Let IZ(R)Z{V | [Ivll,2 <

oo}. In the following, we will first introduce the definitions of semi-
discrete Fourier transform and generalized hypergeometric functions,
which play an important role in constructing our method.

Definition 2.1 (Semi-discrete Fourier transform). For a grid function u €
12(R), the semi-discrete Fourier transform Fy, is defined as

©=h Y ue,

JEoo

for Ce[—z

T
W E]’ (2.1)

(&) = (Fpylul)

where i = v/—1, and the inverse semi-discrete Fourier transform is de-
fined as

n/h
uy = Fy i) = i / W) e de,  for jEZ. 2.2)
—n/h

Here, we use ui(¢) to represent the semi-discrete Fourier transform
of grid function u, distinguishing it from #(¢) — the Fourier transform of
continuous function u(x). Different from the continuous Fourier trans-
forms, the Fourier space in the semi-discrete transform is bounded, i.e.,
& € [-n/h,x/h]. This can be explained by the aliasing formula (see
Lemma 3.2).

Definition 2.2 (Generalized hypergeometric function). For p, q € NO, the
generalized hypergeometric function is defined as

ay; by, by z) =

i (ap)i(ag) - (a )k zk z
(b K

=0 GOk -

where a; € C (for 1 <1 <p), b, €Cbut b, & (Z"u{0}) (for 1 <m<q),
and (a), denotes the rising Pochhammer symbol, i.e.,

Fq(al,..., (2.3)

p

{ 1, for k=0
(@), =
a(a+ 1) (a+k—-1), for k>0.

If p < g, the series in (2.3) is convergent for all values of z € C. If
p=gq+ 1, it converges for |z| < 1. Particularly, if p=2 and g =1, (2.3)
reduces to the well-known Gauss hypergeometric function , F;. For p =
q=1, | F| is often called as the confluent hypergeometric function. For
more discussion of the generalized hypergeometric functions, we refer
the reader to references [34,36].

@
Now we introduce our method. Denote (—A) Z as the numerical ap-

proximation of the fractional Laplacian (—A)%, and let u ;= u(x;) for
Jj € Z. At point x = x;, we can approximate the Fourier transforms in
definition (1.1) by the semi-discrete Fourier transforms and then obtain
the approximation:
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z/h ©
<A>huk—2 / Iél“( 2 “je_i'fX’)ei‘f"kdcf
—n/h J=meo

w/h

/(2
©/h
( /5“005 (k- J)hf)d§>

It is clear that the evaluation of function (—A)f u(x) at point x; depends
on all points x; € R, consistent with the nonlocality of the fractional

u; cos (f(xk —X; )))

j=—

for kezZ. (2.4)

Jj=—o

Laplacian (—A)%. More precisely, the approximation in (2.4) can be
viewed as a weighted summation of u; for j € Z, and the weight coef-
ficients depend on the distance between points x, and x;. To calculate
these coefficients, we first expand cos ((k —jh 6) into the Taylor series
and then integrate each term to obtain

n/h

o U= j) = /r:“cos (k= j)h&)dé

n/h

/ 2n
Cw e k- ihe
-2 /e <n_2a(_1) — >d§
/= \5

~(2)'S (1 [t =]
- Z) %(2n)!(2n+a+l)’

Note that the right-hand side can be reformulated in terms of the rising
Pochhammer symbols, i.e.,

for j,keZ.

o k- )= i (5, (— 2(k—1)2>"
s =0 (52),(3),n! 4
a+l a+3 1 -m2(k—j)}

~__ F 2
= ; s o3 , .5
(a + Dhe ! 2( 2 2 2 4 ) (25)
for j,k € Z, by the definition of generalized hypergeometric function
in (2.3). It shows that the weight w(l) is an even function of (k — j),

depending on parameters a and A, espec1ally a)(l) O)=(z/h)*/(a+1).
Substituting (2.5) into (2.4), we obtain our nurnerlcal approximation to
the one-dimensional fractional Laplacian as:

o

(2.6)

for k € Z. Note that the same scheme is obtained in [20] by matching
the fractional Laplacian with a discrete operator on an infinite lattice.
Our scheme (2.6) holds for any a > 0, includlng a = 2. In the special
cases of & € NY, the coefficient function o )h in (2.5) can be simpli-
fied to elementary functions. In fact, for any m € N and n € Z\ {0}, the

integral

a+l a+3 1 —a*(k—j))
2 ° 2 2 4

a % e
(=8)ju = @i Z 1F2<
j=—e

z/h
/é”’cos(nhé)d.{:
0
Lom21)/2] 1-2k
= ok PN
= iyt [( I;) (=1) = 2k)'> mod(m,Z)]. 2.7)

Choosing « =m =1 or 2, we thus get the coefficients

{ (=D =1)/x,

2=,

if a=1,

RO 1
@k =)= if a=2,

h*(k — j)?
for (k — j) € Z\{0}.
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If m =0, the integral in (2.7) is zero for any n € Z\{0}, and thus the
scheme (2.4) reduces to the identity operator for « = 0. It is consistent
with the analytical property of the fractional Laplacian.

a

Lemma 2.1. The discretized operator (—A)Z from our scheme (2.6) has

exactly the same symbol |E|* as the fractional Laplacian (—A)%, ie.,
Fal(=8); u] = [£]°F ul, (2.8)

independent of mesh size h.

for a>0,

Proof. By scheme (2.6) and the definition of semi-discrete Fourier
transform, we obtain

Ful-8)Zu]=h Z

k=—c0

50

< Z w(l) (k= j)u; )e”“:xk

j==o

0
1 N i .
D, @y ylk— e

k=—o00

wy (3 Fulonn) )&,

>e—i}§xj

(2.9)

(o]
=h
j=—

where we denote @, , = {a) (k)} ez The definition of co , shows

that
z/h

2 [ rereaz = ler).

—n/h

o o) = for k € Z,

which implies that F), [®,_,| = h|£]®. Substituting it into (2.9) and using
the definition of the semi-discrete Fourier transform again immediately
yields (2.8), which holds for any mesh size h. []

Remark 2.1. Let (—NA)E represent the finite difference approximation
of the fractional Laplacian in [18,47]. Then it satisfies

Fy[(ZR)7 u] = [I€]" + O(1&[**h?)| Fylul, (2.10)

for small mesh size A > 0. It suggests that the approximation (:A)Z has

different symbol from the fractional Laplacian (—A)%. But, its leading
order term is |£|* if mesh size A is small.

Lemma 2.1 suggests that our scheme (2.6) can be viewed as a dis-
crete pseudo-differential operator with symbol |£|* — an exact discrete
analogue of the Laplace operator (—A)2 for @ > 0. This unique prop-
erty of our method distinguishes it from other existing methods of the
fractional Laplacian. Note that the formulation and implementation of
our method are similar to the finite difference methods [8,18,19,30],
but our method can achieve significantly higher accuracy. Moreover,
our method has much lower computational cost when assembling the
stiffness matrix, particularly in high dimensions. More numerical com-
parison can be found in Section 5.1.

3. Error analysis

In this section, we first study the numerical errors of our method
in discretizing the fractional Laplacian (—A)%, and detailed error esti-
mates are provided under different conditions of function u. Then the
stability and convergence of our method in solving the fractional Pois-
son equations are discussed in Section 3.1.

Let CP7(R) denote the Holder space, for p € N® and y € (0, 1]. First,
we introduce the following lemmas on the continuous and semi-discrete
Fourier transforms [31,42]:

Lemma 3.1. Suppose u € L*(R), and @i denotes its Fourier transform.
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(i) Suppose u e CPY(R) for pe NO and y € (0, 1]. Furthermore, ifu(k) €
L2(R) for k<p-1, and u?) has bounded variation, then there is

1) =01~ as ¢ - . (3.1
(ii) If u e C*(R), and u® € L2(R) for k € N, then there is
& =o(l&]™), as|& - o, (3.2)

for any m > 0, and the converse also holds.

Lemma 3.1 shows that the smoother the function u is, the faster
the Fourier transform # decays. In the following, we denote v as a grid
function on hZ with v; = u(x;) for j € Z, and U(§) represents its semi-
discrete Fourier transform.

Lemma 3.2. (Aliasing formula) Suppose u € L*(R) has a first derivative of
bounded variation, and @ denotes its Fourier transform. Then there is

0 R 2
0O= Y, e+ =) forze[-Z 7. (3.3)
Jj=—o0
for any h > 0.

From Lemmas 3.1-3.2, we immediately obtain the following results.

Lemma 3.3. Suppose u € L>(R) has a first derivative of bounded variation,
and 1 is its Fourier transform.

(i) Let peNO and y € (0,1]. If u € CP*(R), u® € L2(R) for k < p—1,
and u?) has bounded variation, then there is

|6 -] =om*').  asho, 3.4)
forée|[—n/h, x/h].

(ii) If u € C*(R), and u® € L*(R) for k € N, then there is
|60 -w@| = o™, as h0, (35)

forany m>0and & € [—zz/h, zr/h].

Proof. Let’s focus on the proof of (3.4). Using the aliasing formula (3.3)
and then the triangle inequality, we get

2.

<3 ([ote- 27|+ fte

Jj=1

2jm

2jm
L 2

|00 - )| = -

) +i(e+

hh

Lemma 3.1 (i) shows that |@(£)| < C|&|~P+1+7) as |£] — co. From it, we
can further obtain:

for 56[—

—(p+1+7)

)u(é)—u(§)|<62[ 2j+1)Z]

(o)

— Chp+l+7 Z 1

p+1+y
o @+ ettt T on ’

as h—0

where the constant C > 0 is independent of . The proof of (3.5) can
be done by following the similar arguments, which we will omit for
brevity. [

For grid function u, define the norm |lu|;~ = sup ez |u;|. Then we
present the error estimates of our method in the following theorem.
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Theorem 3.1. Suppose u € L>(R). Denote u as a grid function with u ;=
u(x;) for j € Z. Let (—A) ; represent the numerical approximation of the

fractional Laplacian, as defined in (2.4).

@) Let pe N and y € (0,1]. If u e CP*(R), u® € L2(R) for k <p—1,
and u?) has bounded variation, then there is

leaiu=aia| < cnrre, (3.6)
||(—A)§u - (—A),fu“l2 < ChpHr-atl/2 (3.7
with C a positive constant independent of h.

(i) Ifu e C*(R), and u® € L2(R) for k € N, then there is
H(-A)%u - (—A),fun <CH",  forany m>0, (3.8)

which holds for both [®- and [*>-norm.

Theorem 3.1 suggests that the accuracy of our method depends on
the smoothness of function u — the smoother the function u, the higher
the accuracy. If u € C*(R), our method has a spectral accuracy. In the
following, we will provide the proof mainly for (3.6) and (3.7), while
the proof of (3.8) can be done by following the similar lines.

Proof. Note that u;, = u(x;) for k € Z. By the definition of (—A)% in
(1.1) and the scheme of (—A)Z in (2.4), we obtain

(—8)2ulx) = (~8) ]

o x/h
- 5| [ 1@ ez [ i o
T
N —n/h
w/h
<5 / a@) — H@ gl dé + 5 / @&l de
p v/3
—x/h 151>%
=I+1I, for ke Z.

Now we estimate terms I/ and I/ separately. For term I, we use
Lemma 3.3 (i) and obtain

7/h 7/h
I¢=2i / (&) — ()| |€]° d& < ChP*! / |&]" d¢ < ChPHTe
T
—x/h —n/h

with constant C > 0 independent of 4. While using Lemma 3.1 (i) to
term 11 yields

111=ﬁ / [@@E1*de < C / ||~ gg < chrtre,
lel>= lel>%

Combining the estimates of terms I and I/ immediately yields the re-
sult in (3.6).

Next, we prove (3.7). Using the definition in (1.1) and the scheme
in (2.4), we get

J-artu-cal,
)2

=h Y |8 ux - (=8,

kez
w/h
h o N ) 2
e / |l aE)e’ dé + / €17 [(&) — i(&)] €5 de
4n* (=
1€>% ~z/h
W J

I
I 2,k
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h _ _
=15 3 (|1u¢|2 TR ANCEE S Y 12,,(). (3.9)

kez

For term |1 1’k|2, we obtain

lel,k|2:=2< / ﬁ(é)l:l“e'f"kdr:>< / ﬁ@)wwe'kadg)

kez kez T T
1§1>% I¢1>5
= / aelel” / ﬁ(cm“(Ze"(f—mk)dﬁdc
kez

z z
1E1>% I€1>%

Noticing that the Dirac delta function 6(& — ¢) = (h/27) X ;e € ¢,
we then further obtain

Y= [ werier e

kez T
1€1>%

S% / |§|2(a—p—r—1)d§ < Ch2(p+7—a), (3.10)
&> %

by Lemma 3.1 (i). Following the similar lines and using Lemma 3.3 (i),
we get

x/h
2 N . 2
Zuz,klz:—”( / | - )| |¢|2“d:>
kez h
—n/h
©/h
< ChHrHr+ / |E]2*de < ChPHr—o), (3.11)
—n/h

The estimate of term I, - I,; can be obtained by first using the
Cauchy-Schwarz inequality and then (3.10)—(3.11), i.e.,

1 L
Y hwc D < (X 1P) (X 10aP)’ < oo, @312)
kez kez

kez
We can similarly obtain the estimates of term I} ; - I, ;. Substituting the
estimates of the four terms in (3.9) and after simple calculation, we can
immediately obtain the result in (3.7). [

Theorem 3.1 provides the error estimates of our method in approx-
imating the fractional Laplacian over R. If a bounded domain Q C R is
considered, we introduce the norms

1/2
Nl = (7 X )"

j€Qy,

U||;00(0) = Max |u;|, 3.13
lullisy = max | (313)

and the inner product

(W, v)g :=h Z u;o;.

JEQ)
Here, the index set is defined as Q, = {j |j € Z, and x; € Q}. It is
obvious that under the same conditions, the estimates in Theorem 3.1
also hold if the norm over AZ (i.e., I® or I2) is replaced with the norms
in (3.13) on Q.

3.1. Stability and convergence

The fractional Poisson equation is one important building block in
the study of nonlocal/fractional PDEs. It has been widely studied and
often used as the benchmark to test numerical methods for the frac-
tional Laplacian [8,18,19,30]. Here, we consider the fractional Poisson
equation of the form [2,35]:

(~M)iux)=f(x), for xeQ,

u(x)=0,

(3.149)
for x € Q°,
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where Q¢ = R\Q. In the following, we study the stability and conver-
gence of our method in solving (3.14). The direct application of our
method to (3.14) yields the system of difference equations:

(-A)Zuf:f(xj), for j€Q,, (3.15)

uj'=o, for j € Q°, (3.16)

where u;' represents the numerical approximation to solution u(x;).

Lemma 3.4 (Parseval’s identity). For grid function u,v € lz(IR), there is
x/h

(w,V)h =5 / 0(E) T(E) de.

—n/h

(3.17)

It can be proved by using the definition of the semi-discrete Fourier
transforms.

Lemma 3.5. Suppose u;, = {u/"}} < 1S the solution of the discrete problem
(3.15)—(3.16). Then there is

gl < ClI=8) 2wyl 20 (3.18)

with C a positive constant independent of h.

Proof. By Parseval’s identity, we obtain

x/h
ol = 5 [ iR o
—z/h
=ﬁ</|ﬁ(5)lzd6+ / |ﬁ<5)|2d¢>,

—€ z
e<|é|<%

where £ > 0 will be discussed later. Due to the homogeneous boundary
conditions in (3.16), we get

la@)| = [n Y, w9 <h Y, luyl < Viglluglle,

JEQ JEQ

by the triangle and Hoélder’s inequalities. It immediately leads to the
estimate

£ £

/Iﬁ(f)lzdf < /|sz|||uh||,22 dé = (2¢1Ql) llug 1%

—& —&

Choose ¢ such that 2¢|Q| < %, we have

£

[P < L.

On the other hand, we have

WA dE = 1
/Iu(é)l £ / R

z T
e<|gl<y e<|gl<y

(3.19)

(ler @ ) ae

<™ / €)% |i1(8)|* d&

z
e<|él<g

<

e / Iélalﬁ(é)lzdé=2rrs_"<u,,,(—A),fuh)h
lel<%

by the Parseval’s identity. Noticing the homogeneous Dirichlet bound-
ary conditions in (3.16), we further obtain
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/ ()2 dE < 276~ (uy, (~A)2 w0y )

T
e<|gl<y

<2me  luyllp) I(=2); wyll - (3.20)

Combining the estimates in (3.19) and (3.20) and noticing ||u,|[2 =
lluy |l 2y for solution of (3.15)~(3.16), we immediately obtain (3.18),
where C depends on ¢ but independent of 2. []

Theorem 3.2 (Stability). Suppose u;, = {uf }j o,
discrete problem (3.15)—(3.16). Then it satisfies

is the solution of the

||uh||12(g) < C||f||,2(9), (3.21)

where C is a positive constant independent of h, and f = { f(x f)}jEQh'

Proof. Multiplying both sides of (3.15) with (—A) Z ﬁj? and summing it
for index j € Q,, we get

(w0 ) g = (F (=A)Fup) g

We then use the Cauchy-Schwarz inequality and obtain
7w < VIQT Iz

From (3.18) and (3.22), we then obtain

L@ (3.22)

llugll,2 = ||uh||12(g) < C”(_A)zuh”ﬂ(g) < C||f||12(g)a

with C > 0 independent of . []

The result in (3.21) implies that if f(x) =0, then ||u||,2(9) =0. There-
fore, we obtain u(x) =0 for x € Q, which implies that there exists a
unique solution to (3.15)-(3.16).

Theorem 3.3 (Convergence). Suppose u(x) is the exact solution of (3.14),
and denote u = {u(x j)} jeQ, Let u,, be the solution of the discrete system
(3.15)—(3.16).

(D) Suppose u € cPr(Q) for peN° and y € (0,1]. Moreover, if u® e
L*(Q) for k <p—1, and u'”) is bounded variation, then

llu—ullpq < ChPH=ot1/2, (3.23)
(i) Ifue C*(Q) and u® € L*(Q), then there is
lu—wyll2q < Ch™, for any m>0, (3.24)

that is, our method has a spectral accuracy.

Proof. Denote the grid error function e = {¢; } ,c with

ejzu(xj)—uj.’, for jeZ.
From (3.14) and (3.15)-(3.16), we obtain
(=0)7 ¢; = (=) u(x)) = (=A); uf,

ej=0,

for j€Q,,
. c
for je€;.
Hence, following the similar lines as in proving Theorem 3.2, we obtain
llell 2 < Cli(-=A)2u— (—A); w2

a

<Cll(-A)2u=(=A) uyl o
Combining it with the estimates in (3.7) and (3.8), we obtain (3.23) and
(3.24), respectively. []

Remark 3.1. Our numerical studies show that the observed accu-
racy rate could be much higher than that predicted in (3.23); see
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Fig. 2. Numerical errors of our method in solving the benchmark Poisson prob-
lem (5.6) with s = /2, where the exact solution u € c®:(Q).

Figs. 2 and 5. Particularly, for the benchmark fractional Poisson prob-
lem (i.e., s = @/2 in (5.6)), our method has the numerical error of
O(pmin{L(@+1)/2}). see Fig, 2. In this case, the exact solution u € c*3 @),
and our method has the same accuracy as the finite element/difference
methods in [2,1,8,18] since the low regularity of solution at the bound-
ary becomes dominant.

4. Generalization to high dimensions

Compared to one-dimensional cases, it is more challenging to ap-
proximate the fractional Laplacian in high dimensions. In this section,
we generalize our spectral method for the one-dimensional fractional
Laplacian to high-dimensional cases with d > 2. Specifically, we will
present two generalization approaches in Sections 4.1 and 4.2, with
their implementation and performance comparison discussed in Sec-
tion 4.3.

Let j = (ji, jo, =1 Jg) € Z°. Define the d-dimensional grid points
xj =jh = (j1h, jrh, -, jgh), and denote grid function u@ = {uj}jeza-
In high dimensions, the inner product and associated norm can be de-
fined similarly as in Section 2. First, we generalize the definition of the
semi-discrete Fourier transform to d dimensions.

Definition 4.1 (d-dimensional semi-discrete Fourier transform). For a grid
function u@ e [2(R?), the semi-discrete Fourier transform F, is defined
as

T mad

Z I @
T (4.1)

(&) = (Fyu@1) @) =h" Y uje X, for £ |-
jezd

where £ - x; denotes the dot product of vectors £ and x;. The inverse

semi-discrete Fourier transform is defined by

©/h x/h
_ -l — 1 “ iE-X: . d
Uy =Tl = o0 / / (&) et dg,  for jez¢. 4.2)
—-n/h  —-z/h
———
d times

In high dimensions (d > 1), we can generalize the scheme (2.4) from
two different aspects.

4.1. Generalization I

Following the same approach as in obtaining (2.4), we can approxi-
mate the d-dimensional Fourier transforms in definition (1.1) using the
semi-discrete Fourier transforms and then obtain the approximation at
point X = X as:

n/h z/h
5 h\? iE-(Xp—X:
87 u=(5) / / |§|"<Zuje'5<’<k Xﬂ>d¢,
—-n/h  -x/h jezd
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for ke z9.
Hence, the scheme for the d-dimensional (d > 1) fractional Laplacian is

given by

(=A) wy = Z o (k= jhu;, for kezd 4.3)

jezd
where the coefficients are defined as
d .
v (k—j))= (i) / |E[%S XD dg, fork,jeZ?. (4.4)
ah 2r
cel-5.51¢

For d = 1, the scheme (4.3) reduces to (2.4) for one-dimensional
cases, and we can analytically formulate u(al;l(lk —j|) in terms of gener-
alized hypergeometric functions; see (2.5). In the special case of a =2,
the coefficients in (4.4) can be analytically formulated as:

d >

—r°, if k=j
(d) | (=1)km=Jm
v pK=i ==y 2" if k, #j,, and k, = j,, for I
2 h , i , an =j,, for m,
h2 k) —J)? m % Jm 1=J #
0, otherwise,

for any dimension d > 1. For a =2, the d-dimensional semi-discrete
Fourier transform degenerates to 1-dimensional semi-discrete Fourier
transform along each direction. However, for « € (0,2) and d > 1, it is
challenging to obtain the analytical form of Uff,),ﬂk —jl), and thus nu-
merical integrations are required in practical implementations. If the
value of |k —j| is large, the integrand in (4.4) is a highly oscillatory
function. Special numerical integration techniques are needed for ac-
curate computation of (4.4). More discussion on numerical integration
of highly oscillating functions can be found in [29,32] and references
therein.

The high-dimensional scheme (4.3) is straightforwardly derived fol-
lowing the approach used in one-dimensional cases. Consequently, its
error analysis can be conducted similarly to Section 3.

4.2. Generalization IT

As previously discussed, numerical integrations are required to com-
pute the coefficients in the high-dimensional scheme (4.3). To avoid
numerically calculating the coefficients, we introduce a new general-
ization approach in this section. First, we rewrite the one-dimensional
scheme (2.4) as:

©/h
(—A)%uk=z<% / |.§|“e"5(xr"f>d§>uj, for k€ Z, (4.5)
jez —r/h

which can be viewed as a weighted summation of all points u;, for
Jj € Z. Denote B,.(0) := {x eR? ;x| < r} as a d-dimensional ball with
radius r > 0. Then we generalize the one-dimensional weighted summa-

tion in (4.5) to high dimensions as:

0)Zu=Y wi‘f}l(|k—j|)u., for ke 74, (4.6)
jezd
with the d-dependent weight function

h

d ;
whik-ih=(£)" [ lerernvae forkjezd, @)
’ T

§€Bx (0)
n

by accounting for the rotational invariance of the fractional Laplacian.
Note that both schemes (4.3) and (4.6) reduce to the one-dimensional
scheme (2.4) if d = 1.

Next we focus on finding the analytical expression of the weight
function in (4.7). It is well-known that if @(x) = @(|x]|) is a radial func-
tion, then its Fourier transform @(£) is also a radial function. Moreover,
it can be given in terms of the Hankel transform, i.e.,
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27)4/2 P
@n) /¢(P)ﬂd/2jd/2—1(ﬂ|§|)dﬂ, for d > 2, (4.8)

P& = W

0
where J,(z) denotes the v-th order Bessel function of the first kind. As
an extension, we have the following lemma [37,36]:

Lemma 4.1. If ¢(x) is a summable radial function in a d-dimensional ball
B.(0), then we have

(27.[)11'/2

o(lyDe™¥ dy =

,
/(p(p)pd/zfd/z_l(pIXI)dp,
yEB,(0) 0

for any r> 0.

It is easy to see that if r — oo, the result in (4.9) collapses to the
Fourier transform of ¢(x) in (4.8). The proof of Lemma 4.1 can be
found in [37, §25.1]. Particularly, if ¢(x) is a radial power function,
i.e. p(x) = |x|? for p > 0, the integral at the right hand side of (4.9) can
be calculated exactly, i.e.,

r

/p’lfv(p)dp

0

pAtv+l A+v+1 A+v+3 2
= ! 2< v+ ;——
2G+v+ DI+ 1) 2 2 4

for r > 0 and Re(A +v) > —1. If r - o0, there is

), (4.10)

oo

/ p*J,(p)dp=2"

0

I((v+1+1)/2)
r((v—-4a+17/2)

Using Lemma 4.1 with r = z/h and ¢(|y|) = |y|*, and noticing |x; —
xj| = |k — j|h, we obtain

T

h
@ sy i)d @m)d/? a+d/2 s
w)(k=jh = (5= ey P20y (1 = xl) dp
|k=jlz
(zﬂ.)fd/Z

— a+d /2
" k=l / T a1 90
0

where 0 = |k — j|ph. We can further use the property of the Bessel func-
tions in (4.10) to obtain

(d)

w0 (k= ji)
__ 2pmd? (a+d~ a+d+2 d. _nzlk—j|2> @11)
(@+d)(d/2)hetd "2\ 2 2 20 4 CT

ie., taking r=zlk—jl, A=a+d/2,and v=d/2 -1 in (4.10).
Substituting (4.11) into (4.6) immediately yields the spectral ap-
proximation to the d-dimensional (d > 1) fractional Laplacian as:

(=0 uy

_ 2l-dgud)2 3 F<a+d,a+d+2 g,_frzlk—.ﬂz)w

(zx+d)l“(d/2)hajezd12 2 0 2 Y 4 i
(4.12)

for k € Z% and a > 0. It shows that the structure of our method
in (4.12) is similar to finite difference methods. But our method
can achieve much higher accuracy. Moreover, the coefficients of fi-
nite difference methods are usually given by d-dimensional integrals
[12,18,30], which require numerical integration to calculate — the
larger the dimension d, the higher the computational cost in computing
their coefficients. In contrast, dimension d in our method serves as pa-
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Table 1

Numerical errors ||e’A’||,w(Q) of the two-dimensional schemes (4.3) and (4.6)
in approximating function (—A)%u(x,y) on Q = (—1.5,1.5)?, where u(x,y) is
defined in (4.13) with a = 6.

«  h=1/8 h=1/16 h=1/32

Generalization I in (4.3) with (4.4)

h=1/8 h=1/16 h=1/32
Generalization II in (4.6) with (4.11)

0.5 2.765e-3 4.278e-7 6.427e-7 4.575e-2 1.416e-7 2.700e-15
1.0 2.823e-2 2.212e-6 6.716e-6 0.251 1.024e-6 2.310e-14
1.7 0.474 2.199e-5 8.014e-5 2.703 1.633e-5 3.837e-13
2.0 1.491 1.721e-6 1.08%-12 7.477 5.352e-5 1.677e-12

rameters of function | F,, and thus the computational cost in calculating
wfld; is independent of d.

4.3. Comparison and discussion

The main difference between schemes (4.3) and (4.6) lies in their
coefficient functions. In (4.6), the function wf‘d,;l(lk — j|) can be ana-
lytically expressed in terms of generalized hypergeometric functions,
which can be accurately computed with the algorithms in [22,33]. In
contrast, computing coefficients Uf:)h(lk —j|) in (4.3) requires numerical
integration. Special numerical integration techniques are particularly
demanded if |k — j| is large, as the integrand becomes highly oscillating
in this case. Clearly, the accuracy of scheme (4.3) depends on the ac-
curacy of coefficient approximations, and the implementation of (4.6)
leads to higher computational costs compared to (4.3).

In the following, we conduct numerical experiments to compare the
performance of (4.3) and (4.6) in approximating the two- and three-
dimensional fractional Laplacians. Note that if d = 1, both reduce to the
same scheme as in (2.4).

Example 4.1 (Two-dimensional cases). Table 1 presents the numerical
errors in approximating function (—A)2u(x,y) on (—1.5,1.5)%, where
u(x, y) = e~ with a = 6. In this case, the exact solution is given
by

a+2

a+?2
e

(=8)u(x.y) = 2a)T(

P 1 =2 + %)),

for (x,y) € R%. (4.13)

The scheme (4.6) shows spectral accuracy for any a € (0,2], while spec-
tral accuracy of (4.3) is only observed when a = 2. For large mesh size
(e.g. h=1/8,1/16), both schemes show similar numerical errors. How-
ever, the errors of scheme (4.3) stop decreasing when mesh size reduces
to h=1/32 if @ € (0,2), since they are dominated by the errors in com-
puting coefficients u%l. Here, the coefficients in (4.4) for « € (0,2) are
numerically computed using the MATLAB built-in function integral with
a small absolute error tolerance. .

Table 2 presents the numerical errors in approximating (—A)2 u(x, y)
on a unit disk B,(0), where u(x,y) = [1 - (x* + yz)]i is a compactly
support function. The exact solution is given by

2¢1 "T”)

e a2l
r(s-3%)
for (x,y) € B(0).

((x+2 _

(-8)7u(x,y) =24 A S LG 4),

2
(4.14)

Compared to (4.13), this function has less smoothness at the bound-
ary of the disk. In this case, scheme (4.6) demonstrates an accuracy of
O(h*~9) for any a € (0,2]. The same order of accuracy is observed for
scheme (4.3) only when @ = 2. The accuracy of scheme (4.3) is deteri-
orated by the errors of numerical integration if small mesh size is used
(e.g., h=1/64,1/128). The performance of the scheme (4.3) can be im-
proved by using more accurate numerical integration (e.g. in [32,29])
for highly oscillating functions, which will be explored in our future
study.



S. Zhou and Y. Zhang

Table 2
Numerical errors |l ||;«(q, of the two-dimensional
schemes (4.3) and (4.6) in approximating function
(=A)%u(x,y) on B,(0), where u(x,y) is defined in
(4.14).

P h=1/16 h=1/32 h=1/64 h=1/128

Generalization I in (4.3) with (4.4)

0.5 5.584e-6 7.956e-7 1.468e-6 2.516e-6
1.0 8.608e-5 1.300e-5 2.250e-5 4.915e-5
1.7 2.652e-3 6.035e-4 4.373e-4 1.537e-3
2.0 1.095e-2 2.979e-3 7.708e-4 1.974e-4

Generalization II in (4.6) with (4.11)

0.5 3.430e-5 3.007e-6 2.643e-7 2.365e-8
1.0 2.692e-4 3.353e-5 4.214e-6 5.289%-7
1.7 4.859e-3 9.852e-4 2.135e-4 4.206e-5
2.0 1.799e-2 4.211e-3 1.152e-3 2.762e-4

Example 4.2 (Three-dimensional cases). Table 3 further compares
these two schemes in approximating the three-dimensional function
(—A)%u(x, y,z) on (—1,1)3, where u(x, y,z) = xye‘“z"‘|2 with a=7. In
this case, the exact solution is given by

" 23+a o a+7
(-A)Zu(x,y,2) = & )XYIFI(Q'H;z;—az(x2+y2+zz)),

15/

(4.15)

for (x,y,z) € R3. The observations are consistent with those from Ta-
ble 1 for two-dimensional cases. The scheme (4.6) shows spectral ac-
curacy for any a € (0,2], while the accuracy of scheme (4.3) is sig-
nificantly influenced by the accuracy of numerical integration when
a € (0,2). Moreover, compared to two-dimensional cases, the numeri-
cal integration required for evaluating (4.4) in three-dimensional cases
takes significantly longer time. This again highlights the advantages of
scheme (4.6), as the coefficients can be calculated more efficiently and
accurately by expressing them in terms of the generalized hypergeomet-
ric function.

If a bounded domain with extended Dirichlet boundary conditions
is considered, both scheme in (4.3) and (4.6) can be written into
matrix-vector form with a (multi-level) Toeplitz matrix. Then the ap-
proximation of the fractional Laplacian can be efficiently evaluated
via the d-dimensional fast Fourier transforms with computational cost
O2N log(2N)) and memory cost O(N), where N denotes the total
number of grid points in domain.

5. Numerical results

In this section, we examine the performance of our method and
verify our theoretical results. To this end, we first test the numerical
accuracy of our method in approximating the classical and fractional
Laplacian (—A)% (i.e. for 0 < @ <2), and then apply it to study frac-
tional elliptic problems. As discussed previously, our method has the
similar framework as finite difference methods, but it can achieve much

Table 3
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higher accuracy. To demonstrate this, we will compare our method
with some representative finite difference methods in the literature
[8,18,19,30]. Unless otherwise stated, we will always use the scheme
(4.6) with (4.11) in the following simulations.

5.1. Discretization of the fractional Laplacian

In the following, we test the accuracy of our method in approxi-

a
mating (—A)Zu under different smoothness conditions of u. The error
function is defined as

(eh); = (=) u(x)) - (-0)? u(x)),  for x; €Q,

where (—A)Z , is the numerical approximation of the d-dimensional
fractional Laplacian in (4.12).

Example 5.1. Consider an inverse multiquadratic function of the form:

1
u(x) = m, for x € R. (5.1)

The exact solution of (—A)? u(x) is given by [44],

. 29T(224)r(7+ 2)
(=) 2 u(x) = —2 2, 1<"“ %,%;—ﬁ),

T+
720/ 2
for x eR, (5.2)

for any a > 0. We will numerically approximate the function (—A) 3 u(x)
on Q=(—1,1).

Table 4 presents numerical errors ||eZ|| jo(q) of our method for dif-
ferent power a and mesh size h. Here, the function u € C*®(R). Table 4
shows that our method has a spectral accuracy for any a > 0, confirm-
ing our analytical results in Theorem 3.1 (ii). Moreover, for the same
mesh size h, the larger the power «, the bigger the numerical errors.

Next, we compare our method with some representative finite dif-
ference methods in the literature [8,18,19,30]. Table 5 shows their
numerical errors with much smaller mesh size, e.g., h =1/256,1/512.
From Tables 4 and 5, we find that our method can achieve the same
accuracy with much less number of points N. For instance, to achieve
errors of @(107%) ~ @(1078), our method needs around N = 16 (i.e.,
h =1/8), but the methods in Table 5 require N = 1024 (i.e., h=1/512)
or more. Consequently, the differentiation matrices of these methods
are much larger than that of our method. Note that the computational
cost in computing matrix-vector product is O(2N log(2N)). Hence, our
method has much lower computational and storage cost. It is known
that the methods in [8,18] have accuracy of O(h?), while the method in
[19] has O(h2‘“), which is confirmed by our observations in Table 5.

Example 5.2. We consider a compact support function

ux)=(a*-x*:,  for xeR. (5.3)

Numerical errors |I€Z ;=) of the three-dimensional schemes (4.3) and (4.6) in approxi-

mating function (—A)g u(x,y,z) on Q = (—1,1)?, where u(x, y, z) is defined in (4.15). Note
that errors in scheme (4.3) stop decreasing for 7 =1/16 due to integration errors when
a < 2. However, for a = 2, scheme (4.3) can achieve an error of 1.266e-14 for h = 1/32.

« h=1/4  h=1/8 h=1/16

h=1/4  h=1/8 h=1/16 h=1/32

Generalization I in (4.3) with (4.4)

Generalization II in (4.6) with (4.11)

0.5 4.784e-4 1.062e-3 2.597e-3
1.0 3.501e-3 9.083e-3 3.096e-2
1.7 3.596e-2 0.123 0.666

2.0 8.933e-2 6.838e-2 4.179e-6

2.900e-4 2.23%e-3 2.138e-6 1.100e-17
2.768e-3 1.120e-2 1.542e-5 1.390e-16
3.102e-2 0.106 2.454e-4 4.219e-15
7.920e-2 0.276 8.034e-4 1.177e-14
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Fig. 3. Comparison of our method and others (including Huang in [19], Duo in [8], Minden in [30], and Hao in [18]) in approximating (—A)gu on Q= (-1,1), where

u is defined in (5.3) with a=1.

Table 4
Numerical errors ||eg I} (@) of our method in approximat-

ing (—A)gu on Q= (—1, 1), where u is defined in (5.1).

h=1/2 h=1/4 h=1/8  h=1/16
a=05  0.068 9.007¢-4  4.641e-8  1.723e-16
a=10 0.325 6.319e-3  4.645¢7  2.112e-16
a=17  2.003 6.301e-2  7.540e-6  5.204e-15
a=20 4165 1.588e-1  2.335e-5  1.979%-14

Table 5

Numerical errors ||e’A’|| 1=(q Of finite difference methods in [19,8,18,30] for

approximating (—A)g uon Q= (—1,1), where u is defined in (5.1).

methods Huang [19] Duo [8] Hao [18] Minden [30]
2=05 h=1/256 1.814e-4 5.521e-6 1.085e-5 4.047e-6
e h=1/512  6.864e-5 1.383e-6  2.712e-6 5.710e-6
2=10 h=1/256 2.711e-3 7.336e-7  5.594e-5 5.314e-7
- h=1/512 1.381e-3 1.170e-7 1.398e-5 6.673e-8
=17 h=1/256  5.423e-2 1.794e-4  3.878e-4 9.800e-5
o h=1/512  4.430e-2 4.154e-5  9.695e-5 1.940e-5

It is easy to see that u € C5~1I(R) for s € N. For s ¢ N, it satisfies
u € Clsl-s=LsI(R) with |-] denoting the floor function. In this case, the

exact solution of (—A)%u is given by [14,44]:

2 Fy <
(5.4)

.x2

2e7( “T“ )0(s + Da®=* 1
5

\/;F(s+l—%)

a+1
2

e
7

(~A)Tu(x)= =+

a2

for any @ > 0 and |x| < a.
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Table 6

Numerical errors ||eﬁ l;=(@) and convergence rate (c.r.) of our method in ap-
proximating (—A)g u(x) on Q= (-1, 1), where u is defined in (5.3) with a =1
and s =4.

h=1/8 h=1/16 h=1/32 h=1/64 h=1/128 h=1/256
w_os 56lle5 4963e6 4.35le7 3.823¢8 3367¢9 297010
- C.I. 3.499 3.512 3.509 3.505 3.503
wo1o 54484 67515 8.330e6 1.032e6 12847  160le
=Y er 3.013 3.019 3.012 3.007 3.004
yo1q B8537e3 1713¢3 3.428c4 68955 13935  2.820e6
= en 23171 2.321 2.314 2.308 2.304
yono 2610e2 64543 1590e3 3.93%e4  9.7%e5  2.442e5
=Y er 2,016 2,021 2.014 2.008 2,004

Take domain Q = (-1, 1). We study numerical errors in approximat-
ing function (—A)%u(x) on Q. If choosing a = 1, the function in (5.3)
also satisfies u € Cls]-s~1s! (Q), and it has less smoothness at points
x = x1. Table 6 presents numerical errors and convergence rates of
our method, where u is from (5.3) with a =1 and s =4. It is easy to
verify that u € C3'(R), and (—=A)2u € C3-lal.1-e+lal(R). Hence, the
larger the power a, the less smooth the function (—A)% u, and the larger
the approximation errors. We find that our method has an accuracy of
O(h*~?) for ||e2‘ [l (2)> confirming our analytical results in Theorem 3.1
(i). Moreover, our extensive studies show that: (i) the maximum er-
rors occur around the boundary of Q, i.e., x = +1; (ii) numerical error
lle? |l2( is much smaller than ||e? ||;(q), and it has an accuracy of
(9( h4.5—a).

Fig. 3 further compares our method with those representative finite
difference methods in [8,18,19,30], where u is chosen from (5.3) with
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Fig. 4. Numerical results of (—A)%u(x, y), where u is from (5.5) with s =2 (a) or s =4 (b).

Table 7

Comparison of the accuracy and computational time (in second) of our
method and those in [8,18,19] when approximating (—A)gu on Q=
(—1,1), where a = 1.6 and u is defined in (5.3) with a=1 and s = 8.

Method Huang [19] Duo [8] Hao [18] Ours
Error |le” || » 1.148e-2 9.009e-8  3.044e-7  2.055e-8
Number of points N 16384 16384 16384 64

Time in assembling A 1.150e-3 6.386e-4  2.477e-4 7.729e-2
Time in computing Au 1.26 1.26 1.26 4.710e-5

a=1,and s =2+ a, or s = 8. Generally, the larger the value of s, the
smoother the function (—A)%u, and the smaller the numerical errors.
Hence, numerical errors for s = 8 are smaller than those of s =2 + a.
For s =2 + a, the function u € C**lal.a~la] (R). Our method and those
in [8,18,30] all have the second order of accuracy, but the errors of our
method are much smaller; see Fig. 3 a) & b). While the method in [19]
has the accuracy of O(h*%), which is not improved even for a smoother
function (e.g., s = 8). Note that the accuracy of finite difference methods
in [8,18] and [30] are capped by O(h?) and Oh*™9), respectively. In
contrast, the accuracy of our method, depending on function regularity,
is O(h*~%); see Fig. 3 c) & d) for s = 8. This is one main advantage of
our method in comparison to those in [8,18,19,30].

Moreover, Table 7 compares their computational times. We usu-
ally formulate the task of %pproximating the function (—A)%u into a

matrix-vector form as (—A)Z u = Au. Hence, the computational time of

approximating (—A)%u comes from two parts: assembling the matrix
A and performing the matrix-vector multiplication Au. Table 7 shows
that to obtain an accuracy of O(107%), our method requires N = 64
points, while the methods in [8,18,19] require N = 16384 or more.
Consequently, their computational time on computing Au is signifi-
cantly longer than ours. To compare their time in assembling matrix A,
we note that the discretizations from our method or those in [8,18,19]
all lead to a symmetric (multilevel) Toeplitz matrix A. Hence, we only
need to compute the entries of a single column (or row). For meth-
ods in [8,18,19], each entry of matrix A is typically defined by a
d-dimensional integral. In the special case of d =1, it can be analyt-
ically integrated and expressed in terms of elementary functions, and
thus the computational time required for computing entries is insignifi-
cant, as demonstrated in Table 7. However, in high-dimensional (d > 2)
cases, each entry needs to be computed through numerical integration.
Consequently, the computational time required to assemble matrix A
significantly increases as the dimensions d increases. In contrast, the
time of computing each entry of matrix A in our method is independent
of the dimension d.

Hence, to achieve the same accuracy, our method requires a sig-
nificantly smaller number of points, resulting in significantly shorter
computational time. This advantage of our method becomes even more
pronounced in higher dimensions.
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Table 8
Numerical errors ||eZ|| (@) and” ||e2‘|| (e and convergence rate (c.r.) of our

method in approximating (—A)2 u on Q = (1, 1), where u is defined in (5.5)
with s = 2. Note that for « =2 the method does not converge in this case.

h=1/8 h=1/16 h=1/32 h=1/64 h=1/128

e 1.274e-3  4.432e-4 1.573e-4 5.58le-5 1.977e-5
@ ep, 1.523 1.494 1.495 1.497

=05 et 8.129e-4 2.028e-4 5.104e5 1.28le5 3.210e-6
élle@ o 2.003 1.991 1.994 1.997

e 1.165e-2  5.791e-3  2.904e-3  1.456e-3  7.291e-4
ealli=@ o 1.008 0.996 0.997 0.997

=10 e 7.540e3 2.675¢-3 9.507e-4 3.37led  1.194e-4
élle@ o 1.495 1.492 1.496 1.497

e | 1.712e-1  1.387e-1  1.129e-1  9.189%e-2  7.495e-2
ealli=@ ¢ 0.304 0.297 0.297 0.294

a=17 et 112lel  6.470e2 3.734e2 215le-2  1.240e-2
allr@ e, 0.793 0.793 0.796 0.794

€=20 [ 0.334 0.238 0.169 0.120 8.531e-2
- alle@ ey, 0.492 0.493 0.495 0.490

Example 5.3. We consider a two-dimensional compact support function
of the form

ux, ) =1 =xHA=y)|,,  for (x,y) €R?, (5.5)
for s € N. In this case, the analytical result of (—A)%u is unknown if
a<?2.

Fig. 4 illustrates the numerical results of (—A)%u on domain Q =
(=1,1)2 for =1, and s =2 or 4 in (5.5). It shows that even though
u(x) = 0 for x € R?\Q, function (—A)%u(x) is not necessarily zero on
R2\Q due to the nonlocality of the fractional Laplacian. Tables 8-9
further show numerical errors of our method for different power « and
mesh size A. Since the exact solution of (—A)% u is unknown, we use the
numerical solution with a fine mesh size h =210 as the reference to
compute numerical errors. The function in (5.5) satisfies u € C* -L1 (Rz).
It shows that our method has the accuracy of O(h*~%) for ”e}Al”[ec(Q),
while O(h$=%*1/2) for ||e%||,2q); see Table 8. Note that our method
becomes more advantageous in higher dimensions, as fewer points are
required to obtain the desired accuracy. Hence, it has significantly less
computational and storage costs.

5.2. Fractional elliptic problems

In the following, we apply our numerical method to solve the frac-
tional elliptic problems with extended Dirichlet boundary conditions.
Denote the grid error function

(eh)j = u(xj) - u;',

" for X; € Q,
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Fig. 6. Numerical errors of our method in solving the Poisson problem (5.6). (a) Pointwise errors at grid points {x j} (red ‘o’) and non-grid points {%;} (blue ‘),
where a = 1; (b) RMS errors for different a, where 4 indicates the mesh size used to compute uj’ in (5.7).

Table 9
Numerical errors ||e£' [l; ) and convergence rate (c.r.) of our method

in approximating (—A)% u on Q = (—1,1)%, where u is defined in (5.5)

with s =4.
h=1/8 h=1/16 h=1/32 h=1/64 h=1/128
woos 74975 5143e6  4368e7  3.824e8  3.367e-9
e cr. 3.866 3.558 3.514 3.505
wo1o 03834  6.875e5  8.3453-6  1.033e:6  1.284e7
- cr. 3.215 3.042 3.015 3.007
wo17 94533 1734e-3  3.432e4  6.89%e5  1.393e5
o cr. 2.447 2.336 2.315 2.307
wonpo 28562  6523e3  1592e3  3.940e-4  9.79%-5
- cr. 2.131 2.034 2.015 2.007

with u(x;) and ”Jh representing the exact and numerical solutions at
point x;, respectively.

Example 5.4. Consider the one-dimensional Poisson equation with ex-
tended homogeneous Dirichlet boundary conditions:
,—s+g;§;x2), for x e (—1,1),
272
u(x)=0, for x e R\(-1,1),
where s > 0. The exact solution of (5.6) is given by [14,44]:
VaT(s+1-%)

- 20410 (s + 1)T(B + @)/2)

3+a

(&) 2u0) =x,F (23

(5.6)

x(l—xz)i,

u(x)

for any a € (0,2].

144

Fig. 5 presents the numerical errors and convergence rates of our
method for various a and s, where order lines are included for bet-
ter comparison. Here, the solution u € C*~M(Q) for s € N, while
Clslis=Lsl (©) for s & N. It shows that the smoother the solution u, the
smaller the numerical errors, and the higher the accuracy rate of our
method. Numerical errors ”91}:” 1) decays with a rate between s and
s+ 1/2, confirming our theoretical results in Theorem 3.3 (i). More pre-
cisely, the observed accuracy rate is higher than the predicted rate (i.e.,

1
O(h*~**7)). In addition, we find that the convergence rate of llem | @)
is O(h®). Our extensive studies show that our method outperforms those
in [8,18,19,301; we omit showing their details for brevity.

Remark 5.1. To further demonstrate the effectiveness of our method,
we also measure the errors at non-grid points. Let u” represent the nu-
merical approximation of u(x;), obtained by numerically solving the
fractional Poisson equation in (5.6) at grid points {x j} jeQ,: Denote
%, =1h for I €R (instead of Z) to distinguish from the grid points x;.
Setting a = 0 in (2.6), we obtain the approximate solution of (5.6) at
any point ¥; € Q:

2 2
“h_ 3 =a(l-)) h
W= (5= )ul

JEQ,

Z sinc(%(x, — xj)>u;‘,

JEQ

for X, €Q, 5.7

where ‘~’ is included in ﬁf‘ to indicate that it is computed from (5.7).
Fig. 6 (a) shows the numerical errors at both grid points {x;} and non-
grid points {X;}, where we set « =1 and s =6 in (5.6). The points
{x,} 1eq, are uniformly distributed in the interval (—1,1) with a to-
tal of M = 1000 points, where the index set Q, = {/ =2m/125 | m €
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Fig. 7. Solution of the coexistence problem (5.9) for different 4,,, and a,.

Table 10
Numerical errors ||e£’|| (g Of our method in solving the 2D el-
liptic problem (5.8) on Q = (—1.5,1.5)2, where a = 6 is chosen

in (5.8).
a=0.5 a=10 a=17 a=20
h=1/8 3.512e-2 0.0154 1.227 3.013
h=1/16 9.835e-8 5.174e-7 5.285e-6 1.438e-5
h=1/32 3.100e-15 1.420e-14  3.365e-13  1.288e-12

Z, and [h € Q}. It shows that our method has small errors not only at
grid points but also at non-grid points. Moreover, we present the root
mean square errors (RMS) in Fig. 6 (b), in comparison to the /,-norm
errors in Fig. 5. Here, the RMS error is defined as

1/2

= (2 3 -2 [)

ullrms — M - 1 ! .
1€y,

Note that M = 1000 is large enough so that further increasing its value
does not change the RMS errors. Fig. 6 (b) again shows that our method
yields good accuracy for all points across the domain, not only at the
grid points.

Example 5.5. Consider the two-dimensional elliptic problem:

(—A)TuX) +ux) = f(x), for xEQ, 58
u(x) = e’“zlxlz, for x € Q°, -

for a € R. Choose the right-hand side function as

fx)= (2a)"l"(l + %)] F, (1 + %; 1; —a2|X|2) +e_“2|x|2, for xe Q,

such that the exact solution of (5.8) is given by u(x) = e‘“2|x|2, forx € Q.

Set the domain Q = (—1.5, 1.5)2. Table 10 presents the numerical er-
rors of our method for different power a and mesh size h, where we
choose a =6 in (5.8). It shows that numerical errors decrease quickly
when reducing the mesh size h, and our method has a spectral accu-
racy. In this case, the solution u € C*(R?), and the observed spectral
accuracy confirms our analytical results in Theorem 3.3 (ii). We find
that the maximum errors in this case occur at the center of the domain,
i.e., around x = 0.
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Example 5.6. Consider the coexistence problem of normal and anoma-
lous diffusion:

[A(-8)F +(1 = A)(=A) 7 Ju(x) = e cos* (37”|x|))(“x|<1}, (5.9)

for x € Q, with homogeneous Dirichlet boundary conditions, i.e. u(x) =
0 for x € Q°, where 4; >0, and «a;,a, € (0,2]. Without loss of gen-
erality, we assume a; < @,. The characteristic function <y =1 if
|x| <1, and otherwise it is 0 if |x| > 1.

The nonlocal elliptic equation (5.9) can be viewed as the steady state
of the coexistence of anomalous-anomalous (i.e., both a,a, < 2) or
anomalous-normal (i.e., a; < @, <2) diffusion observed in many fields
[21,27,46]. The exact solution of (5.9) is unknown. Hence, we use our
numerical method to study the solution behaviors with Q = (-1, 1)2.
Fig. 7 presents the numerical solution for different 4, a; and a,. It
shows that the solutions are radially symmetric, and its maximum value
is reached at the center x = 0.

In pure classical diffusion cases (i.e., 4, =0 and a, =2), the solu-
tion decreases gradually from the center to the boundary due to the
homogeneous Dirichlet boundary conditions. In contrast, the solutions
in the fractional cases are very different — an annular layer is formed
in between the center and boundary. The smaller the power a, the
sharper the layer (cf. results of A, =1, a; =1 and a; = 0.5). The so-
lutions in mixed anomalous-normal or anomalous-anomalous cases are
more complicated depending on the value of 4. In Fig. 8, we compare
the solution at y = 0 for different 4; and «; (for k = 1,2) and also the
solution mass ||u||? = /Q |u(x)|? dx. Generally, the smaller the value of
A1, the smaller the magnitude of solution u, and the lower the solution
mass ||ul|2.

6. Conclusions

We proposed a novel and simple spectral method to discretize the
d-dimensional (for d > 1) fractional Laplacian (—A)%. The key idea of
our method is to apply the semi-discrete Fourier transforms to approxi-
mate the pseudo-differential definition of the fractional Laplacian. Our
scheme can be viewed as a discrete pseudo-differential operator with
symbol |£|* and thus provides an exact discrete analogue of the frac-
tional Laplacian (—A)%. Detailed numerical analysis was presented to
study the truncation errors under different conditions. It showed that
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Fig. 8. Comparison of solution at y =0 for different 4,, a; and a,, where |[u|> = /Q Ju(x)|? dx.

our method can achieve a spectral accuracy if the function is smooth
enough. Moreover, the stability and convergence of our method in
solving the fractional Poisson equations were analyzed. In contrast to
the existing Fourier pseudospectral methods in [7,11,24], our method
evades the constraint of periodic boundary conditions. Moreover, it re-
sults in a multilevel Toeplitz stiffness matrix, and thus fast algorithms
can be developed for efficient matrix-vector multiplication. The com-
putational complexity is O(2N log(2N)), while the memory storage is
O(N) with N the total number of points.

Extensive numerical experiments were reported to demonstrate the
effectiveness of our method. Our numerical study showed that the
smoother the function to approximate, the higher the accuracy of our
method. The observed accuracy rate verified our analytical results.
The comparison of our method to finite difference methods further
demonstrated its effectiveness. It showed that our method can be for-
mulated similarly to finite difference methods. However, our method
could achieve much higher accuracy, and the cost of computing matrix
entries is independent of dimension d. The advantage of our method is
more significant in high dimensions, as fewer points are demanded to
obtain the desired accuracy. Consequently, our method considerably re-
duces the computational and storage costs. In addition, the accuracy of
our method in solving the fractional elliptic equations was numerically
studied. We found that if the solution u € Cls1-5-1s1(Q), our method
has errors ||e£’|| 1) ~ O(h*). We also applied our method to study
the coexistence of anomalous-anomalous or anomalous-normal diffu-
sion problems.
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