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PARAMETRIC MODEL REDUCTION WITH CONVOLUTIONAL

NEURAL NETWORKS

YUMENG WANG, SHIPING ZHOU, AND YANZHI ZHANG∗

Abstract. Reduced order modeling (ROM) has been widely used to solve parametric PDEs.
However, most existing ROM methods rely on linear projections, which face efficiency challenges

when dealing with complex nonlinear problems. In this paper, we propose a convolutional neural
network-based ROM method to solve parametric PDEs. Our approach consists of two compo-
nents: a convolutional autoencoder (CAE) that learns a low-dimensional representation of the
solutions, and a convolutional neural network (CNN) that maps the model parameters to the

latent representation. For time-dependent problems, we incorporate time t into the surrogate
model by treating it as an additional parameter. To reduce computational costs, we use a de-
coupled training strategy to train the CAE and latent CNN separately. The advantages of our

method are that it does not require training data to be sampled at uniform time steps and can
predict the solution at any time t within the time domain. Extensive numerical experiments have
shown that our surrogate model can accurately predict solutions for both time-independent and
time-dependent problems. Comparison with traditional numerical methods further demonstrates

the computational effectiveness of our surrogate solver, especially for solving nonlinear parametric
PDEs.

Key words. Parametric PDEs, reduced order modeling, convolutional autoencoder, convolution-
al neural network, decoupled training strategy.

1. Introduction

Parametric partial differential equations (PDEs) arise in various contexts, includ-
ing control and design optimization [35], risk assessment [12], uncertainty quantifi-
cation [5], and data assimilation [1]. The parameters describe physical and geomet-
ric constraints of PDEs and can manifest in various ways, such as model coefficients,
initial conditions, boundary conditions, and even domain geometry. Solving para-
metric PDEs for every point in the parameter space of interest could be extremely
costly and impractical, particularly in high-dimensional cases. For instance, in
real-time applications with severely limited computation time, solving the PDE for
even a single set of parameters can be prohibitively costly. To reduce computational
costs, a common strategy is to employ reduced-order modeling (ROM) [19, 22, 29].
In this work, we propose a convolutional neural network (CNN) based ROM to
solve parametric PDEs.

Let Ω ⊂ R
d (for d ≥ 1) denote an open bounded domain. We consider a general

parametric PDE of the form:

∂tu(x, t;µ) = Lu(x, t;µ) +N (x, t, u;µ), for x ∈ Ω,(1)

Bu(x, t;µ) = g(x, t), for x ∈ ∂Ω, t ∈ (0, T ],(2)

where the solution u depends on space x, time t, and parameters µ. Here, L
denotes a linear differential operator, and N includes nonlinear terms of u, and
B represents a linear boundary operator. The parameter µ ∈ Γ could be, for
example, the diffusion rate, Reynolds number, or boundary controller. We assume
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that the parameter space Γ ⊂ R
p is compact, and the parametric map µ → u(µ) is

continuous [9, 14]. The general form in (1) covers both time-dependent and time-
independent parametric PDEs. If a time-dependent problem is considered, the
initial condition could also depend on parameters, i.e.

(3) u(x, 0;µ) = φ(x;µ), for x ∈ Ω̄.

In this work, we mainly focus on problems where the parameters appear in the
PDEs, initial conditions, and/or boundary conditions. We are interested in solving
the PDE for a range or ensemble of parameters. Computing the PDE solution can
be time-consuming, especially for nonlinear and time-dependent problems. Hence,
using full order models (FOMs) to approximate the parametric map is impractical
due to the constraints of computational time and resources. Consequently, ROMs
have become popular for solving parameterized PDEs; see [2, 3, 6, 8, 22, 29] and
references therein.

The main idea of ROMs is to find a low-dimensional representation of the original
problem, such that it can be efficiently solved. In the literature, most reduced order
modeling methods are based on linear projection (e.g., proper orthogonal decom-
position (POD)-Galerkin method) [2, 3, 6–8, 11]. These methods are proved to be
effective in solving problems that can be well approximated by a low-rank approxi-
mation. However, they encounter challenges in solving complex nonlinear problems,
such as Kolmogorov n-width problems. In these cases, the projection-based meth-
ods become ineffective; see more discussion in [14, 23]. Various approaches have
been proposed to address these challenges, such as combining traditional reduced
basis methods with Bayesian nonlinear regression approach [32], and using a locally
weighted proper orthogonal decomposition method [27]. Although these techniques
enhance the performance of the original ROM methods to some extent, they also
introduce substantial computational costs and complexity.

Recently, there has been an emerging trend of nonlinear, data-driven ROM ap-
proaches using neural networks [16, 18, 20, 23–25]. Neural network-based ROMs
have been applied to study problems, such as cardiac electrophysiology [16], fluid
dynamics [15], and water waves [23]. Instead of linear projection, these approaches
compress high-dimensional data into a lower-dimensional latent space by using au-
toencoders. There are various types of autoencoders, including feedforward autoen-
coders [4,10], recurrent autoencoders [13], graph autoencoders [28], and the widely
used convolutional autoencoders [20,23,25]. The choice of autoencoder neural net-
work structure typically depends on the specific tasks. The encoded representation
in the latent space could be viewed as an approximation to the full-order mod-
els. For time-dependent problems, Long Short-Term Memory (LSTM) networks
are typically used to learn the dynamics in the latent space [18, 23, 25]. It usually
requires the input time series data sampled at uniform time steps.

In this work, we propose a CNN-based surrogate model for solving parametric
PDEs. Our model consists of two components: a CAE and a latent-CNN; see the
illustration in Figure 1. In the offline (training) phase, the encoder and decoder are
trained to learn the low-dimensional representation in the latent space, while the
latent-CNN maps parameters µ and time t to the encoded solution in this latent
space. We use a decoupled training strategy – the CAE and latent-CNN are trained
separately – to enhance training efficiency. Moreover, we use a CNN structure in
the latent space. Unlike LSTM, the CNN does not require uniform time steps in
the training data, making it more flexible for handling multiscale time problems.
It can also predict the solution at any time within the studied time frame. In the
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online stage, the combination of the latent-CNN and the decoder yields our sur-
rogate solver for parametric PDEs. Extensive numerical experiments are provided
to demonstrate the effectiveness of our method in solving time-independent and
time-dependent parametric PDEs. Furthermore, we compare the CAE with princi-
pal component analysis (PCA) to show its superior compression and representation
capabilities. Comparisons with traditional numerical methods further suggest that
our surrogate model is highly efficient for solving parametric PDEs, significantly
reducing both computational and storage costs.

Figure 1. Illustration of our surrogate model, including CAE (in
the red frame) and latent-CNN (in the blue frame).

The paper is organized as follows. In Section 2, we introduce our surrogate
model for solving parametric PDEs. The performance of our method is examined
in Section 3 through various numerical examples, including both time-dependent
and time-independent problems. Finally, we summarize our work in Section 4.

2. CNN surrogate model

In this section, we introduce our CNN-based surrogate model for solving para-
metric PDEs. In Section 2.1, we will introduce the model reduction with CAE,
followed by a CNN latent-space modeling in Section 2.2. The detailed offline train-
ing and online predicting algorithms of our method are presented in Section 2.3.

Assume that high-fidelity solution data of parametric PDEs are available for a
set of representative parameters µ. If time-dependent problems are considered,
solution data at multiple time points are also available. Let N , Nt, and Nµ denote
the number of spatial grid points, time points, and parameter points, respectively.
Here, the data are acquired on a uniform spatial mesh, but not necessarily at
uniform time steps. Denote the high-fidelity solution data as

{
um
s ∈ R

N : 0 ≤ m ≤ Nt, 1 ≤ s ≤ Nµ

}
,

where um
s represents snapshot data at the time t = tm for the parametric PDEs with

parameters µ = µs. For time-independent problems, the data can be represented
as {

us ∈ R
N : 1 ≤ s ≤ Nµ

}
.

Traditional model reductions, such as POD, assume that the high-fidelity solution
um
s can be approximated by a linear combination of a set of reduced bases. How-

ever, these methods face efficiency challenges when applied to complex nonlinear
problems (see more discussion in [14,23]).
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2.1. Model reduction. In the following, we introduce our CAE-based model
reduction method. The autoencoder, first introduced in [31], is a neural network
to learn an effective low-rank representation of high-dimensional data. It usually
consists of two main parts: an encoder and a decoder. The encoder, denoted as
Ψ : R

N → R
n with n ≪ N , maps the input u ∈ R

N into a low-dimensional
representation v ∈ R

n. Here, v is also known as the “latent space representation” of
u. While the decoder, denoted as Φ : Rn → R

N , reconstructs the high-dimensional
data û ∈ R

N from the low-dimensional representation v ∈ R
n. That is, with input

u, the encoder and the decoder can be expressed as

v = Ψ(u;ϑe),(4)

û = Φ(v;ϑd),(5)

where ϑe and ϑd represent the neural network parameters of the encoder and de-
coder, respectively. Throughout this work, we denote ŵ as the neural network
reconstruction or approximation of the data w.

We use a convolutional encoder and decoder. The encoder consists of convolu-
tional layers, pooling layers, and fully-connected layers. The input of the encoder is
the high-dimensional data with dimension N , and the output is the low-dimensional
representation with dimension n. The convolutional layers use zero-padding. To
reduce the data dimension, each convolutional layer is followed by a pooling layer.
It downsamples the feature map from the convolutional layer, reducing dimension-
ality while retaining essential information. In our study, we use max pooling, which
retains the maximum value from each pooling window as the output. The fully con-
nected layers transform the data from the last pooling layer into a low-dimensional
representation of the desired dimension n. Rectified Linear Unit (ReLU) activation
functions are applied to all convolutional and fully-connected layers, except for the
last fully-connected layer, which has no activation function.

Figure 2. Illustration of CAE for model reduction.

The decoder consists of convolutional layers, upsampling layers, and fully con-
nected layers. In the decoder, the latent representation with dimension n serves as
the input, and the reconstructed data with dimension N is the output. Instead of
pooling layers, upsampling layers are used to increase dimensionality. Here, we use
the nearest neighbor interpolation method for upsampling [30]. The fully connected
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layers and convolutional layers operate similarly to those in the encoder. Note that
the pooling and upsampling layers do not have trainable parameters.

Figure 2 illustrates the structure of our CAE. The original data u ∈ R
N , repre-

senting the high-fidelity solutions for multiple representative parameters at different
time steps, serve as the input to the convolutional encoder. The latent space rep-
resentation, with a lower dimension, is the output of the encoder. In the decoder
process, the low-dimensional representations serve as the input, while the recon-
structed data û ∈ R

N are the output. The encoder and decoder are trained together
by minimizing the difference between the original data u and its neural network
reconstruction û. To this end, we define the loss function of CAE as:

LCAE(ϑe, ϑd) =
1

N train
t N train

µ

Ntrain

µ∑

s=1

Ntrain

t∑

m=1

∥um
s − ûm

s ∥2rms

=
1

N train
t N train

µ

Ntrain

µ∑

s=1

Ntrain

t∑

m=1

∥∥um
s − Φ

(
Ψ(um

s ;ϑe);ϑd

)∥∥2
rms

,(6)

where ∥ · ∥rms is the root mean squared (rms) norm, defined as

∥w∥rms =
( 1

N

N∑

i=1

|wi|
2
)1/2

, for w ∈ R
N .

Then the encoder and decoder are trained by

min
ϑe, ϑd

LCAE(ϑe, ϑd),

and the parameters ϑe and ϑd are updated and learned simultaneously.

2.2. Latent space modeling. In this section, we introduce the latent-space mod-
eling of our surrogate model. Here, we propose to use a CNN to map the parameters
to the encoded solutions in the latent space. If a time-dependent problem is con-
sidered, we treat time t as an additional parameter. Denote the proposed CNN as
Θ : Rp × R → R

n, i.e.,

(7) v̂ = Θ(µ, t;ϑl),

where ϑl denotes the parameters of the CNN. The parameters µ ∈ R
p and time

t ∈ R are the input, and v̂ ∈ R
n is the corresponding output that approximates v.

For time-dependent problems, the time evolution is often addressed using LSTM
networks [18, 23, 25]. However, LSTM usually requires sequential time-series data
sampled at uniform time steps, which can be challenging to obtain in practical
applications. Moreover, LSTM iteratively predicts solution dynamics – starting
from the initial condition and making predictions step by step until the desired
time is reached. To avoid these issues, we propose a CNN to learn the mapping
from the parameters to the latent space solutions directly. Specifically, we treat the
model parameters µ and time t as inputs to the CNN, and thus set the input layer
channel size to p + 1. The main advantage of our approach is that it eliminates
the requirements for training data to be sampled at uniform time steps. Once
trained, the CNN can predict the solution for a given parameters µ and time t
with a single evaluation, without requiring any iterations. Furthermore, compared
to fully-connected neural networks, the filter-sharing feature of CNNs could help
avoid overfitting.

Figure 3 illustrates the proposed CNN for mapping the model parameters µ and
time t to the low-dimensional latent space representation. Here the inputs include
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Figure 3. Illustration of the CNN for latent space modeling.

the model parameters µ and time t. To learn the mapping, we minimize the loss
function in the latent space, i.e.,

min
ϑl

LMapping(ϑl),

where the loss function is defined as

LMapping(ϑl) =
1

N train
t N train

µ

Ntrain

µ∑

s=1

Ntrain

t∑

m=1

∥vm
s − v̂m

s ∥2rms

=
1

N train
t N train

µ

Ntrain

µ∑

s=1

Ntrain

t∑

m=1

∥vm
s −Θ(µs, tm;ϑl)∥

2
rms.(8)

2.3. Surrogate model for prediction. Our data-driven surrogate model utilizes
a CAE for dimensionality reduction and a CNN for latent space modeling. It
consists of three neural networks:

Ψ : RN → R
n, Θ : Rp × R → R

n, Φ : Rn → R
N .

The encoder Ψ compresses the high-fidelity solution data with dimension N to the
latent space representation with dimension n. The CNN Θ maps the parameters
and time to the encoded solution and learns the relation between the parameters and
the latent space representation. The decoder Φ reconstructs the high-dimensional
data from the latent space representation. In the following, we summarize our
surrogate model into two stages: the offline stage and the online stage.

In the offline (training) stage, we adopt a decoupled training strategy. Specifi-
cally, we first train the CAE (i.e., Ψ and Φ) with the high-fidelity solution data to
obtain the low-dimensional representation. Subsequently, we train the CNN (i.e.,
Θ) to learn the mapping between the parameters (including time t) and the latent
space representation. The detailed steps are summarized in Algorithm 1. Here, we
denote ϑ∗

e and ϑ∗

d as the optimal neural network parameters that minimize the loss
function LCAE, while ϑ∗

l represents the optimal parameters minimizing LMapping.
In the literature [18, 21], the joint training approach is used where dimensional-
ity reduction and the latent-space modeling are trained simultaneously. To that
end, a weighted loss function is introduced by combining (6) and (8) with proper
weights [18, 21]. Compared to the joint training approach, our decoupled strategy
offers more flexibility and enhances training efficiency. First, it has fewer trainable
parameters for each step. Secondly, there is no need to balance the weights of the
two loss functions, as required in the joint training approach.

In the online (predicting) stage, our surrogate solver for parametric PDEs con-
sists of the trained CNN Θ(·, ·; ϑ∗

l ) and decoder Φ(·; ϑ∗

d); see the illustration in
Figure 4 and the detailed algorithms in Algorithm 2. Given new parameters as
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Figure 4. Illustration of the online stage of our model.

input (µ and time t if applicable), the CNN predicts the corresponding reduced
solution in the latent space and then decoder outputs the predicted solution in the
original high-dimensional space. The process can be expressed as

(µ, t)
Θ:Rp

×R→R
n

−−−−−−−−→ v̂
Φ:Rn

→R
N

−−−−−−−→ û.

In contrast to the LSTM-based model (e.g. in [18, 23, 25]), our surrogate solver
requires only the inputs of the parameters µ and time t to predict the solution. In
contrast, LSTM-based method starts from an encoded initial condition and itera-
tively evaluate the solution step by step until the prediction time t.

Algorithm 1 Offline stage

Step 1: CAE training

Input: High-fidelity solution data {um
s }

1: Initialize the autoencoder randomly;
2: Optimize the loss function LCAE(ϑe, ϑd) in (6) with input {um

s };
3: Return the trained encoder Ψ(·;ϑ∗

e), decoder Φ(·;ϑ
∗

d);
Output the latent space representation {vm

s } of {um
s }.

Step 2: CNN training

Input: Parameters (µ, t) and latent space representation {vm
s } from Step 1

4: Initialize the CNN randomly;
5: Optimize the loss function LMapping(ϑl) in (8) with inputs (µ, t) and {vm

s };
6: Return the trained CNN model Θ (·, ·; ϑ∗

l ).

Our method is designed to handle both time-independent and time-dependent
parametric PDEs. For time-independent problems, the proposed CNN can effec-
tively learn the mapping between the model parameters and the latent space rep-
resentation. For time-dependent problems, we further treat time t as an additional
parameter. Thus, our surrogate model provides a time-continuous solver, which
needs only a single evaluation of the neural network to predict the solution at any
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Algorithm 2 Online stage

Input: Model parameters µ and time t

Output: Predicted solution û ∈ R
N at time t for parameters µ

1: Feed (µ, t) into the trained CNN and output the latent space prediction v̂ =
Θ(µ, t;ϑ∗

l );
2: Feed v̂ into the trained decoder and output the predicted solution û = Φ(v̂;ϑ∗

d).

time within the studied time frame. Specific details of the CAE and latent-space
CNN configurations for our test cases will be provided in Section 3.

3. Numerical experiments

In this section, we conduct numerical experiments to assess the performance of
our surrogate solver for parametric PDEs. Furthermore, we will compare the com-
pression capability of CAE with PCA, especially in handling nonlinear problems.
In Sections 3.1–3.4, we test the performance of our method in solving both time-
independent and time-dependent PDEs. A brief comparison of our surrogate solver
and traditional numerical methods is provided in Section 3.5.

Denote Strain and Stest as the sets of parameters for training and testing data,
respectively, and they satisfy Strain ∩ Stest = ∅. In our study, both training and
testing data are generated by numerically solving parametric PDEs. Note that our
method is a purely data-driven approach, and its training does not require PDE
information. We adopt the adaptive moment estimation (Adam) algorithm to train
both the CAE and the latent-CNN. In the Adam algorithm, the two hyperparam-
eters that control the decay rates of the moment estimates are set to β1 = 0.9 and
β2 = 0.999, respectively. Additionally, we use an adaptive learning rate defined as
ηn+1 = η0/(1 + nδη), where n denotes the number of iterations, with η0 = 0.0003
and δη = 10−5. In both Step 1 and Step 2, we set the number of training epochs
to 5000 and the batch size to 32. During the training process, we adopt an early
stopping strategy to prevent overfitting.

3.1. Parametric Poisson equations. Consider a two-dimensional (2D) para-
metric Poisson problem on the domain Ω = (−1, 1)2:

∆u(x;µ) = f(x;µ), for x ∈ Ω,

u(x;µ) = 0, for x ∈ ∂Ω,
(9)

where the forcing term f depends on parameters µ = (µ1, µ2), given by

f(x;µ) = −e−2[(x−µ1)
2+(y−µ2)

2]

with µ1, µ2 ∈ [−1, 1]. The training and testing data are generated by solving the
Poisson problem (9) with the central difference method. Specifically, we use a
uniform mesh with N = 2562 total grid points, i.e., 256 grid points along each of
x- and y-directions. The training data include numerical solutions for 121 pairs of
parameters µ1 and µ2, with each sampled uniformly with 11 values in the range
[−1, 1]. The testing data include numerical solutions for 417 parameter sets (µ1, µ2),
which are randomly sampled from (−1, 1)2.

The detailed information of the three neural networks in our surrogate solver –
an encoder, a decoder, and a latent-space CNN – is listed below. The convolutional
filter size in the CAE is 3× 3, while the filter size in the latent space is 2.
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• Encoder: The encoder consists of six 2D convolutional layers, with 4, 8,
16, 32, 64, and 128 filters used in each layer, respectively. Each convolution-
al layer is followed by a 2D max-pooling layer with a pooling size of 2× 2.
The output of the last convolutional and pooling layers is then flattened
and fed into the fully-connected layers. There are three fully-connected
layers with 50, 25, and 4 neurons, respectively.

• Decoder: In order to reconstruct the data from the latent space repre-
sentation to the original high dimensions, a reverse structure is used as in
the encoder. An additional fully-connected layer with 16 neurons is added
before the first convolutional layer. Instead of pooling layers, the 2D up-
sampling layers are used with nearest neighbor interpolation method [30].

• CNN mapping: We treat the two parameters (µ1, µ2) as input. The
CNN includes five 1D convolutional layers, each with 128 filters. They are
followed by two fully connected layers with 128 and 4 neurons, respective-
ly. ReLU activation functions are applied to all convolutional and fully
connected layers, except for the last fully connected layer, which has no
activation function.

Figure 5 compares the predicted solution with the ground truth solution for
different parameters in Stest, where the latent dimension n = 4. Each column

Figure 5. Comparison of the ground truth solution (u) and pre-
dicted solution (û) of the Poisson problem for different parameters
(µ1, µ2), where the error is computed as |u− û|. For easy compar-
ison, the results in each row use the same colorbar scale.

represents the results for one parameter set (µ1, µ2). The first and second rows
are the ground truth solution u and the predicted solution û, respectively. The
third row shows their difference |u − û|. Figure 5 and our extensive studies show
that our surrogate solver provides accurate solutions for parameters that are not
included in the training data. The difference between predicted and ground truth
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solutions is small, around 10−3. The solution profile of the parametric Poisson
problem depends on the distribution of the source term, which is determined by
the parameters µ = (µ1, µ2). Figure 6 further presents the absolute and relative
errors of our surrogate solver in predicting the solution for 417 test parameter sets.
It shows that the errors are small for all testing data. The results in Figures 5 and
6 suggest that our method is effective in solving the parametric Poisson problems.
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Figure 6. (a) Absolute errors ∥u− û∥rms and (b) relative errors
∥u − û∥rms/∥u∥rms in the predicted solutions of the parametric
Poisson problem for different parameters (µ1, µ2).

Moreover, the results in Figures 5–6 indicate that CAE learns an effective latent
space representation of the given high-dimensional data, even with a small latent
dimension n = 4. Here, the data dimension reduces from N = 65536 to n = 4, and
the compression ratio exceeds 99.97%. To further study its compression capability,
we compare the CAE with PCA, one of the most popular projection-based dimen-
sionality reduction methods. Here, we focus only on their compression capability,
so latent space modeling is not involved. In other words, the solution û is obtained
as û = Φ(Ψ(u; ϑ∗

e); ϑ
∗

d). Figure 7 compares the average reconstruction errors of
CAE and PCA across all 417 test data. The results show that the reconstruc-
tion error of PCA increases monotonically as the latent dimension (the number of
principal components) decreases. While the reconstruction errors of CAE remain
low for different latent dimensions, and they are much smaller than those of PCA
when latent dimension n ≤ 8. Moreover, CAE has a narrow range of maximum and
minimum errors, indicating greater stability across all parameters. Compared to P-
CA, the CAE can achieve much smaller reconstruction errors for small latent space
dimensions. In contrast, PCA requires larger latent dimensions to ensure smaller
reconstruction errors, which leads to higher computational costs. More discussion
about CAE compression capability can be found in [14, 15,18, 25,26].

3.2. Viscous Burgers equation. Consider the viscous Burgers equation of the
form:

∂u(x, t;µ, ν)

∂t
+ µu

∂u

∂x
= ν

∂2u

∂x2
, for x ∈ Ω,

u(x, t;µ, ν) = 0, for x ∈ ∂Ω,
t ∈ (0, T ],(10)
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Figure 7. (a) Absolute errors ∥u− û∥rms and (b) relative errors
∥u − û∥rms/∥u∥rms of CAE and PCA for the parametric Poisson
problems, with no latent space modeling involved. The solid line
represents the average errors across 417 test data, while the shaded
area indicates the range of maximum and minimum errors.

where parameters µ ∈ [0.1, 1] and ν ∈ [0.01, 0.2]. The initial condition is given by

(11) u(x, 0) = − sin(πx), for x ∈ Ω̄.

The Burgers equation (10) arises in various fields, including fluid mechanics, non-
linear acoustics, and traffic flow. The viscosity parameter ν plays an important role
in its solution behavior. For small values of ν, Burgers equation can lead to shock
formation.

Take the computational domain Ω = (−1, 1) and end time T = 1. To obtain
high-fidelity solutions, we solve (10) using the finite difference method in space
and a fourth-order Runge–Kutta (RK4) scheme in time, with N = 512 grid points
and a time step of 10−5. The training dataset consists of numerical solutions
for 30 parameter sets, selected from combinations of µ ∈ {0.1, 0.3, 0.5, 0.7, 1} and
ν ∈ {0.01, 0.04, 0.08, 0.12, 0.16, 0.2}. For each parameter set, 11 snapshots of the
solutions are taken at time t = 0, 0.1, 0.2, . . . , 1. Note that our surrogate solver can
also handle nonuniform time-step data, which is a key advantage over other existing
methods [18,23,25]. The testing dataset include numerical solutions for 39 pairs of
parameters (µ, ν) randomly chosen on the parameter space (0.1, 1)× (0.01, 0.2).

In our surrogate solver, the encoder includes eight 1D convolutional layers, each
with 2, 4, 8, 16, 32, 64, 128, and 256 filters respectively. Each convolutional layer
is followed by a max-pooling layer with a pooling size of 2. For this 1D problem,
no fully-connected layers are used. Instead, an additional convolutional layer with
1 filter is used as the output layer in both the encoder and decoder to aggregate
information across the channels. The same CNN structure used for the parametric
Poisson problem is applied to the latent-CNN. We set the number of channels to
match the number of parameters. In this case, since time t is treated as a parameter,
there are three channels.

Figure 8 compares the predicted solutions with the ground truth solutions for
three randomly selected parameter sets in Stest, where the latent dimension is n = 2.
For a larger value of ν, the solution tends to smooth out over time. Conversely, for
smaller values of ν, a shock wave emerges over time, which is usually challenging to
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capture. The results show that in both cases, our surrogate solver provides accurate
predictions compared to the ground truth solutions.

Figure 8. Comparison of the ground truth and predicted solu-
tions of the viscous Burgers equation. Each row shows the solution
dynamics for a randomly chosen parameter set (µ, ν). From top to
bottom: (µ, ν) = (0.2, 0.18), (0.9, 0.02), and (0.6, 0.09).

It is important to note that the time points displayed in Figure 8 are different
from those used in the training data. Compared to the time evolution approach,
such as LSTM [23, 25], our surrogate model excels at providing predictions for
times not included in the training data. Moreover, our model does not require the
training data to be given at uniform time steps. Our CNN learns a continuous
relationship between time and the encoded solution within the latent space. Hence,
it can predict the encoded solution for any time t within the studied time interval.
Extensive numerical studies show that our proposed neural network solver can
effectively predict solutions across the parameter space and time t ∈ [0, T ].

3.3. Buckley–Leverett equation. Consider the 2D Buckley–Leverett equation
of the form [33,34]:

∂u(x, t;µ)

∂t
+

∂f1(u)

∂x
+

∂f2(u)

∂y
− µ∆u = 0, for (x, y) ∈ Ω,

u(x, y, t) = 0, for (x, y) ∈ ∂Ω,

t ∈ (0, T ],(12)
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where the parameter µ ∈ [0.01, 0.1]. The nonlinear flux functions f1(u) and f2(u)
are defined as

f1(u) =
u2

u2 + (1− u)2
, f2(u) = f1(u)

(
1− 5(1− u)2

)
.

The Buckley–Leverett equation is often used to describe two-phase flow in porous
media [33]. The diffusion term introduces a smoothing effect and models the disper-
sion and capillary pressure effects. The parameter µ usually depends on the porous
media and the fluid involved. Numerical challenges in solving (12) come from its
highly nonlinear flux terms, which often results in sharp fronts or discontinuities in
the saturation profile.

In our study, we take Ω = (−1.5, 1.5)2 and T = 0.5. The initial condition is
chosen as

u(x, y, 0) =

{
1, for x2 + y2 < 0.5,

0, otherwise.

To prepare the training and testing data, we solve the problem using the finite
difference method with N = 2562 grid points and the RK4 temporal discretization
with a time step of 0.0001. The training data include numerical solutions for 10
parameters that are uniformly sampled on [0.01, 0.1]. For each training data, all
spatial points are included (i.e., N = 2562), but only 11 time snapshots (i.e.,
Nt = 11) of solutions are considered, sampled at uniformly distributed time points
within the interval [0, 0.5]. The testing data consist of numerical solutions for 57
randomly sampled parameters in the parameter interval (0.01, 0.1).

Figure 9. Comparison of the ground truth solution (u) and pre-
dicted solution (û) of the parametric Buckley–Leverett equation
with µ = 0.017, where the error is computed as |u − û|. For easy
comparison, the results in each row use the same colorbar scale.
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The neural network structure in this example is similar to that used in Section
3.1 for the parametric Poisson problem. Specifically, we consider the encoder with
five 2D convolutional layers, and each has 8, 16, 32, 64, and 256 filters, respectively.
Each convolutional layer is followed by a 2D max-pooling layer with pooling size of
2 × 2. Two fully-connected layers with 50 and 6 neurons, respectively, are added
after the last pooling layer. The decoder mirrors the structure of the encoder, with
the addition of a fully-connected layer containing 512 neurons placed before the
first 2D convolutional layers.

Figure 10. Comparison of the ground truth solution (u) and pre-
dicted solution (û) of the parametric Buckley–Leverett equation
with µ = 0.095, where the error is computed as |u − û|. For easy
comparison, the results in each row use the same colorbar scale.

Figures 9 and 10 compare the ground truth and predicted solutions at different
times for randomly chosen parameter µ = 0.017 and µ = 0.095, respectively, where
the latent dimension n = 6. It shows that the predicted solutions agree well with
the ground truth solutions. Our surrogate solver can predict the solution for unseen
parameters effectively. Moreover, it is much faster than traditional numerical meth-
ods. See the comparison of their computational times in Table 1. To obtain the
solution of a new parameter µ, traditional numerical methods require a significant
amount of time. In contrast, once the CAE and CNN are trained, our surrogate
solver can quickly predict the solution for a given parameter µ – first inputting the
parameter µ and time t into the CNN to obtain the encoded solution, which is then
decoded to produce the predicted solution in the original high-dimensional space.

Figure 11 further compares the compression and reconstruction abilities of CAE
and PCA, where the latent dimension n = 6. Note that the latent-space modeling
is not involved for this purpose. Figure 11 shows that with a latent dimension
n = 6, it is challenging for PCA to capture sharp fronts, resulting in significantly
larger errors compared to CAE. Generally, CAE can achieve better accuracy in
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Figure 11. Comparison of CAE and PCA for the Buckley–
Leverett equation with µ = 0.017 and latent dimension n = 6.
For easy comparison, the results in each row use the same colorbar
scale.

compressing and reconstructing data when the latent dimension is small. Similar
to our observations in Section 3.1, the accuracy of PCA improves as the latent
dimension n increases. However, even with a dimension of n = 32, the CAE still
outperforms PCA in this case.

Figure 12 further illustrates the aggregate errors across all test parameters and
time. For a given parameter µ = µs, the absolute and relative errors are defined
as:

(13) eµs

abs =
1

N test
t

Ntest

t∑

m=1

∥um
s − ûm

s ∥rms, eµs

rel =
1

N test
t

Ntest

t∑

m=1

∥um
s − ûm

s ∥rms

∥um
s ∥rms

,

respectively. Furthermore, we define ēabs, e
max
abs , and emin

abs as the average, maximum,
and minimum of the absolute errors eµs

abs, respectively, across all test parameters µs

for 1 ≤ s ≤ N test
µ . Similar notations apply to the relative errors eµs

rel. It shows that
the reconstruction errors of CAE remain within a narrow range even with small
latent dimensions, whereas PCA has much larger errors. This indicates that CAE
maintains stable performance across various test data. Compared to the results in
Section 3.1, the advantage of CAE over PCA is more significant in this case.
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Figure 12. (a) Absolute errors eµabs of CAE and PCA across all
test data at different latent dimensions, with no latent space mod-
eling involved. The solid line represents the average errors ēabs,
while the shaded area indicates the range between maximum emax

abs

and minimum emin
abs errors. (b) Corresponding results for relative

errors eµrel.

3.4. Radial advection equation. Consider the 2D radial advection equation
[17]:

∂u(x, t;µ)

∂t
= −v(x) · ∇u, for x ∈ Ω, t ∈ (0, T ](14)

with periodic boundary conditions, where the coefficient function is given by

v(x) =
π

2
(1− x2)2(1− y2)2

[
x
−y

]
.

The parametrized initial condition takes the form

u(x, 0;µ) = cos(πµx) cos(πµy), for x ∈ Ω̄(15)

with the parameter µ ∈ [0.6, 2]. Here, we take domain Ω = (−1, 1)2 and end time
T = 3.

To prepare the training and testing data, we solve the problem (14)–(15) using
finite difference methods with N = 2562 grid points (i.e., 256 points in each of
the x- and y-directions) and the RK4 temporal discretization with a time step
of 0.005. Although a small time step is used to generate data, the training data
of each parameter µ include only 16 time snapshots, i.e., N train

t = 16, uniformly
sampled at t = 0, 0.2, 0.4, . . . , 3. The training data include numerical solutions for
15 parameters which are uniformly sampled on the parameter interval [0.6, 2]. The
testing data consist of numerical solutions for 64 randomly chosen parameters µ in
the interval (0.6, 2). The neural network structures in this example are similar to
those used in solving the Buckley–Leverett equation.

Figures 13–14 compare the ground truth and predicted solutions for parameters
µ = 0.75 and 1.63, respectively, where the latent dimension n = 4. It shows that
the predicted solutions agree very well with the ground truth solutions. For large
values of µ, the initial condition becomes more oscillatory, leading to increasingly
oscillatory solution over time. Moreover, Figure 15 presents both the absolute and
relative errors for different parameters and times. Figure 15 (b) and (d) show that
errors remain low for all test parameters µ, even though only 15 parameters are
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Figure 13. Comparison of the ground truth solution (u) and pre-
dicted solution (û) of the radial advection equation with µ = 0.75,
where the latent dimension n = 4. The error is computed as |u−û|.
For easy comparison, the results in each row use the same colorbar
scale.

used in the training data. Figure 15 (a) and (c) demonstrate that errors remain
small and bounded over time t, in contrast to traditional numerical methods where
numerical errors generally increase over time. For µ = 1.63, numerical errors spike
between t = 2.8 and t = 3 due to the rapid changes in the solution within this
time interval, although the errors at t = 2.8 and t = 3 are relatively small. To
enhance prediction accuracy, including more time snapshots in this interval could
be beneficial. As seen in Figure 15 (a) and (c), our method can predict solutions at
any time t ∈ [0, 3], even though only 16 time points are used in the training data.

Similarly, we compare the compression and reconstruction capabilities of CAE
and PCA for solving the 2D radial advection problem. Again, the latent-space
modeling is not involved for this purpose. Figure 16 clearly shows that with a
latent dimension of n = 4, CAE achieves a reconstruction error less than 0.05
across all time points. However, the reconstruction errors of PCA are larger than
0.8. The results in Figure 17 further show that the CAE outperforms PCA for
latent dimensions n ≤ 12. As the latent dimension increases, the reconstruction
errors of PCA continue to reduce and eventually become smaller than those of the
CAE. Thus, CAE is preferable due to its superior compression and reconstruction
capabilities, especially when using a small latent dimension.

3.5. Comparison to traditional numerical methods. To further assess its ef-
ficiency, we provide a brief comparison between our surrogate solver and traditional
numerical methods for solving each time-dependent problem in Sections 3.1–3.4.
Table 1 presents their computational times (in seconds), with details on both tradi-
tional numerical methods and our surrogate model as discussed in Sections 3.1–3.4.
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Figure 14. Comparison of the ground truth solution (u) and pre-
dicted solution (û) of the radial advection equation with µ = 1.63,
where the latent dimension n = 4. The error is computed as |u−û|.
For easy comparison, the results in each row use the same colorbar
scale.

The computations are performed on a macOS Monterey system equipped with a
10-core 3.6 GHz Intel i9 CPU and 128 GB of 2667 MHz DDR4 memory.

For traditional numerical methods, explicit time-stepping methods are used for
each problem, where small time steps are used to ensure stability conditions. In
contrast, implicit methods allow for larger time steps. However, they require nu-
merical iterations at each step, resulting in longer computational time per step,
despite potentially reducing the total number of steps. Further discussion of d-
ifferent numerical methods is beyond the scope of this paper. For our surrogate
solver, we provide the times spent on both the offline training and online prediction.
Specifically, we break down the offline training time into two parts: training the
CAE and training the latent CNN. The reported training times for CAE and CNN
are averaged over three independent runs.

Table 1 shows that: (i) The time of training the CAE dominates the offline stage
time, mainly depending on the data dimension and volume. Generally, higher-
dimensional data, such as the N = 65536 dimensions in radial advection problems
compared to N = 512 in the Burgers’ equation, results in longer training times.
Moreover, more training data and time snapshots are used in the radial advection
equation compared to the Buckley–Leverett equation, leading to longer training
times. (ii) The training time for the CNN is relatively insignificant compared to
the CAE.

To compare our surrogate solver with traditional numerical methods, we present
the total computational time required to predict the solution for Npred

µ
= 1000

parameter sets µ at different time t. In other words, the times listed under “Online

prediction” and “Numerical methods” columns represent the total computational
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Figure 15. (a) Absolute errors ∥u − û∥rms over time t and (b)
across different parameters µ. Panels (c) and (d) show the corre-
sponding results of relative errors ∥u− û∥rms/∥u∥rms.

Table 1. Comparison of computational time of our surrogate
solver and traditional numerical methods for solving problems in
Sections 3.2–3.4. The times listed under “Online prediction” and
“Numerical methods” columns are the total computational time
spent to compute the solution u(·, t;µ) for 1000 parameter sets µ.

Problems T
Our surrogate solver Numerical methods

Offline training Online prediction
CAE CNN t = T/2 t = T t = T/2 t = T

Section 3.2 1.0 0.909e+3 139 0.113 0.108 1.077e+3 2.164e+3
Section 3.3 0.5 1.122e+4 111 1.582 1.606 1.380e+6 2.792e+6
Section 3.4 3.0 2.386e+4 209 1.683 1.659 8.468e+4 1.706e+5

time spent to compute the solution for 1000 parameter sets µ. For each new pa-
rameter µ, traditional numerical methods start from initial conditions and compute
step by step to reach the solution at the desired time t. Consequently, the com-
putation time is proportional to the time t – the larger the time t, the longer the
computational time (cf. the times for t = T/2 and t = T in Table 1) In contrast, our
surrogate model predicts the solution directly as û = Φ(Θ(µ, t;ϑ∗

l );ϑ
∗

d), involving
only the trained CNN and decoder. This significantly reduces the computational
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Figure 16. Comparison of CAE and PCA for the radial advection
problem with µ = 1.63 and latent dimension n = 4. For easy
comparison, the results in each row use the same colorbar scale.

time. Therefore, our method is more efficient for computing solutions of parametric
PDEs across different parameters (e.g., in optimal control problems).

4. Conclusion

We proposed a CNN surrogate model for solving parametric PDEs, including
time-independent and time-dependent problems. Our surrogate model consists of
two parts: a CAE that learns a low-dimensional latent space representation of the
high-fidelity data, and a latent CNN that maps the model parameters to the latent
space representation, with the model parameters serving as the input to the CNN.
To address the time-dependent problems, we embedded time t into the surrogate
model by treating it as an additional model parameter, i.e., as another input of
the CNN. To enhance computational efficiency, we adopted a decoupled training
strategy – training the CAE and CNN mapping separately. In the online stage,
our surrogate solver is constructed by combining the trained latent CNN with the
decoder.

Our surrogate model offers the following advantages: First, it does not require
the training data to be sampled at uniform time steps. Second, it can predict
the solution at an arbitrary time t within the time domain, and the prediction
only needs to evaluate the model (only the latent CNN and the decoder) once.
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Figure 17. (a) Absolute errors eµabs of CAE and PCA across all
test data at different latent dimension, with no latent space mod-
eling involved. The solid line represents the average errors ēabs,
while the shaded area indicates the range between maximum emax

abs

and minimum emin
abs errors. (b) Corresponding results for relative

errors eµrel.

In contrast, existing LSTM-based ROM methods in the literature require training
data to be sampled at uniform time steps. In the online stage, these methods
start from encoded initial conditions and compute the solution step by step until
reaching the prediction time t. Extensive numerical experiments showed that our
surrogate model can accurately predict solutions for both time-dependent and time-
independent problems. Comparisons with PCA further demonstrate its superior
compression and reconstruction capabilities. Specifically, for the Burgers equation
and the BuckleyCLeverett equation, our surrogate model accurately captures the
sharp fronts of the solutions.
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