
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{S}\mathrm{C}\mathrm{I}. \mathrm{C}\mathrm{O}\mathrm{M}\mathrm{P}\mathrm{U}\mathrm{T}. © 2024 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}

\mathrm{V}\mathrm{o}\mathrm{l}. 46, \mathrm{N}\mathrm{o}. 5, \mathrm{p}\mathrm{p}. \mathrm{B}700--\mathrm{B}724

JET: MULTILEVEL GRAPH PARTITIONING ON GRAPHICS
PROCESSING UNITS\ast

MICHAEL S. GILBERT\dagger , KAMESH MADDURI\dagger , ERIK G. BOMAN\ddagger , AND

SIVA RAJAMANICKAM\ddagger

Abstract. The multilevel heuristic is the dominant strategy for high-quality sequential and
parallel graph partitioning. Partition refinement is a key step of multilevel graph partitioning.
In this work, we present Jet, a new parallel algorithm for partition refinement specifically de-
signed for graphics processing units (GPUs). We combine Jet with GPU-aware coarsening to
develop a k-way graph partitioner, the Jet partitioner. The new partitioner achieves superior
quality when compared to state-of-the-art shared memory partitioners on a large collection of test
graphs.

Key words. graph partitioning, GPUs, multilevel, refinement

MSC codes. 68R10, 68W10, 05C85

DOI. 10.1137/23M1559129
See reproducibility of
computational results
at end of the article.

1. Introduction. Parallel graph partitioning [11] is a key enabler for both large-
scale graph analytics [35, 39] and high-performance scientific computing [7, 36]. Graph
partitioning is the task of creating approximately equally sized disjoint sets of ver-
tices in the graph, while simultaneously minimizing the cutsize, the number of edges
connecting vertices in different sets. Most graph partitioning software tools and al-
gorithms use the multilevel heuristic. The multilevel heuristic constructs a sequence
of progressively smaller graphs in a coarsening phase, finds a solution to the problem
(partitioning in this case) on the smallest graph, and then uncoarsens the solution to
fit the top-level graph. The uncoarsening step also improves the solution using infor-
mation from each graph in the sequence in a process called refinement. Refinement
algorithms for graph partitioning work by moving vertices to improve the quality of
the solution. The graph partition refinement problem is well studied in the context of

\ast Submitted to the journal's Software, High-Performance Computing, and Computational Science
and Engineering section March 15, 2023; accepted for publication (in revised form) March 21, 2024;
published electronically October 16, 2024. The U.S. Government retains a nonexclusive, royalty-free
license to publish or reproduce the published form of this contribution, or allow others to do so, for
U.S. Government purposes. Copyright is owned by SIAM to the extent not limited by these rights.

https://doi.org/10.1137/23M1559129
Funding: Sandia National Laboratories is a multimission laboratory managed and operated

by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security
Administration under contract DE-NA-0003525. This research was supported by the Exascale Com-
puting Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of
Science and the National Nuclear Security Administration and by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through
Advanced Computing (SciDAC) Program through the FASTMath Institute. This research was also
supported in part by the U.S. National Science Foundation grants CCF-1955971, CCF-2119236, and
CNS-2120361.

\dagger Pennsylvania State University, University Park, PA, USA (msg5334@psu.edu, madduri@cse.
psu.edu).

\ddagger Sandia National Laboratories, Albuquerque, NM, USA (egboman@sandia.gov, srajama@sandia.
gov).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

B700

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/23M1559129
mailto:msg5334@psu.edu
mailto:madduri@cse.psu.edu
mailto:madduri@cse.psu.edu
mailto:egboman@sandia.gov
mailto:srajama@sandia.gov
mailto:srajama@sandia.gov

JET: MULTILEVEL GRAPH PARTITIONING ON GPUS B701

shared-memory algorithms for multicore systems [3, 23, 33]. Our work considers the
problem of partition refinement on graphics processing units (GPUs), with a focus on
matching or exceeding partition quality obtained with fast multicore partitioners.

Our refinement algorithm, named Jet, decouples the two primary tasks of refine-
ment algorithms: improving the cutsize and maintaining a balanced solution. This
enables our algorithm to move larger sets of vertices without relying too much on fine-
grained synchronization. This is critical for obtaining a high degree of parallelism.
Moreover, we utilize a novel heuristic for selecting a set of vertices to move during the
cutsize reduction phase. The heuristic enables our refinement to move larger sets of
vertices in each pass, and to escape local minima. In this heuristic, we use information
from the current partition state to assign a priority value to each vertex, and then
approximate the expected value for the next partition state from these priorities. The
expected value of the next partition state in the neighborhood of each vertex deter-
mines whether the vertex should move. On the majority of test graphs we experiment
with, this heuristic results in higher-quality partitions than other parallel refinement
schemes.

We develop a partitioner for GPUs utilizing our previous work on coarsening [19]
and Jet, our novel refinement algorithm. GPU acceleration enables our partitioner
to achieve consistently faster partitioning times compared to other partitioners. Our
partitioner also achieves consistently smaller cutsizes on graphs from varied domains
such as finite element methods, social networks, and semiconductor simulations.

The following are the key algorithmic contributions and performance highlights:
\bullet We present Jet, a novel hiqh-quality, GPU-parallel, k-way refinement algo-

rithm. Our experiments indicate that Jet outperforms the Multitry Local
Search algorithm in terms of graph partition quality.

\bullet We present a k-way graph partitioner, the Jet partitioner, that leverages GPU
acceleration to attain 2\times faster partitioning times than competing methods
in a majority of test cases. We also modify the GPU implementation to adapt
it for multicore execution.

\bullet We demonstrate superior quality when compared to state-of-the-art shared
memory partitioners on a diverse test set of over 60 graphs.

2. Background and prior work.

2.1. Problem definition. Consider a graph G with n vertices (or nodes) and
m edges. We assume the graph is undirected and has no self-loops or parallel edges.
Vertices can have associated positive integral weights. Edge weights are positive
integers representing the strength of the connection of two vertices. Vertex-weight
pairs are denoted by V , and weighted edge triples by E. For a positive integer k, a k-
way partition of G is a set of pairwise disjoint subsets of V (or parts \{ p1, p2, . . . , pk\} =
P) such that \cup ki=1pi = V . The weight/size of a part pi is the sum of the weights of its
constituent vertices. Given a partition, the cut set is the set of edges \langle u, v,wuv\rangle \in E
with u and v in different parts. The sum of the weights of edges in the cut set is
called the cost (or cutsize, or edge cut in case of unweighted graphs) of the partition.
A balance constraint in the form of a nonnegative real constant \lambda places a limit on the
part weights: weight(pi)\leq (1+\lambda)weight(V)

k \forall 1\leq i\leq k; there is no lower bound on the
size of a part. The value of \lambda is typically 0.01--0.1 (or a 1--10\% allowed imbalance).
The objective of the k-way graph partitioning problem is to minimize the cost of the
partition of G while satisfying the balance constraint. The output of the partitioning
problem is typically an array of size n= | V | mapping vertices to the parts.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

B702 GILBERT, MADDURI, BOMAN, AND RAJAMANICKAM

Algorithm 2.1 A template for multilevel graph partitioning.

Input: Graph G as defined in section 2.1, number of parts k, balance \lambda .
Output: A partition array P0[0..n - 1], where P0[v] indicates the partition that

vertex v \in V belongs to.
1: \{ G0, . . . ,Gl\} ,\{ M0, . . . ,Ml\} \leftarrow MLCoarsen(G)
2: Pl\leftarrow InitialPartition(Gl, k, \lambda)
3: Pl\leftarrow RefinePartition(Gl, Pl, k, \lambda)
4: i\leftarrow l - 1
5: while i\geq 0 do \triangleleft l Uncoarsening steps
6: Pi\leftarrow ProjectPartition(Pi+1,Mi+1)
7: Pi\leftarrow RefinePartition(Gi, Pi, k, \lambda)
8: i\leftarrow i - 1

2.2. Multilevel partitioning. The multilevel heuristic [44] is extensively used
in large-scale graph analysis. Its applications include graph partitioning [6, 27, 30],
clustering [15, 17, 20], drawing [29, 31], and representation learning [4, 12]. The
family of algebraic multigrid methods [10, 46] and multilevel domain decomposition
methods [26, 42] in linear algebra is closely related to multilevel methods for graph
analysis. In a multilevel method, instead of solving a problem on a large graph, we
build a hierarchy of graphs that are progressively smaller than the original graph
and yet preserve the structure of the original graph. We then solve the problem on
the smallest graph and project or interpolate the solution to the original graph using
the hierarchy. Algorithm 2.1 gives the high-level template for multilevel graph par-
titioning. MLCoarsen returns a sequence of coarser graphs and the corresponding
vertex mappings. ProjectPartition is a lightweight routine that copies the solution
(partition array) from the previous level to the vertices at the current level. Refine-
ment is applied after projection on each level to reduce the cutsize, and to satisfy the
balance constraint if the coarser partition could not satisfy it.

Since there is a clear separation of multilevel coarsening, initial partitioning, and
refinement in multilevel level partitioning, we focus on multilevel refinement in this
work. Sequential and parallel algorithms for multilevel coarsening have been exten-
sively studied [13, 19, 30, 38].

2.3. GPU: Related work. Most graph partitioners are designed for CPUs and
do not run on GPUs. In particular, the refinement step in the multilevel algorithm is
difficult to parallelize on a GPU. The first GPU partitioner we know of was developed
by Fagginger Auer and Bisseling [16]. They developed two algorithms for GPU: one
was multilevel spectral, and the other was multilevel with greedy refinement. Their
code was never released. A later GPU partitioner [21] implemented a multilevel
algorithm with a label propagation-based refinement algorithm. Sphynx [1, 2] is a
spectral partitioner that runs on GPUs. It is not multilevel. Although it runs quite
fast on GPUs, the cut quality is significantly worse (up to 50\times) than Metis/ParMetis
on irregular graphs. Therefore, in this paper, we do not consider Sphynx any further.

2.4. Refinement. The objective of the partition refinement problem is identi-
cal to graph partitioning. Refinement algorithms improve an input partition; in the
multilevel method, this partition is an output from coarser levels in the multilevel hi-
erarchy. It can also be used outside the context of multilevel partitioning, regardless

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

JET: MULTILEVEL GRAPH PARTITIONING ON GPUS B703

of the method used to produce the given partition. Refinement is local in nature;
information about the current partition state is used to generate the next state. Re-
finement methods frequently use a vertex attribute called the gain, which is defined
according to the current partition state. For bipartitioning, the gain describes the
decrease in cutsize for moving a vertex from its current part to the other part. This
quantity is negative if the cutsize would increase. When k > 2, we use gain to indicate
the expected decrease in cutsize for a vertex move (moving a single vertex from its
current part to a specific destination part).

Refinement algorithms typically operate in iterations over a set of vertices. The
set can be either all vertices, or a subset of vertices such as the boundary set, or some
other subset of interest. The number of iterations is typically a small constant, and
it is desirable that the running time of one refinement pass be linear in m = | E| . A
vertex v is in the boundary set if there exists a vertex u in the neighborhood of v such
that part(v) \not = part(u). As no vertex outside the boundary set can have a positive
gain vertex move, it is common for refinement iterations to exclusively consider this
set.

2.5. Refinement: Related work. In this work, we are interested in parallel
partition refinement schemes. Several recent papers [3, 25, 32, 33, 34] have demon-
strated that parallel refinement techniques can obtain a quality that is similar to or
better than the sequential refinement algorithms from which they are derived. We
group algorithms into four broad categories and describe them below.

2.5.1. Label propagation. Several refinement algorithms share similarities
with an iteration of the Label Propagation (LP) community detection algorithm [37].
Thus, we group them into a common category. In these algorithms, the neighborhood
of each vertex is examined to determine the part to which the vertex is most con-
nected. The vertex is then moved to this part if doing so does not violate the balance
constraint. A typical serial implementation visits each vertex of a graph at most once
per iteration, in arbitrary order. Common orderings include random shuffles and the
natural order of the vertices. More complex orderings make use of priority queues to
determine the vertex which results in the largest decrease in cutsize. This technique
cannot escape local minima, which occur when no single vertex can be moved for a
decrease in cutsize without violating the balance constraint. In parallel implemen-
tations, each processor owns a subset of the vertices, and each processor visits the
vertices it owns in some order. A parallel implementation is synchronous if there is
a barrier synchronization after all vertices are inspected in an iteration, or termed
asynchronous if part changes are immediately applied.

The balance constraint can be maintained in a parallel setting by atomically up-
dating the part sizes. Mt-Metis [32], mt-KaHIP [3], KaMinPar [23], and Mt-KaHyPar
[25] all implement variations in a multilevel setting as a refinement option or the pri-
mary refinement method. PuLP [41] implements this technique for direct partitioning
outside of a multilevel framework, using random initial partitions. The latest GPU
partition refinement algorithm [21] that we know uses a synchronous scheme to fill a
move buffer. It considers the top x moves in the buffer at a time and determines the
best of all 2x permutations of performing or not performing each move. This imposes
a practical limit on the rate at which the move buffer can be processed.

2.5.2. Localized FM search. Mt-KaHIP's multitry local search (MLS) [3] and
Mt-KaHyPar's parallel k-way FM (KFM) [24, 25] search for sequences of vertex moves
that may begin with a negative gain move but collectively improve the cutsize. These

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

B704 GILBERT, MADDURI, BOMAN, AND RAJAMANICKAM

algorithms relax the well-known Fiduccia--Mattheyses (FM) algorithm [18]. Each
algorithm begins multiple FM-style searches seeded from a small number of boundary
vertices, whereas the standard FM performs a single search seeded from all boundary
vertices. A local search repeatedly selects a vertex to move from the top of a priority
queue, which is keyed by the maximum gain of moving each vertex to another part.
Each vertex move requires inserting its neighborhood into the queue, or updating its
neighbors already within the queue. A search ends when it has exhausted its queue
or when a stopping condition is triggered. This stopping condition is based on the
statistical likelihood that a search will yield further improvement. A single iteration
of MLS or KFM begins from an unordered list of boundary vertices and seeds many
searches from this list until the list is empty. Multiple local searches can occur in
parallel, up to the limit of available threads. At the end of an iteration, the vertex
moves performed by each search are joined into a single sequence, and the best prefix
of this sequence that satisfies the balance constraint is committed. MLS and KFM
differ in terms of how many vertices are used to initialize each search, the visibility
of vertex moves between concurrent searches, and how each search is concatenated
into the global sequence. The MLS refinement in mt-KaHIP produces higher quality
partitions than the fast and eco configurations of the serial partitioner KaHIP [40] and
the parallel partitioners Mt-Metis and ParHIP, according to the experiments of the
authors [3]. Mt-KaHyPar-D (default configuration) using KFM refinement produces
higher quality partitions than mt-KaHIP [24].

2.5.3. Hill-scanning. Hill-scanning refinement [33] is another variant of local-
ized FM search, except that each search immediately ends when achieving a net
positive gain. The sequence of moves built by a search is termed as a hill, and hills
cannot grow beyond a maximum size (16 vertices within Mt-Metis). Hills which at-
tain positive total gain are applied to the partition; otherwise they are discarded. The
most significant difference between hill-scanning and MLS/KFM is the elimination of
any need to revert moves. Hill-scanning exploits parallelism by statically dividing the
vertices among the processors, but a processor that is building a hill can use vertices
owned by another processor. In this way, hills may overlap. Overlap between two hills
can be corrected in successive iterations, but this may not happen if doing so would
violate the balance constraint. A serial implementation of the hill-scanning technique
was shown to attain similar or superior quality to other serial refinement schemes [33]
including Fiduccia--Mattheyses (FM) with recursive bisection, k-way pairwise FM,
and Multitry FM (a weaker precursor to MLS and KFM). The cutsizes produced by
hill-scanning degrade by about 0.5\% when run with 24 threads instead of serially
[33]. The authors of mt-KaHIP [3] found that hill-scanning as implemented in Mt-
Metis has substantial difficulty maintaining the balance constraint when the number
of processors is large.

2.5.4. Network flow methods. Max-flow min-cut solvers have seen great suc-
cess as partition refinement algorithms [22, 24, 40]. Mt-KaHyPar-Q (high quality
configuration) creates a network flow problem by growing a region around the bound-
ary between two parts. It uses a parallel implementation of the push-relabel algorithm
to compute a minimum cut inside this region, and this new cut replaces the old cut if
it satisfies the balance constraint. While flow-based methods outperform other refine-
ment methods in terms of result quality, they are also considerably more expensive.

3. Our partitioner. We now discuss our new multilevel GPU partitioner with
an emphasis on the partition refinement algorithm. We coarsen until the coarsest

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

JET: MULTILEVEL GRAPH PARTITIONING ON GPUS B705

Algorithm 3.1 Edge Contraction Algorithm.
Input: The graph G= (V,E) as defined in section 2.1. The mapping vector C.

Coarse vertex count nc.
Output: The coarse edges Ec.
1: bound \leftarrow zeros(nc)
2: for v \in V in parallel do
3: bound[C[v]] \leftarrow bound[C[v]] + | E[v]|
4: offsets \leftarrow exclusivePrefixSum(bound)
5: Hkey\leftarrow nulls(| E|) \triangleleft Initialize per-vertex hash table
6: Hval\leftarrow zeros(| E|)
7: for v \in V in parallel do
8: vc\leftarrow C[v]
9: hkey\leftarrow Hkey[offsets[vc]..offsets[vc + 1]] \triangleleft Hash table to use
10: hval\leftarrow Hval[offsets[vc]..offsets[vc + 1]]
11: for (u,w)\in E[v] in parallel do
12: uc\leftarrow C[u]
13: i\leftarrow insertOrLookup(hkey, uc)
14: hval[i] \leftarrow hval[i] + w
15: Ec\leftarrow extractInsertions(H, Hv)

graph obtained is extremely small, typically between 4k and 8k vertices. We use the
k-way partitioning method in Metis [30] to perform the initial partitioning. Since the
coarsest graph is very small, GPU parallelization of the initial partitioning is left for
future work.

3.1. Coarsening. Our coarsening approach is based on a GPU implementation
discussed in [19], specifically the two-hop matching approach originally developed for
the Mt-Metis partitioner [34]. This approach begins with a standard heavy-edge
matching and only adds two-hop matches if more than 25\% of all vertices are un-
matched.

Two-hop matchings can be split into three categories: leaves, twins, and relatives.
A pair of vertices are relatives if they are separated by a distance of two in the graph.
Twins are a subset of relatives where the neighborhoods of both vertices are the same.
Leaves are a subset of twins that have degree one. We extended our previous work
in two ways. First, we use a hashing scheme to perform twin matching. Second,
we implement relative matching using matchmaker vertices. Matchmaker vertices
are matched vertices with unmatched neighbors, and matches are performed within
the neighborhoods of these matchmakers. We exclude vertices with very high degree
from acting as matchmakers. We have also replaced our contraction scheme from
our previous work with a fine-grained per-vertex hashing scheme for deduplication,
as outlined in Algorithm 3.1.

3.2. Kokkos. We use Kokkos [45] to implement the parallel kernels in our code.
Kokkos facilitates performance portability, allowing the programmer to maintain a
single-source program that can be compiled for different shared-memory architectures.
We compile for three different targets: NVIDIA GPUs using the CUDA backend,
multicore CPUs using the OpenMP backend, and single threads of the same CPUs
using a serial backend. The Kokkos programming model involves expressing a task
as a sequence of small kernels that fit one of three parallel primitives: parallel-for,
reduction, and scan.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

B706 GILBERT, MADDURI, BOMAN, AND RAJAMANICKAM

4. Jet refinement algorithm. We have two design goals for refinement on
the GPU: matching or exceeding the quality of multicore refinement techniques, and
running time that is comparable to fast multicore refinement. Prior shared-memory
multicore-centric refinement algorithms such as hill-scanning and MLS rely on thread-
local priority queues. Priority queues are useful for finding sequences of moves that
improve the cutsize where single moves cannot. However, these priority queue oper-
ations do not expose adequate concurrency for GPU-scale parallelism, and therefore
such approaches are not viable on the GPU. Size-constrained LP-based iterations can
visit the vertices in any order and therefore lend themselves naturally to both multi-
core and GPU parallelism. However, the size constraint limits the number of vertices
that can be moved in each pass. This can be especially problematic if the distribution
of beneficial moves is biased towards certain destination parts. To address this chal-
lenge, our method, Jet, splits a size-constrained LP iteration into two phases. The first
phase is an unconstrained LP phase, Jetlp, that performs vertex moves while ignoring
size constraints. The second phase is a rebalancing phase, Jetr, which has the task
of moving vertices from oversized parts to nonoversized parts such that no oversized
parts remain. It is paramount for the rebalancing phase to minimize any increase in
cutsize (or loss). LP-based algorithms generally produce lower-quality results than
FM-based methods, so we introduce novel augmentations to LP for improved quality.
The overall structure of our refinement algorithm (Algorithm 4.1) is to apply Jetlp
until any part becomes oversized and then apply Jetr until balance is restored. We
denote each application of either Jetlp or Jetr as an ``iteration."" We record the best
balanced partition in terms of cutsize and terminate refinement when we exceed a
certain number of iterations (we use 12 for our results) without encountering a new
best partition. We also use a tolerance factor \phi to terminate when the cutsize is im-
proving too slowly (see line 18). \phi is the most important hyperparameter to control
the quality/runtime tradeoff, where \phi = 1 gives the best quality. We use \phi = 0.999,
which gives a good balance between quality and runtime.

4.1. Unconstrained label propagation: Jetlp. Our unconstrained label prop-
agation is synchronous; i.e., updates to the partition state are deferred to the end of
each iteration. The steps in Algorithm 4.2 are as follows: first, the algorithm selects
a destination part Pd(v) for each vertex v and records the gain F (v) of making this
move by itself. Second, it filters the vertices where Pd(v) is different from the current
part Ps(v) and the gain F (v) satisfies a constraint (inequality (4.3)); it pushes these
vertices to an unordered list and assigns the gain as the priority value. Finally, it
filters this unordered list using an approximation of the expected value of the next
partition state. It determines this approximation in the neighborhood of each vertex
that passed the first filter by merging Ps and Pd according to the priority values within
each neighborhood. It commits all moves that pass the second filter and then updates
the data structures that track connectivity of each vertex and the sizes of each part.
The name Jet derives from a similarity in structure to a jet engine: the selection
of destination parts is similar to the compressor, the first filter to the combustion
chamber, and the second filter to the afterburner.

4.1.1. Changes to address LP limitations. A synchronous implementation
of LP-based refinement has two limitations. First, it is not possible to improve cutsize
through negative gain vertex moves. Second, vertex moves in the same iteration can
affect each other detrimentally. We introduce a method to address both of these
problems: the vertex afterburner. The vertex afterburner is a heuristic-based conflict
resolution scheme permitting negative-gain vertex moves. We use the term afterburner

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

JET: MULTILEVEL GRAPH PARTITIONING ON GPUS B707

Algorithm 4.1 Jet Refinement Algorithm.
Input: The graph G= (V,E) as defined in section 2.1. The number of parts k,

balance factor \lambda . A partition array P0.
Output: An output partition array Pbest.
1: Pbest\leftarrow P0

2: Piter\leftarrow P0

3: DS\leftarrow initDataStructures(G,P0, k)
4: R\leftarrow \emptyset
5: while iteration limit not reached do
6: if imb(G,Piter, k)<\lambda then
7: M \leftarrow Jetlp(G,Piter,DS,R)
8: R\leftarrow vertexSet(ML)
9: reset weak rebalance counter
10: else
11: if weak rebalance limit not reached then
12: M \leftarrow Jetrw(G,Piter,DS,k,\lambda)
13: else
14: M \leftarrow Jetrs(G,Piter,DS,k,\lambda)
15: Piter,DS\leftarrow updatePartsAndDS(G,Piter, k,M,DS)
16: if imb(G,Piter, k)<\lambda then
17: if cost(G,Piter)< cost(G,Pbest) then
18: if cost(G,Piter)<\phi \ast cost(G,Pbest) then
19: reset iteration counter
20: Pbest\leftarrow Piter

21: else if imb(G,Piter, k)< imb(G,Pbest, k) then
22: Pbest\leftarrow Piter

23: reset iteration counter

as it is a secondary filter on the list of possible vertex moves; in typical LP-based
refinement algorithms, there is only the first filter. Given a list of potential vertex
movesX, we recompute the gain for each vertex inX according to an approximation of
the next partition state in its neighborhood. This approximation is created by merging
Ps with Pd, using an ordering ord . Due to the ordering ord , the approximations
generated for overlapping neighborhoods are not consistent. Pd is fixed for all vertices
in X prior to applying the afterburner; therefore recomputing the gain for each vertex
v \in X only involves the parts Pd(v) and Ps(v) specific to the move. For each neighbor
u of a vertex v \in X, if ord(u)< ord(v), we calculate v's gain assuming u will move to
Pd(u). Otherwise, we assume u remains in Ps(u). This allows for vertex moves which
initially had negative gain to become positive gain, and vice versa, depending on the
other moves in X. The final move list M is chosen as a subset of X, containing only
the moves inX with nonnegative gain after recalculation. Let F (x) = conn(x,Pd(x)) -
conn(x,Ps(x)) be the priority values for each vertex move, given by the gain values
of each vertex move in a vacuum. ord is defined as follows:\left\{

ord(u)< ord(v), u\in X \wedge F (u)>F (v),

ord(u)< ord(v), u\in X \wedge F (u) = F (v)\wedge u< v,

ord(u)> ord(v) otherwise.

(4.1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

B708 GILBERT, MADDURI, BOMAN, AND RAJAMANICKAM

Algorithm 4.2 Jet - Label Propagation (Jetlp).
Input: The graph G= (V,E). Partition array Ps. Data structures DS for querying

vertex-part connection info. Locked vertices R\subset V . Filter ratio c.
Output: A list of moves M , in the form of vertex-destination part pairs.
1: Pd\leftarrow Ps

2: F \leftarrow negativeInfinity(| V |)
3: for v \in V \setminus R in parallel do
4: Av\leftarrow adjacentParts(v,DS) \setminus \{ Ps[v]\}
5: if Av \not = \emptyset then
6: Pd[v]\leftarrow argmaxp\in Av

conn(v, p,DS)
7: F [v]\leftarrow conn(v,Pd[v],DS) - conn(v,Ps[v],DS)
8: X\leftarrow gainConnRatioFilter(V \setminus R,Ps, F,DS, c) \triangleleft First filter (inequality (4.3))
9: F2\leftarrow zeros(| X|)
10: for v \in X in parallel do
11: for (u,w)\in E[v] in parallel do
12: pu\leftarrow Ps[u]
13: if ord(u)< ord(v) then
14: pu\leftarrow Pd[u]
15: if pu = Pd[v] then
16: F2[v]\leftarrow F2[v] +w
17: else if pu = Ps[v] then
18: F2[v]\leftarrow F2[v] - w
19: M \leftarrow nonNegativeGainFilter(X,Pd, F2) \triangleleft Second filter

4.1.2. Negative gain moves. The efficacy of this filter heuristic is sensitive
to the composition of X. If X is selected too conservatively (i.e., only positive gain
vertex moves), then afterburning does not produce an additional benefit over standard
LP. If X is not constrained (i.e., the entire boundary vertex set), then afterburning
will produce worse results than standard LP. To determine the composition of X, we
must first determine Pd(v) for each vertex v:

Pd(v) = argmaxp\in P\setminus \{ Ps(v)\} conn(v, p).(4.2)

If a vertex is only connected to Ps(v), it is not a boundary vertex and therefore is
always excluded from X. The primary criterion for a vertex to be selected into X is
as follows:

-F (v)< \lfloor (c)conn(v, ps)\rfloor \vee F (v)\geq 0.(4.3)

c is a constant that can be adjusted for different levels of the multilevel hierarchy. We
find experimentally that c= 0.25 is most effective for the finest level of the hierarchy,
whereas c = 0.75 is best for all other levels (for our partitioner). It is important to
note the floor rounding, as our results on certain graphs are sensitive to the rounding
direction. We find that the coarsening and initial partitioning algorithms affect the
optimal choice for c.

4.1.3. Vertex locking. We employ an additional technique that is intended to
help migrate the boundary in a coordinated fashion over successive iterations. This
technique uses a lock bit, which excludes all vertices selected in M by an iteration
of Jetlp from being chosen into X in the next iteration of Jetlp. Locking helps to

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

JET: MULTILEVEL GRAPH PARTITIONING ON GPUS B709

prevent oscillations, which occur when a vertex moves back and forth between two
parts in successive Jetlp iterations. These oscillations may decrease solution quality
by increasing the difficulty in changing the boundary's shape and location. Locks do
not affect rebalancing iterations, nor does rebalancing change the lock state of any
vertex.

4.2. Rebalancing: Jetr.

4.2.1. Two parts. We introduce rebalancing with a simpler version applicable
only when k = 2. Without loss of generality, let pa be the overweight part, and let
pb be the other part. The goal of our rebalancing is to move the vertices from pa to
pb until pa is no longer overweight, while minimizing the increase in the cutsize. We
assign a simple loss value to every vertex in pa: loss(v) = conn(v, pa) - conn(v, pb).
Loss can also refer to the combined loss of vertex sets: loss(Z) =

\sum
v\in Z loss(v). We

order the vertices of pa in terms of increasing loss in a list L. We then select the prefix
Lx of L that minimizes the following expression:

| (| Lx| - (| pa| - (1 + \lambda)| V | /k))| .(4.4)

It is expensive to use a sort to obtain L, so we approximate L with L\prime , which is sorted
according to a partial ordering. This partial ordering is derived from the following
function of the loss value:

slot(x) =

\left\{
2 + \lfloor log2(x)\rfloor , x > 0,

1, x= 0,

0, x < 0.

(4.5)

We found experimentally that the frequency of loss values tends to decrease as the
absolute value of the loss value increases. We use log2 to assign slot values so that
there are more slots closer to zero than far away from zero. This partial ordering is
similar to a bucketing approach used to calculate the top k elements in a vector [5],
but it only approximates the top k elements to save time. The insertion order within
each bucket is subject to race conditions. To reduce the atomic contention on the
GPU for the size counters of each bucket, we create \rho sub-buckets within each bucket
that are keyed by v mod \rho . This bucket-oriented approach also integrates well when
computing lists for multiple overweight parts independently in our k > 2 variations.

Theorem 4.1. Let L\prime
x be the prefix of L\prime that minimizes expression (4.4). In a

graph with uniform vertex weights, and assuming the number of vertices with negative
loss is negligible, we have the following inequality:

loss(L\prime
x)\leq 2 loss(Lx).(4.6)

We now prove this theorem. | L\prime
x| = | Lx| because all vertices have the same

weight. Theorem 4.1 holds trivially if both L\prime
x and Lx are the empty set. Otherwise,

let s=maxv\in L\prime
x
slot(loss(v)). Let S be the subset of pa consisting of all vertices with

a slot value less than or equal to s. L\prime
x is a subset of S by definition. S contains all

the vertices in pa with loss values smaller than a function of s; therefore it is a prefix
of L. Lx must then be a subset of S, as | S| \geq | L\prime

x| = | Lx| . Similar logic shows that S\prime ,
the subset of all vertices in pa with slot values less than s, is a strict subset of both
Lx and L\prime

x. We have shown that Lx\bigtriangleup L\prime
x is a subset of S \setminus S\prime . Lx\bigtriangleup L\prime

x only contains
vertices with loss values equal to s, by the definition of S \setminus S\prime . | L\prime

x \setminus Lx| = | Lx \setminus L\prime
x|

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

B710 GILBERT, MADDURI, BOMAN, AND RAJAMANICKAM

because | L\prime
x| = | Lx| . Any two vertices with the same slot value have loss values within

a multiple of 2 of each other; therefore the following inequality is true:

loss(L\prime
x \setminus Lx)\leq 2 loss(Lx \setminus L\prime

x).(4.7)

loss(Lx \cap L\prime
x)\geq 0, loss(L\prime

x \setminus Lx)\geq 0, and loss(Lx \setminus L\prime
x)\geq 0 due to our assumption that

there are negligible negative loss vertices. We can add loss(Lx \cap L\prime
x) to both sides to

obtain inequality (4.6). This inequality also holds for our k-way formulations. The
assumption for uniform vertex weights is necessary to ensure | Lx| = | L\prime

x| . If we have
nonuniform vertex weights, inequality (4.6) no longer holds. In this case, the ratio
between the total number of vertices in each set having slot value s (i.e., | Lx \setminus S\prime | and
| L\prime

x \setminus S\prime |) can be used to form a new inequality:

loss(L\prime
x)\leq 2

| L\prime
x \setminus S\prime |
| Lx \setminus S\prime |

loss(Lx).(4.8)

4.2.2. More than two parts. When k > 2, extending this rebalancing formu-
lation is not trivial. We propose two separate extensions for arbitrary k that both
reduce to the k = 2 formulation. Similar to label propagation, the output consists of
an unordered list of vertices to move and their chosen destinations. Let B be the set
of parts with size less than a value \sigma . \sigma determines the maximum size for a part to be
considered a valid destination and is chosen such that there is a deadzone between the
size of valid destination parts and the size of oversized parts. The first formulation
uses the following definition of loss:

loss(v) = max
pb\in B

conn(v, pb) - conn(v, pa).(4.9)

In this formulation (detailed in Algorithm 4.3), vertices are evicted from the oversized
parts such that each oversized part is just smaller than the size limit (this should be
within the deadzone). This process is similar to the formulation with k = 2, except
that there are multiple oversized parts. Note that the multiple scans performed from
line 21 to line 28 can be accomplished with just two scans, although we omit this detail
from Algorithm 4.3 for brevity. The evicted vertices are sent to their best connected
part among the valid destination parts. It is possible that the vertex is not connected
to any valid destination part, in which case a random valid destination is chosen. In
this formulation, it is possible for destination parts to become oversized. However, the
deadzone prevents oversized parts from becoming valid destinations. This guarantees
at most k iterations to achieve a balanced partition as at least one part will move
into the deadzone in each iteration if the vertex weights are uniform. We observe that
the typical number of iterations required is substantially less than k. We denote this
extension as weak rebalancing (Jetrw) due to the potential need for many iterations.
Let Av be the adjacent parts of vertex v. Our second extension uses the following
definition of loss:

loss(v) =meanpb\in B\cap Avconn(v, pb) - conn(v, pa).(4.10)

Vertices are evicted from oversized parts in the same manner as the prior formulation.
The destination parts then try to acquire as close to \sigma - | B| vertices from the evicted
set as possible. Given that the evicted vertices are arranged in an unordered list, each
destination partition selects a contiguous group from this list. Destination partitions
are overlayed onto the unordered list according to their capacity, forming a one-
dimensional ``cookie-cutter"" pattern. This formulation guarantees that no oversized

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

JET: MULTILEVEL GRAPH PARTITIONING ON GPUS B711

parts remain after a single iteration if vertex weights are unit. We observe that vertex
weights are often a significant fraction of the size constraint when more than one
iteration is necessary. We denote this extension as strong rebalancing (Jetrs) due to
its ability to achieve balance in one iteration in most scenarios.

Jetrw is much more effective at minimizing loss than Jetrs, even though it may
require more iterations to converge upon a balanced partition. Our observations indi-
cate that Jetrs requires fewer iterations to converge in any of the following scenarios:
regular graphs, small values of k, and large imbalance ratios. We propose a combina-
tion of the two formulations, where we apply Jetrw for a certain number of iterations
(denoted as bmax in Algorithm 4.1), and then apply Jetrs if the partition is still un-
balanced. We find that even a single iteration of Jetrw followed by an iteration of
Jetrs can achieve much of the benefit of an unlimited number of iterations of Jetrw.
Our full rebalancing (Jetr) consists of two iterations of Jetrw followed by a single iter-
ation of Jetrs. If more iterations are necessary due to large vertex weights, these are
performed with Jetrs. For both rebalancing variants, we find it beneficial to restrict
a vertex from leaving an oversized partition if its respective vertex weight is greater
than 1.5(| pa| - | V |

k). This restriction is applied before we construct L\prime .

4.3. Data structures and optimization. We represent our input graphs and
coarse graphs in-memory using the compressed-sparse-row (abbreviated as CSR or
CRS) format. We require a data structure to track connectivity of each vertex to each
partition in order to facilitate Jet's iterations. Our label propagation iterations must
be able to quickly identify the first and second most connected parts for each vertex.
Our weak rebalancing iteration must identify the most connected valid destination
part for each vertex in an oversized part. Our strong rebalancing iteration must
sum the connectivity among valid destination parts for each vertex in an oversized
partition. Finally, it should be possible to modify this data structure given a list of
vertices to move. A naive implementation might use | V | \ast k space to explicitly track
this connectivity data for each possible pair of a vertex and part. Unfortunately, this
uses far too much space with otherwise reasonable values for k and is inefficient to
traverse in all use cases. Our implementation is based on the observation that for
any vertex v, the number of partitions to which it can have nonzero connectivity is
at most min(k,degree(v)). We utilize a formulation similar to the CSR graph format
to represent the vertex-part connectivity matrix. Our data structure allocates space
equal to the following expression:

2| V | + 1+ 2
\sum
v\in V

min(k,degree(v)).(4.11)

Each row in this CSR representation is treated as a hashtable (keyed on the partition
id) for creation and updates. To determine the most connected parts that satisfy
some filter criteria relative to each use case, we linearly search the hashtables. This
linear search is substantially more efficient for smaller hashtables, so we limit the
number of empty entries. Although min(k, degree(v)) is the maximum possible part
connections for each vertex, we observe that many graphs (particularly regular graphs
but even many irregular graphs) have a much smaller number of nonzero connections
in practice. For instance, it is possible for a degree 100 vertex with k = 128 to only
have one or two nonzero part connections. We set the hashtable size to be slightly
larger than the initial connectivity upon construction. This may cause insertions
into the hashtable to fail once this limited capacity is reached. When this occurs, we
expand the hashtable capacity and recalculate its contents. We assign a small amount
of extra space to each hashtable to limit the frequency for which this is necessary.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

B712 GILBERT, MADDURI, BOMAN, AND RAJAMANICKAM

Algorithm 4.3 Jet - Weak Rebalancing.
Input: The graph G= (V,E). An unbalanced partition array Ps. Data structures

DS for querying vertex-part connection info. k. \lambda . Minibucket count \rho .
Output: A list of moves M , in the form of pairs of vertex-destination parts.
1: Pd\leftarrow Ps

2: o\leftarrow (1 + \lambda)| V | /k
3: \sigma \leftarrow maxDestSize(o)
4: A\leftarrow \{ p | p\in P \wedge | p| > o\}
5: B\leftarrow \{ p | p\in P \wedge | p| \leq \sigma \}
6: F \leftarrow zeros(| Pd|)
7: for v \in V in parallel do
8: if Ps[v]\in A and vtxWgt(v) < limit(Ps[v], | V | , k) then
9: Av\leftarrow adjacentParts(v,DS)\cap B
10: Pd[v]\leftarrow argmaxp\in Avconn(v, p)
11: if Av = \emptyset then
12: Pd[v]\leftarrow randomPart(B)
13: F [v]\leftarrow conn(v,Ps[v]) - conn(v,Pd[v])
14: L\prime \leftarrow buckets(| A|)
15: for v \in V in parallel do
16: if Ps[v]\in A then
17: s\leftarrow slot(F [v])
18: writeToBucket(L\prime [Ps[v]][s][v mod \rho], v)
19: t\leftarrow 0
20: M \leftarrow emptyList
21: for ps \in A in parallel do
22: m\leftarrow 0
23: mmax\leftarrow | ps| - o
24: for v \in L\prime [ps] parallel scan on m do
25: m\leftarrow m+vtxWgt(v)
26: if m<mmax then
27: M [t]\leftarrow (v,Pd[v])
28: t\leftarrow t+ 1

In order to update this data structure once the vertex move list M is chosen,
we update in two passes (see Algorithm 4.4). The first pass decrements the part
connectivity of every neighbor of each vertex in M for the respective source partitions
and creates an open entry in place of any part that reaches a connectivity of zero. The
second pass increments the part connectivity of every neighbor of each vertex in M for
the respective destination partitions, potentially creating new entries in the hashtable
when necessary. The creation of new entries in the second pass may fail for some
rows if the current hashtable size for that row is insufficient. We mark the respective
rows and then recalculate the corresponding hashtables in a third pass (not shown
in Algorithm 4.4). All passes leverage atomic operations to ensure correctness, but
a race condition affects which entry in the hashtable any given part will be assigned
to. This race condition also exists for the initial construction of the data structure.
In the Jetlp and Jetrw phases, this can affect how ties are broken when determining
the most connected part for a vertex. Together with the race condition for bucket
insertions in Jetrw and Jetrs, these are the only sources of nondeterminism in the Jet

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

JET: MULTILEVEL GRAPH PARTITIONING ON GPUS B713

Algorithm 4.4 Jet - Update Part Connectivities.
Input: The graph G= (V,E). A partition array Ps. Data structures DS for

querying vertex-part connection info and lock status. A list of vertex moves M .
Output: Updated Data structures DS
1: for v \in vertexSet(M) in parallel do
2: ps\leftarrow Ps[v]
3: for (u,w)\in E[v] in parallel do
4: h\leftarrow getHashmap(DS,u)
5: h[ps] \leftarrow h[ps] - w
6: if h[ps] = 0 then
7: setOpen(h,ps)
8: for (v, pd)\in M in parallel do
9: for (u,w)\in E[v] in parallel do
10: h\leftarrow getHashmap(DS,u)
11: if pd /\in h then
12: insert(h,pd)
13: h[pd] \leftarrow h[pd] + w

refinement algorithm. Algorithm 4.4 has the benefit of only updating rows adjacent
to the vertex moves, and only the entries specifically affected in those rows. We
also implement an alternative update algorithm, which we use when the number of
vertex moves constitutes more than 10\% of the total vertices in the graph. In this
alternative algorithm, we reconstruct the entire hashtable for every row adjacent to
a moved vertex from the new partition state after applying each move. This reduces
the irregularity of memory accesses over Algorithm 4.4, at the cost of more work.

5. Experimental setup. Our experiments evaluate the performance of our par-
titioner in terms of both cutsize and overall execution time. We compare our GPU
partitioner to other state-of-the-art multicore multilevel partitioners including Mt-
Metis v0.7.2 with Hill-scanning, mt-KaHIP v1.00 with MLS, KaMinPar v1.0, and
Mt-KaHyPar-D v1.3.2, as well as the serial partitioner Metis v5.1.0. We choose to
compare to Mt-Metis with Hill-Scanning enabled and to mt-KaHIP with MLS enabled
because these are the highest quality refinement options available for their respective
partitioners. We utilize the default configuration of Mt-KaHyPar as this is the highest
quality configuration to use KFM refinement in v1.3.2. We are unable to compare
with either of the other GPU partitioners [16, 21], as their code is not available. In
the later work [21], their cutsize results were slightly worse than both Metis and Mt-
Metis (without Hill-scanning) on all graphs tested. We evaluate on k = 32, k = 64,
k = 128, and k = 256 with the imbalance set to 3\%, as well as k = 128 with imbal-
ance set to 1\% and 10\%. This constitutes a total of six experiments per graph and
partitioner. Although most of these partitioners can operate on arbitrary values of
k, mt-KaHIP cannot; therefore, our experiments are on k values that are powers of
2. For each combination of graph, experiment, and partitioner, we collect the median
cutsize and median runtime across a number of runs. The number of runs performed
is dependent on the partitioner: we perform five runs for mt-KaHIP MLS, 11 runs for
KaMinPar, Mt-Metis HS, and Mt-KaHyPar-D, three runs for Metis, and 21 runs for
our partitioner. The trials per partitioner are approximately inversely proportional to
their respective runtimes. We present breakdowns versus each opposing partitioner
by experiment configuration and in terms of graph classification.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

B714 GILBERT, MADDURI, BOMAN, AND RAJAMANICKAM

Table 1
\itW \ite \itc \ito \itm \itp \ita \itr \ite \itt \ith \ite \itJ \ite \itt \itp \ita \itr \itt \iti \itt \iti \ito \itn \ite \itr \itt \ito \itv \ita \itr \iti \ito \itu \its \itp \ita \itr \itt \iti \itt \iti \ito \itn \ite \itr \its , \itr \ite \itp \ito \itr \itt \iti \itn \itg \itt \ith \ite \itr \ita \itt \iti \ito \its \ito \itf \itt \ith \ite \itg \ite \ito \itm \ite \itt \itr \iti \itc

\itm \ite \ita \itn \ito \itf \itm \ite \itd \iti \ita \itn \itc \itu \itt \its \iti \itz \ite \its \ito \itb \itt \ita \iti \itn \ite \itd \itw \iti \itt \ith \itt \ith \ite \itp \ita \itr \itt \iti \itt \iti \ito \itn \ite \itr \itt \ito \itt \ith \ite \itg \ite \ito \itm \ite \itt \itr \iti \itc \itm \ite \ita \itn \ito \itf \itt \ith \ite \itm \ite \itd \iti \ita \itn \itc \itu \itt \its \iti \itz \ite \its
\itw \iti \itt \ith \itt \ith \ite \itJ \ite \itt \itp \ita \itr \itt \iti \itt \iti \ito \itn \ite \itr . \itA \itv \ita \itl \itu \ite \itg \itr \ite \ita \itt \ite \itr \itt \ith \ita \itn 1 \iti \itn \itd \iti \itc \ita \itt \ite \its \itt \ith \ita \itt \itt \ith \ite \itJ \ite \itt \itp \ita \itr \itt \iti \itt \iti \ito \itn \ite \itr \itp \ite \itr \itf \ito \itr \itm \its \itb \ite \itt \itt \ite \itr .
\itT \ith \ite \itn \itu \itm \itb \ite \itr \ito \itf \itp \ita \itr \itt \its \ita \itn \itd \itt \ith \ite \itb \ita \itl \ita \itn \itc \ite \itc \ito \itn \its \itt \itr \ita \iti \itn \itt \its \ite \itt \itt \iti \itn \itg \ita \itr \ite \itv \ita \itr \iti \ite \itd .

k= 32 k= 64 k= 128 k= 256 k= 128 k= 128

\itP \ita \itr \itt \iti \itt \iti \ito \itn \ite \itr i = 3\% i=3\% i=3\% i=3\% i=1\% i=10\%

mt-KaHIP MLS 1.020 1.020 1.022 1.021 1.043 1.026

KaMinPar 1.084 1.074 1.063 1.049 1.067 1.073
Mt-Metis HS 1.111 1.094 1.084 1.073 1.075 1.100

Metis 1.099 1.085 1.072 1.063 1.069 1.088
Mt-KaHyPar-D 0.995 0.997 0.994 0.991 0.995 1.000

5.1. Effectiveness tests. In order to determine the effectiveness of our re-
finement method, we compare directly with mt-KaHIP's MLS and Mt-KaHyPar-D's
KFM. As these are the highest quality partitioners to which we compare, these serve
as ideal benchmarks for Jet refinement. In order to isolate refinement as the only
variable, we export the coarse graph hierarchy and initial partitioning from the op-
posing partitioner and import it into our program. We then refine the solution on the
imported hierarchy using Jet refinement. For each run, we compute the ratio of the
final cutsize result obtained by the two refinement methods. We gather the median
ratio out of a number of test runs for each graph (5 versus MLS; 11 versus KFM). We
do the same for the refinement time. We also perform the reverse of this experiment,
exporting our coarse graphs and initial partitioning into the opposing partitioner. To
ensure a fair comparison, we exclude coarse graphs that have an imbalanced partition
prior to refinement and export the partitioning for the coarsest graph with a balanced
partition. This is necessary because MLS assumes a balanced input partition. For
these experiments, we use k= 64 and the imbalance equals 3\%, and we use our CPU
platform to produce a fair refinement time comparison.

5.1.1. Runtime. We present a breakdown of our runtimes into three categories:
coarsening, initial partitioning, and refinement. We analyze the runtime scaling ver-
sus k and the imbalance. We analyze the runtime scaling versus graph size using
several graph families. We present multicore scaling numbers and GPU versus CPU
performance.

5.2. Test graphs. Our test set (see Table SM1 of the supplementary material)
contains all graphs with at least 50 million nonzeros but less than 750 million nonzeros
from the Suitesparse graph repository [14] (excluding mawi graphs). We also include
a few miscellaneous graphs (ppa, citation, products) from Open Graph Benchmark
[28] and some social networks (dblp10, amazon08, hollywood11, enwiki21) published
by the Laboratory for Web Algorithmics [8, 9] and one graph (fe rotor) from the
Walshaw Graph Benchmark [43]. We also add a 2000x4000 rectangular mesh (grid)
and a 200x200x200 cubic mesh (cube). We preprocess all graphs by performing the
following steps: we remove self-loops, convert all directed edges to undirected edges,
remove duplicate edges, and extract the largest connected component. The graphs
are further grouped into one of nine classes.

5.3. Test systems. We conduct our tests on two different systems. Our first
system runs on a 32-core Ryzen 3970x Threadripper, with 256 GB of RAM
(quad-channel DDR4). The first system runs the experiments for the competing
partitioners, as well as the serial and multicore experiments for our partitioner's scal-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

JET: MULTILEVEL GRAPH PARTITIONING ON GPUS B715

ing results. Our MLS versus Jet refinement effectiveness test also runs on this system.
We run each partitioner using 64 threads. The second system is a virtual machine
with 12 virtual cores of an Intel Xeon Gold 6342 CPU, 90 GB RAM, and an Nvidia
A100 GPU with 80 GB of VRAM. The second system runs the primary experiments
for our partitioner, and the Jetlp component effectiveness experiments. Both systems
run Ubuntu 20.04. Our code is compiled with NVCC using Cuda Toolkit version
11.6.2 for the A100 platform, and g++ version 10.2.0 on the ThreadRipper 3970x
platform. We use release versions 3.6.1 of both Kokkos and Kokkos-Kernels libraries,
and Metis library version 5.1.0.

6. Partitioner performance evaluation.

6.1. Quality. Our GPU partitioner outperforms Mt-Metis with Hill-scanning
(HS), KaMinPar, and Metis in cutsize. As shown in Figure 1, our partitioner is

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40
Ratio to best

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 In

st
an

ce
s

Ours
Mt-KaHIP MLS

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40
Ratio to best

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 In

st
an

ce
s

Ours
KaMinPar

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40
Ratio to best

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 In

st
an

ce
s

Ours
Mt-Metis HS

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40
Ratio to best

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 In

st
an

ce
s

Ours
Metis

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40
Ratio to best

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 In

st
an

ce
s

Ours
Mt-KaHyPar-D

Fig. 1. \itW \ite \itu \its \ite \itp \ite \itr \itf \ito \itr \itm \ita \itn \itc \ite \itp \itr \ito fi\itl \ite \its \itt \ito \itc \ito \itm \itp \ita \itr \ite \itc \itu \itt \its \iti \itz \ite \ito \itb \itt \ita \iti \itn \ite \itd \itu \its \iti \itn \itg \ito \itu \itr \itp \ita \itr \itt \iti \itt \iti \ito \itn \ite \itr \itt \ito \ito \itt \ith \ite \itr \its .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

B716 GILBERT, MADDURI, BOMAN, AND RAJAMANICKAM

better on more than 90\% of test instances than Mt-Metis HS and Metis, more than
80\% of instances versus KaMinPar, about 70\% of instances versus mt-KaHIP MLS,
and more than 60\% of instances versus Mt-KaHyPar-D.

6.1.1. Experiment configs. In Table 1, we note that our cuts are more than
6\% better than Mt-Metis HS, KaMinPar, and Metis in cutsize across all experiment
configurations except one. The outlier is the k= 256 experiment, where ours is 4.9\%
better than KaMinPar. Mt-KaHIP MLS produces cuts around 2.5\% worse than ours
overall. The only competitor to outperform ours is Mt-KaHyPar-D, which achieves
0.5\% better cuts overall. We note that our cutsize performance at k = 128 and
imbalance of 10\% is relatively better versus each other partitioner than the k = 128
and imbalance of 3\% configuration. At k = 128 and an imbalance of 1\%, we are
relatively better versus mt-KaHIP MLS and KaMinPar than in the respective 3\%
configuration, whereas we are relatively worse versus Mt-Metis HS and Metis. We
do relatively worse versus KaMinPar, Mt-KaHyPar-D, Mt-Metis HS, and Metis with
increasing values of k.

6.1.2. Graph classes. We classify our partitioner's strengths and weaknesses
by graph type using Figures 2a and 2b. Our partitioner is dominant on finite el-
ement problems, optimization problems, social networks, semiconductor problems,
and artificial complex networks. Of the social networks, our partitioner only failed
to produce the best cut on all amazon08 and dblp10 instances, which are the two
smallest social networks in our test set, and one instance for com-Orkut. We have
a moderate strength on biology graphs, with ours obtaining the best cuts for most
ppa and cage15 instances, and Mt-KaHyPar-D obtaining the best cuts on most of the
kmer graph instances. Our weaknesses include the artificial meshes, web crawls, and
road networks. Excluding the web crawls, most of the graphs in these classes have an

0.8 0.9 1 1.1 1.2 1.3

Overall

Artificial Complex

Artificial Mesh

Biology

Finite Element

Optimization

Road Network

Semiconductor

Social Network

Web Crawl

Geomean Cutsize Normalized to Ours

(a)

0 20 40 60 80 100

Partitioner
Ours

Mt-KaHIP MLS

KaMinPar

Mt-Metis HS

Metis

Mt-KaHyPar-D

Percent of Best Instances

(b)

Fig. 2. \itC \itu \itt \its \iti \itz \ite \itr \ite \its \itu \itl \itt \its \itb \ity \itc \itl \ita \its \its .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

JET: MULTILEVEL GRAPH PARTITIONING ON GPUS B717

20 40 60 80 100
Ratio to best

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 In

st
an

ce
s

Ours
Mt-KaHIP MLS

1 2 3 4 5 6 7 8 9 10
Ratio to best

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 In

st
an

ce
s

Ours
KaMinPar

1 2 3 4 5 6 7 8 9 10
Ratio to best

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 In

st
an

ce
s

Ours
Mt-Metis HS

20 40 60 80 100
Ratio to best

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 In

st
an

ce
s

Ours
Metis

10 20 30 40 50
Ratio to best

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 In

st
an

ce
s

Ours
Mt-KaHyPar-D

Fig. 3. \itW \ite \itu \its \ite \itp \ite \itr \itf \ito \itr \itm \ita \itn \itc \ite \itp \itr \ito fi\itl \ite \its \itt \ito \itc \ito \itm \itp \ita \itr \ite \itp \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg \itt \iti \itm \ite \ito \itf \itt \ith \ite \itJ \ite \itt \itp \ita \itr \itt \iti \itt \iti \ito \itn \ite \itr (\ito \itu \itr \its)
\ito \itn \itt \ith \ite \itA 100 \itG \itP \itU \itt \ito \itt \ith \ite \ite \itx \ite \itc \itu \itt \iti \ito \itn \itt \iti \itm \ite \ito \itf \ito \itt \ith \ite \itr \itp \ita \itr \itt \iti \itt \iti \ito \itn \ite \itr \its . \itT \ith \ite \ito \itt \ith \ite \itr \itp \ita \itr \itt \iti \itt \iti \ito \itn \ite \itr \its \ita \itr \ite \ite \itx \ite \itc \itu \itt \ite \itd
\ito \itn \itt \ith \ite \itA \itM \itD \itR \ity \itz \ite \itn \itT \ith \itr \ite \ita \itd \itr \iti \itp \itp \ite \itr 3970\itx \itC \itP \itU .

underlying 2D structure. We explore the reason for our poor performance on the web
crawls and 2D problems in the effectiveness test section.

6.2. Runtime. Our GPU partitioner is consistently faster than our CPU com-
petitors, with shorter runtimes than any competitor in more than 85\% of the test
instances. We found that our partitioner was faster than mt-KaHIP MLS on more
than 99\% of the test instances (see Figure 3), and more than twenty times faster on
more than 40\% of the test instances. Compared to KaMinPar, Figure 3 shows that
ours is faster in more than 90\% of the instances and at least twice as fast in more than
65\% of the instances. Compared to Mt-Metis HS, our runtime was better in more
than 90\% of the test instances and at least twice as fast in more than 60\% of the in-
stances. Our partitioner is faster than Metis by more than 20x in over 40\% of the test
instances, similar to mt-KaHIP MLS. Our partitioner is faster than Mt-KaHyPar-D

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

B718 GILBERT, MADDURI, BOMAN, AND RAJAMANICKAM

1
2 3 4 5 6 7 8 9

10
2 3 4 5 6 7 8 9

100

Overall

Artificial Complex

Artificial Mesh

Biology

Finite Element

Optimization

Road Network

Semiconductor

Social Network

Web Crawl

Geomean Partitioning Time Normalized to Ours

(a) By Graph Class.

1
2 3 4 5 6 7 8 9

10
2 3

k=32 imb=3%

k=64 imb=3%

k=128 imb=3%

k=256 imb=3%

k=128 imb=1%

k=128 imb=10%

Partitioner
Mt-KaHIP MLS

KaMinPar

Mt-Metis HS

Metis

Mt-KaHyPar-D

Geomean Partitioning Time Normalized to Ours

(b) By Experiment.

Fig. 4. \itP \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg \itt \iti \itm \ite \itc \ito \itm \itp \ita \itr \iti \its \ito \itn .

by at least 10x in over 70\% of the test instances. The runtime performance of mt-
KaHIP is surprising; in Figure 4b, it only achieves superior geometric mean runtimes
to Metis on our k = 32 and k = 64 experiments. In the same figure, our partitioner
shows similar performance trends across experiment configurations. In Figure 4a,
our partitioner achieves strong runtime results on artificial complex, biology, road
network, semiconductor, and social network graphs. Our partitioner achieves similar
runtime performance to Mt-Metis HS on the finite element graphs, and it also achieves
similar performance to KaMinPar on the web crawl graphs. KaMinPar achieves much
better performance than our partitioner on the circuit5M graph.

6.2.1. Time breakdown. In Table 2, we present the average time spent in each
subtask of partitioning by our graph partitioner on the GPU. We organize this data by
graph class and include the average total runtime among all experiments in that graph
class. Across all classes, initial partitioning is responsible for at most 10.6\% of the
total runtime. Coarsening dominates on artificial complex, semiconductor, and web
crawl graphs, whereas uncoarsening dominates on the other graphs. Coarsening tends
to dominate on most graphs where the degree distributions are extremely irregular,
whereas uncoarsening dominates on the more regular graphs.

7. Refinement performance evaluation.

7.1. Effectiveness test. In our cut effectiveness test (Table 4), we directly eval-
uate the performance of our Jet refinement algorithm. In section 6.1.2 we found that
our partitioner produces superior cuts on finite element problems, social networks, ar-
tificial complex networks, semiconductor problems, optimization problems, and some
biology problems. Conversely, we found it to produce inferior cuts on problems de-
rived from a 2D structure or from web crawls. Additionally, Mt-KaHyPar-D achieved
superior cuts on the kmer graphs. We now detail how the refinement algorithm affects
the partitioning results.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

JET: MULTILEVEL GRAPH PARTITIONING ON GPUS B719

Table 2
\itP \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg \itt \iti \itm \ite \itb \itr \ite \ita \itk \itd \ito \itw \itn \itb \ity \its \itu \itb \itt \ita \its \itk \ita \itn \itd \ita \itv \ite \itr \ita \itg \ite \itt \ito \itt \ita \itl \itt \iti \itm \ite (\its \ite \itc \ito \itn \itd \its).

\itG \itr \ita \itp \ith \itc \itl \ita \its \its Uncoarsen (\%) Coarsen (\%) InitPart (\%) Avg. time (s)

Web Crawl 30.3 64.6 5.1 1.38
Social Network 58.2 31.2 10.6 1.11

Semiconductor 38.9 56.2 4.9 1.63
Road Network 52.6 43.8 3.6 0.43

Optimization 50.4 45.3 4.3 0.63

Finite Element 55.4 34.9 9.7 0.27
Biology 63.9 28.3 7.9 1.72

Artificial Mesh 64.6 31.2 4.2 0.41

Artificial Complex 36.9 54.7 8.4 1.83

Table 3
\itG \ite \ito \itm \ite \ita \itn (\itb \ita \its \ite \itl \iti \itn \ite \itc \itu \itt \its \iti \itz \ite)/\itg \ite \ito \itm \ite \ita \itn (\itv \ite \itr \its \iti \ito \itn \itc \itu \itt \its \iti \itz \ite).

Baseline + Locks Baseline + Weak Afterburner Baseline + Full Afterburner Full Jetlp

1.000 1.009 1.030 1.052

Table 4
\itR \ite fi\itn \ite \itm \ite \itn \itt \ite ff\ite \itc \itt \iti \itv \ite \itn \ite \its \its : \itG \ite \ito \itm \ite \ita \itn \ito \itf \itm \ite \itd \iti \ita \itn \itr \ita \itt \iti \ito (\itt \ith \ite \iti \itr \itc \itu \itt /\ito \itu \itr \itc \itu \itt).

MLS vs Jet MLS vs Jet K-way FM vs Jet K-way FM vs Jet

\itG \itr \ita \itp \ith \itc \itl \ita \its \its Mt-KaHIP backend Our backend Mt-KaHyPar-D backend Our backend

All 1.019 1.062 1.007 1.034

Web Crawl 1.019 1.100 1.004 1.043
Social Network 1.082 1.173 1.040 1.079

Semiconductor 0.998 1.063 1.006 1.029
Road Network 0.905 0.901 0.972 1.024

Optimization 0.985 1.013 0.998 1.010

Finite Element 1.019 1.037 1.000 1.021
Biology 1.034 1.059 0.995 1.023

Artificial Mesh 0.934 0.977 0.951 0.986

Artificial Complex 1.148 1.167 1.132 1.122

7.1.1. Strengths. Overall, Jet produces 1.9\% better cuts than MLS when us-
ing the Mt-KaHIP coarsening and initial partitioning, and 6.2\% better cuts using
our coarsening and initial partitioning. Compared to KFM, these numbers are 0.7\%
with the Mt-KaHyPar-D backend and 3.4\% with our backend. Our refinement al-
gorithm produces superior cuts for finite element, biology (excluding kmer graphs),
social network, web crawl, and artificial complex networks. This rules out our re-
finement algorithm as the cause for our partitioner's weakness on web crawls, leaving
our coarsening and initial partitioning as potential culprits. The cutsize result for
semiconductor and optimization problems depends on the backend. Our backend
produces the overall better cuts for most of these graphs, and Jet is superior in this
case. Regarding kmer graphs, we found that Jet produces about 0.8\% better cuts than
MLS and 1.4\% worse cuts than KFM combined across both backends. Strangely, Jet
outperforms KFM on the road networks using our backend. However, our backend
generates worse overall cuts for road networks than Mt-KaHIP or Mt-KaHyPar-D.

7.1.2. Weaknesses. For problems with a 2D structure, including most artifi-
cial meshes and road networks, Jet demonstrates a refinement capability inferior to
that of MLS and KFM. We speculate that this weakness is related to certain types
of improvement that are difficult for our algorithm to identify. Improvements that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

B720 GILBERT, MADDURI, BOMAN, AND RAJAMANICKAM

Table 5
\itR \ite fi\itn \ite \itm \ite \itn \itt \ite ff\ite \itc \itt \iti \itv \ite \itn \ite \its \its : \itG \ite \ito \itm \ite \ita \itn \ito \itf \itm \ite \itd \iti \ita \itn \itr \ita \itt \iti \ito (\itt \ith \ite \iti \itr \itu \itn \itc \ito \ita \itr \its \ite \itn \iti \itn \itg \itt \iti \itm \ite /\itu \itu \itr \itu \itn \itc \ito \ita \itr \its \ite \itn \iti \itn \itg

\itt \iti \itm \ite).

MLS vs Jet MLS vs Jet K-way FM vs Jet K-way FM vs Jet

\itG \itr \ita \itp \ith \itc \itl \ita \its \its Mt-KaHIP backend Our backend Mt-KaHyPar-D backend Our backend

All 2.418 2.498 3.005 3.328
Web Crawl 1.713 2.457 3.455 4.806

Social Network 2.827 2.188 2.395 2.197

Semiconductor 0.997 1.291 2.684 3.372
Road Network 3.083 3.271 4.787 5.961

Optimization 2.165 2.114 3.868 4.806

Finite Element 2.109 2.214 3.768 4.424
Biology 5.335 6.379 3.562 3.892

Artificial Mesh 1.759 1.519 2.903 3.005
Artificial Complex 0.867 1.291 1.314 1.516

substantially change the location of the boundary are difficult to find as our label prop-
agation phase can only consider vertices that currently lie on the boundary within
each iteration. This problem is exacerbated by graphs with large diameters, such
as 2D meshes. Road networks and artificial meshes (except the cubic mesh) have
an underlying 2D structure and, therefore, have graph diameters of O(

\sqrt{}
| V |). The

kmer graphs also have large graph diameters. For a concrete example, consider our
grid graph, which has a graph diameter of 5998: the MLS-to-Jet ratio is 0.902 and
0.906 for the mt-KaHIP backend and our backend, respectively. The cubic graph for
comparison has a smaller graph diameter of 597 (a consequence of being a 3D mesh),
and the MLS-to-Jet ratios are 0.965 and 1.008, respectively. MLS and KFM have the
capability to find improvements that substantially shift the boundary, as they can
perform long sequences of moves in localized regions of a graph. HS lacks this ability,
due to the cap on hill-size.

7.1.3. Uncoarsening time. In Table 5, Jet is faster than MLS for both back-
ends by factors greater than 2.4x, and it is faster than KFM for both backends by at
least 3x. Jet achieves these speedups consistently across most graph classes, except
semiconductor graphs versus MLS and artificial complex graph versus both competi-
tors. We attribute Jet's superior uncoarsening speed to its bulk-synchronous design,
efficient datastructures for tracking vertex-part connectivity, and the absence of prior-
ity queues. Although we have used the CPU platform for our code in order to obtain
a fair comparison in this experiment, we note that a GPU implementation of either
MLS or KFM is nontrivial.

7.1.4. Component effectiveness. In Table 3, we evaluate the impact of design
choices in our Jetlp phase compared to a baseline synchronous LP. Our baseline only
moves vertices into their best connected partition, omits the afterburner kernel in its
entirety, and ignores the lock bit. We compare four versions of the LP phase. The
first version is the baseline plus vertex locking. The second version is the baseline plus
a weaker version of the afterburner, which only considers vertex moves with positive
or zero gain. The third version is the baseline plus the full afterburner; that is, it
considers negative gain vertices as described in section 4.1.2. The fourth version is the
full Jetlp algorithm, that is, the baseline plus vertex locking plus the full afterburner.
The results in Table 3 show that the afterburner performs substantially better if it can
consider negative gain vertex moves than when it does not. Interestingly, the vertex
lock does not provide any benefit alone, but combined with the full afterburner it

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

JET: MULTILEVEL GRAPH PARTITIONING ON GPUS B721

Table 6
\itU \itn \itc \ito \ita \itr \its \ite \itn \iti \itn \itg \its \itp \ite \ite \itd \itu \itp , \ito \itv \ite \itr \ita \itl \itl , \ita \itn \itd fi\itn \ite \its \itt \itl \ite \itv \ite \itl \itr \ite fi\itn \ite \itm \ite \itn \itt .

A100 vs 3970x 32-core 3970x 32-core vs serial

\itG \itr \ita \itp \ith \itc \itl \ita \its \its Overall Finest level Overall Finest level

Web Crawl 5.14\times 7.99\times 9.28\times 9.72\times
Social Network 7.71 9.94 12.45 12.82
Semiconductor 6.04 8.18 7.83 7.77

Road Network 6.53 14.77 7.95 8.46

Optimization 5.48 9.04 13.04 10.44
Finite Element 3.50 6.27 10.72 12.74

Biology 9.22 13.14 14.04 11.71
Artificial Mesh 4.33 8.96 9.72 10.61

Artificial Complex 8.38 12.00 16.12 16.04

provides a benefit of 2.2\% versus the full afterburner without the locks. Full Jetlp
provides a cutsize benefit over the baseline that varies from a negligible 0.1\% for
artificial complex graphs to a substantial 11.8\% for artificial meshes. Furthermore,
we investigate the impact of \phi on the execution time and cutsize results of our final
version. We found that decreasing our refinement tolerance value \phi to 0.99 improves
the uncoarsening time by 55\% and worsens the cutsize by 1.1\% over our default value
of 0.999. Increasing \phi to 0.9999 worsens the uncoarsening time by 34\% and improves
the cutsize by 0.5\% over the default value. The cutsize benefit of increasing \phi is most
pronounced for artificial meshes and least pronounced for artificial meshes and web
crawls.

7.2. Parallel scaling. We continue the performance analysis by analyzing the
relative performance of our test systems. In Table 6, we compare the performance of
our multicore AMD Ryzen 3970x CPU system to our Nvidia A100 GPU system, and
also compare multicore performance to serial performance on the CPU. We include
results for total uncoarsening time, as well as refinement time for just the finest level
graph. The 32-core uncoarsening speedup is between 7.8x and 16.1x, which is not
ideal on the lower end. The finest level refinement speedup is within a similar range
of 7.8x to 16x. The suboptimal 32-core speedup is partly due to memory-bandwidth
constraints, as well as certain implementation choices made for GPU performance that
are not as effective for CPU platforms. The GPU versus CPU uncoarsening speedup
is between 3.5x and 9.2x. However, the GPU versus CPU finest level refinement
speedup is better, landing between 6.3x and 14.8x. This is most likely due to the
host-device synchronization time, which represents a larger portion of the refinement
time on the smaller coarse graphs.

8. Conclusion. We demonstrate a partitioner that leverages GPU acceleration
to decrease partitioning time while delivering state-of-the-art partition quality. Our
partitioner demonstrates superior quality on five of nine graph classes in our test
set compared to several state-of-the-art partitioners, across six experiment configura-
tions. Our runtimes are superior on all nine graph classes. We attribute these results
to our novel partition refinement algorithm, Jet. Jet builds on label propagation by
addressing many common drawbacks while optimizing for GPU scalability. Jet deliv-
ers cutsizes similar to or better than two state-of-the-art parallel implementations of
FM refinement on six out of nine graph classes, and superior runtime on seven out of
nine graph classes. We identify quality on two-dimensional mesh-like graphs as the
primary weakness of Jet, which is consistent with other label propagation algorithms.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

B722 GILBERT, MADDURI, BOMAN, AND RAJAMANICKAM

Our partitioner is able to substantially reduce the time spent for initial partitioning
by coarsening to extremely small graphs. We plan to investigate methods to enhance
Jet's quality and to demonstrate Jet in a distributed memory partitioner.

Reproducibility of computational results. This paper has been awarded
the ``SIAM Reproducibility Badge: Code and data available"", as a recognition that
the authors have followed reproducibility principles valued by SISC and the scientific
computing community. Code and data that allow readers to reproduce the results
in this paper are available in https://scholarsphere.psu.edu/resources/cc9dcf42-f5eb-
42f1-80ec-5d50a402fc22 as well as in the supplementary material files Jet Multilevel
Graph Partitioning on Graphics Processing Units Supplementary Material.pdf [local
/web 267KB and Jet-Partitioner.zip [local/web 47.9KB].

REFERENCES

[1] S. Acer, E. G. Boman, C. A. Glusa, and S. Rajamanickam, \itS \itp \ith \ity \itn \itx : \itA \itp \ita \itr \ita \itl \itl \ite \itl \itm \itu \itl \itt \iti -\itG \itP \itU
\itg \itr \ita \itp \ith \itp \ita \itr \itt \iti \itt \iti \ito \itn \ite \itr \itf \ito \itr \itd \iti \its \itt \itr \iti \itb \itu \itt \ite \itd -\itm \ite \itm \ito \itr \ity \its \ity \its \itt \ite \itm \its , Parallel Comput., 106 (2021), 102769,
https://doi.org/10.1016/j.parco.2021.102769.

[2] S. Acer, E. G. Boman, and S. Rajamanickam, \itS \itP \itH \itY \itN \itX : \itS \itp \ite \itc \itt \itr \ita \itl \itP \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg \itf \ito \itr \itH \itY \itb \itr \iti \itd
\ita \itN \itd \ita \itX \ite \itl \ite \itr \ita \itt \ito \itr -\ite \itn \ita \itb \itl \ite \itd \its \ity \its \itt \ite \itm \its , in Proceedings of the International Parallel and Distrib-
uted Proc. Symp. Workshops (IPDPSW), 2020.

[3] Y. Akhremtsev, P. Sanders, and C. Schulz, \itH \iti \itg \ith -\itq \itu \ita \itl \iti \itt \ity \its \ith \ita \itr \ite \itd -\itm \ite \itm \ito \itr \ity \itg \itr \ita \itp \ith \itp \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg ,
IEEE Trans. Parall. Distrib. Syst., 31 (2020), pp. 2710--2722.

[4] T. A. Akyildiz, A. A. Aljundi, and K. Kaya, \itG \itO \itS \itH : \itE \itm \itb \ite \itd \itd \iti \itn \itg \itb \iti \itg \itg \itr \ita \itp \ith \its \ito \itn \its \itm \ita \itl \itl \ith \ita \itr \itd -
\itw \ita \itr \ite , in Proceedings of the International Conference on Parallel Processing (ICPP), 2020.

[5] T. Alabi, J. D. Blanchard, B. Gordon, and R. Steinbach, \itF \ita \its \itt \itk -\its \ite \itl \ite \itc \itt \iti \ito \itn \ita \itl \itg \ito \itr \iti \itt \ith \itm \its
\itf \ito \itr \itg \itr \ita \itp \ith \iti \itc \its \itp \itr \ito \itc \ite \its \its \iti \itn \itg \itu \itn \iti \itt \its , ACM J. Exp. Algorithmics, 17 (2012), 4.2, https://doi.org/
10.1145/2133803.2345676.

[6] S. T. Barnard and H. D. Simon, \itF \ita \its \itt \itm \itu \itl \itt \iti \itl \ite \itv \ite \itl \iti \itm \itp \itl \ite \itm \ite \itn \itt \ita \itt \iti \ito \itn \ito \itf \itr \ite \itc \itu \itr \its \iti \itv \ite \its \itp \ite \itc \itt \itr \ita \itl \itb \iti \its \ite \itc \itt \iti \ito \itn
\itf \ito \itr \itp \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg \itu \itn \its \itt \itr \itu \itc \itt \itu \itr \ite \itd \itp \itr \ito \itb \itl \ite \itm \its , Concurrency: Practice and Experience, 6 (1994),
pp. 101--117.

[7] R. H. Bisseling, \itP \ita \itr \ita \itl \itl \ite \itl \itS \itc \iti \ite \itn \itt \iti fi\itc \itC \ito \itm \itp \itu \itt \ita \itt \iti \ito \itn : \itA \itS \itt \itr \itu \itc \itt \itu \itr \ite \itd \itA \itp \itp \itr \ito \ita \itc \ith \itU \its \iti \itn \itg \itB \itS \itP , Oxford
University Press, 2020.

[8] P. Boldi, M. Rosa, M. Santini, and S. Vigna, \itL \ita \ity \ite \itr \ite \itd \itl \ita \itb \ite \itl \itp \itr \ito \itp \ita \itg \ita \itt \iti \ito \itn : \itA \itm \itu \itl \itt \iti \itr \ite \its \ito \itl \itu -
\itt \iti \ito \itn \itc \ito \ito \itr \itd \iti \itn \ita \itt \ite -\itf \itr \ite \ite \ito \itr \itd \ite \itr \iti \itn \itg \itf \ito \itr \itc \ito \itm \itp \itr \ite \its \its \iti \itn \itg \its \ito \itc \iti \ita \itl \itn \ite \itt \itw \ito \itr \itk \its , in Proceedings of the 20th
International Conference on World Wide Web (WWW), 2011.

[9] P. Boldi and S. Vigna, \itT \ith \ite \itW \ite \itb \itG \itr \ita \itp \ith \itf \itr \ita \itm \ite \itw \ito \itr \itk I: \itC \ito \itm \itp \itr \ite \its \its \iti \ito \itn \itt \ite \itc \ith \itn \iti \itq \itu \ite \its , in Proceedings
of the 13th International Conference on World Wide Web (WWW), New York, 2004,
pp. 595--601.

[10] A. Brandt, \itA \itl \itg \ite \itb \itr \ita \iti \itc \itm \itu \itl \itt \iti \itg \itr \iti \itd \itt \ith \ite \ito \itr \ity : \itT \ith \ite \its \ity \itm \itm \ite \itt \itr \iti \itc \itc \ita \its \ite , Appl. Math. Comput., 19 (1986),
pp. 23--56.

[11] A. Bulu\c c, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, \itR \ite \itc \ite \itn \itt \ita \itd \itv \ita \itn \itc \ite \its \iti \itn \itg \itr \ita \itp \ith
\itp \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg , in Algorithm Engineering, Springer, Cham, 2016, pp. 117--158.

[12] H. Chen, B. Perozzi, Y. Hu, and S. Skiena, \itH \itA \itR \itP : \itH \iti \ite \itr \ita \itr \itc \ith \iti \itc \ita \itl \itr \ite \itp \itr \ite \its \ite \itn \itt \ita \itt \iti \ito \itn \itl \ite \ita \itr \itn \iti \itn \itg \itf \ito \itr
\itn \ite \itt \itw \ito \itr \itk \its , in Proceedings of the AAAI Conference, 2018.

[13] T. A. Davis, W. W. Hager, S. P. Kolodziej, and S. N. Yeralan, \itA \itl \itg \ito \itr \iti \itt \ith \itm 1003: \itM \ito \itn \itg \ito \ito \its \ite ,
\ita \itg \itr \ita \itp \ith \itc \ito \ita \itr \its \ite \itn \iti \itn \itg \ita \itn \itd \itp \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg \itl \iti \itb \itr \ita \itr \ity , ACM Trans. Math. Software, 46 (2020), 7.

[14] T. A. Davis and Y. Hu, \itT \ith \ite \itU \itn \iti \itv \ite \itr \its \iti \itt \ity \ito \itf \itF \itl \ito \itr \iti \itd \ita \its \itp \ita \itr \its \ite \itm \ita \itt \itr \iti \itx \itc \ito \itl \itl \ite \itc \itt \iti \ito \itn , ACM Trans.
Math. Software, 38 (2011), 1.

[15] I. S. Dhillon, Y. Guan, and B. Kulis, \itW \ite \iti \itg \ith \itt \ite \itd \itg \itr \ita \itp \ith \itc \itu \itt \its \itw \iti \itt \ith \ito \itu \itt \ite \iti \itg \ite \itn \itv \ite \itc \itt \ito \itr \its : \itA \itm \itu \itl \itt \iti \itl \ite \itv \ite \itl
\ita \itp \itp \itr \ito \ita \itc \ith , IEEE Trans. Pattern Anal. Mach. Intell., 29 (2007), pp. 1944--1957.

[16] B. Fagginger Auer, \itG \itP \itU \itA \itc \itc \ite \itl \ite \itr \ita \itt \iti \ito \itn \ito \itf \itG \itr \ita \itp \ith \itM \ita \itt \itc \ith \iti \itn \itg , \itC \itl \itu \its \itt \ite \itr \iti \itn \itg , \ita \itn \itd \itP \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg ,
Ph.D. thesis, Utrecht University, 2013.

[17] B. Fagginger Auer and R. H. Bisseling, \itG \itr \ita \itp \ith \itc \ito \ita \itr \its \ite \itn \iti \itn \itg \ita \itn \itd \itc \itl \itu \its \itt \ite \itr \iti \itn \itg \ito \itn \itt \ith \ite \itG \itP \itU ,
Graph Part. and Graph Clustering, 588 (2012), p. 223.

[18] C. M. Fiduccia and R. M. Mattheysis, \itL \iti \itn \ite \ita \itr -\itt \iti \itm \ite \ith \ite \itu \itr \iti \its \itt \iti \itc \itf \ito \itr \iti \itm \itp \itr \ito \itv \iti \itn \itg \itn \ite \itt \itw \ito \itr \itk \itp \ita \itr \itt \iti -
\itt \iti \ito \itn \its , in Proceedings of the 19th Design Automation Conference (DAC), 1982, pp. 175--181.

[19] M. S. Gilbert, S. Acer, E. G. Boman, K. Madduri, and S. Rajamanickam, \itP \ite \itr \itf \ito \itr \itm \ita \itn \itc \ite -
\itp \ito \itr \itt \ita \itb \itl \ite \itg \itr \ita \itp \ith \itc \ito \ita \itr \its \ite \itn \iti \itn \itg \itf \ito \itr \ite ffi\itc \iti \ite \itn \itt \itm \itu \itl \itt \iti \itl \ite \itv \ite \itl \itg \itr \ita \itp \ith \ita \itn \ita \itl \ity \its \iti \its , in Proceedings of the
IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2021.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://scholarsphere.psu.edu/resources/cc9dcf42-f5eb-42f1-80ec-5d50a402fc22
https://scholarsphere.psu.edu/resources/cc9dcf42-f5eb-42f1-80ec-5d50a402fc22
https://epubs.siam.org/doi/suppl/10.1137/22M1512491/suppl_file/Jet_Multilevel_Graph_Partitioning_on_Graphics_Processing_Units_Supplementary_Material.pdf
Jet-Partitioner.zip
https://epubs.siam.org/doi/suppl/10.1137/22M1512491/suppl_file/Jet-Partitioner.zip
https://doi.org/10.1016/j.parco.2021.102769
https://doi.org/10.1145/2133803.2345676
https://doi.org/10.1145/2133803.2345676

JET: MULTILEVEL GRAPH PARTITIONING ON GPUS B723

[20] Y. Goldschmidt, M. Galun, E. Sharon, R. Basri, and A. Brandt, \itF \ita \its \itt \itM \itu \itl \itt \iti \itl \ite \itv \ite \itl \itC \itl \itu \its -
\itt \ite \itr \iti \itn \itg , Technical report, Weizmann Institute of Science, 2005.

[21] B. Goodarzi, F. Khorasani, V. Sarkar, and D. Goswami, \itH \iti \itg \ith \itp \ite \itr \itf \ito \itr \itm \ita \itn \itc \ite \itm \itu \itl \itt \iti \itl \ite \itv \ite \itl
\itg \itr \ita \itp \ith \itp \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg \ito \itn \itG \itP \itU , in 2019 International Conference on High Performance Com-
puting \& Simulation (HPCS), 2019, pp. 769--778, https://doi.org/10.1109/HPCS48598.
2019.9188120.

[22] L. Gottesb\"uren, T. Heuer, and P. Sanders, \itP \ita \itr \ita \itl \itl \ite \itl fl\ito \itw -\itb \ita \its \ite \itd \ith \ity \itp \ite \itr \itg \itr \ita \itp \ith \itp \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg ,
in Proceedings of the 20th International Symposium on Experimental Algorithms (SEA),
Leibniz International Proceedings in Informatics (LIPIcs) 233, C. Schulz and B. U\c car, eds.,
Schloss Dagstuhl -- Leibniz-Zentrum f\"ur Informatik, Dagstuhl, Germany, 2022, 5.

[23] L. Gottesb\"uren, T. Heuer, P. Sanders, C. Schulz, and D. Seemaier, \itD \ite \ite \itp \itm \itu \itl \itt \iti \itl \ite \itv \ite \itl
\itg \itr \ita \itp \ith \itp \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg , in Proceedings of the 29th Annual European Symposium on Algorithms
(ESA), LIPIcs 204, Schloss Dagstuhl - Leibniz-Zentrum f\"ur Informatik, 2021, 48.

[24] L. Gottesb\"uren, T. Heuer, N. Maas, P. Sanders, and S. Schlag, \itS \itc \ita \itl \ita \itb \itl \ite \ith \iti \itg \ith -\itq \itu \ita \itl \iti \itt \ity
\ith \ity \itp \ite \itr \itg \itr \ita \itp \ith \itp \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg , ACM Trans. Algorithms, 20 (2024), pp. 1--54, https://doi.org/
10.1145/3626527.

[25] L. Gottesb\"uren, T. Heuer, P. Sanders, and S. Schlag, \itS \itc \ita \itl \ita \itb \itl \ite \its \ith \ita \itr \ite \itd -\itm \ite \itm \ito \itr \ity \ith \ity \itp \ite \itr \itg \itr \ita \itp \ith
\itp \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg , in Proceedings of the Symposium on Algorithm Engineering and Experiments
(ALENEX), 2021, pp. 16--30.

[26] A. Heinlein, A. Klawonn, S. Rajamanickam, and O. Rheinbach, \itF \itR \itO \itS \itc \ith : \itA \itf \ita \its \itt \ita \itn \itd \itr \ito -
\itb \itu \its \itt \ito \itv \ite \itr \itl \ita \itp \itp \iti \itn \itg \itS \itc \ith \itw \ita \itr \itz \itd \ito \itm \ita \iti \itn \itd \ite \itc \ito \itm \itp \ito \its \iti \itt \iti \ito \itn \itp \itr \ite \itc \ito \itn \itd \iti \itt \iti \ito \itn \ite \itr \itb \ita \its \ite \itd \ito \itn \itX \itp \ite \itt \itr \ita \iti \itn \itT \itr \iti \itl \iti -
\itn \ito \its , in Domain Decomposition Methods in Science and Engineering XXV, Springer, 2020,
pp. 176--184.

[27] B. Hendrickson and R. Leland, \itA \itm \itu \itl \itt \iti -\itl \ite \itv \ite \itl \ita \itl \itg \ito \itr \iti \itt \ith \itm \itf \ito \itr \itp \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg \itg \itr \ita \itp \ith \its , in SC Con-
ference, Los Alamitos, CA, IEEE Computer Society, 1995, 3, https://doi.org/10.1109/
SUPERC.1995.3.

[28] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec, \itO \itp \ite \itn
\itg \itr \ita \itp \ith \itb \ite \itn \itc \ith \itm \ita \itr \itk : \itD \ita \itt \ita \its \ite \itt \its \itf \ito \itr \itm \ita \itc \ith \iti \itn \ite \itl \ite \ita \itr \itn \iti \itn \itg \ito \itn \itg \itr \ita \itp \ith \its , in Proceedings of the Annual
Conference on Neural Inf. Proc. Systems, 2020.

[29] Y. Hu and L. Shi, \itV \iti \its \itu \ita \itl \iti \itz \iti \itn \itg \itl \ita \itr \itg \ite \itg \itr \ita \itp \ith \its , WIREs Comput. Statist., 7 (2015), pp. 115--136.
[30] G. Karypis and V. Kumar, \itA \itf \ita \its \itt \ita \itn \itd \ith \iti \itg \ith \itq \itu \ita \itl \iti \itt \ity \itm \itu \itl \itt \iti \itl \ite \itv \ite \itl \its \itc \ith \ite \itm \ite \itf \ito \itr \itp \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg \iti \itr -

\itr \ite \itg \itu \itl \ita \itr \itg \itr \ita \itp \ith \its , SIAM J. Sci. Comput., 20 (1998), pp. 359--392, https://doi.org/10.1137/
S1064827595287997.

[31] Y. Koren, L. Carmel, and D. Harel, \itD \itr \ita \itw \iti \itn \itg \ith \itu \itg \ite \itg \itr \ita \itp \ith \its \itb \ity \ita \itl \itg \ite \itb \itr \ita \iti \itc \itm \itu \itl \itt \iti \itg \itr \iti \itd \ito \itp -
\itt \iti \itm \iti \itz \ita \itt \iti \ito \itn , Multiscale Model. Simul., 1 (2003), pp. 645--673, https://doi.org/10.1137/
S154034590241370X.

[32] D. LaSalle and G. Karypis, \itM \itu \itl \itt \iti -\itt \ith \itr \ite \ita \itd \ite \itd \itg \itr \ita \itp \ith \itp \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg , in Proceedings of the IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2013.

[33] D. LaSalle and G. Karypis, \itA \itp \ita \itr \ita \itl \itl \ite \itl \ith \iti \itl \itl -\itc \itl \iti \itm \itb \iti \itn \itg \ita \itl \itg \ito \itr \iti \itt \ith \itm \itf \ito \itr \itg \itr \ita \itp \ith \itp \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg , in
Proceedings of the International Conference on Parallel Processing (ICPP), 2016.

[34] D. LaSalle, M. M. A. Patwary, N. Satish, N. Sundaram, P. Dubey, and G. Karypis,
\itI \itm \itp \itr \ito \itv \iti \itn \itg \itg \itr \ita \itp \ith \itp \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg \itf \ito \itr \itm \ito \itd \ite \itr \itn \itg \itr \ita \itp \ith \its \ita \itn \itd \ita \itr \itc \ith \iti \itt \ite \itc \itt \itu \itr \ite \its , in Proceedings of the
Workshop on Irregular Applications: Architectures and Algorithms (IA3), 2015.

[35] A. Lenharth, D. Nguyen, and K. Pingali, \itP \ita \itr \ita \itl \itl \ite \itl \itg \itr \ita \itp \ith \ita \itn \ita \itl \ity \itt \iti \itc \its , Commun. ACM, 59
(2016), pp. 78--87.

[36] A. Pothen, \itG \itr \ita \itp \ith \itp \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg \ita \itl \itg \ito \itr \iti \itt \ith \itm \its \itw \iti \itt \ith \ita \itp \itp \itl \iti \itc \ita \itt \iti \ito \itn \its \itt \ito \its \itc \iti \ite \itn \itt \iti fi\itc \itc \ito \itm \itp \itu \itt \iti \itn \itg , in Parallel
Numerical Algorithms, Springer, 1997, pp. 323--368.

[37] U. N. Raghavan, R. Albert, and S. Kumara, \itN \ite \ita \itr \itl \iti \itn \ite \ita \itr \itt \iti \itm \ite \ita \itl \itg \ito \itr \iti \itt \ith \itm \itt \ito \itd \ite \itt \ite \itc \itt \itc \ito \itm \itm \itu \itn \iti \itt \ity
\its \itt \itr \itu \itc \itt \itu \itr \ite \its \iti \itn \itl \ita \itr \itg \ite -\its \itc \ita \itl \ite \itn \ite \itt \itw \ito \itr \itk \its , Phys. Rev. E, 76 (2007), 036106.

[38] I. Safro, P. Sanders, and C. Schulz, \itA \itd \itv \ita \itn \itc \ite \itd \itc \ito \ita \itr \its \ite \itn \iti \itn \itg \its \itc \ith \ite \itm \ite \its \itf \ito \itr \itg \itr \ita \itp \ith \itp \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg ,
ACM J. Exp. Algorithmics, 19 (2014), 2.2.

[39] S. Sakr, A. Bonifati, H. Voigt, A. Iosup, K. Ammar, R. Angles, W. Aref, M. Arenas, M.
Besta, P. A. Boncz, K. Daudjee, E. D. Valle, S. Dumbrava, O. Hartig, B. Haslhofer,
T. Hegeman, J. Hidders, K. Hose, A. Iamnitchi, V. Kalavri, H. Kapp, W. Martens,
M. T. \"Ozsu, E. Peukert, S. Plantikow, M. Ragab, M. R. Ripeanu, S. Salihoglu,
C. Schulz, P. Selmer, J. F. Sequeda, J. Shinavier, G. Sz\'arnyas, R. Tommasini, A.
Tumeo, A. Uta, A. L. Varbanescu, H.-Y. Wu, N. Yakovets, D. Yan, and E. Yoneki,
\itT \ith \ite \itf \itu \itt \itu \itr \ite \iti \its \itb \iti \itg \itg \itr \ita \itp \ith \its : \itA \itc \ito \itm \itm \itu \itn \iti \itt \ity \itv \iti \ite \itw \ito \itn \itg \itr \ita \itp \ith \itp \itr \ito \itc \ite \its \its \iti \itn \itg \its \ity \its \itt \ite \itm \its , Commun. ACM,
64 (2021), pp. 62--71.

[40] P. Sanders and C. Schulz, \itE \itn \itg \iti \itn \ite \ite \itr \iti \itn \itg \itm \itu \itl \itt \iti \itl \ite \itv \ite \itl \itg \itr \ita \itp \ith \itp \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg \ita \itl \itg \ito \itr \iti \itt \ith \itm \its , in
Algorithms---ESA 2011, Lecture Notes in Comput. Sci. 6942, Springer-Verlag, 2011,
pp. 469--480, https://doi.org/10.1007/978-3-642-23719-5 40.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1109/HPCS48598.2019.9188120
https://doi.org/10.1109/HPCS48598.2019.9188120
https://doi.org/10.1145/3626527
https://doi.org/10.1145/3626527
https://doi.org/10.1109/SUPERC.1995.3
https://doi.org/10.1109/SUPERC.1995.3
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S154034590241370X
https://doi.org/10.1137/S154034590241370X
https://doi.org/10.1007/978-3-642-23719-5_40

B724 GILBERT, MADDURI, BOMAN, AND RAJAMANICKAM

[41] G. M. Slota, K. Madduri, and S. Rajamanickam, \itP \itu \itL \itP : \itS \itc \ita \itl \ita \itb \itl \ite \itm \itu \itl \itt \iti -\ito \itb \itj \ite \itc \itt \iti \itv \ite \itm \itu \itl \itt \iti -
\itc \ito \itn \its \itt \itr \ita \iti \itn \itt \itp \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg \itf \ito \itr \its \itm \ita \itl \itl -\itw \ito \itr \itl \itd \itn \ite \itt \itw \ito \itr \itk \its , in Proceedings of the IEEE International
Conference on Big Data (Big Data), 2014.

[42] B. Smith, P. Bjorstad, and W. Gropp, \itD \ito \itm \ita \iti \itn \itD \ite \itc \ito \itm \itp \ito \its \iti \itt \iti \ito \itn : \itP \ita \itr \ita \itl \itl \ite \itl \itM \itu \itl \itt \iti \itl \ite \itv \ite \itl \itM \ite \itt \ith \ito \itd \its
\itf \ito \itr \itE \itl \itl \iti \itp \itt \iti \itc \itP \ita \itr \itt \iti \ita \itl \itD \iti ff\ite \itr \ite \itn \itt \iti \ita \itl \itE \itq \itu \ita \itt \iti \ito \itn \its , Cambridge University Press, 2004.

[43] A. J. Soper, C. Walshaw, and M. Cross, \itA \itc \ito \itm \itb \iti \itn \ite \itd \ite \itv \ito \itl \itu \itt \iti \ito \itn \ita \itr \ity \its \ite \ita \itr \itc \ith \ita \itn \itd \itm \itu \itl \itt \iti \itl \ite \itv \ite \itl
\ito \itp \itt \iti \itm \iti \its \ita \itt \iti \ito \itn \ita \itp \itp \itr \ito \ita \itc \ith \itt \ito \itg \itr \ita \itp \ith -\itp \ita \itr \itt \iti \itt \iti \ito \itn \iti \itn \itg , J. Global Optim., 29 (2004), pp. 225--241,
https://api.semanticscholar.org/CorpusID:6904637.

[44] S.-H. Teng, \itC \ito \ita \itr \its \ite \itn \iti \itn \itg , \its \ita \itm \itp \itl \iti \itn \itg , \ita \itn \itd \its \itm \ito \ito \itt \ith \iti \itn \itg : \itE \itl \ite \itm \ite \itn \itt \its \ito \itf \itt \ith \ite \itm \itu \itl \itt \iti \itl \ite \itv \ite \itl \itm \ite \itt \ith \ito \itd , in
Algorithms for Parallel Processing, M. T. Heath, A. Ranade, and R. S. Schreiber, eds.,
Springer, 1999, pp. 247--276.

[45] C. R. Trott, D. Lebrun-Grandie, D. Arndt, J. Ciesko, V. Dang, N. Ellingwood, R.
Gayatri, E. Harvey, D. S. Hollman, D. Ibanez, et al., \itK \ito \itk \itk \ito \its 3: \itP \itr \ito \itg \itr \ita \itm \itm \iti \itn \itg \itm \ito \itd \ite \itl
\ite \itx \itt \ite \itn \its \iti \ito \itn \its \itf \ito \itr \itt \ith \ite \ite \itx \ita \its \itc \ita \itl \ite \ite \itr \ita , IEEE Trans. Parall. Distrib. Syst., 33 (2021), pp. 805--817.

[46] J. Xu and L. Zikatanov, \itA \itl \itg \ite \itb \itr \ita \iti \itc \itm \itu \itl \itt \iti \itg \itr \iti \itd \itm \ite \itt \ith \ito \itd \its , Acta Numer., 26 (2017), pp. 591--721,
https://doi.org/10.1017/S0962492917000083.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

8/
24

 to
 1

32
.1

74
.2

54
.1

59
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://api.semanticscholar.org/CorpusID:6904637
https://doi.org/10.1017/S0962492917000083

	Introduction
	Background and prior work
	Problem definition
	Multilevel partitioning
	GPU: Related work
	Refinement
	Refinement: Related work
	Label propagation
	Localized FM search
	Hill-scanning
	Network flow methods

	Our partitioner
	Coarsening
	Kokkos

	Jet refinement algorithm
	Unconstrained label propagation: Jetlp
	Changes to address LP limitations
	Negative gain moves
	Vertex locking

	Rebalancing: Jetr
	Two parts
	More than two parts

	Data structures and optimization

	Experimental setup
	Effectiveness tests
	Runtime

	Test graphs
	Test systems

	Partitioner performance evaluation
	Quality
	Experiment configs
	Graph classes

	Runtime
	Time breakdown

	Refinement performance evaluation
	Effectiveness test
	Strengths
	Weaknesses
	Uncoarsening time
	Component effectiveness

	Parallel scaling

	Conclusion
	References

