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total edge weight. The planner traverses this tree starting with the

primary in a breadth �rst manner. It establishes the line of sight

relationship from child to parent. The planner uses the orientation

of an FLS in the point cloud to assign the child FLS one of the FLS

types shown in Figure 3. The selection ensures a localizing (child)

FLS has a line of sight with its anchor (parent) FLS.

With both the swarm-tree and =� FLS-trees, the planner ensures

the distance between a localizing and anchor FLS is lower than

)<0G . If their distance exceeds )<0G , the planner inserts dark FLSs

to reduce the distance. These FLSs may serve as hot standbys to

tolerate the failure of the illuminating FLSs [5].

4 Continuous Localization

This section describes three online localization techniques. All three

assume an Orchestrator that allocates the correct mix of FLSs per

output of the planner. The Orchestrator uses the FLS-trees and

the swarm-tree to assign each FLS a coordinate in the 3D volume

and provides it with its parent FLS and children FLSs. With an FLS

designated as the primary of a swarm, 5% , the Orchestrator provides

the FLS with the identity of its anchor FLS in its parent swarm (as

computed by the planner).

The key di�erence between the localization techniques is the

amount of concurrent movement by di�erent FLSs in a swarm and

across the swarms. We start with a highly concurrent technique.

Subsequently, we describe two variants that limit the amount of

concurrent movement. Our experimental results show the second

technique, ISR, is faster and more accurate than the other two. It is

also more energy e�cient by minimizing the total distance traveled

by FLSs.

Highly Concurrent, HC, allows the primary of a swarm (5% ) to

localize relative to its anchor in the parent swarm while the anchor

is localizing itself. This means all swarms may localize at the same

time. Below, we describe intra-swarm localization, i.e., how FLSs in

a swarm localize relative to one another. Subsequently, we describe

inter-swarm localization, i.e., how two swarms localize relative to

one another.

Using the ground truth, an FLS knows its position and orientation

relative to its swarm members. The FLS-tree ensures a localizing

FLS has a line of sight with its anchor FLS. The root of the tree is

an exception. Consider localization for a child FLS and a root FLS

in turn.

A child FLS D computes its pose relative to its parent E , d̂D,E
(d̂D,E = −d̂E,D ). The pose, d̂D,E , is a position vector where E is the

vector’s head and D at the origin is its tail. FLS D broadcasts d̂D,E to

all its swarm members. A receiving FLS constructs an intra-swarm

tree to maintain this information broadcasted by di�erent FLSs. See

the FLS-tree of Figure 5. An FLS 8 computes a relative pose for each

reachable1 FLS within the tree structure. This relative pose, denoted

as d̂8, 9 , is determined by the sum of relative pose vectors d̂D,E along

the path from FLS 8 to FLS 9 . To correct its position relative to these

FLSs, FLS 8 computes a correction vector E8 9 , de�ned as d8, 9 − d̂8, 9 ,

where d8, 9 represents the pose of FLS 8 to FLS 9 in the ground truth.

This process is repeated for all reachable FLSs, resulting in a set

1Reachable means there is a path between the FLS and other FLSs in the tree with
information about their relative pose. Either the Orchestrator may provide an FLS
with the FLS-tree, or the network transmission of an FLS may include its id and its
parent id to enable a receiving FLS to construct the FLS-tree.

of correction vectors. FLS 8 then moves along the average of these

vectors, computed as 1
#

∑
9∈#)

E8 9 , where #) is the reachable FLSs

in the FLS-tree, including FLS 8 . It is possible for an FLS to compute a

vector using only its parent FLS. This happens at the very beginning

before the FLS receives a vector from other FLSs or when a swarm

consists of only 2 FLSs.

Every time an FLS receives the relative pose from another FLS in

its swarm, it repeats the process to localize itself. Should an FLS not

receive information from its swarm members for 500 milliseconds,

it localizes, computes a vector, broadcasts its pose relative to its

parent to all its swarm members, and moves along the vector. An

FLS clears its tree structure after each inter-swarm localization.

The root FLS also receives relative measurements from its chil-

dren, grandchildren, and other descendant FLSs in the tree. It uses

this information to compute its relative pose to them. It computes a

vector to correct its position relative to each FLS. Next, it computes

an average of these vectors. And moves along this average vector

to localize.

An inter-swarm localization occurs once the length of the vector

computed by all members of a swarm is smaller than a pre-speci�ed

threshold. Once the primary 5% of a swarm detects this condition,

it localizes relative to its anchor in its parent swarm. The root

swarm is an exception as it has no primary and will not localize

relative to another swarm. 5% uses its pose relative to its anchor to

compute a vector to correct its pose. Subsequently, 5? and its entire

swarm moves along this vector. After this movement, the FLSs that

constitute the swarm clear their tree structure of the relative pose

information broadcasted by the FLSs in their swarm. Subsequently,

they repeat their intra-swarm localization.

HC prevents a swarm from performing inter-swarm localization

while its FLSs are localizing actively, i.e., their computed average

vector is greater than a pre-speci�ed threshold. Removing this

requirement results in a variant with higher concurrency. It causes

FLSs that constitute a swarm to move away from their primary,

producing distorted shapes.

A small (large) threshold value implies a more (less) accurate

relative poses. A large threshold value, say ∞, is not the same as

not having a threshold all together. It orders intra and inter swarm

localizations for a swarm to not overlap in time.

Inter-Swarm Rounds, ISR, limits the number of swarms that

localize at a time. It requires the anchor FLS of 5% to be stationary

prior to 5% localizing relative to it. It uses the swarm-tree to realizes

this objective. Once the length of the correction vector computed by

an FLS in the root swarm that serves as an anchor for a child swarm

is smaller than a pre-speci�ed threshold, the anchor informs its 5% to

localize. The 5% waits until its correction vector relative to its swarm

members is smaller than a pre-speci�ed threshold. Subsequently,

it localizes relative to its parent’s anchor FLS, computes a vector,

moves along this vector, and requires its entire swarm tomove along

this vector. Next, the anchor FLSs in the 5% ’s swarm notify their

children’s 5% to localize relative to them. This process continues

until the children swarm at the leaves of the tree localize.

ISR’s localization is continuous, starting with the root swarm.

An anchor FLS in one swarm may send multiple noti�cations to its

5% to localize while the 5% waits for its correction vector to become

smaller than the pre-speci�ed threshold. In this case, the 5% drops
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the repeated messages. It localizes once after its correction vector

is smaller than the pre-speci�ed threshold.

Table 1: Raspberry camera module 3 NoIR speci�cations.

Lens
Resolution

FoV (°)
Min Focus Weight Price

(px) Range (g) (USD)

Regular 4608 × 2592 D 75, H 66, V 41 100 mm 3.2 $25

Wide 4608 × 2592 D 120, H 102, V 67 50 mm 3.2 $35

The root swarm initiates the above process every time it receives

a relative pose from a swarm member, which causes it to compute a

correction smaller than the pre-speci�ed threshold. The concept of a

swarm member localizing every 500 milliseconds is present. Hence,

in the worst case scenario, the root swarm initiates localization

every 500 milliseconds.

Rounds across the Swarm-tree and FLS-trees, RSF, constrains

the number of concurrent localizations within a swarm. An FLS in

a swarm localizes relative to its anchor in rounds. These rounds are

initiated by the root of the FLS-tree.

RSF is continuous, similar to the other techniques. Starting with

the root swarm of the swarm-tree, the root FLS of its FLS-tree noti-

�es each of its children FLSs to localize relative to it while it remains

stationary. Subsequently, each child FLS noti�es its children FLSs

to localize relative to it while it remains stationary. This process

repeats continuously.

Except for the swarms that are at the leaves of the swarm tree, a

swarm has an anchor FLS for each of its children swarms. An 5% of

these swarms localizes relative to their anchor. Once an anchor FLS

completes its localization, it noti�es the 5% to localize relative to

it. This causes the entire child swarm containing 5% to move. Sub-

sequently, 5% ’s children localize relative to it. This process repeats

continuously. The root swarm initiates the above process, similar

to ISR.

5 An Implementation and Evaluation

This section describes an implementation of Swarical using Rasp-

berry cameras and ArUco markers. Section 5.1 presents a camera

and characterizes its accuracy in measuring pose. Subsequently,

Sections 5.2 and 5.3 present results from Swarical’s planner and

localization techniques, respectively. Finally, we compare Swarical

with a state of the art decentralized localization technique named

SwarMer [3] in Section 5.4.

5.1 FLS Tracking: Calibration

To localize relative to its neighbors, an FLS must track them. The

ideal tracking mechanism should be:

• Accurate: An FLS should be able to quantify its relative state

to a neighbor with a high accuracy. The relative state be-

tween two FLSs D and E includes a pose d̂D,E and an orienta-

tion (roll, pitch, and yaw) [30, 33, 34]. Ideally, the accuracy of

the position should be inmillimeters. The error in ameasured

orientation should be less than 1 degree in each dimension.

• Acceptable range: An FLS should be able to measure its

state relative to a neighbor at distances ranging from a few

centimeters up to tens of centimeters.

Table 2: Camera’s frame rate and marker detection perfor-

mance with the regular/wide lens. The 720p setting is used

for the numbers reported in this paper.

Resolution
Frames/ Avg Camera Avg Processing

Second Delay, milliseconds Time, milliseconds

480p 59.3/44.8 10/15 6/7

720p 46.9/44.4 3/8 18/14

1080p 21.1/26.0 8/8 39/29

• Fast with a high refresh rate: An FLS should be able to quan-

tify its relative state to a neighboring FLS in sub-milliseconds.

Moreover, it should be able to refresh this information quickly

at a frequency of 10 Hz.

• Robust: An FLS should be able to track a neighbor in an

indoor setting with di�erent lighting including no light, i.e.,

a dark room.

ArUco markers [13] with a Raspberry camera con�gured with

IR lighting satisfy the above requirements2. The camera is small,

lightweight, and ready for use with a drone. It has a regular and a

wide lens with a minimum focus range of 10 and 5 cm, respectively.

See Table 1. It supports three di�erent resolutions. Table 2 shows

these and our experimentally measured average camera delay and

processing time. The average camera delay is the elapsed time

from when the application requests a frame to the time the camera

provides the frame. Processing time is the time required to measure

position and orientation using Raspberry Pi 5. We designed our

software to capture an image once it is done processing the current

image. Hence, the reported accuracy is based on the latest image

available. We use its 720p frame setting for the rest of this paper,

see Table 2.

The maximum range of a camera for detecting a marker depends

on the marker size. Figure 6 shows the detection rate with a 4.7

mm paper printed maker size. While the x-axis of this �gure is the

distance between the Raspberry camera and the marker, the y-axis

is the detection rate. It highlights the minimum focus range of the

di�erent lenses in Table 1 with the detection rate becoming 100%

at the reported minimums. With the wide angle lens, the detection

rate drops to zero with 300 mm. With this marker size, Figure 7

shows the percentage error increases as a function of the distance3.

The regular lens provides a lower error as a function of longer

distances when compared with the wide lens.

Larger marker sizes reduce the error with both lenses. The wide

lens has a lower error when compared with the regular lens. See

Figure 8. In this �gure, the x-axis is the marker size, and the y-axis is

the percentage error in the measured distance. The reported errors

are for measuring the minimum focus range of the two lenses, 5 and

10 cm, with wide and regular lenses, respectively. In general, paper

provides a higher percentage error when compared with LCD.

Figure 9 shows the error in roll, pitch, and yaw as a function of

paper printed marker size with the wide lens. The camera provides a

higher accuracy for the yaw (rotation around the axis perpendicular

2We also considered Bitcraze’s AI Deck and decided against its use due to its cost, $225
at the time of this writing.
3With both lenses, we report the percentage error with distances smaller than the
advertised minimum as long as the camera detects the ArUco marker.
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Figure 6: Detection rate as a function of distance between

camera andmarker. The paper printedmarker size is 4.7mm.

Figure 7: Percentage error of distance measurement as a

function of distance between camera and marker. The paper

printed marker size is 4.7 mm.

Figure 8: Percentage error of distancemeasurement as a func-

tion of marker size. The measured distance is 5 and 10 cm

for wide and regular lens, respectively.

to the marker) than the roll (rotation around the length) and the

pitch (rotation around the depth). This accuracy decreases with

marker sizes smaller than 3 mm.

In darkness, an FLS may use the camera with IR light to capture

an image of paper-printed markers for processing. In our exper-

iments, IR lighting in the dark does not impact the accuracy of

measurements and the detection rate.

5.2 Planner

We use the Raspberry camera in the [6,8] cm range as it provides

the highest accuracy. With this range, the planner computes a point

cloud of 1372 FLSs and 40 standby FLSs for the skateboard. The mix

of FLSs with a camera mounted on their top, side, and bottom is

Figure 9: Error of orientation measurements in degrees as a

function of marker size with wide lens and printed markers.

Figure 10: Distribution of swarm size, Skateboard, �=50.

142, 1137, and 133, respectively. The percentage of each variant is

10.1%, 80.5%, and 9.4%, respectively. This mix ensures a localizing

FLS has a line of sight with the ArUco marker of its anchor FLS.

With all the shapes, the percentage of FLSs with a camera mounted

on their side is signi�cantly higher than the others.

Figure 10 shows the distribution of swarm size with the Skate-

board with�=50. Swarical uses k-Means to construct swarms. This

clustering technique minimizes the Euclidean distance between the

FLSs that constitute a swarm. However, it does not ensure swarms

of the same size. As shown, the size of a swarm varies from 10 to

70. The same is true with the other shapes. The topology of a shape

dictates the swarm sizes constructed by k-means.

Figure 11 shows the distribution of the distance between local-

izing and anchor FLSs within the swarms (FLS-trees) and across

swarms (swarm-tree). This is for the Skateboard with di�erent

group sizes, � . We con�gured the planner to limit the distance be-

tween a localizing and an anchor FLS to [6-8] cm. After constructing

the swarm-tree and FLS-trees for each value of � , it inserted 160,

132, 40, 23, and 18 dark FLSs for �=5, 10, 50, 150, and 200, respec-

tively. Hence, the median is between 6 and 7 cm for all � values.

There is no localizing anchor pair with a distance smaller than 6

cm. The variation in distance is greater for the swarm-tree with

smaller group sizes, �=5 and 10. This is because there is a larger

number of swarms. The inverse is observed with larger group sizes,

�=150 and 200 because there are fewer swarms.

Figure 12 shows the distribution of the branching factor for the

swarm-tree and the FLS-trees. This is the number of FLSs (swarms)

that localize relative to one anchor FLS (swarm). The median is one.

However, the outliers may be as high as 3 or 4. The minimum is

zero. These correspond to FLSs (swarms) that are the leaves of an

FLS-tree (swarm-tree).
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Figure 11: Distribution of distance between localizing and

anchor FLSs within a swarm (FLS-tree) and across swarms

(Swarm-tree), Skateboard.

Figure 12: Distribution of the number of localizing FLSs

(swarms) per anchor FLS, Skateboard.

5.3 Localization

All experiments reported in this section are conducted using a clus-

ter of 20 Amazon AWS servers, c6a.metal, with 192 virtual cores.

Each core is used to emulate an FLS. We use Hausdor� Distance

(HD) [18] and Chamfer Distance (CD) [12] to compare the quality

of localizations provided by HC, ISR, and RSF. These metrics com-

pare the FLS coordinates obtained using a localization technique,

i.e., the estimated truth �, with the FLS coordinates provided by

the Planner, i.e., the ground truth % . After applying a translation,

HD quanti�es the maximum error in distance between � and % .

CD quanti�es the average error between � and % . Both techniques

require a translation process because Swarical is a relative local-

ization technique. Our implementation of the translation process

computes the center of � and % . It aligns their centers prior to mea-

suring the maximum/average error. A lower value is better, with

zero re�ecting a perfect match between � and % .

In general, HD is more strict than CD because it uses the maxi-

mum error. Both are useful in understanding the tradeo�s associ-

ated with the alternative techniques.

Figure 13 compares HC, ISR, and RSF with one another. The

x-axis is the elapsed time from when the dispatcher deploys the

�rst FLS. Once an FLS arrives at its assigned coordinate, it starts to

localize. We assume a 5° dead reckoning error. The y-axis shows the

(a) Hausdor� Distance.

(b) Chamfer Distance.

Figure 13: A comparison of Localization techniques, Skate-

board, � = 50. Click ISR, HC, and RSF for a demonstration.

HD and the CD4 in Figure 13a and 13b, respectively. Both �gures

are for the Skateboard with�=50. Similar trends are observed with

the other shapes and values of � .

Figure 13 shows ISR is superior to HC and RSF. It enhances HD

and CD, providing illuminations that resemble those computed by

the Planner more accurately. RSF is signi�cantly worse. It requires

an FLS to compute its pose relative to another FLS (its anchor). HC

and ISR require an FLS to compute an average correction pose. This

averaging minimizes HD and CD as a function of time while RSF’s

HD and CD remain elevated.

In all these experiments, RSF causes the FLSs to travel a longer

total distance when compared with ISR and HC. ISR reduces this

metric slightly lower thanHC. This slight improvement is consistent

throughout our experiments.

The select range of [6,8] cm corresponds to 0.9 to 1.2 mm error,

see Figure 7. However, in Figure 13, HD levels o� at 18.9 mm. This

is 20x higher. If we considered only two points, we would observe

the expected 0.9 to 1.2 mm error. However, with a point cloud, the

error compounds as FLSs localize to magnify the error.

Figure 14 shows the HD and CD of the Skateboard with ISR

and di�erent swarm sizes (�). Small swarm sizes (� ≤10) result

in a higher HD and CD, i.e., a larger di�erence between the point

clouds illuminated by ISR and the point cloud computed by the

Swarical’s planner. This is because they result in an unbalanced

and deep swarm-tree with more swarms, 43 with�=5 and 38 with5

�=10. The swarms close to the leaves of the swarm-tree require a

longer time to localize because their anchor in a parent swarm has

a higher probability of changing its location. This change is due to

4CD’s value may be higher than HD because it computes the average distance
between point clouds A and B, then computes it again by replacing A with B,
for B and A, and then adds the two values [12]. See Equation: Chamfer(�, �) =

1
|�|

∑
0∈� min1∈� ∥0 − 1 ∥22 +

1
|� |

∑
1∈� min0∈� ∥1 − 0∥22 .

5Depth decreases to 12 with�=50.
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(a) Hausdor� Distance.

(b) Chamfer Distance.

Figure 14: Comparison of di�erent swarm sizes (�) with the

Skateboard and the ISR technique. Lower is better.

both intra-swarm and inter-swarm localization. An inter-swarm

localization of a primary moves the entire swarm, including those

FLSs that serve as anchors for other swarms. These result in high

Hausdor� and Chamfer distances.

5.4 A Comparison with SwarMer

SwarMer [3] is a decentralized localization framework for FLSs.

Individual FLSs localize relative to one another to form swarms. An

FLS of one swarm localizes relative to an anchor FLS of another

swarm to merge with it, forming a larger swarm. This process

repeats until there is one swarm. Subsequently, SwarMer thaws the

�nal swarm into individual FLSs and repeats the process.

Both SwarMer and Swarical are continuous techniques that use

the concept of localizing and anchor FLSs. SwarMer constructs its

swarms in an online manner. In contrast, Swarical constructs its

swarms in an o�ine manner. SwarMer’s swarms are seeded with

1 FLS that merge to construct larger swarms, ultimately growing

into one swarm that includes all FLSs. Swarical’s swarms are static.

Swarical is an integrated approach that considers the range of

sensors mounted on an FLS to track another FLS. This is re�ected

in its hierarchical swarm-tree and =� FLS-trees. These concepts

are absent from SwarMer.

Figure 15 shows the HD with SwarMer and Swarical for the

Skateboard. Swarical is con�gured with group size 50 (�=50) and

the ISR technique. SwarMer does not consider the error associated

with the range of an FLS’s tracking device. Hence, we assume the

tracking device is 100% accurate in measuring an FLS’s pose with

both techniques. Swarcial localizes the FLSs more than 2x faster

than SwarMer. A similar observation is made with CD.

Figure 15: Comparison of Swarical with SwarMer for the

Skateboard.

Swarical is faster than SwarMer for two reasons. First, FLSs

exchange fewer messages. More speci�cally, SwarMer requires a

challenge phase for a localizing FLS to identify its anchor FLS. This

step is absent from Swarical; its Planner computes the localizing

and anchor FLSs in an o�ine manner. Second, FLSs move a shorter

distance with Swarical than SwarMer. In the experiments of Fig-

ures 15, on the average 8% less. The minimum distance moved by

FLSs with Swarical is 12% shorter than SwarMer.

5.5 Discussion

Figure 14 shows a camera error of [0.9-1.2] cm resulting in an HD

that is 20x higher. It is possible to model the relationship between

the camera error and the observed HD. A system designer may use

these analytical models to estimate the HD for a tracking device.

Below, we describe the analytical models.

The camera error adds a positive percentage error to the dis-

tances measured by FLSs. Let � denote the average distance be-

tween FLSs, say�=7 cm. Moreover, let the average percentage error

attributed to the camera be n%, say n=1.15%. When FLSs localize

erroneously using distances that are n percentage (1.15%) larger

than the ground truth, the point cloud shrinks n%. This is because a

localizing FLS overestimates its distance to an anchor FLS, causing

it to adjust its distance to be shorter than the ground truth.

To estimate the observed error, one may shrink a point cloud n%

and compare it with the original point cloud. The intuition here is

that the localization error depends on how the distance between

the matching points between the two point clouds changes as we

scale one of the point clouds and align their centers. The results

will approximate the HD expected with a camera that provides n%

error in its measurements. In our experiments with di�erent shapes,

the percentage error between the estimated and observed HD was

lower than 2.5%.

6 Conclusions and Future Research

Swarical is a framework that considers the range of sensorsmounted

on FLSs to generate point clouds that enable FLSs to localize with a

high accuracy. In turn, this renders highly accurate illuminations.

The accuracy of Swarical is dictated by the sensor and its hardware

used to localize. Swarical ensures localizing FLSs have a line of

sight with their anchors. Simulation results show that Swarical is as

accurate with scaled-down versions of drones, cameras, and ArUco

markers. Our immediate research direction is to construct these

candidate FLSs.
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