Swarical: An Integrated Hierarchical Approach to Localizing
Flying Light Specks

Hamed Alimohammadzadeh
halimoha@usc.edu
University of Southern California
Los Angeles, California, USA

Abstract

Swarical, a Swarm-based hierarchical localization technique, en-
ables miniature drones, Flying Light Specks (FLSs), to accurately
and efficiently localize and illuminate complex 2D and 3D shapes.
Its accuracy depends on the physical hardware (sensors) of FLSs
used to track neighboring FLSs to localize themselves. It uses the
specification of the sensors to convert mesh files into point clouds
that enable a swarm of FLSs to localize at the highest accuracy af-
forded by their sensors. Swarical considers a heterogeneous mix of
FLSs with different orientations for their tracking sensors, ensuring
a line of sight between a localizing FLS and its anchor FLS. We
present an implementation using Raspberry cameras and ArUco
markers. A comparison of Swarical with a state of the art decentral-
ized localization technique shows that it is as accurate and more
than 2x faster.

CCS Concepts

« Human-centered computing — Visualization design and
evaluation methods; « Computing methodologies — Graphics
systems and interfaces.

Keywords
Localization, Flying Light Specks, Dronevision, Swarm, 3D Display

ACM Reference Format:

Hamed Alimohammadzadeh and Shahram Ghandeharizadeh. 2024. Swarical:
An Integrated Hierarchical Approach to Localizing Flying Light Specks. In
Proceedings of the 32nd ACM International Conference on Multimedia (MM
’24), October 28-November 1, 2024, Melbourne, VIC, Australia. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3664647.3681080

1 Introduction

A Flying Light Speck (FLS) [14] is a drone configured with light
sources. A swarm of FLSs may illuminate complex 2D and 3D
multimedia shapes in a fixed volume, a 3D multimedia display [15].
Each FLS is assigned a coordinate. A challenge is how cooperating
FLSs may illuminate 2D and 3D shapes. GPS [27] is not an option
due to the lack of a line of sight to GPS satellites in an indoor
setting [3, 14]. An FLS may travel to its assigned coordinate using
Dead Reckoning [6]. This technique may employ a drone’s inertial
measurement unit (IMU) to approximate its location. IMUs of a

® This work is licensed under a Creative Commons Attribution
By International 4.0 License.

MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0686-8/24/10
https://doi.org/10.1145/3664647.3681080

Shahram Ghandeharizadeh
shahram@usc.edu
University of Southern California
Los Angeles, California, USA

drone are known to be noisy, with the error in estimated location
increasing as a function of traveled distance [3, 6, 17, 22]. Figure 1
shows a palm tree with different degrees of Dead Reckoning error.

(a) GT.

(b)e=2. (c)e=5" (d) Swarical.
Figure 1: Palm tree with 725 FLSs. Ground truth (GT), Dead
Reckoning with two different degrees of error (¢ = 2° and 5°),

and Swarical using Dead Reckoning with ¢ = 5°.

A localization framework may manipulate a design space con-
sisting of hardware, software, and data. Consider each in turn:
Hardware includes sensory devices mounted on an FLS. A frame-
work has a host of hardware choices ranging from Ultra Wide Band
(UWB) radios [10, 28, 29] to ultrasonic devices and cameras [20, 24—
26]. The software includes algorithms that implement a localization
technique. A framework may use the decentralized algorithm of
SwarMer [3] that is executed by FLSs. Data refers to a 3D shape
and its representation as a point cloud. An example of a 3D shape
file is a polygon mesh file. It is a collection of vertices, edges, and
faces that define a 3D shape. A framework may adjust the number
of FLSs used to illuminate the faces of a mesh file. With different
types of FLS hardware, the framework may use a mix of FLSs that
enhance the accuracy of localization, which enables a swarm of
drones to illuminate a shape with high accuracy.

In this paper, we present a Swarm-based hierarchical (Swarical)
framework to localize FLSs. Swarical is an integrated approach that
considers hardware, software, and data. It starts by selecting the
hardware that enables FLSs to localize. It uses the specification
of this hardware in combination with a mesh file to compute the
number of FLSs that should illuminate the shape. This considers
the range of sensors used to localize FLSs in combination with the
characteristics of a mesh file. Given a heterogeneous mix of FLSs
with different mountings of sensors (for line of sight), Swarical
computes the right mix of FLSs to illuminate a shape. This mix
ensures a localizing FLS has a line of sight with its anchor FLS.

Contributions of this paper include:

e Swarical as a framework that considers hardware, software,
and characteristics of a mesh file (data) to compute a point

MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

Garbage Collector
A conveyor belt deposits failed FLSs that fall on it into a Terminus at either end.

Hangar

Charging Stations

Terminus

Figure 2: The yellow cylinders of the architecture of [15]
are Dispatchers that deploy FLSs. The Hub is comparable to
today’s servers and hosts the Orchestrator process.

cloud for localization and illumination of a shape. (Sections 2
and 3.)

o Three online localization techniques with one, ISR, emerging
as the superior technique. ISR enhances speed and accuracy
compared to its counterparts. (Section 4.)

e An implementation of Swarcial using cameras and ArUco
markers mounted on FLSs to track one another. (Section 5.)

o A comparison of Swarical with a state of the art decentralized
algorithm named SwarMer [3] shows Swarical is more than
2x faster and equally accurate. (Section 5.4.)

e We open source our software implementations and its data
set at https://github.com/flyinglightspeck/Swarical.

Related work: The concept of 3D displays using FLS is presented
in [1-5, 8, 9, 14-16, 24, 36, 37]. The most relevant is SwarMer, a
decentralized localization technique that is fast and highly accurate.
A qualitative and quantiative comparison of SwarMer with Swarical
is presented in Section 5.4. Obtained results show Swarical is equally
accurate and more than 2x faster than SwarMer.

The rest of this paper is organized as follows. Section 2 provides
an overview of Swarical and establishes the terminology used in
this paper. While Section 3 introduces the planner component of
Swarical, Section 4 introduces several online decentralized local-
ization techniques. We introduce an implementation of Swarical in
Section 5 and compare it with SwarMer [3]. Brief conclusions are
presented in Section 6.

2 Overview and Terminology

This paper assumes the architecture of [1, 15], see Figure 2. It con-
sists of a Hub and one or more Dispatchers to deploy FLSs. The
Hub is a computer similar to today’s servers. It hosts an Orchestra-
tor process that executes the planner component of Swarical, see
Figure 4. The Orchestrator provides metadata to FLSs and deploys
them using one or more Dispatchers. The FLSs travel to their as-
signed coordinates using Dead Reckoning. They localize relative to
one another to illuminate 2D and 3D shapes.

An FLS may be configured with various sensors that enable it
to localize relative to a neighboring FLS. Section 5.1 describes the
use of cameras and ArUco markers [13]. A localizing FLS uses its
camera to take a picture of its anchor FLS’s ArUco marker and

Hamed Alimohammadzadeh and Shahram Ghandeharizadeh

processes the picture to compute its relative pose to the anchor FLS.
A challenge is how to mount cameras and ArUco markers on FLSs
to ensure the camera of a localizing FLS has a line of sight with the
ArUco marker of its anchor FLS. We address this challenge using
a heterogeneous mix of FLSs with cameras mounted on their top,
side, or bottom. See Figure 3.

(a) Top.

(b) Side. (c) Bottom.

Figure 3: Three FLSs with different camera orientations/FoVs.

Swarical is a divide-and-conquer technique. It partitions a shape
into a collection of swarms. FLSs of a swarm localize relative to
one another. This is intra-swarm localization. A swarm also local-
izes relative to another swarm. This is inter-swarm localization,
stitching swarms together to illuminate a complex 2D/3D shape.

Swarical consists of two distinct steps, see Figure 4. A centralized
configuration planner and a decentralized localization process. The
former is an offline process executed by the Orchestrator. The latter
is an online technique executed by swarms of FLSs.

The input to the planner is a mesh file of a shape, the desired size
of a swarm (G), and the available mix of FLSs with the specification
of their sensors (e.g., range and orientation of a sensor). The planner
processes the mesh file to compute both the number of FLSs and
their correct mix to illuminate the shape using the specification of
the localization device. It constructs groups of FLSs that are in close
proximity to one another. The size of each group is approximately
G.

The planner constructs two types of trees: FLS-trees and one
swarm-tree. See Figure 5. An FLS-tree defines the anchor FLS for
alocalizing FLS in a swarm. The swarm-tree identifies a primary
FLS in a child swarm that localizes relative to an anchor FLS in its
parent swarm. The root of the swarm-tree is an exception. Both
trees guarantee a localizing FLS has a line of sight with its anchor
FLS.

When illuminating a shape, FLSs that constitute a swarm con-
tinuously localize relative to one another. The primary of a swarm
(except for the root) will localize relative to the identified anchor
FLS of its parent swarm. It computes a vector for its movement. Its
entire swarm, including the primary, moves along this vector.

1. # of FLSs

2. Mix of FLSs
Mesh file for a
3. nG swarms

shape a)
) Planner 4. 1 Swarm-tree (Primary and Decentralized
Swarm size, G = (Configure) | ™ anchor FLSs for inter-swarm = | Localization
ped localization)

Physical specs Offline 5. nG FLS-trees (line of sight Online
of FLSs and (Orcll;es't;;utor, assignments for intra-swarm (FLSs)
sensors . localization)

Figure 4: Swarical, a divide-and-conquer framework.

Swarical: An Integrated Hierarchical Approach to Localizing Flying Light Specks

DEFINITION 1. A swarm consists of one or more FLSs. Members of
a swarm localize relative to one another continuously. A swarm-tree
identifies the parent-child relationships between swarms. Except for
the swarm that serves as the root of the tree structure, every swarm
has a parent swarm and one FLS fp designated as its primary. The
primary fp of a child swarm localizes relative to an anchor FLS of its

=
parent swarm, computing a vector V. fp and all FLSs that constitute
-

its swarm move along this vector V .

The output of the planner may be a large volume of data. How-
ever, each FLS requires a small fraction of this output to cooperate
with the other FLSs by executing the decentralized localization
technique. The Orchestrator provides this information to the FLSs.

For a given shape, the Orchestrator may execute the planner and
store its output in a file. When a user requests the display of the
shape repeatedly, the Orchestrator may read the file to provide each
FLS with the required information [4]. The online FLS localization
process is decentralized, fast, and continuous.

3 Planner

The planner consists of two sequential steps. First, it converts a
mesh file into an FLS point cloud using the limits of a tracking
device. Second, it fragments the resulting point cloud of F FLSs
into nG swarms. Each swarm consists of approximately G FLSs.
This step constructs one swarm-tree and nG FLS-trees, nG = [g]
swarms. Below, we describe the two steps in turn.

3.1 Step 1: Mesh File to FLS Illumination

FLSs must track one another to localize and illuminate a mesh
file. The limits of the FLS tracking device in combination with
the error tolerated by an application dictate the number of FLSs
used to illuminate a face. To illustrate, consider an application
that tolerates 5% error in the maximum difference between the
estimated truth and the ground truth, i.e., Hausdorff distance [18].
The application uses the minimum and maximum range ([Tin-
Tiax]) of the tracking device that produces at most 5% error in
measured distances to compute the density of FLSs in a face. Below,
we present a general technique for computing this density. An
implementation of it in the context of visual tracking using fiducial
markers is presented in Section 5.

Consider a tracking device placed at the center of a spherical
shaped FLS with a radius of R. An application tolerates e% error
in the Hausdorff distance of an illumination. The planner identi-
fies the minimum and maximum [Tynin-Tinax] range of the track-
ing device with a percentage error less than or equal to e. As-
sume the radius R is less than or equal to Tgx, R < Thgyx, the
planner computes the min/max density of FLSs in a unit of area:
e Ty IRV Dmex = sty e BY multi
plying these by the area of a face, the planner estimates the mini-
mum and maximum number of FLSs required to illuminate the face
with e% error in Hausdorff distance.

There is extensive work on sampling a mesh file [31] to generate
a point cloud. Section 5.2 uses the Constrained Poisson-disk sam-
pling [11] by providing it with the number of FLSs computed using
the above discussion. It is possible to use other techniques such as
those in [35].

Dmin = Dmax

6155

MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Primary FLS al _ a3
al
Anchor FLS /] \
pl P2 p3
/ \ al
a3
@ Root

e
D%

a2

a) Swarm-tree. b) FLS-tree.

Figure 5: Swarm-tree and FLS-tree with the Chess Piece, G=50.

3.2 Step 2: FLS-Tree and Swarm-Tree

The planner constructs swarms with different mixes of FLSs to fa-
cilitate intra and inter swarm localization. Given a group size G and
F FLSs, the planner constructs nG groups using the k-Means [21]
algorithm, nG = [g] Each resulting group will consist of approxi-
mately G FLSs. A group corresponds to a swarm.

The planner constructs a swarm-tree on the nG swarms, identi-
fying one FLS of a swarm as its primary fp that localizes relative to
the nearest anchor FLS in a parent swarm. The planner constructs
an FLS-tree on the G FLSs in a swarm, establishing the localizing
and anchor relationship between the FLSs that constitute a swarm.
Figure 5 shows the FLS-tree and swarm-tree of the Chess Piece.

The objective of the planner is to satisfy two constraints. First,
the tracking device of a child FLS should have line of sight with its
parent FLS. Second, the distance between the localizing FLS and its
anchor FLS should respect the [Tinin — Tmax] of the tracking device.

To realize its objectives, the planner uses the center of a swarm to
construct a minimum-spanning tree [7, 19] across the swarms. This
is the swarm-tree. Its vertices correspond to swarms of FLSs. The
weight of an edge between two swarms is the Euclidean distance
between their centers. The minimum spanning tree connects all the
swarms together without any cycles and with the minimum possible
total edge weight. The planner identifies the vertex with the highest
number of edges as the root of the swarm-tree. It walks its children
in a breadth first manner to establish the parent-child relationship
between swarms. With a parent-child swarm, the planner selects
an FLS from the parent swarm that is closest to an FLS in the
child swarm. The latter is the primary FLS of the child swarm. The
former is the anchor FLS of the parent swarm. The primary localizes
relative to the anchor. The point cloud dictates the orientation of
the primary relative to its anchor. The planner uses this information
to assign one of the FLS types in Figure 3 to the primary with the
objective of ensuring it has line of sight to its anchor.

Once the primary FLS of a swarm is identified, the planner com-
putes a minimum spanning tree for the FLSs that constitute a swarm.
This is the FLS-tree. Its vertices correspond to FLSs. The distance be-
tween two FLSs is computed using the Euclidean distance between
their coordinates. The minimum spanning tree connects all the
FLSs together without any cycles and with the minimum possible

MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

total edge weight. The planner traverses this tree starting with the
primary in a breadth first manner. It establishes the line of sight
relationship from child to parent. The planner uses the orientation
of an FLS in the point cloud to assign the child FLS one of the FLS
types shown in Figure 3. The selection ensures a localizing (child)
FLS has a line of sight with its anchor (parent) FLS.

With both the swarm-tree and nG FLS-trees, the planner ensures
the distance between a localizing and anchor FLS is lower than
Tinax- If their distance exceeds Tyqx, the planner inserts dark FLSs
to reduce the distance. These FLSs may serve as hot standbys to
tolerate the failure of the illuminating FLSs [5].

4 Continuous Localization

This section describes three online localization techniques. All three
assume an Orchestrator that allocates the correct mix of FLSs per
output of the planner. The Orchestrator uses the FLS-trees and
the swarm-tree to assign each FLS a coordinate in the 3D volume
and provides it with its parent FLS and children FLSs. With an FLS
designated as the primary of a swarm, fp, the Orchestrator provides
the FLS with the identity of its anchor FLS in its parent swarm (as
computed by the planner).

The key difference between the localization techniques is the

amount of concurrent movement by different FLSs in a swarm and
across the swarms. We start with a highly concurrent technique.
Subsequently, we describe two variants that limit the amount of
concurrent movement. Our experimental results show the second
technique, ISR, is faster and more accurate than the other two. It is
also more energy efficient by minimizing the total distance traveled
by FLSs.
Highly Concurrent, HC, allows the primary of a swarm (fp) to
localize relative to its anchor in the parent swarm while the anchor
is localizing itself. This means all swarms may localize at the same
time. Below, we describe intra-swarm localization, i.e., how FLSs in
a swarm localize relative to one another. Subsequently, we describe
inter-swarm localization, i.e., how two swarms localize relative to
one another.

Using the ground truth, an FLS knows its position and orientation
relative to its swarm members. The FLS-tree ensures a localizing
FLS has a line of sight with its anchor FLS. The root of the tree is
an exception. Consider localization for a child FLS and a root FLS
in turn.

A child FLS u computes its pose relative to its parent v, py o
(Pu,0 = —Po,u)- The pose, py o, is a position vector where v is the
vector’s head and u at the origin is its tail. FLS u broadcasts gy, , to
all its swarm members. A receiving FLS constructs an intra-swarm
tree to maintain this information broadcasted by different FLSs. See
the FLS-tree of Figure 5. An FLS i computes a relative pose for each
reachable! FLS within the tree structure. This relative pose, denoted
as pj,j, is determined by the sum of relative pose vectors py, , along
the path from FLS i to FLS j. To correct its position relative to these
FLSs, FLS i computes a correction vector v;;, defined as p; j — pi j,
where p; j represents the pose of FLS i to FLS j in the ground truth.
This process is repeated for all reachable FLSs, resulting in a set

Reachable means there is a path between the FLS and other FLSs in the tree with
information about their relative pose. Either the Orchestrator may provide an FLS
with the FLS-tree, or the network transmission of an FLS may include its id and its
parent id to enable a receiving FLS to construct the FLS-tree.

6156

Hamed Alimohammadzadeh and Shahram Ghandeharizadeh

of correction vectors. FLS i then moves along the average of these
vectors, computed as ﬁ 2. jeNy Vij, Where N is the reachable FLSs
in the FLS-tree, including FLS i. It is possible for an FLS to compute a
vector using only its parent FLS. This happens at the very beginning
before the FLS receives a vector from other FLSs or when a swarm
consists of only 2 FLSs.

Every time an FLS receives the relative pose from another FLS in
its swarm, it repeats the process to localize itself. Should an FLS not
receive information from its swarm members for 500 milliseconds,
it localizes, computes a vector, broadcasts its pose relative to its
parent to all its swarm members, and moves along the vector. An
FLS clears its tree structure after each inter-swarm localization.

The root FLS also receives relative measurements from its chil-
dren, grandchildren, and other descendant FLSs in the tree. It uses
this information to compute its relative pose to them. It computes a
vector to correct its position relative to each FLS. Next, it computes
an average of these vectors. And moves along this average vector
to localize.

An inter-swarm localization occurs once the length of the vector
computed by all members of a swarm is smaller than a pre-specified
threshold. Once the primary fp of a swarm detects this condition,
it localizes relative to its anchor in its parent swarm. The root
swarm is an exception as it has no primary and will not localize
relative to another swarm. fp uses its pose relative to its anchor to
compute a vector to correct its pose. Subsequently, f;, and its entire
swarm moves along this vector. After this movement, the FLSs that
constitute the swarm clear their tree structure of the relative pose
information broadcasted by the FLSs in their swarm. Subsequently,
they repeat their intra-swarm localization.

HC prevents a swarm from performing inter-swarm localization
while its FLSs are localizing actively, i.e., their computed average
vector is greater than a pre-specified threshold. Removing this
requirement results in a variant with higher concurrency. It causes
FLSs that constitute a swarm to move away from their primary,
producing distorted shapes.

A small (large) threshold value implies a more (less) accurate

relative poses. A large threshold value, say oo, is not the same as
not having a threshold all together. It orders intra and inter swarm
localizations for a swarm to not overlap in time.
Inter-Swarm Rounds, ISR, limits the number of swarms that
localize at a time. It requires the anchor FLS of fp to be stationary
prior to fp localizing relative to it. It uses the swarm-tree to realizes
this objective. Once the length of the correction vector computed by
an FLS in the root swarm that serves as an anchor for a child swarm
is smaller than a pre-specified threshold, the anchor informs its fp to
localize. The fp waits until its correction vector relative to its swarm
members is smaller than a pre-specified threshold. Subsequently,
it localizes relative to its parent’s anchor FLS, computes a vector,
moves along this vector, and requires its entire swarm to move along
this vector. Next, the anchor FLSs in the fp’s swarm notify their
children’s fp to localize relative to them. This process continues
until the children swarm at the leaves of the tree localize.

ISR’s localization is continuous, starting with the root swarm.
An anchor FLS in one swarm may send multiple notifications to its
fp tolocalize while the fp waits for its correction vector to become
smaller than the pre-specified threshold. In this case, the fp drops

Swarical: An Integrated Hierarchical Approach to Localizing Flying Light Specks

the repeated messages. It localizes once after its correction vector
is smaller than the pre-specified threshold.

Table 1: Raspberry camera module 3 NolIR specifications.

Resolution Min Focus Weight Price
Lens FoV ()
(px) Range (g (USD)
Regular 4608 x 2592 D 75, H 66, V 41 100 mm 3.2 $25
Wide 4608 x 2592 D 120, H 102, V 67 50 mm 3.2 $35

MM 24, October 28-November 1, 2024, Melbourne, VIC, Australia

Table 2: Camera’s frame rate and marker detection perfor-
mance with the regular/wide lens. The 720p setting is used
for the numbers reported in this paper.

Resolution Frames/ Avg Camera Avg Processing
Second Delay, milliseconds Time, milliseconds
480p 59.3/44.8 10/15 6/7
720p 46.9/44.4 3/8 18/14
1080p 21.1/26.0 8/8 39/29

The root swarm initiates the above process every time it receives

a relative pose from a swarm member, which causes it to compute a
correction smaller than the pre-specified threshold. The concept of a
swarm member localizing every 500 milliseconds is present. Hence,
in the worst case scenario, the root swarm initiates localization
every 500 milliseconds.
Rounds across the Swarm-tree and FLS-trees, RSF, constrains
the number of concurrent localizations within a swarm. An FLS in
a swarm localizes relative to its anchor in rounds. These rounds are
initiated by the root of the FLS-tree.

RSF is continuous, similar to the other techniques. Starting with
the root swarm of the swarm-tree, the root FLS of its FLS-tree noti-
fies each of its children FLSs to localize relative to it while it remains
stationary. Subsequently, each child FLS notifies its children FLSs
to localize relative to it while it remains stationary. This process
repeats continuously.

Except for the swarms that are at the leaves of the swarm tree, a
swarm has an anchor FLS for each of its children swarms. An fp of
these swarms localizes relative to their anchor. Once an anchor FLS
completes its localization, it notifies the fp to localize relative to
it. This causes the entire child swarm containing fp to move. Sub-
sequently, fp’s children localize relative to it. This process repeats
continuously. The root swarm initiates the above process, similar
to ISR.

5 An Implementation and Evaluation

This section describes an implementation of Swarical using Rasp-
berry cameras and ArUco markers. Section 5.1 presents a camera
and characterizes its accuracy in measuring pose. Subsequently,
Sections 5.2 and 5.3 present results from Swarical’s planner and
localization techniques, respectively. Finally, we compare Swarical
with a state of the art decentralized localization technique named
SwarMer [3] in Section 5.4.

5.1 FLS Tracking: Calibration

To localize relative to its neighbors, an FLS must track them. The
ideal tracking mechanism should be:

o Accurate: An FLS should be able to quantify its relative state
to a neighbor with a high accuracy. The relative state be-
tween two FLSs u and v includes a pose py,,, and an orienta-
tion (roll, pitch, and yaw) [30, 33, 34]. Ideally, the accuracy of
the position should be in millimeters. The error in a measured
orientation should be less than 1 degree in each dimension.

e Acceptable range: An FLS should be able to measure its
state relative to a neighbor at distances ranging from a few
centimeters up to tens of centimeters.

6157

e Fast with a high refresh rate: An FLS should be able to quan-
tify its relative state to a neighboring FLS in sub-milliseconds.
Moreover, it should be able to refresh this information quickly
at a frequency of 10 Hz.

e Robust: An FLS should be able to track a neighbor in an
indoor setting with different lighting including no light, i.e.,
a dark room.

ArUco markers [13] with a Raspberry camera configured with
IR lighting satisfy the above requirements?. The camera is small,
lightweight, and ready for use with a drone. It has a regular and a
wide lens with a minimum focus range of 10 and 5 cm, respectively.
See Table 1. It supports three different resolutions. Table 2 shows
these and our experimentally measured average camera delay and
processing time. The average camera delay is the elapsed time
from when the application requests a frame to the time the camera
provides the frame. Processing time is the time required to measure
position and orientation using Raspberry Pi 5. We designed our
software to capture an image once it is done processing the current
image. Hence, the reported accuracy is based on the latest image
available. We use its 720p frame setting for the rest of this paper,
see Table 2.

The maximum range of a camera for detecting a marker depends
on the marker size. Figure 6 shows the detection rate with a 4.7
mm paper printed maker size. While the x-axis of this figure is the
distance between the Raspberry camera and the marker, the y-axis
is the detection rate. It highlights the minimum focus range of the
different lenses in Table 1 with the detection rate becoming 100%
at the reported minimums. With the wide angle lens, the detection
rate drops to zero with 300 mm. With this marker size, Figure 7
shows the percentage error increases as a function of the distance’.
The regular lens provides a lower error as a function of longer
distances when compared with the wide lens.

Larger marker sizes reduce the error with both lenses. The wide
lens has a lower error when compared with the regular lens. See
Figure 8. In this figure, the x-axis is the marker size, and the y-axis is
the percentage error in the measured distance. The reported errors
are for measuring the minimum focus range of the two lenses, 5 and
10 cm, with wide and regular lenses, respectively. In general, paper
provides a higher percentage error when compared with LCD.

Figure 9 shows the error in roll, pitch, and yaw as a function of
paper printed marker size with the wide lens. The camera provides a
higher accuracy for the yaw (rotation around the axis perpendicular

2We also considered Bitcraze’s Al Deck and decided against its use due to its cost, $225
at the time of this writing.

3With both lenses, we report the percentage error with distances smaller than the
advertised minimum as long as the camera detects the ArUco marker.

MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

% Detection Rate
100

80
60
40
20

0
0

Regular
Wide

. Distance
300 (mm)

&

50 100 ‘ 150 200 250

Figure 6: Detection rate as a function of distance between
camera and marker. The paper printed marker size is 4.7 mm.

% Error
30

25

20
lsf

10

5
0
0

Wide
Regular

Distance
50 200 250 300 (mm)

100 150

Figure 7: Percentage error of distance measurement as a
function of distance between camera and marker. The paper
printed marker size is 4.7 mm.

% Error
10 \
8 Regular, Paper Regular, LCD
6
) \ Wide, LCD Wide, Paper
0 xy‘—"" ‘ “————¢ Marker Size
123456 10 15 17.5 (mm)

Figure 8: Percentage error of distance measurement as a func-
tion of marker size. The measured distance is 5 and 10 cm
for wide and regular lens, respectively.

to the marker) than the roll (rotation around the length) and the
pitch (rotation around the depth). This accuracy decreases with
marker sizes smaller than 3 mm.

In darkness, an FLS may use the camera with IR light to capture
an image of paper-printed markers for processing. In our exper-
iments, IR lighting in the dark does not impact the accuracy of
measurements and the detection rate.

5.2 Planner

We use the Raspberry camera in the [6,8] cm range as it provides
the highest accuracy. With this range, the planner computes a point
cloud of 1372 FLSs and 40 standby FLSs for the skateboard. The mix
of FLSs with a camera mounted on their top, side, and bottom is

6158

Hamed Alimohammadzadeh and Shahram Ghandeharizadeh

Error®
25
20
15 ROH
Pitch
10 Yaw
5
g Marker Size
123456 10 15 17.5 (mm)

Figure 9: Error of orientation measurements in degrees as a
function of marker size with wide lens and printed markers.

H# Swarms
14 -
12
10

SN~ N

—

i L L
30 40

20

Swarm Size

50 60 70

Figure 10: Distribution of swarm size, Skateboard, G=50.

142, 1137, and 133, respectively. The percentage of each variant is
10.1%, 80.5%, and 9.4%, respectively. This mix ensures a localizing
FLS has a line of sight with the ArUco marker of its anchor FLS.
With all the shapes, the percentage of FLSs with a camera mounted
on their side is significantly higher than the others.

Figure 10 shows the distribution of swarm size with the Skate-
board with G=50. Swarical uses k-Means to construct swarms. This
clustering technique minimizes the Euclidean distance between the
FLSs that constitute a swarm. However, it does not ensure swarms
of the same size. As shown, the size of a swarm varies from 10 to
70. The same is true with the other shapes. The topology of a shape
dictates the swarm sizes constructed by k-means.

Figure 11 shows the distribution of the distance between local-
izing and anchor FLSs within the swarms (FLS-trees) and across
swarms (swarm-tree). This is for the Skateboard with different
group sizes, G. We configured the planner to limit the distance be-
tween a localizing and an anchor FLS to [6-8] cm. After constructing
the swarm-tree and FLS-trees for each value of G, it inserted 160,
132, 40, 23, and 18 dark FLSs for G=5, 10, 50, 150, and 200, respec-
tively. Hence, the median is between 6 and 7 cm for all G values.
There is no localizing anchor pair with a distance smaller than 6
cm. The variation in distance is greater for the swarm-tree with
smaller group sizes, G=5 and 10. This is because there is a larger
number of swarms. The inverse is observed with larger group sizes,
G=150 and 200 because there are fewer swarms.

Figure 12 shows the distribution of the branching factor for the
swarm-tree and the FLS-trees. This is the number of FLSs (swarms)
that localize relative to one anchor FLS (swarm). The median is one.
However, the outliers may be as high as 3 or 4. The minimum is
zero. These correspond to FLSs (swarms) that are the leaves of an
FLS-tree (swarm-tree).

Swarical: An Integrated Hierarchical Approach to Localizing Flying Light Specks

Distance (cm)] FLS—tree
8.0 7 B Swarm-—tree
[i
7.5-
7.0
65 i
i T 1 1 -L |
6.0
G=5 G-10 G=50 G-150 G= 200

Figure 11: Distribution of distance between localizing and
anchor FLSs within a swarm (FLS-tree) and across swarms
(Swarm-tree), Skateboard.

Branching Factor 71 FLS—tree
B Swarm-—tree
4/
3
2

[

1

G= 150

SO

= G=200
Figure 12: Distribution of the number of localizing FLSs
(swarms) per anchor FLS, Skateboard.

5.3 Localization

All experiments reported in this section are conducted using a clus-
ter of 20 Amazon AWS servers, c6a.metal, with 192 virtual cores.
Each core is used to emulate an FLS. We use Hausdorff Distance
(HD) [18] and Chamfer Distance (CD) [12] to compare the quality
of localizations provided by HC, ISR, and RSF. These metrics com-
pare the FLS coordinates obtained using a localization technique,
i.e., the estimated truth E, with the FLS coordinates provided by
the Planner, i.e., the ground truth P. After applying a translation,
HD quantifies the maximum error in distance between E and P.
CD quantifies the average error between E and P. Both techniques
require a translation process because Swarical is a relative local-
ization technique. Our implementation of the translation process
computes the center of E and P. It aligns their centers prior to mea-
suring the maximumy/average error. A lower value is better, with
zero reflecting a perfect match between E and P.

In general, HD is more strict than CD because it uses the maxi-
mum error. Both are useful in understanding the tradeoffs associ-
ated with the alternative techniques.

Figure 13 compares HC, ISR, and RSF with one another. The
x-axis is the elapsed time from when the dispatcher deploys the
first FLS. Once an FLS arrives at its assigned coordinate, it starts to
localize. We assume a 5° dead reckoning error. The y-axis shows the

6159

MM 24, October 28-November 1, 2024, Melbourne, VIC, Australia

HD (mm)

] W
I 1SR HC

100) RSF
|
10 FFL‘ Time
0 10 20 30 40 50 60 (Second)
(a) Hausdorff Distance.
CD (mm) RSF

1000 WM

HC
100 wﬂl
ISR =

0

Time

10 20 30 40 50 60 (Second)

(b) Chamfer Distance.

Figure 13: A comparison of Localization techniques, Skate-
board, G = 50. Click ISR, HC, and RSF for a demonstration.

HD and the CD* in Figure 13a and 13b, respectively. Both figures
are for the Skateboard with G=50. Similar trends are observed with
the other shapes and values of G.

Figure 13 shows ISR is superior to HC and RSF. It enhances HD
and CD, providing illuminations that resemble those computed by
the Planner more accurately. RSF is significantly worse. It requires
an FLS to compute its pose relative to another FLS (its anchor). HC
and ISR require an FLS to compute an average correction pose. This
averaging minimizes HD and CD as a function of time while RSF’s
HD and CD remain elevated.

In all these experiments, RSF causes the FLSs to travel a longer
total distance when compared with ISR and HC. ISR reduces this
metric slightly lower than HC. This slight improvement is consistent
throughout our experiments.

The select range of [6,8] cm corresponds to 0.9 to 1.2 mm error,
see Figure 7. However, in Figure 13, HD levels off at 18.9 mm. This
is 20x higher. If we considered only two points, we would observe
the expected 0.9 to 1.2 mm error. However, with a point cloud, the
error compounds as FLSs localize to magnify the error.

Figure 14 shows the HD and CD of the Skateboard with ISR
and different swarm sizes (G). Small swarm sizes (G <10) result
in a higher HD and CD, i.e., a larger difference between the point
clouds illuminated by ISR and the point cloud computed by the
Swarical’s planner. This is because they result in an unbalanced
and deep swarm-tree with more swarms, 43 with G=5 and 38 with?
G=10. The swarms close to the leaves of the swarm-tree require a
longer time to localize because their anchor in a parent swarm has
a higher probability of changing its location. This change is due to

4CD’s value may be higher than HD because it computes the average distance
between point clouds A and B, then computes it again by replacing A with B,
for B and A, and then adds the two values [12]. See Equation: Chamfer(A, B) =
ﬁ Yacamingep |la - b||§ + ﬁ Ypep Mingea [|b - all%»

Depth decreases to 12 with G=50.

MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

HD (mm)
1000
100 |
0 - Time
0 10 20 30 40 50 60 (Second)
G=5 G=10 — G=50 G=150 G=200
(a) Hausdorff Distance.
CD (mm)
1000
100
-
L .
i o H‘Tlme
0 10 20 30 40 50 60 (Second)
G=5 G=10 — G=50 G=150 G=200

(b) Chamfer Distance.

Figure 14: Comparison of different swarm sizes (G) with the
Skateboard and the ISR technique. Lower is better.

both intra-swarm and inter-swarm localization. An inter-swarm
localization of a primary moves the entire swarm, including those
FLSs that serve as anchors for other swarms. These result in high
Hausdorff and Chamfer distances.

5.4 A Comparison with SwarMer

SwarMer [3] is a decentralized localization framework for FLSs.
Individual FLSs localize relative to one another to form swarms. An
FLS of one swarm localizes relative to an anchor FLS of another
swarm to merge with it, forming a larger swarm. This process
repeats until there is one swarm. Subsequently, SwarMer thaws the
final swarm into individual FLSs and repeats the process.

Both SwarMer and Swarical are continuous techniques that use
the concept of localizing and anchor FLSs. SwarMer constructs its
swarms in an online manner. In contrast, Swarical constructs its
swarms in an offline manner. SwarMer’s swarms are seeded with
1 FLS that merge to construct larger swarms, ultimately growing
into one swarm that includes all FLSs. Swarical’s swarms are static.
Swarical is an integrated approach that considers the range of
sensors mounted on an FLS to track another FLS. This is reflected
in its hierarchical swarm-tree and nG FLS-trees. These concepts
are absent from SwarMer.

Figure 15 shows the HD with SwarMer and Swarical for the
Skateboard. Swarical is configured with group size 50 (G=50) and
the ISR technique. SwarMer does not consider the error associated
with the range of an FLS’s tracking device. Hence, we assume the
tracking device is 100% accurate in measuring an FLS’s pose with
both techniques. Swarcial localizes the FLSs more than 2x faster
than SwarMer. A similar observation is made with CD.

6160

Hamed Alimohammadzadeh and Shahram Ghandeharizadeh

HD (mm)
1000
SwarMer
100 -

10 -

1 Swarical (ISR)

0.1 .
10

Time

20 30 40 50 60 (Second)
Figure 15: Comparison of Swarical with SwarMer for the

Skateboard.

Swarical is faster than SwarMer for two reasons. First, FLSs
exchange fewer messages. More specifically, SwarMer requires a
challenge phase for a localizing FLS to identify its anchor FLS. This
step is absent from Swarical; its Planner computes the localizing
and anchor FLSs in an offline manner. Second, FLSs move a shorter
distance with Swarical than SwarMer. In the experiments of Fig-
ures 15, on the average 8% less. The minimum distance moved by
FLSs with Swarical is 12% shorter than SwarMer.

5.5 Discussion

Figure 14 shows a camera error of [0.9-1.2] cm resulting in an HD
that is 20x higher. It is possible to model the relationship between
the camera error and the observed HD. A system designer may use
these analytical models to estimate the HD for a tracking device.
Below, we describe the analytical models.

The camera error adds a positive percentage error to the dis-
tances measured by FLSs. Let D denote the average distance be-
tween FLSs, say D=7 cm. Moreover, let the average percentage error
attributed to the camera be €%, say €=1.15%. When FLSs localize
erroneously using distances that are € percentage (1.15%) larger
than the ground truth, the point cloud shrinks €%. This is because a
localizing FLS overestimates its distance to an anchor FLS, causing
it to adjust its distance to be shorter than the ground truth.

To estimate the observed error, one may shrink a point cloud €%
and compare it with the original point cloud. The intuition here is
that the localization error depends on how the distance between
the matching points between the two point clouds changes as we
scale one of the point clouds and align their centers. The results
will approximate the HD expected with a camera that provides €%
error in its measurements. In our experiments with different shapes,
the percentage error between the estimated and observed HD was
lower than 2.5%.

6 Conclusions and Future Research

Swarical is a framework that considers the range of sensors mounted
on FLSs to generate point clouds that enable FLSs to localize with a
high accuracy. In turn, this renders highly accurate illuminations.
The accuracy of Swarical is dictated by the sensor and its hardware
used to localize. Swarical ensures localizing FLSs have a line of
sight with their anchors. Simulation results show that Swarical is as
accurate with scaled-down versions of drones, cameras, and ArUco
markers. Our immediate research direction is to construct these
candidate FLSs.

Swarical: An Integrated Hierarchical Approach to Localizing Flying Light Specks

7 Acknowledgments

We thank the anonymous reviewers of the ACM MM 2024 for their
valuable comments. This research was supported in part by the NSF
grants IIS-2232382 and CMMI-2425754. We gratefully acknowledge
CloudBank [23] and CloudLab [32] for the use of their resources to
enable all experimental results presented in this paper.

References

[1] Hamed Alimohammadzadeh, Rohit Bernard, Yang Chen, Trung Phan, Prashant
Singh, Shuqin Zhu, Heather Culbertson, and Shahram Ghandeharizadeh. 2023.
Dronevision: An Experimental 3D Testbed for Flying Light Specks. In The First
International Conference on Holodecks (Los Angeles, California) (Holodecks '23).
Mitra LLC, Los Angeles, CA, USA, 1-9. https://doi.org/10.61981/ZFSH2301

[2] Hamed Alimohammadzadeh, Heather Culbertson, and Shahram Ghande-
harizadeh. 2023. An Evaluation of Decentralized Group Formation Techniques
for Flying Light Specks. In ACM Multimedia Asia (Taipei, Taiwan).

[3] Hamed Alimohammadzadeh and Shahram Ghandeharizadeh. 2023. SwarMer:
A Decentralized Localization Framework for Flying Light Specks. In The First
International Conference on Holodecks (Los Angeles, California) (Holodecks *23).
Mitra LLC, Los Angeles, CA, USA, 10-22. https://doi.org/10.61981/ZFSH2302

[4] Hamed Alimohammadzadeh, Daryon Mehraban, and Shahram Ghandeharizadeh.
2023. Modeling Illumination Data with Flying Light Specks. In ACM Multimedia
Systems (Vancouver, Canada) (MMSys "23). Association for Computing Machinery,
New York, NY, USA, 363-368. https://doi.org/10.1145/3587819.3592544

[5] Hamed Alimohammadzadeh, Shugin Zhu, Jiadong Bai, and Shahram Ghande-
harizadeh. 2024. Reliability Groups with Standby Flying Light Specks. In ACM
Multimedia Systems (Bari, Italy).

[6] Martin Brossard, Axel Barrau, and Silvére Bonnabel. 2020. AI-IMU Dead-
Reckoning. IEEE Transactions on Intelligent Vehicles 5, 4 (2020), 585-595. https:
//doi.org/10.1109/TIV.2020.2980758

[7] Bernard Chazelle. 2000. The Soft Heap: An Approximate Priority Queue with
Optimal Error Rate. 7. ACM 47, 6 (nov 2000), 1012-1027. https://doi.org/10.1145/
355541.355554

[8] Yang Chen, Hamed Alimohammadzadeh, Heather Culbertson, and Shahram
Ghandeharizadeh. 2023. Towards a Stable 3D Physical Human-Drone Inter-
action. In The First International Conference on Holodecks (Los Angeles, Cal-
ifornia) (Holodecks ’23). Mitra LLC, Los Angeles, CA, USA, 34-37. https:
//doi.org/10.61981/ZFSH2308

[9] Yang Chen, Hamed Alimohammadzadeh, Shahram Ghandeharizadeh, and

Heather Culbertson. 2024. Force-Feedback Through Touch-based Interactions

With A Nanocopter. In IEEE Symposium on Haptics (Long Beach, California)

(Haptics "24). IEEE, Long Beach, CA, USA, 7 pages.

Pablo Corbalan, Gian Pietro Picco, and Sameera Palipana. 2019. Chorus: UWB

Concurrent Transmissions for GPS-like Passive Localization of Countless Targets.

In Proceedings of the 18th International Conference on Information Processing in

Sensor Networks (Montreal, Quebec, Canada) (IPSN ’19). Association for Comput-

ing Machinery, New York, NY, USA, 133-144. https://doi.org/10.1145/3302506.

3310395

Massimiliano Corsini, Paolo Cignoni, and Roberto Scopigno. 2012. Efficient

and Flexible Sampling with Blue Noise Properties of Triangular Meshes. IEEE

Transactions on Visualization and Computer Graphics 18, 6 (2012), 914-924. https:

//doi.org/10.1109/TVCG.2012.34

[12] H.Fan, H. Su, and L. Guibas. 2017. A Point Set Generation Network for 3D Object

Reconstruction from a Single Image. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA,

2463-2471. https://doi.org/10.1109/CVPR.2017.264

S. Garrido-Jurado, R. Mufioz-Salinas, F.J. Madrid-Cuevas, and M.J. Marin-Jiménez.

2014. Automatic Generation and Detection of Highly Reliable Fiducial Markers

under Occlusion. Pattern Recognition 47, 6 (2014), 2280-2292. https://doi.org/10.

1016/j.patcog.2014.01.005

[14] Shahram Ghandeharizadeh. 2021. Holodeck: Immersive 3D Displays Using

Swarms of Flying Light Specks. In ACM Multimedia Asia (Gold Coast, Australia).
ACM Press, New York, NY, 1-7. https://doi.org/10.1145/3469877.3493698

[15] Shahram Ghandeharizadeh. 2022. Display of 3D Illuminations using Flying Light

Specks. In ACM Multimedia. ACM Press, New York, NY, 2996-3005.

Shahram Ghandeharizadeh and Vincent Oria. 2023. Virtual Reality, Augmented

Reality, Mixed Reality, Holograms and Holodecks. In The First International

Conference on Holodecks (Los Angeles, California) (Holodecks *23). Mitra LLC, Los

Angeles, CA, USA, 38-40. https://doi.org/10.61981/ZFSH2304

[17] Francisco Javier Gonzalez-Castano, Felipe Gil-Castineira, David Rodriguez-

Pereira, Jose Angel Regueiro-Janeiro, Silvia Garcia-Mendez, and David Candal-
Ventureira. 2020. Self-corrective Sensor Fusion for Drone Positioning in Indoor
Facilities. IEEE Access 9 (2020), 2415-2427.

[10

[11

[13

[16

MM 24, October 28-November 1, 2024, Melbourne, VIC, Australia

D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge. 1993. Comparing Images
Using the Hausdorff Distance. IEEE Transactions on Pattern Analysis and Machine
Intelligence 15, 9 (1993), 850-863. https://doi.org/10.1109/34.232073

David R. Karger, Philip N. Klein, and Robert E. Tarjan. 1995. A Randomized
Linear-Time Algorithm to Find Minimum Spanning Trees. J. ACM 42, 2 (mar
1995), 321-328. https://doi.org/10.1145/201019.201022

Alex Kushleyev, Daniel Mellinger, Caitlin Powers, and Vijay Kumar. 2013. To-
wards a Swarm of Agile Micro Quadrotors. Autonomous Robots 35 (11 2013),
573-7527. https://doi.org/10.1007/s10514-013-9349-9

S. Lloyd. 1982. Least Squares Quantization in PCM. IEEE Transactions on Infor-
mation Theory 28, 2 (1982), 129-137. https://doi.org/10.1109/TIT.1982.1056489
K Nirmal, AG Sreejith, Joice Mathew, Mayuresh Sarpotdar, Ambily Suresh, Ajin
Prakash, Margarita Safonova, and Jayant Murthy. 2016. Noise Modeling and
Analysis of an IMU-based Attitude Sensor: Improvement of Performance by
Filtering and Sensor Fusion. In Advances in optical and mechanical technologies
for telescopes and instrumentation II, Vol. 9912. SPIE, 2138-2147.

Michael Norman, Vince Kellen, Shava Smallen, Brian DeMeulle, Shawn Strande,
Ed Lazowska, Naomi Alterman, Rob Fatland, Sarah Stone, Amanda Tan, Katherine
Yelick, Eric Van Dusen, and James Mitchell. 2021. CloudBank: Managed Services
to Simplify Cloud Access for Computer Science Research and Education. In
Practice and Experience in Advanced Research Computing (Boston, MA, USA)
(PEARC °21). Association for Computing Machinery, New York, NY, USA, Article
45, 4 pages. https://doi.org/10.1145/3437359.3465586

Trung Phan, Hamed Alimohammadzadeh, Heather Culbertson, and Shahram
Ghandeharizadeh. 2023. An Evaluation of Three Distance Measurement Technolo-
gies for Flying Light Specks. In International Conference on Intelligent Metaverse
Technologies and Applications (iMETA2023) (Tartu, Estonia).

[25] James Preiss, Wolfgang Honig, Gaurav Sukhatme, and Nora Ayanian. 2017.

Crazyswarm: A Large Nano-Quadcopter Swarm. In IEEE International Conference
on Robotics and Automation (ICRA). 3299-3304. https://doi.org/10.1109/ICRA.
2017.7989376

Robin Ritz, Mark W. Miiller, Markus Hehn, and Raffaello D’Andrea. 2012. Co-
operative Quadrocopter Ball Throwing and Catching. In 2012 IEEE/RSY In-
ternational Conference on Intelligent Robots and Systems. 4972-4978. https:
//doi.org/10.1109/IROS.2012.6385963

Nel Samama. 2008. Global Positioning: Technologies and Performance. https:
//doi.org/10.1002/9780470241912

K. Siwiak. 2001. Ultra-wide Band Radio: Introducing a New Technology. In
IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat.
No.01CH37202), Vol. 2. 1088-1093 vol.2. https://doi.org/10.1109/VETECS.2001.
944546

[29] Janis Tiemann and Christian Wietfeld. 2017. Scalable and Precise Multi-UAV

Indoor Navigation using TDOA-based UWB Localization. In 2017 international
conference on indoor positioning and indoor navigation (IPIN). IEEE, 1-7.

Jiang Wang and William] Wilson. 1992. 3D Relative Position and Orientation
Estimation using Kalman Filter for Robot Control. In Proceedings 1992 IEEE
International Conference on Robotics and Automation. IEEE Computer Society,
2638-2639.

Zong-Sheng Wang, Jung Lee, Chang Geun Song, and Sun-Jeong Kim. 2020. Data-
Driven Point Sampling with Blue-noise Properties for Triangular Meshes. In
Proceedings of the 3rd International Conference on Computer Science and Software
Engineering (Beijing, China) (CSSE °20). Association for Computing Machinery,
New York, NY, USA, 77-82. https://doi.org/10.1145/3403746.3403908

Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. 2002. An Integrated
Experimental Environment for Distributed Systems and Networks. SIGOPS Oper.
Syst. Rev. 36, SI, 255-270. https://doi.org/10.1145/844128.844152

Seong-hoon Peter Won, Wael William Melek, and Farid Golnaraghi. 2009. a
Kalman/Particle Filter-based Position and Orientation Estimation Method using
a Position Sensor/Inertial Measurement Unit Hybrid System. IEEE Transactions
on Industrial Electronics 57, 5 (2009), 1787-1798.

Hao Xu, Luqi Wang, Yichen Zhang, Kejie Qiu, and Shaojie Shen. 2020. Decentral-
ized Visual-Inertial-UWB Fusion for Relative State Estimation of Aerial Swarm.
In 2020 IEEE international conference on robotics and automation (ICRA). IEEE,
8776-8782.

Dong-Ming Yan, Jian-Wei Guo, Bin Wang, Xiao-Peng Zhang, and Peter Wonka.
2015. A Survey of Blue-Noise Sampling and Its Applications. Journal of Computer
Science and Technology 30, 3 (2015), 439-452.

Nima Yazdani, Hamed Alimohammadzadeh, and Shahram Ghandeharizadeh.
2023. A Conceptual Model of Intelligent Multimedia Data Rendered using Flying
Light Specks. In The First International Conference on Holodecks (Los Angeles,
California) (Holodecks 23). Mitra LLC, Los Angeles, CA, USA, 38-44. https:
//doi.org/10.61981/ZFSH2309

Shugin Zhu and Shahram Ghandeharizadeh. 2023. Flight Patterns for Swarms
of Drones. In The First International Conference on Holodecks (Los Angeles,
California) (Holodecks "23). Mitra LLC, Los Angeles, CA, USA, 29-33. https:
//doi.org/10.61981/ZFSH2303

	Abstract
	1 Introduction
	2 Overview and Terminology
	3 Planner
	3.1 Step 1: Mesh File to FLS Illumination
	3.2 Step 2: FLS-Tree and Swarm-Tree

	4 Continuous Localization
	5 An Implementation and Evaluation
	5.1 FLS Tracking: Calibration
	5.2 Planner
	5.3 Localization
	5.4 A Comparison with SwarMer
	5.5 Discussion

	6 Conclusions and Future Research
	7 Acknowledgments
	References

