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Abstract. Keyphrase Recommendation has been a pivotal prob-
lem in advertising and e-commerce where advertisers/sellers are rec-
ommended keyphrases (search queries) to bid on to increase their
sales. It is a challenging task due to the plethora of items shown
on online platforms and various possible queries that users search
while showing varying interest in the displayed items. Moreover,
query/keyphrase recommendations need to be made in real-time and
in a resource-constrained environment. This problem can be framed
as an Extreme Multi-label (XML) Short text classification by tag-
ging the input text with keywords as labels. Traditional neural net-
work models are either infeasible or have slower inference latency
due to large label spaces. We present Graphite, a graph-based classi-
fier model that provides real-time keyphrase recommendations that
are on par with standard text classification models. Furthermore,
it doesn’t utilize GPU resources, which can be limited in produc-
tion environments. Due to its lightweight nature and smaller foot-
print, it can train on very large datasets, where state-of-the-art XML
models fail due to extreme resource requirements. Graphite is deter-
ministic, transparent, and intrinsically more interpretable than neu-
ral network-based models. We present a comprehensive analysis of
our model’s performance across forty categories spanning eBay’s
English-speaking sites.

1 Introduction

In the online search space, the sponsored search mechanism [18] pro-
motes paid entities to be shown above or beside the standard search
results retrieved for a user query. The promoted entity can be shown
as an advertisement to the web user or as an e-commerce listing to
a buyer corresponding to their search queries. The search engine
platform facilitates advertiser/seller bidding on search queries. The
recommendation engine automatically ranks relevant search queries
given a single or a group of e-commerge listings. Advertisers or sell-
ers bid via large-scale campaigns to increase the visibility of their
products. The solution to the recommendation task will be advan-
tageous to both small and large-scale advertisers/sellers increasing
their sales and the platform’s revenues.

Query (or keyphrase) recommendations can easily be enabled
from short texts representing the entity being sold/advertised, such
as titles of e-commerce products, product reviews, transcripts of pro-
motional videos, posts on social media sites, and other search-based
platforms using sponsored entities [5, 24]. Here, we focus on e-
commerce platforms such as Amazon, eBay, and Walmart, where the
sellers are recommended keyphrases based on their inventory list-

ing’s metadata. Domain experts have found that a listing/item’s title
is paramount as they are quite specific, and other metadata can be
missing or incoherent. For instance, a seller may have a listing titled
“New iPhone 15 Pro Max 128 GB White" in the Electronics cate-
gory. We seek to develop a recommender algorithm that will generate
a relevant collection of keyphrases such as “latest iphone", “128 gb
iphone 15", “new iphone", “apple phone 15", or even “latest Sam-
sung smartphone”. We use keyphrase in this paper instead of the
more common keyword to indicate that a phrase can have multiple
words; also, the ordering of words in the phrase matters. The list-
ing’s length in words is typically very low, and the keyphrase may
contain words that do not even occur in the listing.

Conventionally, logs generated by search engine responses [6, 5]
to buyer queries have been the data source for recommendation sys-
tems. This helps to associate keyphrases that are not only relevant to
the products, but are also actively searched by buyers. We have pro-
vided more details on the data generation process in Section 4.3.1.
Aggregated data from the logs typically contains billions of data
points due to the large number of rail keyphrases (queries searched
less often). Moreover, relative to the size of the data, there are lim-
ited resources for the execution of recommendation systems. Scenar-
ios such as the new setup of a seller’s inventory require real-time or
near-real-time recommendation. Thus, effective strategies should be
able to suggest a small subset of relevant keyphrases from a large
space of keyphrases in a constrained environment with suggestions
provided in real-time.

Adbvertisers only want to bid on keyphrases that are actual queries
and not queries that seem plausible but non-existent for targeting
purposes. Since the nature of the problem is mapping items to mul-
tiple queries to increase the potential reach of the advertisers, this
problem of keyphrase recommendation can be formulated as an Ex-
treme Multi-Label (XML) Classification problem. Keyphrase recom-
mendation has been explored using query-query similarity with click
graphs [3], and formulated as an XML problem in [1].

Typically, the keyphrase-recommendation datasets in the adver-
tisement domain exhibit a power-law distribution, with a large num-
ber of tail keyphrases. Therefore, it is difficult to cluster words that
occur within listings in a category, diminishing the effectiveness of
many text classifiers. On the other hand, the text classifiers that pro-
vide effective predictions have high inference cost, which is usu-
ally the issue with Large Language Models (LLMs) [21] such as
BERT [14], GPT-3 [10], etc.

The datasets under consideration are provided by eBay from their
proprietary search logs. The “Very large” categories in the dataset
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have more than two million of keyphrases associated with more than
three million training data points. Hence, the coverage of keyphrases
in the training data is extremely sparse. With more products being
added to the platform every second along with buyers constantly
querying for new products, the datasets are expanding at an accel-
erated pace. To match this increase, models need to exhibit a low
memory footprint and faster execution in both training and inference,
while also scaling well according to the number of labels and training
data points.
Our contributions and scope in this work are as follows:

e We develop a novel bipartite graph-based model that is simple and
interpretable for commercial purposes.

e Our developed model is the most efficient among all the state-
of-the-art (SOTA) models for keyphrase/query recommendation
in the sponsored search domain with real-time inferencing. It
has a low memory footprint, extremely low training time, and
parallelized inferencing that scales efficiently and reliably for
very large datasets with millions of labels. Also, under resource-
constrained settings, it achieves the highest accuracy among the
SOTA models.

e We give performance comparisons on real-world search-related
datasets from the eBay e-commerce platform and public datasets.
Our model handles various practical hurdles such as the cold start
issue, optimized resource usage for real-time utility, and integra-
tion complexity with existing pipelines.

e We show some commercial impacts of the model in real-world
scenarios.

2 Related Work

Bipartite graphs have long been used in numerous domains to model
user search queries from the logs such as query-url graphs [6, 4] and
query-ad graphs [2]. Generally, methods operating on these bipartite
graphs compute similarities between queries based on the items they
are associated with, which are then used to recommend the queries
for new items. Simrank++ [3] improves the query similarity tech-
nique by decreasing the number of iterations needed for convergence.
In addition, it improves the generated score by multiplying them by
a factor depending on the number of common neighbors of those
queries. However, in the worst case, such approaches would require
a comparison between each pair of queries (i.e. quadratic scaling),
which is infeasible when there are a large number of keyphrases. In
addition, the ranking of recommended queries associated with simi-
lar items based on the relevance to the item is an issue.

The state-of-the-art models for XML problems [12, 17, 13, 25, 11]
use deep neural networks (DNNs), typically with one-vs-all (OVA)
classifiers. While the models [12, 13] require label features to work
with, AttentionXML [25], Renee [17] and DeepXML/Astec [11] can
work without them. Among the DNN models in the benchmarked
studies [7], we find that the DeepXML/Astec model [11] is able to
scale to large datasets (e.g., the public AmazonTitles-3M dataset) and
has lower training time compared to competing methods. Also, the
authors of [11] show that Astec achieves real-time inference laten-
cies. Therefore, given the scope of this work, we find Astec to be the
most suitable for comparison.

DeepXML/Astec [11] is a pipelined framework that processes the
task of classifying texts end-to-end. Each component of the frame-
work can be replaced to mimic different classification algorithms.
Unlike another extreme classifier Slice [16], Astec generates its own
embedding, which is otherwise expensive to compute. In terms of

implementation and training, DeepXML consists of 3 stages. The
first stage trains a surrogate task that generates an intermediate rep-
resentation. Faster training is enabled by reducing the label space,
which is done by first generating label representations from the rep-
resentations of input texts (instance) that the label is associated with
in the training set. Clusters are generated by associating together
labels with similar representations and annotating each cluster as a
meta-label. The second stage (called extreme) trains OVA classifiers
for each label and optimizes training by shortlisting labels for each
data point using negative sampling. The third stage called reranker,
is similar to the extreme stage, which uses the pre-trained shortlists
from the extreme stage.

The fastText [8, 20] software tool/model has proven to be a CPU-
based, efficient solution for handling large workloads. fastText gen-
erates word vectors using the CBOW model and uses a simple linear
neural network model with hierarchical softmax for faster training
and inference. One of the reasons why fastText works well is because
it incorporates subword information into its embeddings. The size of
the model can easily be constrained to use less storage space using
techniques such as quantization [19], and pruning the vocabularies
of keyphrases and title words.

fastText is one of the models deployed at eBay for real-time
keyphrase recommendation to sellers. Hence, we use it as a baseline
for our comparison.

3 Graphite Model

In this section, we introduce some notation and formally define the
problem we are trying to solve. Subsequently, we describe the two es-
sential steps of our model: the Construction step equivalent to train-
ing, and the Inference step. And then discuss the implementation de-
tails.

3.1 Problem Formulation and Notations

We formally define the Multi-label Text Classification problem where
there are multiple labels associated with each instance (input text).
Each instance consists of a list of words from the textual data of the
instance and a list of labels that will be modeled by a classifier. Such a
model is generally constructed or learned from the training part of the
dataset T'( A, B), which consists of two sets of lists A and B of equal
size, representing instances and labels respectively. Each a; € Aisa
list a; = {w1, wa, ..., }, where each w, is a word in the instance a;.
Similarly, each list b; € B has the form b; = {l1, 2, ...}, where each
l. = {w1, wo, ...} is alabel consisting of a list of words. Together, a;
and b; denote the training sample for index 7. Note that the ordering
of elements in the label list is essential and list permutations create
unique labels. Formally, a Bipartite Graph G(V, E) has two disjoint
subsets of vertices X and Y suchthat X ( JY = Vand X Y = ¢.
The edges of the set E/ connect a vertex in X with a vertex in Y and
there are no edges connecting the vertices within each subset. We de-
fine the function Search, Deduplicate and Count or SDC(-) which
given a list of elements, counts the occurrences of each element in
the list. It outputs a list of tuples of the form (element, count) for
each unique element in the list. We also define functions Create Map
or cmap(x,y) that maps z to y and Get Mapping or gmap(x) that
retrieves the mapping for z. gmap(x) returns all the mapping as a
list. In XML systems the instance is the item/document in question
and the labels are the keyphrases. Graphite’s main idea is that two
items should be associated with the same keyphrase if they are simi-
lar. For inference, given a test item, our model identifies items from
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the training data that are similar to the test item. The labels associ-
ated with the similar items are then ranked in order of relevance to
the test item.

3.2 Model Construction

The Graphite model constructs two bipartite graphs, Gw(V, E)
and G (V, E) from the training set T'(A, B). Gw(V, E) maps
the words within each instance/sample to the identifier (or index)
of the instance/sample. Identifiers are nonnegative integer numbers
of instances in the set 7. The vertex set V' € Gyw consisting
of two disjoint sets, X and Y, corresponding to the unique set of
words in the instance and unique instance identifiers, respectively.
S0, X = Uywea, va,eatvh A € Tand Y = {0,1,..., |A]},
where | - | denotes éardinality. The edges E € Gw are constructed
from the tuples as £ = {(w,i),Yw € a; € A}. Next, our model
constructs the graph G, (V, E) that maps the instance identifiers to
their associated labels in 7". Similarly, the disjoint subsets X and Y
of the vertex set V' € Gy are built as follows. X = {0,1,...,|A|}
andY = Uy,c,. v, epil}, B € T where each Lis a label. The edge
set E € Gy, is the unique set of tuples E = {(¢,1),Vl € b; € B}.
Note that the ordering of the instance identifiers does not matter.

ID | Keyphrases | Item Titles

black iphone 12 pro 128GB
google pixel black 64GB
grey iphone 13 pro

amsung s6 grey

1 iphone 12 pro, black phone
2 pixel 6, black phone

3 iphone 13 pro, grey phone

4 Samsung galaxy, grey phone

(a) llustrated Training Data

Samsung

(b) Tripartite Graph derived from Illustrated Data

Figure 1: Illustration of Graphite’s construction phase. Subfigure (a)
shows a set of item’s titles along with their associated keyphrase and
subfigure (b) shows the graphs Gw and Gy, that are constructed
from the set in (a).

Together, both graphs Gw and Gz map the words in an item
to the associated keyphrases akin to a tripartite graph. Modelling a
tripartite graph as two bipartite graphs helps us construct and store
the data efficiently. We show an illustration of the structure and con-
tents of the graphs in figure 1. Subfigure (a) displays a set of sample
training instances as the item’s title along with the associated labels
as keyphrases. Subfigure (b) shows the graphs Gy and G, con-
structed from the sample training set using Graphite’s construction
phase. The graph Gw 1 is constructed by mapping the words in the
title to the items ids (training instance ids), and the graph Gp, is
constructed by mapping those items ids to the keyphrases. The vi-
sual shows intuitively how the keyphrases can be mapped from the
words, thus, for a test instance determining relevant keyphrases is
quite evident.

3.3 Inference Step

Given a test instance ¢ with the words in the title, the classifier pre-
dicts a list of labels in order of relevance to the instance. Graphite’s
inference step executes two phases Clustering followed by Ranking
on the test instance ¢ which is described in the subsections below. The
goal of the Clustering phase is to cluster candidate labels into groups
based on their similarity to the test instance. Each candidate label is
obtained from the training instances represented in Gy and Grr..
The Ranking step re-ranks the labels in each group/cluster based on
label attributes generated during the clustering phase.

Algorithm 1 Graphite’s Inference

Input: Graphs Gy 1 and Gy, and test instance ¢
Output: List of lists (R) with labels and their attributes
1: function CLUSTERING(Gw 1,G1L,t)
2: I,L,R «+ ] > Lists of instances, labels and results resp.
3 for w in t do
4 for (w,4)in E € Gy do
5: I+~ 1+1
6: I+ SDC(I)
7: for (i, c) in I do
8 for (¢,1)in E € Gy do
9

: L<+ L+1
10: cmap(l, c)
11: L+ SDC(L)
12: for i + gmax(map(*)) to 1 do
13: C +
14: for (I, m) in L and gmap(l) == i do
15: C «+ C+ (I, WMR(t,1),m)
16: R+~ R+C

17: return R

3.3.1 Clustering Phase

The algorithm 1 describes the clustering phase. Given a test instance
t, it generates clusters of the candidate labels as a list. Each generated
candidate label is then associated with a set of attributes required for
the next ranking step. The algorithm first starts by mapping the words
in the test instance ¢ to the list of instance ids (7) in Gw; as shown
in lines 3-5 of algorithm 1. The SDC(-) function' is utilized in lines
6 and 11. The output (I) of line 6 is a list of tuples with instance
IDs (2) and the occurrence count (c) of the instance. The occurrence
count is termed as similarity (score) as it is equivalent to the num-
ber of similar words to the test instance ¢. Next, lines 7-10 use G,
to find the labels associated with the instances in /. The similarity
score (c) of each instance () is assigned to the label () associated
with it using the crap(-, -) function'. Labels with two different sim-
ilarity scores are mapped to the higher score. The gmap(-) function'
returns the similarity score of a label and gmap(*)" returns all sim-
ilarity scores. After the execution of line 11, the list L contains can-
didate labels with their Multiplicity (m) which indicates the number
of unique instances from which the label was derived. The for loop
in line 12 iterates from the largest similarity score to the smallest,
to create a list of clusters R. Inner loop 14 ensures that each cluster
only groups the labels with the same similarity score. Each element
of the cluster is a tuple containing the label [ and its two attributes,
Word Match Ratio computed by the function WM R(¢,1) = %
and Label Multiplicity given by m.

3.3.2 Ranking Phase

The ranking phase operates on the list of clusters R obtained at the
end of the algorithm 1. The clusters in R are in non-increasing or-
der of the similarity score, i.e, each label in the first cluster has the

1 Defined in section 3.1
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highest similarity score followed by labels with second highest sim-
ilarity score and so on. This partial ordering provides us with some
relevancy ranking, but the labels within each cluster are not ranked.
Thus, during this phase, the labels within each cluster are ranked us-
ing their attributes. The labels are ranked in the non-increasing order
of word match ratio and to break the ties the label with larger label
multiplicity is ranked first. Our model follows a label word-aware
technique that looks at the similarity between the label and the test
instance. This is enabled by the word match ratio where labels with
more common words with test instance are preferred. Note that the
denominator in the function WM R(, -) ensures that smaller-length
labels are preferred. We find that this works best for the dataset under
consideration, while it can be tweaked for other datasets. Multiplicity
of a label indicates how many similar instances were associated with
the label, indicating a higher probability of relevance.

3.4 Implementation Details

The construction of both Gy 1 and Gy, is first done by building a list
of tuples indicating the edges, then edges are sorted, de-duplicated
and stored in Compressed Sparse Row (CSR) format. The time com-
plexity is log-linear and the space complexity is linear in the number
of edges. The number of edges is asymptotically O(|A| - max |a«|)
for Gwr and O(|B| - max |b.|) for Grr. In the implementation, the
words and the labels are represented as unsigned integers to reduce
storage costs and avoid string comparisons. In other words, compar-
ing two words or two labels takes constant time. The training step
does not involve any weight updates or hyper-parameter training,
making it quite fast and efficient.

Generally, during inference, a predetermined number of labels is
required to be predicted. Due to the large label spaces, our method
would output a large number of predictions, many of which would be
irrelevant. Hence, we limit the number of predictions by only consid-
ering the clusters in R with the highest similarity. We preemptively
achieve this by modifying the function SDC(-) in Algorithm 1 line
6 to only include a limited number of instances in I as required by
the number of predictions. Instances with higher similarity scores are
only picked while ensuring that if a unique similarity score is con-
sidered then all instances with that similarity score are picked. Thus,
at the end of the ranking phase, only the required number of ordered
labels are returned. The list of clusters R is implemented by extend-
ing the length of each tuple to include the similarity score. Thus, the
ranking phase first orders R by the similarity scores of each label and
then breaks ties using both the label attributes.

The functions SDC', cmap and gmap are implemented using log-
linear time data structures. The ranking phase sorts the list of tu-
ples and takes log-linear time complexity. We show results in sec-
tion 4.3.3 with amortized batched inferencing time. It might seem
that fine-grained parallel quicksort implementation can reduce indi-
vidual inference time for datasets with a very large number of train-
ing instances and unique labels. Though, they scale well for large
data sizes, achieving real-time latencies with such fine-grained ap-
proaches isn’t feasible. Instead, reducing the instances retrieved in 1
reduces the computational cost. This is because I can be quite large,
especially for datasets with a large number of labels and training
points. This is because certain high-frequency words can be associ-
ated with a large number of instances, thus graph Gy1 can get quite
large. This is mitigated by modifying lines 3-5 in algorithm 1 to en-
able intrinsic SIMD vectorization by the compiler. But the size of 1
input to line 6 is still large. So, during the de-duplication and count-
ing in function SDC in line 6 we avoid log-linear time complexity

by using a count array to store the occurrence count of each instance
while only performing linear operations. The sizes of L and R aren’t
large due to the cut-off for a pre-determined number of predictions
at line 6.

4 Experimentation and Results
4.1 Setup and Preprocessing

Graphite is implemented for multi-core systems and don’t require a
GPU. The inference part is implemented in C++ (> g++-9.3.0) us-
ing OpenMP threading with Python wrappers using pybindl 1. We
first compare our model with fastText [8, 20] as mentioned in sec-
tion 2. The training was done with the best optimal hyper-parameters
searched using fastText’s Automatic hyper-parameter optimization
with validation set. There was additional configuration tuning done
only on the eBay datasets, such as setting the minimum frequency
of words and labels, and so on. We can’t discuss these details due to
proprietary usage. The fastText model is based on version 0.9.2. >

We show comprehensive analysis with Astec [11] in the DeepXML
framework. For each dataset, we use the configuration provided for
the datasets in [7] based on similar size label space. During the train-
ing, we could only choose the Label Clustering configuration as other
implementations weren’t provided in the source code mentioned in
[11]. We also test the feasibility of AttentionXML [25] on the Very
Large categories for our eBay datasets.

4.2 Notations and Metrics

We introduce some notations and metrics that are used for the anal-
ysis in next sections while borrowing terms from section 3.1. A
test set S(A, B) contains item’s title words or instances (A) and
keyphrases or labels () as lists. For each sample ¢, we denote
the corresponding title word list as a; € A and keyphrases as
b, € B, A,B € S. The a;’s are used as input and the b;’s are
used as ground truths for the inference method described in the 3.3
to obtain the predicted labels p;. For each sample i, we number
the relevant predictions as Relevance(i, k) = |b; N pi(k)|, where
pi (k) are the top k predicted labels. For comparison we define the

|A|l Relevance(i,k
o o) Reteraneelh) | Recall@k =

T A‘ . We find that in all the datasets, a large
number of 1tems are only associated with just one keyphrase. So,
the Precision@k wouldn’t correctly account for the items that have
different ground truth counts. Hence, we devised a metric called Av-
erage Variable Precision (AVP) which quantifies what fraction of
ground truth on an average does the model accurately predicts. It is
defined as AVP = A‘ Z‘A‘ %ﬁ“w For AVP calculation
we place a limit of 10 ground truths, so for test data points with > 10
ground truths, only 10 predictions for each model are compared.

metrics Precision@Qk =
Z\A\ Relevance(z k)

4.3  Performance on eBay Datasets

In this section, we show results on the proprietary datasets from eBay.
We first describe the eBay datasets in subsection 4.3.1. The subse-
quent subsections compare Graphite with fastText and Astec on all
the categories shown in Table 1. Due to proprietary constraints, we
can’t show absolute scores for the metrics described in section 4.2.
Instead, we report all scores relative to fastText’s performance which
acts as a baseline.

2 We used a system with 4 Intel Xeon Gold 6230 CPUs with 20@2.10GHz
cores, 500 GB of RAM, and 2 Nvidia Tesla V100-32GB GPUs.
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4.3.1 eBay Datasets

The datasets were generated from eBay engines’ search logs. From
among those items shown to a buyer, specifically the items that
are clicked by the buyers are used. A buyer might input different
queries/keyphrases in a session and click on some of the displayed
items. Different buyers across various sessions who input the same
keyphrase will be shown similar items which they eventually click
on. Such occurrences of a keyphrase and the clicked item are con-
sidered as one sample keyphrase-item combination if they co-occur
regularly. Similarly all such keyphrase-item associations are aggre-
gated into a dataset if they co-occur for a sufficiently long period. It
is intuitive to see how the keyphrases can be related to the items and
also to the words in the titles.

# Train (in Millions) | # Labels (in Millions)

Category ID Group } min max | min max
CAT_1-8 | VeryLarge | 3.7 25 |2 7
CAT 9-16 | Large | 24 7.4 | 05 1.7
CAT_17-27 | Medium | 0.8 2.7 | 02 0.6
CAT_28-40 |  Small | 0.003 0.6 | 0.003 0.2

Table 1: Category ID and Grouping.

The datasets consist of training/validation/test sets per top level
product category in eBay. We also grouped the categories into Very
Large, Large, Medium, and Small based on the number of training
points and a number of labels in each category. The anonymized cat-
egories (40) which are numbered in the non-increasing order of their
training size and their groups are mentioned in Table 1. The table
also shows the range of the number of training data points and labels
for each group. The training set contains the bulk of the historical
data, while validation and test sets for tuning and testing are limited
to a few thousand data points.

4.3.2  Prediction Performance

For each category, the top 10 predictions are used for comparison
on the test set. fastText’s baseline is set to 1 for all categories while

Categories

(b) Recall@1/5/10 ratios of fastText, Astec and Graphite

Figure 2: Comparison of Precision and Recall scores of fastText, Astec and Graphite with top 10 predictions from each model.

) kCaIegones

Graphite’s and Astec’s performance is shown relative to it. We show
the comparison of Relative Ratios of Precision@1/5/10 for the mod-
els in figure 2a for all categories. The categories in the x-axis fol-
low the order of Very Large to Small group as in table 1. Graphite
shows better performance than fastText for all the categories across
all scores, especially with an average improvement of 122% in Preci-
sion@1 with up to 210% improvement for CAT_3. For all precision
scores, the gap in the precision score is generally higher for cate-
gories with larger label spaces, while precision score gap is typically
lower for categories with smaller label spaces. The Recall scores in
figure 2b also show that Graphite has better performance w.r.t fast-
Text, especially with Recall@10 scores gaining an average improve-
ment of 140% with highest being 270%. In Precision/Recall @k with
k > 1, the gap between Graphite and fastText is higher than the trend
of £ = 1. This is due to fastText’s label space limitation which ex-
cludes tail keyphrases that Graphite is easily able to capture. The
Average Variable Precision (AVP) scores in figure 3 show average
performance akin to a precision score. Graphite performs better than
fastText with an average increase of 0.085 with up to 0.207 with re-
spect to fastText. The chart shows that Graphite on average is better
able to recommend at least one of the ground truths for the items.

On the other hand, Astec fails to execute on categories CAT_1-16
in figures 2 and 3. For instance, it tries to allocate more than 1 TB
of RAM for CAT_11 which was larger than the system’s memory
resources. The requirements are much larger for other Large/Very
Large categories. Astec’s clustering process doesn’t scale well for
a large number of training points. Similarly, DNNs such as Atten-
tionXML also fail on these large datasets while allocating large GPU
memory. More details regarding their executions are discussed in
section 4.3.4.

Astec’s performance is higher than fastText’s for medium and
small size categories with average P@1 and R@ 10 improvement of
115% and 124% respectively. However, it underperforms on very
small size categories, especially on CAT_39 and CAT_40, across all
precision, recall and AVP scores due to relatively smaller number
of training points than the number of labels. On the categories that
Astec executes on, Graphite is comparable to Astec, with an aver-
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Figure 3: Comparison of AVP, Model size and Inference time ratios of fastText, Astec and Graphite

age gap of £0.011 between the relative performances of both the
models. In contrast to Astec, Graphite generally shows consistently
better performance across all data sizes, except for a few Large and
Medium categories.

4.3.3 Execution performance

In this section, we show comparisons based on model size, inference
time, and training time. If we look at the top 3 categories (CAT_1-
3) with the largest label space, Graphite’s trained model occupies
2 — 3x fastText’s storage on disk as shown in the middle chart of
figure 3. For all the other categories Graphite’s model size is com-
parable or occupy lower space on disk than fastText. Infact, if we
sum up the model sizes of all categories, Graphite occupies 30% less
space than fastText. As Graphite’s storage is a linear function of both
the number of training data points and unique labels, the models of
larger categories occupy more space than the smaller ones. This can
be tuned by eliminating rarely occurring keyphrases along with those
training items that don’t have any keyphrases left after the removal.
This might not significantly reduce the performance when retrieving
the tail keyphrases. On the other hand, as expected Astec’s models
are extremely large, occupying /.2 GB on average per category.

Training time comparison

MfastText
[ Graphite

Time (hrs)

éategoriei
Figure 4: Training times of fastText and Graphite for the top 6 cate-
gories.

We compute the inference time per test data point by amortizing
the time taken for inferencing the entire test dataset. In Graphite,
we employ a coarse-grained multi-threading technique that executes
individual inferences on separate threads whereas fastText is single-
threaded. We launch a variable number of OMP threads (max 26)
and set the number of predictions to 10. The right-most chart of fig-
ure 3 shows the per-sample inference times for fastText, Astec and
Graphite on all the categories. For all except the largest category,
the inference times of both models are comparable, with a geomet-
ric mean speedup of 7x of Graphite over fastText. Graphite is much
faster than Astec with an average speedup of 20x. Astec’s inference
was done on GPU due to absence of any CPU based code. Graphite’s
inference time on Small datasets group is extremely small with upto
90x speed up over both fastText and Astec. Since, CAT_1 is the

largest category by label space and number of items, Graphite results
in a longer inference time due to the reasons discussed in section 3.4.
We mitigate this practically by using a relatively smaller training set
for CAT_1 corresponding to a shorter historical duration. Although
this results in a smaller number of CAT_1 items, it still has sufficient
number of items resulting in minimal impact on the recommendation.

Figure 4 shows the training times required to generate a model for
both fastText and Graphite. We only compare using categories from
the Very Large group from Table 1, due to their much larger training
times. The autotune duration of fastText was set to a certain number
of hours to choose the best hyperparameter for optimal model size
and precision/recall scores. In some cases, getting an optimal score
required autotuning for ~ 10 hours. The average training time of
categories on which Astec executes was 1.8 hours with up to 7 hours
for some categories. This excludes the time to compute the surrogate
clustering stage which runs into hours. The categories that Astec fails
to execute on, would require much larger epochs resulting in training
time running into days. In contrast, Graphite takes only a few minutes
to generate a model and thus, enables frequent model refresh and
efficient model management.

4.3.4  Shortcomings of DNN models on Huge Datasets

To discuss Astec’s failure to execute on Very Large Categories, we
first dive into more detail on its surrogate task which it’s pivotal
stage. Astec’s surrogate stage performs two steps in conjunction, La-
bel selection and Intermediate representation training. As described
in section 2, the selection is done using clustering which requires
generating a representation per label. This representation is gener-
ated from those training data points that each label is associated with.
To perform the clustering, Astec tries to allocate memory in RAM as
a function of the number of training points and labels. Thus, it fails
for all the categories in Very Large and Large groups due to the in-
feasibility of the allocation for their sizes as mentioned in table 1.

AttentionXML also doesn’t run for the Very Large categories.
It encounters limitations due to its substantial CUDA memory re-
quirements for conducting the forward pass and computing gradi-
ents during its multi-label attention phase. Even for category CAT_8,
AttentionXML requires more GPU memory than two Tesla V100
(>64GB) to train the model. This requirement would be even larger
for categories CAT_1-7, and theoretically for CAT_1, the require-
ment could exceed the specifications of commercial GPUs even when
the hidden layer’s size is restricted to 64.

4.3.5 Al Evaluations and Case Study

The keywords predicted were evaluated for a subset of randomly
sampled 100 items using GPT-4 [23] evaluation as a proxy for hu-
man evaluation.® The responses were yes/no answers to relevance be-

3 More information is available in Appendix at https://arxiv.org/abs/2407.
20462.
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tween the title and keywords. Table 2 shows the percentage of item-
keyword pairs in comparison to fastText that were evaluated as yes
for one representative category from each group in table 1 including
the ground truth keywords for the subset of items. * Graphite shows
superior alignment with GPT-4 evaluation.

Group ‘ Category ‘ fastText ~Astec  Graphite  Ground Truth
Very Large CAT_4 30.6 - 61.2 92.9
Large CAT_11 44.6 - 72.8 90.9
Medium CAT_18 61.2 76.6 78.0 91.9
Small CAT_28 50.4 72.8 75.5 91.1

Table 2: Percentage of relevant keywords from Al evaluations of 10
predictions for 100 items from fastText, Astec and Graphite.

A case study on the item titled “treated wooden deckboards”
demonstrates the effectiveness of each model’s top recommendation.
Graphite predicts deckboards which is the same as the ground truth
and found relevant by GPT4. In contrast, fastText and Astec pre-
dict moraea and wooden stakes respectively, both being annotated
irrelevant. For another item “bird bath stone water basin garden
decoration food bowl frost resistant”, Graphite predicts stone bird
bath while both fastText and Astec predict the irrelevant keyphrase
floor bird bath. In both examples, Graphite’s predictions have similar
words to the item’s title, thus our model is better able to find the nu-
ances between different labels recommended for an input. Whereas,
fastText and Astec embeddings yield irrelevant results due to imper-
fect learning.

4.3.6 Impact

Graphite was deployed as part of eBay’s seller side keyphrase-
recommendation service. This was possible due to its scalability and
lightweight nature. A differential pre-post analysis was performed
—which showed that Graphite was able to increase the eBay plat-
form’s coverage by recommending 6% more unique keyphrases and
17% more unique item-keyphrase pairs (keyphrase coverage). The
acceptance rate — the fraction of keyphrases out of the recom-
mended keyphrases accepted by the sellers to place bids on — for
Graphite keyphrases was 3% higher than fastText’. The lift in accep-
tance rate reinforces the fact that Graphite keyphrases are better in
terms of seller (human) judgement than fastText, as sellers show a
greater proclivity to bid on these keywords than fastText. We can-
not disclose any more information due to proprietary and business
constraints.

4.4  Performance on Public Datasets

Apart from the analysis of the eBay datasets, we also wanted to com-
pare the performances of the models on other accessible datasets for
the sake of reproducibility and absolute comparison. The applica-
ble datasets should be search-based containing queries/keyphrases
that bear similarities to the input text. The label text is essential
for the comparison as our model uses word matches in the la-
bel. The standard datasets in the Extreme Multi-Label Short Text
classification space [7] are derived from real-world applications,
ranging from item-to-item recommendation (AmazonTitles-670K,
AmazonTitles-3M, etc.), to text-category tagging (AmazonCat-13k,

Wikipedia-500K, etc.). However, for the purpose of keyphrase rec-
ommendation, these datasets were not suited for our analysis.

For our analysis, we hinged on publicly available keyphrase rec-
ommendation datasets available in [9]. Out of these datasets, we
picked KPTimes [15] and KP20k [22] which are the largest datasets
to compare for scalability. KPTimes has 102,357 unique labels asso-
ciated with 259,923 training data points which are small enough for
large models to handle. While KP20k has 680,117 uniques labels for
514,154 data points.

Table 3 shows the absolute performances of fastText, Astec and
Graphite on KPTimes and KP20k. The Precision@5 and AVP scores
of Astec for KPTimes were better than all the models while Astec
couldn’t provide any meaningful predictions for KP20k. For other
scores, all model’s performances were the same and Graphite’s per-
formance stood out in execution metrics. ¢

. KPTimes KP20k
Metrics
fastText  Astec  Graphite ‘ fastText  Astec  Graphite

P@l 0.39 0.41 0.41 0.10 - 0.28
P@s 0.21 0.25 0.21 0.05 - 0.12
P@10 0.14 0.14 0.14 0.04 - 0.08
R@1 0.08 0.08 0.08 0.02 - 0.05
R@5 0.21 0.21 0.21 0.05 - 0.12
R@10 0.27 0.27 0.27 0.07 0.16
AVP 0.22 0.25 0.22 0.05 - 0.13
Inference | ¢5 032 003 677 036 005
Time (ms)
Training 4h 0.5h 7.55 4h 1.8h 2125
Time
Model
Size (MB) 47 595 16 324 299 50

Table 3: Performance of fastText, Astec and Graphite on KPTimes
and KP20k dataset.

5 Conclusions and Future Work

We present a simple, transparent, and lightweight graph model that
can classify an extremely large number of labels in real-time. We
show comparisons with baseline models like fastText and with a
state-of-the-art model like Astec using real-world datasets provided
by eBay. We find that fastText performs reasonably well on the ex-
treme classification task due to its linear neural network architecture.
Graphite’s performance is better than that of fastText based on the
Precision, Recall, and AVP scores for the 40 eBay categories that we
analyzed. Both our model and fastText can handle larger datasets.
Although Astec’s performance is comparable to Graphite, it fails to
execute on Very Large and Large categories due to its usage of cen-
troid method in the surrogate task stage. Graphite has lower training
time than fastText with its inference time comparable to fastText. In
the future, we aim to apply Graphite to a variety of other classifi-
cation tasks especially where the label text shares words with the
input texts. We find that the clustering phase of our model is crucial
to its performance, which can be further improved with better and
light-weighted clustering algorithms. The execution and storage cost
of the large category in the eBay dataset can be further mitigated by
developing distillation techniques that reduce the number of training
points without compromising any significant information. Graphite’s
bipartite graph can also include weights indicating relational propen-
sity among the words, instances, and labels.

4 All the GPT-4 numbers for the ground-truth are greater than 90% showing
high-degree of alignment with positive buyer judgement.

5 All these numbers were calculated over a period of one month for over
millions of keyphrases and thousands of sellers.

6 fastText’s per inference time on the datasets in table 3 is relatively higher as
the model’s autotuning was carried out only using its autotune parameter.
The tuning of parameters such as minCount and minCountLabel reduces
the sizes of the token and label spaces, thus reducing inference time.
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