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Abstract

We present a full-stack modeling, analysis, and parameter identification pipeline

to guide the modeling and design of biological systems starting from specifications to

circuit implementations and parameterizations. We demonstrate this pipeline by char-

acterizing the integrase and excisionase activity in cell-free protein expression system.

We build on existing Python tools — BioCRNpyler, AutoReduce, and Bioscrape — to

create this pipeline. For enzyme-mediated DNA recombination in cell-free system, we

create detailed chemical reaction network models from simple high-level descriptions

of the biological circuits and their context using BioCRNpyler. We use Bioscrape to

show that the output of the detailed model is sensitive to many parameters. However,

parameter identification is infeasible for this high-dimensional model, hence, we use

AutoReduce to automatically obtain reduced models that have fewer parameters. This
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results in a hierarchy of reduced models under different assumptions to finally arrive

at a minimal ODE model for each circuit. Then, we run sensitivity analysis-guided

Bayesian inference using Bioscrape for each circuit to identify the model parameters.

This process allows us to quantify integrase and excisionase activity in cell extracts

enabling complex-circuit designs that depend on accurate control over protein expres-

sion levels through DNA recombination. The automated pipeline presented in this

paper opens up a new approach to complex circuit design, modeling, reduction, and

parameterization.

Introduction

Over the past few years, there has been widespread adoption of software tools in syn-

thetic biology research for modeling, simulation, analysis, data exchange, and design

optimizations. The focus on bio-design automation and rational design in synthetic biol-

ogy has led to this enthusiastic acceptance of software tools. A few examples include

Synthetic Biology Open Language (SBOL)/Systems Biology Markup Language (SBML)

compatible tools (for data and model standardization),1,2 COPASI3 (for modeling and sim-

ulation), iBioSim4 (for CAD-style circuit modeling), Tellurium5 (for text scripting of circuit

models), promoter/RBS calculators6,7 (for prediction of transcription/translation initiation

rates), and automated design recommendation tools.8,9

The rise in tools for specific tasks has led to their integration into pipelines and reposi-

tories like SynBioHub,10 Galaxy SynBioCAD,11 and Infobiotics.12 SynBioHub is a platform

that facilitates the integration of software and data for synthetic biological designs so that

users can easily share and reproduce system designs in a standardized format. Similarly,

an end-to-end metabolic design portal called Galaxy SynBioCAD chains tools together

into various workflows for common design and analysis tasks such as genetic design, flux

balance analysis, and pathway benchmarking. While SynBioHub is focused on the stan-

dardization of software and data used in synthetic biology pipelines, Galaxy SynBioCAD
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Figure 1: An iterative Python pipeline for modeling, analysis, and learning of biological circuits. In the first
iteration, we build the CRN model for subsystem #1 and then obtain the minimal representation suitable
for parameter identification. Bayesian inference is used to find parameter distributions. The results of the
Bayesian inference are fed back into the more detailed model that is built in the second iteration. The
previously identified context and circuit parameters are fixed in this larger model so that the analysis can
now focus on the new parts introduced in the circuit. For each iteration, a CRN model is compiled using
BioCRNpyler, this is the white-box modeling step that includes the mechanistic details of the system. With
AutoReduce, we obtain a hierarchy of lower dimensional ODE models under different modeling assumptions.
We call this grey-box modeling because we can tune the granularity of the models. Finally, we validate the
model parameters in the reduced model by using Bioscrape.

allows for automated engineering and analysis workflows for designing metabolic path-

ways. A similar experimental design automation software that focuses on the test and

learn parts of the design-build-test-learn cycle called RoundTrip13 has been developed

recently. An important aspect of rational synthetic biology design that is not addressed

by these approaches is model-guided design, or forward engineering, where specifica-

tions of circuits can be converted to mathematical models with parameters inferred from

experimental data. A software suite that claims to integrate modeling, simulation, and

verification for synthetic biological circuits was recently presented, called the Infobiotics
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Workbench.12 Infobiotics develops a domain-specific language for synthetic biology cir-

cuits to write specifications and provides a Java-based GUI platform for modeling and

analyses. It is clear from these recent efforts that, for scalable biological circuit design,

there is a need for open-source, user-friendly, and easy-to-access modeling and analysis

pipelines that work alongside experimental data in a design-build-test-learn cycle.

Towards that end, we present an automated Python pipeline for iterative modeling,

model reduction, analysis, and parameter identification of synthetic biological circuits.

We further develop the Python software packages — BioCRNpyler14 (to build models),

AutoReduce15 (to obtain reduced models), and Bioscrape16 (for simulations, analysis,

and Bayesian inference using Emcee17) — to create the computational framework shown

in Figure 1. A key idea with the proposed pipeline is its iterative nature by breaking

down the system analysis into smaller parts. Once we learn the parameters of subsystem

#1 and the system context, we fix these parameters for the next iteration. In this way,

the parameterization of the model with both subsystem #1 and #2 is feasible and leads

to reliable predictions that can guide the experimental design for the bigger system. This

process of system identification and learning by parts to guide the design of more complex

circuits can be extremely important for scalable biological circuit design and analysis. The

proposed pipeline is a step in this direction. Further, the pipeline uses standardized data

and model formats to allow for interoperability of tools and integration with other existing

pipelines. To demonstrate the tools, we apply this pipeline to characterize an integrase

and excisionase-mediated DNA recombination circuit in a cell-free extract.

DNA Recombination Circuits

Recombinase-based circuits are circuits that utilize the unique functionality of phage in-

tegrases. Phage integrases are responsible for catalyzing the site-specific insertion of

bacteriophage DNA into a host genome. These enzymes utilize specific attachment sites

found in both the phage and host DNA: attP and attB, respectively. Upon integration of the
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phage DNA into the host genome, the attachment sites attL and attR are formed .18 This

insertion can then be reversed by the expression of a similar enzyme called, excisionase.

Excisionases work in conjunction with the integrases to excise the phage DNA from the

host DNA, restoring the original attB and attP sites.19 Further research and characteriza-

tion of these enzymes led to the discovery that the presence of anti-parallel attB and attP

sites in the same strand of DNA leads to the inversion of the flanked segment, generating

anti-parallel attL and attR sites. This attL and attR flanked DNA segment can then be

reverted to its original orientation by an integrase-excisionase complex.20

One class of these phage integrases is serine integrases. Serine integrases have

been used in many recombinase-based circuits for some of their advantageous charac-

teristics when compared to other integrases.21–23 For example, some serine integrases

only require an integrase and a reverse directionality factor, or excisionase, to function

as opposed to other integrases which require additional cofactors for proper functioning.

Moreover, serine integrases can use relatively short attachment sites when compared to

other classes of integrases.

To date, recombinase-based circuits with various functionality and applications have

been designed and experimentally validated. For example, event ordering detection cir-

cuits,24 gene networks that count,25 boolean logic and memory circuits,26 and many more

circuits have all been created in living cells using recombinases. Although there has

been progress in exploring the mechanisms for enzyme-mediated DNA recombination,

the dynamics and characteristics of integrases and excisionases have not yet been fully

quantified. In order to accelerate the design and implementation of increasingly com-

plex recombinase circuits, novel methods are required to efficiently quantify their complex

dynamics.

We used the proposed modeling and analysis pipeline to study the dynamical mod-

els of integrases and excisionases. We anticipate our pipeline providing a foundation to

guide further design and implementation of increasingly complex recombinase circuits.
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In applying this pipeline, we built mathematical models and validated the mechanistic

parameters for Bxb1 – a well-characterized and studied serine integrase-excisionase sys-

tem.27–29 This pipeline, however, can be used to characterize general biological systems

to guide the design of progressively complex circuits.

Main Contributions

1. We develop new chemical reaction network (CRN) mechanisms in BioCRNpyler for

integrase action to flip a promoter and the excisionase action to reverse it. These

mechanisms model the details of the intermediate complexes and the binding rates

of integrase to the DNA, excisionase to the integrase, the complexes, and to the

DNA. With model reduction and in silico analysis, we show which mechanisms de-

scribe the expected behavior and then validate these models with in vitro cell-free

data.

2. We further develop the Python model reduction package, AutoReduce, by providing

new model reduction methods for CRN models and seamless import and export of

models as SBML files.

3. For parameter inference, we extend the Bioscrape package by developing an easy-

to-use parameter identification wrapper around Python emcee software. Although

we only demonstrate time-series data in this paper, the Bioscrape inference package

can also be used to validate models using distributional data from flow cytometry,

and end-point data under multiple conditions.

4. We show a successful implementation and experimental validation of integrase and

excisionase mediated DNA recombination circuit in cell-free system. After compil-

ing, reducing, and parameterizing our model from experimental data, we are able

to accurately model the effect of integrase and excisionase gene concentrations on
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Figure 2: Modeling of integrase expression and activity in cell-free systems. The circuit consists of two
plasmids, one expressing the Bxb1 integrase and the other with a reversed promoter upstream of the YFP
reporter. The integrase activity flips the promoter so that YFP is expressed. BioCRNpyler is used to
convert this abstract system description into a CRN model written as an SBML file with 20 species and 29
parameters. All species definitions in the model are given in the model details section in the supplementary
information.

fluorescent reporter output. For example, on adding higher integrase DNA concen-

trations, our models correctly predict the experimental observation that the reporter

expression increases while it decreases as more excisionase is expressed.

Results and Discussion

Modeling Integrase Activity in Cell-free Systems

To characterize the integrase activity independent of the excisionase, we design a two

plasmid system — (1) Bxb1 integrase expressing plasmid fused with CFP to measure in-

tegrase expression, and (2) a YFP plasmid that gets activated on integrase action (shown

in Figure 2). Using this circuit, we characterize the integrase expression in a cell-free

extract and its flipping action on a promoter to control the fluorescent reporter expres-

sion (data shown in Figure 5A, also see information on cell-free extracts in the Methods
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Simulation and Sensitivity Analysis Using Bioscrape
YFP sensitivity in full model (M1)

S
ensitivity C

oefficients

Figure 3: Simulation and analysis of integrase expression and activity in cell-free systems using Bioscrape.
The simulations predict the CFP and YFP expressions under different initial conditions. The sensitivity
analysis shows the most influential parameters for the time course of YFP expression.

section).

Towards this first goal, we model the two plasmid system in a cell-free extract using

a detailed mechanistic chemical reaction network (CRN) with mass-action kinetics us-

ing BioCRNpyler. In BioCRNpyler, a CRN is compiled by specifying the circuit parts as

Component objects, their interactions as Mechanism objects, and the context for the circuit

as a Mixture. For the integrase circuit, we create an integrase component and two new

mechanisms — a simple integrase flipper mechanism with one reaction that converts the

inactive DNA to active by flipping the promoter direction and a detailed integrase flipper

mechanism that models the binding reactions of the integrase to various DNA sites. Fi-

nally, to compile a CRN model, we use an existing BioCRNpyler mixture, TxTlMixture

to model the cell-free context and resources. The detailed reactions for this model are

given in Figure 5A. We simulate this CRN model using Bioscrape (shown in Figure 3) to

explore the design space and the resource-loading effects. However, the detailed model

is infeasible to fit the experimental data due to the problem of unidentifiability30 and high-

dimensionality. Hence, we use AutoReduce to automatically derive potential reduced

models for this system (see model reduction section in Methods). First, we derive and
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Model Reduction using AutoReduce

where
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3. Context Abstraction:
BioCRNpyler
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Figure 4: A hierarchy of reduced models for integrase expression and activity in cell-free systems using
AutoReduce. The CRN model is reduced in multiple steps with AutoReduce. First, the conservation laws are
determined (as shown in C-2) and a reduced model is obtained symbolically. This reduced model has 5 fewer
states than the full model and is further reduced using QSSA. Multiple reduced models are possible at this
stage, out of which one model, M3, is selected (tick marked in the figure) based on the error performance
metric as computed by AutoReduce. Then, a minimal model is obtained by abstracting the details and
further reducing the model using QSSA and species abundance assumptions. The minimal ODE model (M4)
is shown in C-4. The simulations for reduced models (M2, M3, and M4) are also shown.

apply the conservation laws to reduce the system model. Then, we apply quasi-steady

state approximation (QSSA) to obtain reduced models under different assumptions. Us-

ing model reduction performance metrics, we choose reduced models that recover the

desired properties (integrase flipping, fluorescent reporter levels, and any other important

context effects), shown in Figure 4 as M-3. See the performance metrics section in Meth-

ods to read more about how we assess reduced model performance. To obtain a further

reduced model, we abstract the context by switching off resource-dependent mechanisms

for transcription and translation in BioCRNpyler (more information on context abstraction

is given in the Methods section). Then, we further reduce the one-step transcription and

translation model using QSSA and assuming the abundance of certain species to obtain

a minimal ODE model (M-4). It is evident from Figure 4 that the model M-4 recovers the

commonly used Hill function, however, no heuristics were used in deriving this model. We
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export this model as SBML for further analysis.

At each step in the model reduction hierarchy, the number of states and the parameters

are reduced. For better accuracy of the reduced model, the user may choose a model that

is higher up in the hierarchy, whereas, for faster simulations, the minimal model with the

fewest parameters may be chosen. The computational run time to obtain each reduced

model varies from a few seconds up to a maximum of a few minutes on an i7-6700K Intel

CPU laptop with 16GB of RAM.

For the minimal model, we find the identifiable parameters as the most sensitive pa-

rameters affecting the measurements. The sensitivity analysis tools in Bioscrape (shown

in Figure 5B) show the sensitivity of each model parameter with time for each output

measurement (CFP and YFP). For the identifiable parameters, we use Bayesian infer-

ence tools in Bioscrape to fit the cell-free data (see Figure 5B and the inference sec-

tion in Methods). The parameter inference algorithm is implemented in Bioscrape as a

black-box Python wrapper for the emcee package that implements a Markov Chain Monte

Carlo (MCMC) sampler for Bayesian inference. We import the SBML file for the model

and the experimental data as CSV and then run the inference after choosing appropriate

MCMC parameters (see Supplementary Information). After running the sampler, we ob-

tain posterior distributions for the parameters which are then used for plotting the identified

model simulation against the experimental data. Hence, the “full-stack” Python pipeline of

modeling, design-space exploration, sensitivity analysis, model reduction, and parameter

inference gives us a validated mathematical model for cell-free integrase activity.

Modeling Excisionase Activity in Cell-free Systems

Integrase action activates the output fluorescence protein expression by recombining the

attP-attB site on the DNA to the attL-attR site so that the promoter is flipped towards

the protein coding sequence. To accurately control this expression, we use the reverse

directionality factor or the excisionase enzyme which can reverse the promoter direction
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A. Median Integrase Expression (CFP) and Activity (YFP)

B. System Identification By Parts Using Bioscrape
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Figure 5: Experimental data and system identification by parts of cell-free integrase expression and activity.
(A) Median background-subtracted fluorescence data for the integrase circuit in the cell-free extract. (B)
We identify the system by parts, that is, we first select the integrase expression part of the circuit and run
sensitivity analysis to find out its identifiable parameters. We observe that ki is the only sensitive parameter
and hence, we run Bayesian inference to identify the posterior parameter distribution for ki. The model
fit alongside the data is shown in the rightmost column. Once we have identified this part, we fix the
corresponding parameter, ki, and run the sensitivity analysis for YFP output. We identify all parameters
that YFP is sensitive to. The corner plot shows the posterior distributions of each parameter alongside their
correlations with 75% confidence contours. The mismatch in the data and the model is due to the minimal
model not capturing the plateauing expression as cell-free extract stops protein expression.
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by changing from the attL-attR site back to the “inactive” attP-attB site on the DNA. We

design a new plasmid that expresses the excisionase fused with mScarlet to measure the

excisionase expression (see Figure 6).

We build on the integrase models (both detailed and simplified mechanisms) shown

in the previous section to develop excisionase mechanisms. We hypothesize that the

excisionase can have two possible mechanisms to reverse the integrase activity:

1. The excisionase binds to the integrase and the resulting complex then binds to the

attL-attR site on the DNA to flip it to the attP-attB site. The integrase-excisionase

complex may also bind to the attP-attB site, sequestering the site from further re-

combinations.

2. The excisionase binds to the integrase-bound DNA sites to form a complex that then

flips the promoter region or keeps it sequestered.
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pTet
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Integrase 
Activity
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Figure 6: CRN models for excisionase expression and activity in cell-free extract using BioCRNpyler. We
obtain a CRN for the circuit with both integrase and excisionase in cell-free extract by describing the circuit
specifications in BioCRNpyler. The resulting model has 30 states and 54 parameters. The species definitions
are given in the supplementary information on model species.
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Simulation and Sensitivity Analysis Using Bioscrape for Integrase-Excisionase Model

YFP sensitivity in full model0.25 0.50
S

ensitivity C
oefficients

Figure 7: Analysis for excisionase expression and activity in cell-free extract using Bioscrape. We show
the simulation for the CRN model. In this model, we use the identified integrase parameters to predict the
excisionase activity. We observe that as more excisionase is expressed, YFP expression falls down. The
sensitivity of each parameter in the CRN model with time is shown in the sensitivity analysis heatmaps.

With BioCRNpyler, it is possible to switch ON any one or both of these mechanisms when

compiling the CRN model. See Figure 6 for the list of chemical reactions. We compile

a detailed integrase-excisionase model in BioCRNpyler with these mechanisms added

into the same TxTlMixture as was used for the integrase model. This model consists

of 30 species and 54 parameters. For this model, we predict various parameter values

from the characterization of the integrase circuit in cell-free extract. We use the identified

and validated parameters for the cell-free extract resources, integrase expression, and

integrase action in the excisionase model. The integrase action parameters in this model

are context-dependent, so, we allow for these to be updated as we validate using the

integrase-excisionase cell-free data. However, we keep the cell-free resource parameters

constant as they model the total resources provided by the extract.

We analyze the sensitivities of each parameter in this model to the output and run

simulations under various conditions to predict the excisionase action a priori. This guides

our design choices of choosing the excisionase plasmid levels relative to the integrase

plasmid levels. As we vary integrase plasmid initial conditions from 0 to 2 nM, we observe

that varying the excisionase initial conditions from 0 to 1 nM gives accurate control of

output protein desired levels of expression. This is the design choice we made for the
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Model Reduction using AutoReduce

CRN model (M5)
with 30 states

ODE model (M6) with 
conservation laws 

ODE model (M7) 
w/ 𝑇𝑖 ,𝐶𝑖1 ,𝐶𝑖 ,𝑇𝑒 ,𝑇

at QSS

ODE model with
𝐶𝑖 ,𝑇𝑖 ,𝐶𝑎 ,𝑇𝑒 ,𝐶𝑖1 ,𝑇

at QSS

ODE model with 
𝐶𝑖2 ,𝐶𝑖 ,𝑇𝑖 ,𝑇𝑒 ,𝐶2

at QSS

1-step TL
ODE model

1-step TX 
ODE model

Excisionase 
mechanism #1 

switched off 

Minimal model (M8) with
1-step TX-TL, excisionase 
mechanism #2, and QSSA

Total: 5 states

Excisionase 
mechanism #2 

switched off 

Analysis at each step using Bioscrape
0.25
0.50

Model: M6 Model: M7 Model: M8

1. Conservation Laws 2. QSSA 3. Context Abstraction 4. QSSA and Species Abundance

Figure 8: Mathematical models for excisionase expression and activity in cell-free extract obtained using
AutoReduce and BioCRNpyler. Using AutoReduce, we find the conservation laws in the CRN model given
by BioCRNpyler. After applying conservation laws, we further reduce the dimensionality of the integrase-
excisionase system by assuming species at a quasi-steady state (QSS). Finally, we abstract the context of
resource details modeled using BioCRNpyler and reduce these models further using AutoReduce to obtain a
minimal model (M8). The chosen reduced models are marked with a tick while a cross indicates discarded
reduced model. The simulations for three reduced models are shown — M6, M7, and M8. The computational
run time to derive these reduced models are similar to the integrase reduced models, varying from a few
seconds to a few minutes.

cell-free experiments with both integrase, excisionase, and reporter plasmids (resulting

in vitro data shown in Figure 9). These forward design choices driven by mathematical

models were made possible due to the characterization of a smaller part of this circuit

(the integrase-reporter circuit), the detailed models, their sensitivity analyses, and with

preliminary excisionase-reporter cell-free experiments.

To validate the mathematical models by identifying parameter values from the exper-

imental data, we need to reduce the dimension of the parameter space of the detailed

model. Although the detailed model captures a range of behavior, such as resource load-

ing and competition, it is infeasible for parameter identification due to the unidentifiability of

its large parameter space. So, we use AutoReduce to reduce the models in multiple steps.
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This model reduction process is shown in Figure 8 which starts at automatically deriving

and applying the conservation laws, then proceeds to QSSA, and finally, context abstrac-

tion with BioCRNpyler to derive a minimal ODE model (M-8 in Figure 8). This minimal

model is suitable for parameter identification as it contains only 5 states and 17 param-

eters out of which 4 parameters are most sensitive to YFP expression (see Figure 9B).

Using the identified parameters, we are able to characterize and predict the excisionase

activity in reversing the integrase action, their relative strengths, and the ratios required for

accurate protein level prediction. The experimental data and the parameter identification

steps for excisionase characterization are shown in Figure 9.

Conclusion

We present a new in silico pipeline to assist the design-build-test-learn process in syn-

thetic and systems biology. This pipeline consists of user-friendly, open-source, Python

software packages that have been developed with community input and support stan-

dardized models written in SBML. We build on three Python packages to formulate the

pipeline presented in this paper, which starts by building detailed reaction network mod-

els for biological circuits, reducing the detailed models to simpler ODEs, and seamlessly

connecting these models to experimental data through Bayesian inference. All software

packages demonstrated in this paper are Python-based (for easy integration with other

tools and pipelines) and have an active discussion and issue support forums through

Github.

We demonstrate the application of this pipeline with a novel circuit design in a cell-free

protein synthesis system. We build a three-plasmid system consisting of DNA recombina-

tion enzymes, integrases, and excisionases. With the help of this pipeline, we characterize

the expression and action of integrases and their reverse directionality factors, excision-

ases. This characterization involves detailed reaction network models, ODE models un-
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A. Median Integrase (CFP) & Excisionase (mScarlet) Expression and Activity (YFP)

B. System Identification By Parts Using Bioscrape
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Iteration 1 & 2 : Update Bxb1-CFP parameters (from identified M4) 
                          and identify Xis-mScarlet expression in M8

Iteration 3: Identify integrase and excisionase 
                  activity mechanisms

Model vs Data

Identify    , 

Identify 

Fix     ,
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Parameter Distribution 
and Correlations

1.50 2.0

Figure 9: Experimental data and system identification by parts of integrase and excisionase expression
and activity in cell-free extracts. (A) Median background-subtracted fluorescence data for the integrase-
excisionase circuit in cell-free extract. We observe that as more integrase is added, more YFP is expressed
until the maximum possible expression is reached at 1.5nM integrase. With higher excisionase levels, we
observe a decreasing gradient of YFP levels. (B) To identify the model parameters, we set the previously
identified integrase mechanism parameters and update those accordingly to account for various loading
effects. In the second iteration, we infer the parameters for the mScarlet expression. Finally, we identify
the sensitive set of parameters for YFP. In the right panels, we show the identified parameter distributions
and the data plotted alongside the model simulations. For more details on parameter inference, see the
supplementary note on parameter inference.
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der various assumptions with a clear indication of when each model is valid, and posterior

parameter distributions for model parameters that fit the experimental data. We quantify

the expression strengths of integrase, excisionase, and the reporter while also quantify-

ing their relative effects on the output fluorescence measurement. Particularly, we show

control of output protein expression at various levels with experimental data that is backed

by mathematical models. We postulate that predictable DNA recombination-based con-

trol of protein expression adds an alternative design choice for biological circuit designs.

This characterization of circuit parts in the cell-free system with mathematical models

would allow for such complex circuit designs that use integrases and excisionases for

precise control of protein expression. However, further characterization and experimen-

tation, especially concerning the loading effects, are required to achieve that goal. The

computational pipeline that we have developed is general enough to assist these future

research directions.

There are two noteworthy limitations of the work presented in this paper, both of which

are also open research problems in systems and synthetic biology:

1. Scalable biological circuit design: Although the computational pipeline presented

in this paper applies to larger biological circuits as well, it is only demonstrated for

circuits with 3-4 components. Various challenges limit our ability to quantify and

model larger circuits. From the biological standpoint, it is still unclear how the con-

text changes and affects the performance when more components are added to a

system. On the other hand, parameter identification for higher dimensional prob-

lems is computationally inefficient, which presents another bottleneck in validating

larger circuit models.

2. We show that reduced models can be systematically obtained from detailed models

for computationally feasible parameter inference. But, in some cases, we observe

that the reduced models are unable to fit the experimental data (for example, the

plateauing of fluorescence as the cell-free extract runs out of resources). We expect
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to further build on the modeling tools presented in this paper and integrate these

with other tools and pipelines to address some of these issues.

Methods

Cell-free Experiments

Experimental characterization of both integrase and excisionase activity was done in a

cell-free extract – an in vitro, cell-free protein expression system. As depicted in Figure 2,

the cell-free reactions created are composed of S30 E. coli cell extract, energy buffer,

and DNA of our designed genetic circuit.31 The cell-free extract and energy buffer were

prepared following the protocol in Sun et al.32 Plasmid DNA was added to a cell-free

master mix of cell extract and energy buffer to create each reaction. When analyzing

the integrase activity, we used automated acoustic handling (Labcyte Echo 525) to load

reagents into a 96-well plate and vary the level of the integrase and reporter plasmids

from 0 to 1 nM over 5 concentrations: 0 nM, 0.25 nM, 0.50 nM, 0.75 nM, and 1 nM.

Each reaction contained one possible combination of the integrase plasmid and reporter

plasmid, creating a total of 25 reactions. A total of 50 reactions were generated to achieve

duplicates for all possible reactions. After all of the reactions had been created, they were

incubated at 29oC while measuring the CFP (Ex: 440; Em: 480) and YFP (Ex: 503; Em:

540) fluorescence every 5 minutes in a Biotek Plate Reader.

When analyzing the excisionase activity, we varied the level of the integrase plasmid

and excisionase plasmid from 0 to 2 nM and from 0 to 1 nM, respectively, while keeping

the concentration of the reporter plasmid constant at 1 nM for each reaction. Again, using

automated acoustic handling (Labcyte Echo 525), we varied the concentration of each

plasmid independently over 5 concentrations. The integrase plasmid was added to each

reaction at 0 nM, 0.5 nM, 1.0 nM, 1.5 nM, or 2 nM. Additionally, the excisionase plasmid
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was added at 0 nM, 0.25 nM, 0.5 nM, 0.75 nM, or 1 nM. Each reaction contained one

possible combination of the integrase plasmid and reporter plasmid, creating a total of 25

reactions. A total of 50 reactions were generated to achieve duplicates for all possible

reactions. After all of the reactions had been created, they were incubated at 29oC while

measuring the CFP (Ex: 440; Em: 480), RFP (Ex: 564; Em: 594), and YFP (Ex: 503;

Em: 540) fluorescence every 5 minutes in a Biotek Plate Reader.

Model Reduction Methods

We used a variety of model reduction techniques to derive reduced models in this paper.

We chained these methods in an automated workflow by developing the Python model

reduction software, AutoReduce.33 First, all CRN models with mass-action kinetics admit

a set of conservation laws. The underlying theory and the derivation of conservation laws

is a well-studied topic in CRN theory.34 We implemented Python methods in AutoReduce

to search the conservation laws in a given model (not necessarily a mass-action CRN),

computation of reduced models with conservation law substitutions, and symbolic manip-

ulation of the model as well as numerical computations for symbolic models. For CRNs

with mass-action kinetics, we find that the derived conservation laws with AutoReduce

are mass conservation laws, such as the total RNA polymerase being conserved as the

sum of free polymerase, and all species in the model with a bound polymerase. Similarly,

we have conservation laws for total DNA, total ribosomes, total endonucleases, and other

resources.

After applying conservation laws, we used quasi-steady state approximation (QSSA)

to further reduce the models. The built-in automated QSSA tools in AutoReduce were

used for this purpose. By applying QSSA iteratively to reduced models, we obtain further

reduced models. The details of which species were assumed to be at QSS are shown

in Figures 4 and 8. For both full models (the integrase action and integrase-excisionase

action), we obtain a set of reduced models, each with different assumptions in the deriva-
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tion of the reduced model. These are shown as flowcharts in Figures 4 and 8. Some

reduced models were amenable to even further reduction in dimensionality by introducing

species abundance assumptions. For example, on assuming abundance of RNA poly-

merase (Ptot), we may write the terms like Ptot − C as approximately equal to Ptot where

C is an intermediate low concentration complex species. Such assumptions were only

true under certain parameter conditions and for certain reduced models, hence, did not

always lead to correct reduced models (see the section on performance metrics in Meth-

ods for more on how we validate a reduced-order model). Nevertheless, with the Python

tools in AutoReduce and our further additions to it, exploration of the space of models is

quick. Finally, we extended AutoReduce to develop wrappers for easy import and export

of SBML files so that the tool can be seamlessly connected to existing pipelines.

Context Abstraction with BioCRNpyler

BioCRNpyler allows the modeling of biological systems in different contexts and modeling

details with the use of built-in Mixtures (objects that model the context-dependent and

global effects) and Mechanisms (objects that capture the modeling detail for a process).

In this paper, we utilize this key functionality of BioCRNpyler to explore the design space

and possible hypothesis for integrase and excisionase-based DNA recombination. We

developed two integrase action mechanisms — a simple mechanism that models the flip-

ping of attP-attB promoter sequence to attL-attR in one step, and a detailed mechanism

that models the same process but with binding events involving integrase binding to the

different DNA sites. For excisionase action, the exact mechanism and binding steps are

unknown, so we model all possible steps and explore the hypothesis with our iterative

pipeline and the experimental data. We model the excisionase binding to DNA already

bound with integrase on the attP-attB or the attL-attR sites as the first hypothesis of the

excisionase mechanism. Once excisionase binds at the attL-attR site already bound with

integrase, it flips the sequence to attP-attB. Another potential mechanism by which exci-
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sionase may reverse the directionality of the promoter is by binding to the integrase first

and forming an integrase-excisionase complex. This complex, when bound with the DNA

at the attL-attR site, flips the promoter to attP-attB. Further, the sequestration mechanism

for excisionase is also modeled by including the reactions in which the excisionase binds

to the attP-attB site, hence, preventing integrase to act on it. We add all of these mech-

anisms to the library of BioCRNpyler mechanisms so that they can be used to build CRN

models in different mixtures. We use the TxTlExtract mixture in BioCRNpyler along with

the mechanisms described above to build detailed CRN models. In the iterations of the

pipeline, as described in Figure 4 and 8, we switch mechanisms ON or OFF to abstract the

details of the model and switch Mixtures to build simpler or detailed models. In conclu-

sion, the context abstraction with BioCRNpyler is achieved by building mechanisms and

mixtures and simply choosing the mixture to use for context and the mechanisms for the

modeling detail.

Reduced Model Performance Metrics

Each reduced model obtained in this paper was tested for its performance against the full

model by computing different metrics. We used the metrics developed in Pandey et al.15

for this purpose. First, we computed the normed error metric, ζ, for each reduced model:

ζ = ∥y − ŷ∥22 ,

where y and ŷ are the outputs of the full and the reduced model respectively. In all cases

analyzed in this paper, we derived reduced models where the outputs of the full model

were never collapsed since these are the signals which are measured. For most cases,

the error performance metric sufficed in rejecting the reduced models, however, two other

metrics that were shown to be useful in deciding among equally good error-performance

models are:
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1. Error sensitivity: It was shown that when normed error performance is of the same

order for two or more reduced models, we can compute the sensitivity of the error

with respect to each parameter in the model to choose a reduced model whose error

is least sensitive to parameter perturbations.

2. Input-output map: For each reduced model, we computed an input-output system

gain using linear systems theory35 by first linearizing the model around a point of

interest. This input-output gain was then compared with the gain of the full model to

ensure the fidelity of the reduced models.

Using these error metrics, we decided which reduced model to choose as shown in Fig-

ures 4 and 8. The computation of the metrics for all reduced models shown in this paper

is available with the associated Python code on Github.36

Data Analysis and Parameter Inference

Standard Python libraries (NumPy37 and Matplotlib38) were used for the analysis and

plotting of experimental data. Three main analysis and optimization tools were used in

this paper:

Numerical Simulations

The Cython-based tool Bioscrape16 provides access to fast simulators suited to simulate

CRN models even under stiff conditions that are commonly observed in mass-action ODE

simulations. Although Bioscrape provides both deterministic and stochastic simulation

tools we used only deterministic simulations for the analyses in this paper. The Python

wrappers available in Bioscrape were used to import SBML files from BioCRNpyler and

AutoReduce to run simulations. All simulations shown in this paper were performed using

Bioscrape.
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Sensitivity Analysis

We extended the suite of analysis tools in Bioscrape by developing local sensitivity anal-

ysis methods. The local sensitivity coefficients are computed at each time point as

sij =
dxi

dpj
,

where xi is the i-th state and pj is the j-th parameter. The sensitivity coefficients are

arranged in a tensor of size length of timepoints × number of parameters × number of

states. The computation of sensitivity coefficients is done by using the direct method.39

Various options to control the accuracy, normalization, and integration methods are avail-

able to the user. Full documentation of the sensitivity analysis was added to the Bioscrape

documentation on Github.40 In Figures 3 and 7, we used the sensitivity analysis method

to assess which parameters were most effective for each model. In Figures 5 and 9,

we used the sensitivity analysis to find identifiable parameters from the data and guide a

by-parts parameter inference process.

Bayesian Inference Using MCMC

We used time-series fluorescence reporter measurements to validate the mathematical

models. Towards that end, we optimized the parameters in the model using Bayesian

inference. We find probability distributions for parameters given the experimental data

(posterior distributions) and then sample the parameter values from the posterior to sim-

ulate the model to plot alongside the data. Bayes’ rule is the underlying principle for this

approach:

P(pj|yi) =
P(yi|pj)× P(pj)

P(pj, yi)
∝ P(yi|pj)× P(pj)

log (P(pj|yi)) ∝ logP(yi|pj) + logP(pj),

23

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2022. ; https://doi.org/10.1101/2022.10.05.511053doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.05.511053
http://creativecommons.org/licenses/by-nc/4.0/


where pj consists of the parameters for which we want the probability distribution given the

data instance(s) yi. The probability distribution P(yi|pj) is called the model likelihood since

it is proportional to the likelihood of seeing the data yi given that the parameters take the

value pj. We implemented multiple ways in which this likelihood can be computed by sim-

ulating the model at the given parameter values pj and comparing the model against the

data. For example, the likelihood may be computed with Bioscrape as the normed differ-

ence between the model outputs and experimental measurements over time or it may be

computed as the maximum error between the simulation and the data. We implemented

a total of 6 methods to compute the model likelihood. The Bioscrape documentation de-

scribes these in detail. For the parameter inference in this paper, we used the determinis-

tic trajectory likelihood which computes the normed error between the model and the data

for all time in the data trajectories. The probability distribution P(pj) is the prior probability

distribution that gives each parameter value a probability of being the true value from the

prior information about the parameters. We implemented multiple prior probability dis-

tributions in Bioscrape including, Gaussian, uniform, log-normal, log-uniform, beta, and

more. A custom function may also be used as a prior probability distribution for a parame-

ter. Bioscrape documentation describes their usage in detail. Since all models used in this

paper are models that describe biophysical processes, the parameters have mechanis-

tic meanings, hence, priors were used to constrain the parameter inference according to

the biological prior knowledge about each parameter. To compute each parameter sam-

ple, we use the Python emcee17 package that implements a Markov Chain Monte Carlo

(MCMC) sampler. This MCMC sampler proposes the next parameter sample by assess-

ing how the previous sample performed. For more details on the sampling algorithm, the

reader is referred to the emcee documentation.17 In conclusion, we developed Bioscrape

inference as a black-box wrapper that imports experimental data and an SBML model

to be used for parameter inference with emcee. Code for all data analysis, parameter

inference, and related documentation are available on Github.36
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Raw Data and Concentration Calibration

The raw fluorescence data for the integrase and reporter circuit shown in Figure 2 is

shown in Figure 10. For the excisionase expression (mScarlet fluorescence) and its ac-

tion on the reporter, the raw fluorescence data for CFP (integrase expression), mScarlet

(excisionase expression), and YFP (reporter) is shown in Figure 11. We calibrated our

plate reader reading to obtain absolute fluorescence measurements for the cell-free ex-

periments. The calibration factors are presented in Table 1 where arbitrary units [AU] =

Slope · [uM] + Offset.
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0 nM int. plasmid 0.25 nM int. plasmid 0.5 nM int. plasmid 0.75 nM int. plasmid 1 nM int. plasmid

Figure 10: Cell-free fluorescence data for the integrase and reporter expression circuit. The raw measure-
ments are in arbitrary units. We process these measurements by subtracting the background and calibrating
the fluorescence to concentration units (details of the cell-free experiments are given in the Methods section).

0 nM int. plasmid 0.5 nM int. plasmid 1 nM int. plasmid 1.5 nM int. plasmid 2 nM int. plasmid

Figure 11: Cell-free fluorescence data for the integrase, excisionase, and reporter expression circuit. The
raw measurements are in arbitrary units. We process these measurements by subtracting the background
and calibrating the fluorescence to concentration units (details of the cell-free experiments are given in the
Methods section).
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Table 1: Calibration factors for cell-free experiments

Measurement Slope Offset
CFP 12796.23 -6248.64
mScarlet 9886.58 166.59
YFP 44451.55 294

Model Species

In the integrase model (shown in Figure 2), each variable represents the concentration

of the model species. Gi is the integrase plasmid, P is RNA polymerase (RNAP) and

Ci1 is the binding complex between RNAP and the gene. Ti is the mRNA transcript that

codes for the Bxb1-CFP (I) protein. The binding complex between mRNA and ribosome,

R, is denoted as Ci2. The reporter plasmid is called U in its “inactive” state (that is, when

the promoter is in the reverse direction) and A in its “active” state. RNAP binds to the

reporter gene to form the complex C1 to transcribe the reporter mRNA T , which then

binds to the ribosome (R) to form C2. The YFP concentration is denoted as Y . For the

integrase activity, we use ni for the cooperativity of integrase binding to the inactive gene,

U , to form the complex, Ci. The integrase flipping reaction forms the active complex, Ca,

which then reversibly forms the active reporter plasmid, A. We model the degradation of

mRNA and its complexes by the endonucleases in cell-free extracts. The endonuclease

concentration is denoted by E, which forms complexes Cei , Ceri , Ce, and Cer when it

binds to the integrase mRNA transcript, the ribosome-bound integrase mRNA transcript,

the reporter transcript, and the ribosome-bound reporter mRNA transcript respectively.

In the integrase-excisionase model (shown in Figure 6), we have the transcription and

translation of the Xis-mScar gene (Ge) that expresses the fused excisionase-mScarlet pro-

tein (E0). The corresponding transcript is denoted as Te, the RNAP-gene complex as Ce1,

and the transcript-ribosome binding complex as Ce2. For the excisionase action, we intro-

duce two mechanisms. In the first mechanism, the excisionase, with a cooperativity of ne,
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binds to the integrase-bound “active” reporter plasmid, Ca, with attL-attR sites to form the

complex Ce. The excisionase flips the promoter direction in this complex to form Cr, which

is the “inactive” complex with both integrase and excisionase bound at the attB-attP site.

Then, this complex reversibly unbinds to give out free integrase, excisionase, and the “in-

active” reporter plasmid, U . In the second excisionase mechanism, the excisionase binds

to the integrase forming the complex Cie. The excisionase may also bind to the integrase-

bound DNA, Ci, forming Cr, to sequester the integrase from flipping Ci to Ca. Finally, the

integrase-excisionase complex, Cie, binds to both the “inactive” and the “active” DNA (U

and A) to form complexes Cr and Ce respectively. Similar to the endonuclease-mediated

degradation of integrase and reporter mRNA and their complexes, the excisionase mRNA

and its complexes are also degraded. The endonuclease binds to the excisionase mRNA

to form Cee and it binds to the ribosome-bound excisionase mRNA, Ce2, to form the com-

plex Cere.

Parameter Values

All parameter values and simulation conditions for all models in this paper are available

on Github.36 To summarize some of these findings, we provide key parameter values

for the detailed and minimal models as tables below. Note that we identified the posterior

distributions (and hence, the uncertainties) for the parameters in the minimal models. The

corner plots in Figures 5 and 9 show these uncertainties in each identified parameters.

The reader is referred to the source code36 for more details on statistical convergence,

prior distributions, initial guesses, and posterior distributions with uncertainties.

Table 2: Cell-free global resources

S.no. Parameter Description Value Unit
1 Ptot Total RNAP in cell-free mixture 200 nM
2 Rtot Total ribosomes in cell-free mixture 400 nM
3 Etot Total endonucleases in cell-free mixture 30 nM
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Table 3: Key integrase expression and action parameters in cell-free extract

S.no. Parameter Description Value Unit
1 ktxi

Transcription rate of integrase expressing mRNA 0.25 hour−1

2 ktli Translation rate of integrase-CFP expression 0.013 hour−1

3 n Cooperativity of integrase action 3 –
4 kint Integrase flipping rate 0.1 hour−1

5 ktx Transcription rate of the reporter-mRNA 0.3 hour−1

6 ktl Translation rate of the reporter 0.03 hour−1

Note: Only 6 out of 29 parameters are given in the table.

Table 4: Key integrase-excisionase expression and action parameters in cell-free extract

S.no. Parameter Description Value Unit
1 ktxi

Transcription rate of integrase expressing mRNA 0.29 hour−1

2 ktli Translation rate of integrase-CFP expression 0.008 hour−1

3 ni Cooperativity of integrase action 3 –
4 kint Integrase flipping rate 0.1 hour−1

5 ktxe Transcription rate of excisionase expressing mRNA 0.292 hour−1

6 ktle Translation rate of excisionase-mScarlet expression 0.011 hour−1

7 ne Cooperativity of excisionase action 4 –
8 kexc Excision rate 0.7 hour−1

9 ktx Transcription rate of the reporter-mRNA 0.4 hour−1

10 ktl Translation rate of the reporter 0.08 hour−1

Note: Only 10 out of 54 parameters are shown. Note that some integrase parameters are updated in the
parameter identification process as the context changes in this more complex circuit

Parameter Inference and Unidentifiability

MCMC Sampler for Inference of Integrase-Reporter Circuit

In this section, we show the parameter inference results in detail for the integrase model

and the integrase-excisionase model. The parameter inference uses experimental data

from cell-free experiments. The same cell-free mixture (extract and buffer) is used for all

experiments shown in this paper to ensure that the context-dependent parameters remain

constant throughout.

For the integrase expression and action (model shown in Figure 2), the MCMC chains
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Figure 12: MCMC chains for identification of integrase model parameters given the integrase-reporter
cell-free experiments.

for the identified parameters are shown in Figure 12. As discussed in the main text, we use

system identification by parts to identify parameters sequentially using the sensitivities of

the measurements to different parameters. The first step of parameter identification uses

CFP measurement to identify ki as suggested by sensitivity analysis (see Figure 5B). We

run the MCMC sampler for 1000 steps, 10 walkers, and a Gaussian prior on ki with a

mean value of 0.23 and a standard deviation equal to 1. To identify the integrase action

and reporter expression parameters, kint, n, KI , and k, we use YFP measurement as

suggested by the sensitivity analysis. For this MCMC sampler, we use 40 walkers for
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10000 steps and Gaussian priors on all parameters. The mean values used in the priors

for kint, n, KI , and k are 0.05, 2, 3330, and 0.0001 while the standard deviations used are

10, 2, 1000, and 0.1 respectively. The total runtime for this parameter inference was 50

minutes on a personal computer with an Intel i7-6700 processor and 16GB of RAM.

Identified Integrase Model and Data

We sample from posterior parameter distributions and run model simulations. We plot the

simulations of the identified models together with the experimental data. These results

are shown for both the CFP and YFP measurements in Figures 13 and 14 respectively.

Figure 13: Model simulations with posterior parameter values plotted alongside CFP measurement. Ob-
serve that the model fits the data well for most conditions, however, for higher reporter plasmid concentration
the fit worsens. See the discussion on loading effects in Material and Methods for more information on this
observation.
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Figure 14: Model simulations with posterior parameter values plotted alongside YFP measurement. Ob-
serve that the minimal model (derived automatically from a detailed CRN model) does not fit the dynamics
as cell-free extract stops protein expression. This is a result of context abstraction steps in obtaining this
minimal model. Since the effects of resource usage are not modeled in this minimal model, the YFP expres-
sion in the model does not saturate as quickly as the observed data.

MCMC Sampler for Inference of Integrase-Excisionase Circuit

Here we describe the MCMC sampler used to infer the parameters of the integrase-

excisionase and reporter circuit (model shown in Figure 6). The MCMC chains for the

identified parameters are shown in Figure 15. First, we use the CFP measurement to

re-estimate ki in this updated context and then use the mScarlet measurement to infer

ke. See sensitivity analyses of the different outputs (CFP, mScarlet, and YFP) to model

parameters in Figure 7. We run the MCMC sampler for 1000 steps, 10 walkers, and

Gaussian priors on ki and ke with mean values set at 0.26 (previously identified maximum

likelihood value) for ki and 0.3 for ke. Both priors are used with a standard deviation equal

to 5. Further, to identify the integrase and excisionase action, and reporter expression

parameters, kint, di, ae2, as1, ds1, and k, we use YFP measurements as suggested by

the sensitivity analysis. For this MCMC sampler, we use 20 walkers for 20000 steps and
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Figure 15: MCMC chains for identification of integrase-excisionase model parameters using the data from
cell-free experiments.

Gaussian priors on all parameters. The mean values used in the priors for kint, di, ae2,

ke, as1, ds1, and k are 0.2, 500, 0.02, ke (previously identified), 0.1, 100, and 2 while the

standard deviations used are 5, 1000, 5, 0.1 ∗ ke, 5, 100, and 10 respectively. The total

runtime for this parameter inference was 24 hours on a personal computer with an Intel

i7-6700 processor and 16GB of RAM.
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Identified Excisionase Model and Data

We sample from posterior parameter distributions and run model simulations. We plot the

simulations of the identified models together with the experimental data. These results

are shown for all three measurements: CFP, mScarlet, and YFP in Figures 16, 17, and 18

respectively. As it is clear from the runtime, an increase in the dimension of the param-

Figure 16: Model simulations with posterior parameter values plotted alongside CFP measurement.

Figure 17: Model simulations with posterior parameter values plotted alongside mScarlet measurement.

eter inference problem from 3 to 6 led to a significant increase in runtime from around 1

hour to 24 hours. This is an expected curse of dimensionality, which leads to difficulty
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Figure 18: Model simulations with posterior parameter values plotted alongside YFP measurement. Note
that although the model qualitatively captures the YFP expression but does not fit the data very well for
some of the conditions. This is a result of a computational tradeoff in choosing a lower dimensional model
for feasible parameter identification. The detailed model would capture the experimental behavior but it is
infeasible to estimate 54 parameters with Bayesian inference.

in inferring the parameters of detailed models. In the model-data fits shown above, the

CFP and mScarlet measurements agree with the fitted model simulations, but, the YFP

measurements do not perfectly fit the model predictions. The qualitative trends of the YFP

expression are predicted correctly but since we are only identifying 6 parameters out of a

total of 54 in the detailed model, these inaccuracies are expected.

Plasmid Designs

The integrase plasmid is composed of a pTet promoter41 followed by a strong BCD2 ribo-

some binding site.42 Downstream of the ribosome binding site is a fusion protein: Bxb1

integrase43 linked to a cyan fluorescent protein. Termination of transcription is achieved

using a T500 terminator.44 The reporter plasmid contains a strong P7 promoter42 flanked

by Bxb1 recombination sites attB and attP. Downstream of the attP recognition site is a

RiboJ insulator45 and a BCD2 ribosome binding site42 driving the expression of a “Venus”

yellow fluorescent protein.46 The integrase and reporter plasmids were taken from Swami-
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nathan et al.16

The excisionase plasmid contains a pTet promoter41 directly followed by a strong

BCD2 ribosome binding site.42 The promoter and ribosome binding site activate the tran-

scription of a Bxb1 excisionase43 linked to a red fluorescent protein with a GS linker (a 12

amino acid sequence with 6 Glycine alternating with 6 Serine amino acids). Transcription

is terminated using a T500 terminator.44
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