
Physics-Informed Neural Networks for Approximating Dynamic
(Hyperbolic) PDEs of Second Order in Time: Error Analysis and

Algorithms

Yanxia Qiana, Yongchao Zhangb, Yunqing Huanga,∗, Suchuan Dongc,∗

aSchool of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan, 411105, P.R. China
bSchool of Mathematics, Northwest University, Xi’an, Shaanxi 710069, P.R. China

cCenter for Computational and Applied Mathematics, Department of Mathematics, Purdue University, West Lafayette,
IN47907, USA

Abstract

We consider the approximation of a class of dynamic partial differential equations (PDEs) of second order
in time by the physics-informed neural network (PINN) approach, and provide an error analysis of PINN
for the wave equation, the nonlinear Klein-Gordon equation and the linear elastodynamic equation. Our
analyses show that, with feed-forward neural networks having two hidden layers and the tanh activation
function, the PINN approximation errors for the solution field, its time derivative and its gradient field can
be effectively bounded by the training loss and the number of training data points (quadrature points). Our
analyses further suggest new forms for the training loss function, which contain certain residuals that are
crucial to the error estimate but would be absent from the canonical PINN loss formulation. Adopting these
new forms for the loss function leads to a variant PINN algorithm. We present ample numerical experiments
with the new PINN algorithm for the wave equation, the Sine-Gordon equation and the linear elastodynamic
equation, which show that the method can capture the solution well.

Keywords: PINN; neural network; error estimate; PDE; scientific machine learning

1. Introduction

Deep neural networks (DNN) have achieved a great success in a number of fields in science and engineering
[36] such as natural language processing, robotics, computer vision, speech and image recognition, to name
but a few. This has inspired a great deal of research efforts in the past few years to adapt such techniques to
scientific computing. DNN-based techniques seem particularly promising for problems in higher dimensions,
e.g. high-dimensional partial differential equation (PDE), since traditional numerical methods for high-
dimensional problems can quickly become infeasible due to the exponential increase in the computational
effort (so-called curse of dimensionality). Under these circumstances deep-learning algorithms can be helpful.
In particular, the neural network-based approach for PDE problems provide implicit regularization and can
alleviate and perhaps overcome the curse of high dimensions [3, 4].

As deep neural networks are universal function approximators, it is natural to employ them as ansatz
spaces for solutions of (ordinary or partial) differential equations. This paves the way for their use in physical
modeling and scientific computing and gives rise to the field of scientific machine learning [32, 52, 46, 22, 37].
The physics-informed neural network (PINN) approach was introduced in [46]. It has been successfully
applied to a variety of forward and inverse PDE problems and has become one of the most commonly-used
methods in scientific machine learning (see e.g. [46, 25, 10, 31, 58, 30, 6, 53, 18, 16, 7, 55, 24, 34, 20, 21, 57,
19, 45, 51, 28, 44], among others). The references [32, 9] provide a comprehensive review of the literature on
PINN and about the benefits and drawbacks of this approach.

∗Authors of Correspondence.
Email addresses: yxqian0520@xtu.edu.cn (Yanxia Qian), yoczhang@nwu.edu.cn (Yongchao Zhang), huangyq@xtu.edu.cn

(Yunqing Huang), sdong@purdue.edu (Suchuan Dong)

The mathematical foundation for PINN aiming at the approximation of PDE solution is currently an
active area of research. It is important to account for different components of the neural-network error:
optimization error, approximation error, and estimation error [42, 49]. Approximation error refers to the
discrepancy between the exact functional map and the neural network mapping function on a given network
architecture [8, 23]. Estimation error arises when the network is trained on a finite data set to get a mapping
on the target domain. The generalization error is the combination of approximation and estimation errors
and defines the accuracy of the neural-network predicted solution trained on the given set of data.

Theoretical understanding of PINN has been advanced by a number of recent works. In [49] Shin et al.
rigorously justify why PINN works and shows its consistency for linear elliptic and parabolic PDEs under
certain assumptions. These results are extended in [50] to a general abstract framework for analyzing PINN
for linear problems with the loss function formulated in terms of the strong or weak forms of the equations.
In [40] Mishra and Molinaro provide an abstract framework on PINN for forward PDE problems, and esti-
mate the generalization error by means of the training error and the number of training data points. This
framework is extended in [39] to study several inverse PDE problems, including the Poisson, heat, wave and
Stokes equations. Bai and Koley [2] investigate the PINN approximation of nonlinear dispersive PDEs such
as the KdV-Kawahara, Camassa-Holm and Benjamin-Ono equations. In [5] Biswa et al. provide explicit
error estimates (in suitable norms) and stability analyses for the incompressible Navier–Stokes equations.
Zerbinati [60] presents PINN as an under-determined point matching collocation method, reveals its con-
nection with Galerkin Least Squares (GALS) method, and establishes an a priori error estimate for elliptic
problems.

An important theoretical result on the approximation errors from the recent work [13] establishes that a
feed-forward neural network ûθ with a tanh activation function and two hidden layers may approximate a
function u with a bound in a Sobolev space, ∥ûθN − u∥wk,∞ ≤ Cln(cN)k/Ns−k. Here u ∈ ws,∞([0, 1]d), d is
the dimension of the problem, N is the number of training points, and c, C > 0 are explicitly known constants
independent of N . Based on this result, De Ryck et al. [12] have studied the PINN for the Navier–Stokes
equations and shown that a small training error implies a small generalization error. In particular, Hu et
al. [26] provide the higher-order (spatial Sobolev norm) error estimates for the primitive equations, which
improve the existing results in the PINN literature that only involve L2 errors. In [14] it has been shown
that, with a sufficient number of randomly chosen training points, the total L2 error can be bounded by
the generalization error for Kolmogorov-type PDEs, which in turn is bounded by the training error. It is
proved that the size of the PINN and the number of training samples only increase polynomially with the
problem dimension, thus enabling PINN to overcome the curse of dimensionality in this case. In [38] the
authors investigate the high-dimensional radiative transfer equation and prove that the generalization error
is bounded by the training error and the number of training points, where the upper bound depends on the
dimension only through a logarithmic factor. Hence PINN does not suffer from the curse of dimensionality,
provided that the training errors do not depend on the underlying dimension. Another interesting study on
PINN and extended PINN (XPINN) is [27], in which the authors employ the generalized Barron space to
define the function space of DNNs and have provided a prior and a posterior generalization bound on the
PDE residual in terms of the complexity of the PDE solution and the posterior weight matrix norm in the
neural network, respectively. Their analyses indicate that XPINN induces two opposing effects, with one
tending to boost the network’s generalization ability and the other tending to cause the network to be less
generalizable.

Although PINN has been widely used for approximating PDEs, theoretical investigations on its conver-
gence and errors are still quite limited and are largely confined to elliptic and parabolic PDEs. There seems
to be less (or little) theoretical analysis on the convergence of PINN for hyperbolic type PDEs. In this
paper, we consider a class of dynamic PDEs of second order in time, which are hyperbolic in nature, and
provide an analysis of the convergence and errors of the PINN algorithm applied to such problems. We have
focused on the wave equation, the nonlinear Klein-Gordon equation and the linear elastodynamic equation
in our analyses. Building upon the result of [13, 12] on tanh neural networks with two hidden layers, we
have shown that for these three kinds of PDEs:

• The PINN residuals can be made arbitrarily small with tanh neural networks having two hidden layers.
• The total error of the PINN approximation is bounded by the generalization error of PINN.
• The PINN approximation errors for the solution field, its time derivative and its gradient are bounded
by the training error (training loss) and the number of quadrature points (training data points).

2

Furthermore, our theoretical analyses have suggested PINN training loss functions for these PDEs that
are somewhat different in form than from the canonical PINN formulation. These lie in two aspects: (i)
Our analyses require certain residual terms (such as the gradient of the initial condition, the time derivative
of the boundary condition, or in the case of linear elastodynamic equation the strain and divergence of the
initial condition) in the training loss, which would be absent from the canonical PINN formulation of the
loss function. (ii) Our analyses may require, depending on the type of boundary conditions, the L2 norm for
certain boundary residuals in the training loss, which is different from the commonly-used L2 norm squared
in the canonical PINN formulation of the loss function.

These new forms for the training loss function suggested by the theoretical analyses lead to a variant
PINN algorithm. We have implemented the PINN algorithm based on these new forms of the training loss
function for the wave equation, the nonlinear Klein-Gordon equation and the linear elastodynamic equation.
Ample numerical experiments based on this algorithm have been presented. The simulation results indicate
that the method has captured the solution field reasonably well for these PDEs. The numerical results also
to some extent corroborate the theoretical relation between the approximation error and the PINN training
loss obtained from the error analysis.

It would be instructive to compare the current analyses with the recent work [27]. We note that the
generalization bounds on the PDE residual proved in [27] apply to a general class of second-order linear
PDEs (see Assumption 3.1 of [27]). In order to attain an L2 error bound on the PINN solution, the following
assumption (Assumption 3.2 of [27], page A3167) has been made on the PDE Lu = f (with Dirichlet
boundary condition) in [27],

C1 ∥u∥L2(Ω) ⩽ ∥Lu∥L2(Ω) + ∥u∥L2(∂Ω) , (1)

where Ω is the domain (with boundary ∂Ω), u is the PDE solution, C1 > 0 is a constant independent of u, L
is the linear differential operator in the PDE, and f denotes a prescribed function. By using this assumption
and the generalization bounds on the PDE residual, an L2 approximation error on the PINN solution is
given in [27] (Theorem 3.6 therein). We note that similar assumptions (with somewhat different forms) have
appeared in several other previous works (see e.g. [40, 39, 50]), and for a few PDEs the proofs for a relation
analogous to (1) are available. It is not clear whether the assumption (1) is generally applicable, especially
to dynamic PDEs of second-order in time, which are the focus of the current work. At the early stage of this
project, we have attempted to develop an L2 error estimate on the PINN solution using the original form (see
Equation (2a) below) of the class of PDEs considered in this paper, which would presumably lead to a form
analogous to (1), noting that L in (1) is the very differential operator appearing in the PDE. However, our
attempt was not successful for certain PDEs of second-order in time. This unsuccessful attempt has led us
to the reformulation of the original dynamic PDE of second-order in time into a system of two PDEs of first-
order in time, as employed in all the current analyses. The L2 error bounds we have obtained for the PINN
solution have a generally different form than (1), especially in two aspects. First, our error bound involves
differential operators that are different from the one (or those) appearing in the original PDE. Second, our
error bound typically involves the square root of certain boundary norms, as mentioned previously. It should
be emphasized that the bounds on the PINN solution error in terms of the PDE residual error for the class
of PDE problems in the current paper are proven, not assumed.

The rest of this paper is organized as follows. Section 2 is an overview of PINN. In Sections 3, 4 and
5, we present an error analysis of the PINN algorithm for approximating the wave equation, nonlinear
Klein-Gordon equation, and the linear elastodynamic equation. Section 6 summarizes a set of numerical
experiments with these three PDEs to supplement and support our theoretical analyses. Section 7 concludes
the presentation with some closing remarks. Finally, the appendix (Section 8) recalls some auxiliary results
and provides the proofs of the theorems from Sections 4 and 5.

2. Physics Informed Neural Networks (PINN) for Approximating PDEs

2.1. Generic PDE of Second Order in Time

Consider a compact domain D ⊂ Rd (d > 0 being an integer), and let D and B denote the differential
and boundary operators. We consider the following general form of an initial boundary value problem with

3

a generic PDE of second order in time. For any x ∈ D, y ∈ ∂D and t ∈ [0, T],

∂2u

∂t2
(x, t) +D[u](x, t) = 0, (2a)

Bu(y, t) = ud(y, t), (2b)

u(x, 0) = uin(x),
∂u

∂t
(x, 0) = vin(x). (2c)

Here, u(x, t) is the unknown field solution, ud denotes the boundary data, and uin and vin are the initial
distributions for u and ∂u

∂t . We assume that in D the highest derivative with respect to the time variable t,
if any, is of first order.

2.2. Neural Network Representation of a Function

Let σ : R → R denote an activation function that is at least twice continuously differentiable. For any
n ∈ N and z ∈ Rn, we define σ(z) := (σ(z1), · · · , σ(zn)), where zi (1 ≤ i ≤ n) are the components of z. We
adopt the following formal definition for a feedforward neural network as given in [12].

Definition 2.1 ([12]). Let R ∈ (0,∞], L,W ∈ N and l0, · · · , lL ∈ N. Let σ : R → R be a twice differentiable
function and define

Θ = ΘL,W,R :=
⋃

L′∈N,L′≤L

⋃
l0,··· ,lL∈{1,··· ,W}

⧹⧸L′

k=1([−R,R]lk×lk−1 × [−R,R]lk). (3)

For θ ∈ Θ, we define θk := (Wk, bk) and Aθ
k : Rlk−1 → Rlk by z 7→Wkz+ bk for 1 ≤ k ≤ L, and we define

fθk : Rlk−1 → Rlk by fθk =

{
Aθ

L(z) k = L,

(σ ◦ Aθ
k)(z) 1 ≤ k < L.

Denote uθ : Rl0 → RlL the function that satisfies for

all z ∈ Rl0 that

uθ(z) = (fθL ◦ fθL−1 ◦ · · · ◦ fθ1)(z) z ∈ Rl0 . (4)

We set z = (x, t) and l0 = d+ 1 for approximating the PDE problem (2).
uθ as defined above is the neural-network representation of a parameterized function associated with

the parameter θ. This neural network contains (L + 1) layers (L ≥ 2), with widths (l0, l1, · · · , lL) for each
layer. The input layer has a width l0, and the output layer has a width lL. The (L− 1) layers between the
input/output layers are the hidden layers, with widths lk (1 ≤ k ≤ L − 1). Wk and bk are the weight/bias
coefficients corresponding to layer k for 1 ≤ k ≤ L. From layer to layer the network logic represents an
affine transform, followed by a function composition with the activation function σ. Note that no activation
function is applied to the output layer. We refer to uθ with L = 2 (i.e. single hidden layer) as a shallow
neural network, and uθ with L ≥ 3 (i.e. multiple hidden layers) as a deeper or deep neural network.

2.3. Physics Informed Neural Network for Initial/Boundary Value Problem

Let Ω = D × [0, T] and Ω∗ = ∂D × [0, T] be the spatial-temporal domain. We approximate the solution
u to the problem (2) by a neural network uθ : Ω → Rn. With PINN we consider the residual function of
the initial/boundary value problem (2), defined for any sufficiently smooth function u : Ω → Rn as, for any
x ∈ D, y ∈ ∂D and t ∈ [0, T],

Rint[u](x, t) =
∂2u

∂t2
(x, t) +D[u](x, t), Rsb[u](y, t) = Bu(y, t)− ud(y, t), (5a)

Rtb1[u](x, 0) = u(x, 0)− uin(x), Rtb2[u](x, 0) =
∂u

∂t
(x, 0)− vin(x). (5b)

These residuals characterize how well a given function u satisfies the initial/boundary value problem (2). If
u is the exact solution, Rint[u] = Rsb[u] = Rtb1[u] = Rtb2[u] = 0.

To facilitate the subsequent analyses, we introduce an auxiliary function v = ∂u
∂t and rewrite Rtb2 as

Rtb2[v](x, 0) = v(x, 0)− vin(x). (6)

4

We reformulate (2a) into two equations, thus separating the interior residual into the following two compo-
nents:

Rint1[u, v](x, t) =
∂u

∂t
(x, t)− v(x, t), Rint2[u, v](x, t) =

∂v

∂t
(x, t) +D[u](x, t). (7)

With PINN, we seek a neural network (uθ, vθ) to minimize the following quantity,

EG(θ)2 =

∫
Ω

|Rint1[uθ, vθ](x, t)|2dx+

∫
Ω

|Rint2[uθ, vθ](x, t)|2dx+

∫
D

|Rtb1[uθ](x)|2dx

+

∫
D

|Rtb2[vθ](x)|2dx+

∫
Ω∗

|Rsb[uθ](x, t)|2ds(x)dt.
(8)

The different terms of (8) may be rescaled by different weights (penalty coefficients). For simplicity, we set
all these weights to one in the analysis. EG as defined above is often referred to as the generalization error.
Because of the integrals involved therein, EG can be hard to minimize. In practice, one will approximate (8)
by an appropriate numerical quadrature rule, as follows

ET (θ,S)2 =E int1
T (θ,Sint)

2 + E int2
T (θ,Sint)

2 + Etb1
T (θ,Stb)

2 + Etb2
T (θ,Stb)

2 + Esb
T (θ,Ssb)

2, (9)

where

E int1
T (θ,Sint)

2 =

Nint∑
n=1

ωn
int|Rint1[uθ, vθ](x

n
int, t

n
int)|2, (10a)

E int2
T (θ,Sint)

2 =

Nint∑
n=1

ωn
int|Rint2[uθ, vθ](x

n
int, t

n
int)|2, Etb1

T (θ,Stb)
2 =

Ntb∑
n=1

ωn
tb|Rtb1[uθ](x

n
tb)|2, (10b)

Etb2
T (θ,Stb)

2 =

Ntb∑
n=1

ωn
tb|Rtb2[vθ](x

n
tb)|2, Esb

T (θ,Ssb)
2 =

Nsb∑
n=1

ωn
sb|Rsb[uθ](x

n
sb, t

n
sb)|2. (10c)

The quadrature points in the spatial-temporal domain and on the spatial and temporal boundaries, Sint =
{(xn

int, t
n
int)}

Nint
n=1 , Ssb = {(xn

sb, t
n
sb)}

Nsb
n=1 and Stb = {(xn

tb, t
n
tb = 0)}Ntb

n=1, constitute the input data sets to the
neural network. In the above equations ET (θ,S)2 is referred to as the training error (or training loss), and ωn

⋆

are suitable quadrature weights for ⋆ = int, sb and tb. Therefore, PINN attempts to minimize the training
error ET (θ,S)2 over the network parameters θ, and upon convergence of optimization the trained uθ contains
the approximation of the solution u to the problem (2).

Remark 2.2. The generalization error (8) (with the corresponding training error (9)) is the standard
(canonical) PINN form if one introduces v = ∂u

∂t and reformulates (2a) into two equations. We would
like to emphasize that our analyses below suggest alternative forms for the generalization error, e.g.

EG(θ)2 =

∫
Ω

|Rint1[uθ, vθ](x, t)|2dx+

∫
Ω

|Rint2[uθ, vθ](x, t)|2dx+

∫
Ω

|∇Rint1[uθ, vθ](x, t)|2dx

+

∫
D

|Rtb1[uθ](x)|2dx+

∫
D

|Rtb2[vθ](x)|2dx+

∫
D

|∇Rtb1[uθ](x)|2dx

+

(∫
Ω∗

|Rsb[uθ](x, t)|2ds(x)dt
) 1

2

,

(11)

which differs from (8) in the terms ∇Rint1, ∇Rtb1 and the last term. The corresponding training error is,

ET (θ,S)2 =E int1
T (θ,Sint)

2 + E int2
T (θ,Sint)

2 + E int3
T (θ,Sint)

2 + Etb1
T (θ,Stb)

2

+ Etb2
T (θ,Stb)

2 + Etb3
T (θ,Stb)

2 + Esb
T (θ,Ssb), (12)

where

E int3
T (θ,Sint)

2 =

Nint∑
n=1

ωn
int|∇Rint1[uθ, vθ](x

n
int, t

n
int)|2, Etb3

T (θ,Stb)
2 =

Ntb∑
n=1

ωn
tb|∇Rtb1[uθ](x

n
tb)|2. (13)

The error analyses also suggest additional terms in the generalization error for different equations.

5

2.4. Numerical Quadrature Rules

As discussed above, we need to approximate the integrals of functions. The analysis in the subsequent
sections requires well-known results on numerical quadrature rules as reviewed below.

Given Λ ⊂ Rd and a function f ∈ L1(Λ), we would like to approximate
∫
Λ
f(z)dz. A quadrature rule

provides an approximation by
∫
Λ
f(z)dz ≈ 1

M

∑M
n=1 ωnf(zn), where zn ∈ Λ (1 ≤ n ≤M) are the quadrature

points and ωn (1 ≤ n ≤ M) denote the appropriate quadrature weights. The approximation accuracy is
influenced by the type of quadrature rule, the number of quadrature points (M), and the regularity of f .
For the mid-point rule, which is assumed in the current work, Λ is partitioned into M ∼ Nd cubes with an
edge length 1

N and the approximation accuracy is given by∣∣∣∣∫
Λ

f(z)dz −QΛ
M [f]

∣∣∣∣ ≤ CfM
−2/d, (14)

where QΛ
M [f] := 1

M

∑M
n=1 ωnf(zn), Cf ≲ ∥f∥C2(Λ) (a ≲ b denotes a ≤ Cb) and {zn}Mn=1 denote the midpoints

of these cubes [11]. In this paper, we use C to denote a universal constant, which may depend on k, d, T, u
and v but not on N . And we use the subscript to emphasize its dependence when necessary, e.g. Cd is a
constant depending only on d.

We focus on PDE problems in relatively low dimensions (d ≤ 3) in this paper and employ the standard
quadrature rules. We note that in higher dimensions the standard quadrature rules may not be favorable.
In this case the random training points or low-discrepancy training points [41] may be preferred.

In subsequent sections we focus on three representative dynamic equations of second order in time (the
wave equation, the nonlinear Klein-Gordon equation, and the linear elastodynamic equation), and provide the
error estimate for approximating these equations by PINN. We note that these analyses suggest alternative
forms for the training loss function that are somewhat different from the standard PINN forms [46]. The
PINN numerical results based on the standard form for the loss function, and based on the alternative forms
as suggested by the error estimate, will be provided after the presentation of the theoretical analysis. In

what follows, for brevity we adopt the notation of FΞ = ∂F
∂Ξ , FΞΥ = ∂2F

∂Ξ∂Υ (Ξ,Υ ∈ {t, x}), for any sufficiently
smooth function F : Ω → Rn.

3. Physics Informed Neural Networks for Approximating the Wave Equation

3.1. Wave Equation

Consider the wave equations on the torus D = [0, 1)d ⊂ Rd with periodic boundary conditions:

ut − v = 0, vt −∆u = f, in D × [0, T], (15a)

u(x, 0) = ψ1(x), v(x, 0) = ψ2(x), in D, (15b)

u(x, t) = u(x+ 1, t), ∇u(x, t) = ∇u(x+ 1, t), in ∂D × [0, T]. (15c)

The regularity results for linear evolution equations of the second order in time have been studied in [54].
When the self-adjoint operator A takes ∆, the linear evolution equations of second order in time from [54]
become the classical wave equations, and then we can obtain the following regularity results.

Lemma 3.1. Let r ≥ 1, ψ1 ∈ Hr(D), ψ2 ∈ Hr−1(D) and f ∈ L2([0, T];Hr−1(D)). Then there exists a
unique solution u to the classical wave equations such that u ∈ C([0, T];Hr(D)) and ut ∈ C([0, T];Hr−1(D)).

Lemma 3.2. Let k ∈ N, ψ1 ∈ Hr(D), ψ2 ∈ Hr−1(D) and f ∈ Ck−1([0, T];Hr−k(D))∩L2([0, T];Hr−1(D))
with r > d

2 + k. Then there exists T > 0 and a classical solution u to the wave equations such that
u(x, 0) = ψ1, ut(x, 0) = ψ2, u ∈ Hk(D × [0, T]) and v ∈ Hk−1(D × [0, T]).

Proof. By Lemma 3.1, there exists T > 0 and the solution (u, v) to the wave equations such that u(x, 0) =
ψ1, v(x, 0) = ψ2, u ∈ C([0, T];Hr(D)) and v ∈ C([0, T];Hr−1(D)). As r > d

2 + k, Hr−k(D) is a Banach
algebra.

For k = 1, since u ∈ C([0, T];Hr(D)), v ∈ C([0, T];Hr−1(D)) and f ∈ C([0, T];Hr−1(D)), we have ut =
v ∈ C([0, T];Hr−1(D)) and vt = ∆u+f ∈ C([0, T];Hr−2(D)). Then, it implies that u ∈ C1([0, T];Hr−1(D))
and v ∈ C1([0, T];Hr−2(D)).

6

For k = 2, by f ∈ C1([0, T];Hr−2(D)), we have utt = vt ∈ C([0, T];Hr−2(D)) and vtt = ∆ut + ft ∈
C([0, T];Hr−3(D)). Then, it implies that u ∈ C2([0, T];Hr−2(D)) and v ∈ C2([0, T];Hr−3(D)).

Repeating the same argument, we have u ∈ ∩k
l=0C

l([0, T];Hr−l(D)) and v ∈ ∩k
l=0C

l([0, T];Hr−l−1(D)).
For all 0 ≤ l ≤ k, using l+r− l ≥ k with r > d

2 +k, it holds u ∈ Hk(D× [0, T]) and v ∈ Hk−1(D× [0, T]).

3.2. Physics Informed Neural Networks

We would like to approximate the solutions to the problem (15) with PINN. We seek deep neural networks
uθ : D × [0, T] → R and vθ : D × [0, T] → R, parameterized by θ ∈ Θ, that approximate the solution u and
v of (15). Define residuals,

Rint1[uθ, vθ](x, t) = uθt − vθ, Rint2[uθ, vθ](x, t) = vθt −∆uθ − f, (16a)

Rtb1[uθ](x) = uθ(x, 0)− ψ1(x), Rtb2[vθ](x) = vθ(x, 0)− ψ2(x), (16b)

Rsb1[vθ](x, t) = vθ(x, t)− vθ(x+ 1, t), Rsb2[uθ](x, t) = ∇uθ(x, t)−∇uθ(x+ 1, t). (16c)

Note that for the exact solution Rint1[u, v] = Rint2[u, v] = Rtb1[u] = Rtb2[v] = Rsb1[v] = Rsb2[u] = 0. Let
Ω = D× [0, T] and Ω∗ = ∂D× [0, T] be the space-time domain. With PINN, we minimize the the following
generalization error,

EG(θ)2 =

∫
Ω

|Rint1[uθ, vθ](x, t)|2dx+

∫
Ω

|Rint2[uθ, vθ](x, t)|2dx+

∫
Ω

|∇Rint1[uθ, vθ](x, t)|2dx

+

∫
D

|Rtb1[uθ](x)|2dx+

∫
D

|Rtb2[vθ](x)|2dx+

∫
D

|∇Rtb1[uθ](x)|2dx

+

(∫
Ω∗

|Rsb1[vθ](x, t)|2ds(x)dt
)1/2

+

(∫
Ω∗

|Rsb2[uθ](x, t)|2ds(x)dt
)1/2

. (17)

The form of different terms in this expression will become clearer below.
To complete the PINN formulation, we will choose the training set S ⊂ D × [0, T] based on suitable

quadrature points. We divide the full training set S = Sint ∪ Ssb ∪ Stb into the following three components:
• Interior training points Sint = {zn} for 1 ≤ n ≤ Nint, with each zn = (x, t)n ∈ D × (0, T).
• Spatial boundary training points Ssb = {zn} for 1 ≤ n ≤ Nsb, with each zn = (x, t)n ∈ ∂D × (0, T).
• Temporal boundary training points Stb = {xn} for 1 ≤ n ≤ Ntb with each xn ∈ D.

We define the PINN training loss, θ 7→ ET (θ,S)2, as follows,

ET (θ,S)2 =E int1
T (θ,Sint)

2 + E int2
T (θ,Sint)

2 + E int3
T (θ,Sint)

2 + Etb1
T (θ,Stb)

2 + Etb2
T (θ,Stb)

2

+ Etb3
T (θ,Stb)

2 + Esb1
T (θ,Ssb) + Esb2

T (θ,Ssb), (18)

where

E int1
T (θ,Sint)

2 =

Nint∑
n=1

ωn
int|Rint1[uθ, vθ](x

n
int, t

n
int)|2, Etb1

T (θ,Stb)
2 =

Ntb∑
n=1

ωn
tb|Rtb1[uθ](x

n
tb)|2, (19a)

E int2
T (θ,Sint)

2 =

Nint∑
n=1

ωn
int|Rint2[uθ, vθ]](x

n
int, t

n
int)|2, Etb2

T (θ,Stb)
2 =

Ntb∑
n=1

ωn
tb|Rtb2[vθ](x

n
tb)|2, (19b)

E int3
T (θ,Sint)

2 =

Nint∑
n=1

ωn
int|∇Rint1[uθ, vθ](x

n
int, t

n
int)|2, Etb3

T (θ,Stb)
2 =

Ntb∑
n=1

ωn
tb|∇Rtb1[uθ](x

n
tb)|2, (19c)

Esb1
T (θ,Ssb)

2 =

Nsb∑
n=1

ωn
sb|Rsb1[vθ](x

n
sb, t

n
sb)|2, Esb2

T (θ,Ssb)
2 =

Nsb∑
n=1

ωn
sb|Rsb2[uθ](x

n
sb, t

n
sb)|2. (19d)

Here the quadrature points in space-time constitute the data sets Sint = {(xn
int, t

n
int)}

Nint
n=1 , Stb = {xn

tb)}
Ntb
n=1

and Ssb = {(xn
sb, t

n
sb)}

Nsb
n=1, and ω

n
⋆ are suitable quadrature weights with ⋆ denoting int, tb or sb.

Let û = uθ − u, v̂ = vθ − v denote the difference between the solution to the wave equations and the
PINN approximation of the solution. We define the total error of the PINN approximation by

E(θ)2 =

∫
Ω

(|û(x, t)|2 + |∇û(x, t)|2 + |v̂(x, t)|2)dxdt. (20)

7

3.3. Error Analysis

In light of the wave equations (15) and the definitions for different residuals (16), we have

Rint1 = ût − v̂, (21a)

Rint2 = v̂t −∆û, (21b)

Rtb1 = û(x, 0), Rtb2 = v̂(x, 0), Rsb1 = v̂(x, t)− v̂(x+ 1, t), Rsb2 = ∇û(x, t)−∇û(x+ 1, t). (21c)

3.3.1. Bound on the Residuals

Theorem 3.3. Let n ≥ 2, d, r, k ∈ N with k ≥ 3. Suppose that ψ1 ∈ Hr(D), ψ2 ∈ Hr−1(D) and f ∈
Ck−1([0, T];Hr−k(D))∩L2([0, T];Hr−1(D)) with r > d

2+k. For every integer N > 5, there exist tanh neural

networks uθ and vθ, each with two hidden layers, of widths at most 3⌈k+n−2
2 ⌉|Pk−1,d+2|+ ⌈NT ⌉+ d(N − 1)

and 3⌈d+n+1
2 ⌉|Pd+2,d+2|⌈NT ⌉Nd, such that

∥Rint1∥L2(Ω), ∥Rtb1∥L2(D) ≲ lnNN−k+1, (22a)

∥Rint2∥L2(Ω), ∥∇Rint1∥L2(Ω), ∥∇Rtb1∥L2(D), ∥Rsb2∥L2(∂D×[0,T]) ≲ ln2NN−k+2, (22b)

∥Rtb2∥L2(D), ∥Rsb1∥L2(∂D×[0,T]) ≲ lnNN−k+2. (22c)

Proof. Based on Lemma 3.2, it holds that u ∈ Hk(Ω) and v ∈ Hk−1(Ω). In light of Lemma 8.3, there exists
neural networks uθ and vθ, with the same two hidden layers and widths 3⌈k+n−2

2 ⌉|Pk−1,d+2|+⌈NT ⌉+d(N−1)

and 3⌈d+n+1
2 ⌉|Pd+2,d+2|⌈NT ⌉Nd, such that for every 0 ≤ l ≤ 2 and 0 ≤ s ≤ 2,

∥uθ − u∥Hl(Ω) ≤ Cl,k,d+1,uλl,u(N)N−k+l, ∥vθ − v∥Hs(Ω) ≤ Cs,k−1,d+1,vλs,v(N)N−k+1+s, (23)

where λl,u = 2l3d+1(1 + δ)lnl
(
βl,δ,d+1,uN

d+k+3
)
, δ = 1

100 , λs,v = 2s3d+1(1 + δ)lns
(
βs,δ,d+1,vN

d+k+2
)
, and

the definition for the other constants can be found in Lemma 8.3.
In light of Lemma 8.1, we can bound the PINN residual terms,

∥ût∥L2(Ω) ≤ ∥û∥H1(Ω), ∥v̂t∥L2(Ω) ≤ ∥v̂∥H1(Ω),

∥∆û∥L2(Ω) ≤ ∥û∥H2(Ω), ∥∇ût∥L2(Ω) ≤ ∥û∥H2(Ω), ∥∇v̂∥L2(Ω) ≤ ∥v̂∥H1(Ω),

∥û∥L2(D) ≤ ∥û∥L2(∂Ω) ≤ ChΩ,d+1,ρΩ
∥û∥H1(Ω), ∥v̂∥L2(D) ≤ ∥v̂∥L2(∂Ω) ≤ ChΩ,d+1,ρΩ

∥v̂∥H1(Ω),

∥∇û∥L2(D) ≤ ∥∇û∥L2(∂Ω) ≤ ChΩ,d+1,ρΩ
∥û∥H2(Ω), ∥v̂∥L2(∂D×[0,T]) ≤ ∥v̂∥L2(∂Ω) ≤ ChΩ,d+1,ρΩ

∥v̂∥H1(Ω),

∥∇û∥L2(∂D×[0,T]) ≤ ∥∇û∥L2(∂Ω) ≤ ChΩ,d+1,ρΩ
∥û∥H2(Ω).

By combining these relations with (23), we can obtain

∥Rint1∥L2(Ω) = ∥ût − v̂∥L2(Ω) ≤ ∥û∥H1(Ω) + ∥v̂∥L2(Ω)

≤ C1,k,d+1,uλ1,u(N)N−k+1 + C0,k−1,d+1,vλ0,v(N)N−k+1 ≲ lnNN−k+1,

∥Rint2∥L2(Ω) = ∥v̂t −∆û∥L2(Ω) ≤ ∥v̂∥H1(Ω) + ∥û∥H2(Ω)

≤ C2,k,d+1,uλ2,u(N)N−k+2 + C1,k−1,d+1,vλ1,v(N)N−k+2 ≲ ln2NN−k+2,

∥∇Rint1∥L2(Ω) = ∥∇(ût − v̂)∥L2(Ω) ≤ ∥û∥H2(Ω) + ∥v̂∥H1(Ω)

≤ C2,k,d+1,uλ2,u(N)N−k+2 + C1,k−1,d+1,vλ1,v(N)N−k+2 ≲ ln2NN−k+2,

∥Rtb1∥L2(D) ≤ ChΩ,d+1,ρΩ
∥û∥H1(Ω) ≲ lnNN−k+1,

∥Rtb2∥L2(D), ∥Rsb1∥L2(∂D×[0,T]) ≤ ChΩ,d+1,ρΩ
∥v̂∥H1(Ω) ≲ lnNN−k+2,

∥∇Rtb1∥L2(D), ∥Rsb2∥L2(∂D×[0,T]) ≤ ChΩ,d+1,ρΩ
∥û∥H2(Ω) ≲ ln2NN−k+2,

which completes the proof of Theorem 3.3.

Theorem 3.3 implies that one can make the PINN residuals (16) arbitrarily small by choosing N to be
sufficiently large. It follows that the generalization error EG(θ)2 in (17) can be made arbitrarily small.

8

3.3.2. Bounds on the Total Approximation Error

We next show that the total error E(θ)2 is also small when the generalization error EG(θ)2 is small with
the PINN approximation (uθ, vθ). Then we prove that the total error E(θ)2 can be arbitrarily small, provided
that the training error ET (θ,S)2 is sufficiently small and the sample set is sufficiently large.

Theorem 3.4. Let d ∈ N, u ∈ C1(Ω) and v ∈ C0(Ω) be the classical solution to the wave equations (15).
Let uθ and vθ denote the PINN approximation with parameter θ. Then the following relation holds,

E(θ)2 =

∫
Ω

(|û(x, t)|2 + |∇û(x, τ)|2 + |v̂(x, t)|2)dxdt ≤ CGT exp(2T), (24)

where CG is given by (27) in the following proof.

Proof. Taking the L2 inner product of (21a) and (21b) with û and v̂ over D, respectively, we have

d

2dt

∫
D

|û|2dx =

∫
D

ûv̂dx+

∫
D

Rint1ûdx ≤
∫
D

|û|2dx+
1

2

∫
D

|Rint1|2dx+
1

2

∫
D

|v̂|2dx, (25)

d

2dt

∫
D

|v̂|2dx = −
∫
D

∇û · ∇v̂dx+

∫
∂D

v̂∇û · nds(x) +

∫
D

Rint2v̂dx

= − d

2dt

∫
D

|∇û|2dx+

∫
D

∇û · ∇Rint1dx+

∫
∂D

v̂∇û · nds(x) +

∫
D

Rint2v̂dx

≤ − d

2dt

∫
D

|∇û|2dx+
1

2

∫
D

|∇û|2dx+
1

2

∫
D

|∇Rint1|2dx+ C∂D1

(∫
∂D

|Rsb1|2ds(x)
)1/2

+ C∂D2

(∫
∂D

|Rsb2|2ds(x)
)1/2

+
1

2

∫
D

|v̂|2dx+
1

2

∫
D

|Rint2|2dx. (26)

Here, we have used v̂ = ût − Rint1 , C∂D1 = |∂D| 12 (∥u∥C1(∂D×[0,T]) + ∥uθ∥C1(∂D×[0,T])) and C∂D2 =

|∂D| 12 (∥v∥C(∂D×[0,T]) + ∥vθ∥C(∂D×[0,T])).
Adding (25) to (26), integrating it over [0, τ] for any τ ≤ T and applying the Cauchy–Schwarz inequality,

we obtain∫
D

|û(x, τ)|2dx+

∫
D

|∇û(x, τ)|2dx+

∫
D

|v̂(x, τ)|2dx

≤
∫
D

|Rtb1|2dx+

∫
D

|Rtb2|2dx+

∫
D

|∇Rtb1|2dx+ 2

∫ τ

0

∫
D

(
|û|2 + |∇û|2 + |v̂|2

)
dxdt

+

∫
Ω

(
|Rint1|2 + |Rint2|2 + |∇Rint1|2

)
dxdt+ 2C∂D1 |T |1/2

(∫ T

0

∫
∂D

|Rsb1|2ds(x)dt

)1/2

+ 2C∂D2 |T |1/2
(∫ T

0

∫
∂D

|Rsb2|2ds(x)dt

)1/2

.

We apply the integral form of the Grönwall inequality to the above inequality to get∫
D

(
|û(x, τ)|2 + |∇û(x, τ)|2 + |v̂(x, τ)|2

)
dx ≤ CG exp(2T),

where

CG =

∫
D

(|Rtb1|2 + |Rtb2|2 + |∇Rtb1|2)dx+

∫
Ω

(|Rint1|2 + |Rint2|2 + |∇Rint1|2)dxdt

+ 2C∂D1
|T |1/2

(∫ T

0

∫
∂D

|Rsb1|2ds(x)dt

)1/2

+ 2C∂D2
|T |1/2

(∫ T

0

∫
∂D

|Rsb2|2ds(x)dt

)1/2

.

(27)

Then, we integrate the above inequality over [0, T] to yield (24).

9

Theorem 3.5. Let d ∈ N and T > 0. Let u ∈ C4(Ω) and v ∈ C3(Ω) be the classical solution of the wave
equations (15), and let (uθ, vθ) denote the PINN approximation with parameter θ ∈ Θ. Then the total error
satisfies∫

Ω

(|û(x, t)|2 + |∇û(x, t)|2 + |v̂(x, t)|2)dxdt ≤ CTT exp(2T)

= O(ET (θ,S)2 +M
− 2

d+1

int +M
− 2

d

tb +M
− 1

d

sb). (28)

The constant CT is defined by (30) below.

Proof. By combining Theorem 3.4 with the quadrature error formula (14), we have∫
D

|Rtb1|2dx =

∫
D

|Rtb1|2dx−QD
Mtb

(R2
tb1) +QD

Mtb
(R2

tb1) ≤ C(R2
tb1)

M
− 2

d

tb +QD
Mtb

(R2
tb1),∫

D

|Rtb2|2dx =

∫
D

|Rtb2|2dx−QD
Mtb

(R2
tb2) +QD

Mtb
(R2

tb2) ≤ C(R2
tb2)

M
− 2

d

tb +QD
Mtb

(R2
tb2),∫

D

|∇Rtb1|2dx =

∫
D

|∇Rtb1|2dx−QD
Mtb

(|∇Rtb1|2) +QD
Mtb

(|∇Rtb1|2) ≤ C(|∇Rtb1|2)M
− 2

d

tb +QD
Mtb

(|∇Rtb1|2),∫
Ω

|Rint1|2dxdt =
∫
Ω

|Rint1|2dxdt−QΩ
Mint

(R2
int1) +QΩ

Mint
(R2

int1) ≤ C(R2
int1)

M
− 2

d+1

int +QΩ
Mint

(R2
int1),∫

Ω

|Rint2|2dxdt =
∫
Ω

|Rint2|2dxdt−QΩ
Mint

(R2
int2) +QΩ

Mint
(R2

int2) ≤ C(R2
int2)

M
− 2

d+1

int +QΩ
Mint

(R2
int2),∫

Ω

|∇Rint1|2dxdt =
∫
Ω

|∇Rint1|2dxdt−QΩ
Mint

(|∇Rint1|2) +QΩ
Mint

(|∇Rint1|2)

≤ C(|∇Rint1|2)M
− 2

d+1

int +QΩ
Mint

(|∇Rint1|2),∫
Ω∗

|Rsb1|2ds(x)dt =
∫
Ω∗

|Rsb1|2ds(x)dt−QΩ∗
Msb

(R2
sb1) +QΩ∗

Msb
(R2

sb1) ≤ C(R2
sb1)

M
− 2

d

sb +QΩ∗
Msb

(R2
sb1),∫

Ω∗

|Rsb2|2ds(x)dt =
∫
Ω∗

|Rsb2|2ds(x)dt−QΩ∗
Msb

(R2
sb2) +QΩ∗

Msb
(R2

sb2) ≤ C(R2
sb2)

M
− 2

d

sb +QΩ∗
Msb

(R2
sb2).

Combining the fact that C(R2
tb1)

≲ ∥R2
tb1∥Cn and ∥R2

tb1∥Cn ≤ 2n∥R2
tb1∥2Cn with Lemma 8.2, it holds

C(R2
tb1)

≲ ∥û∥2C2 ≤ 2(∥u∥2C2 + ∥uθ∥2C2) ≲ ∥u∥2C2 + 162L(d+ 1)8(e224W 3R2∥σ∥C2)4L. (29)

In a similar way, we can estimate the terms
∫
D
|Rtb2|2dx,

∫
D
|∇Rtb1|2dx,

∫
Ω
|Rint1|2dxdt,

∫
Ω
|Rint2|2dxdt

and
∫
Ω
|∇Rint1|2dxdt.

By the above inequalities and (24), it holds that∫
Ω

(|û(x, t)|2 + |∇û(x, t)|2 + |v̂(x, t)|2)dxdt ≤ CTT exp(2T),

where

CT =C(R2
tb1)

M
− 2

d

tb +QD
Mtb

(R2
tb1) + C(R2

tb2)
M

− 2
d

tb +QD
Mtb

(R2
tb2) + C(|∇Rtb1|2)M

− 2
d

tb +QD
Mtb

(|∇Rtb1|2)

+ C(R2
int1)

M
− 2

d+1

int +QΩ
Mint

(R2
int1) + C(R2

int2)
M

− 2
d+1

int +QΩ
Mint

(R2
int2)

+ C(|∇Rint1|2)M
− 2

d+1

int +QΩ
Mint

(|∇Rint1|2)

+ 2C∂D1 |T |1/2
(
C(R2

sb1)
M

− 2
d

sb +QΩ∗
Msb

)1/2
+ 2C∂D2 |T |1/2

(
C(R2

sb2)
M

− 2
d

sb +QΩ∗
Msb

)1/2
. (30)

10

4. Physics Informed Neural Networks for Approximating the Nonlinear Klein-Gordon Equa-
tion

4.1. Nonlinear Klein-Gordon Equation

Let D ⊂ Rd be an open connected bounded set with a boundary ∂D. We consider the following nonlinear
Klein-Gordon equation:

ut − v = 0, ε2vt = a2∆u− ε21u− g(u) + f, in D × [0, T], (31a)

u(x, 0) = ψ1(x), v(x, 0) = ψ2(x), in D, (31b)

u(x, t)|∂D = ud(t) in ∂D × [0, T], (31c)

where u and v are the field functions to be solved for, f is a source term, and ud, ψ1 and ψ2 denote the
boundary/initial conditions. ε > 0, a > 0 and ε1 ≥ 0 are constants. g(u) is a nonlinear term. We assume
that g is globally Lipschitz, i.e. there exists a constant L (independent of v and w) such that

|g(v)− g(w)| ≤ L|v − w|, ∀v, w ∈ R. (32)

Notice that the problem (31) is nonlinear because of the nonlinear term g(u). With the nonlinear term given
by g(u) = sin(u), equation (31a) becomes the well-known Sine-Gordon equation [15].

Remark 4.1. The existence and regularity of the solution to the nonlinear Klein-Gordon equation with
different nonlinear terms have been the subject of several studies in the literature; see [56, 35, 47, 48, 54].

The book [54] provides the existence and regularity result of the following Klein-Gordon equation, utt +
αut − ∆u + g(u) = f. Let α ∈ R, g(u) be a C2 function from R to R and satisfy certain assumptions. If
f ∈ C([0, T];L2(D)), ψ1 ∈ H1(D) and ψ2 ∈ L2(D), then there exists a unique solution u to this Klein-Gordon
equation such that u ∈ C([0, T];H1(D)) and ut ∈ C([0, T];L2(D)). Furthermore, f ′ ∈ C([0, T];L2(D)),
ψ1 ∈ H2(D) and ψ2 ∈ H1(D), it holds u ∈ C([0, T];H2(D)) and ut ∈ C([0, T];H1(D)).

Let g be a smooth function of degree 2. The following equation is studied in [48], utt − ∆u + u +

g(u, ut, utt) = 0, where it is reformulated as ut = Au + G(u), in which u =

(
u

ut

)
, A =

(
0 1

∆− 1 0

)
and

G =

(
0,

−g(u, ut, utt)

)
. Set X = Hk(Rn)

⊕
Hk−1(Rn), k > n + 2 + 2a with a > 1. Given u0 =

(
ψ1

ψ2

)
∈ X

and ∥u0∥X = σ, there exists a T0 = T0(σ) depending on the size of the initial data σ and a unique solution
u ∈ C([0, T0], X).

The reference [56] provides the following result. Under certain conditions for the nonlinear term g(u), with
f = 0, d ≤ 5, k ≥ d

2+1, ψ1 ∈ Hk(D) and ψ2 ∈ Hk−1(D), there exists a unique solution u ∈ C((0,∞);Hk(D))
of nonlinear Klein–Gordon equation.

The following result is due to [35]. Under certain conditions for the nonlinear term g(u), with f = 0,
ψ1 ∈ Hk(D) and ψ2 ∈ Hk−1(D) with a positive constant k ≥ 4, there exists a positive constant Tk and a
unique solution u ∈ C([0, Tk];H

k(D)) ∩ C1([0, Tk];H
k−1(D)) ∩ C2([0, Tk];H

k−2(D)) to the nonlinear wave
equations with different speeds of propagation.

A survey of literature indicates that, while several works have touched on the regularity of the solution to
the nonlinear Klein-Gordon equations, none of them is comprehensive. To facilitate the subsequent analyses,
we make the following assumption in light of Remark 4.1. Let k ≥ 1, g(u) and f be sufficiently smooth and
bounded. Given ψ1 ∈ Hr(D) and ψ2 ∈ Hr−1(D) with r ≥ d

2 + k, we assume that there exists T > 0 and
a classical solution (u, v) to the nonlinear Klein-Gordon equations (31) such that u ∈ C([0, T];Hk(D)) and
v ∈ C([0, T];Hk−1(D)). Therefore, u ∈ Hk(D × [0, T]) and v ∈ Hk−1(D × [0, T]).

4.2. Physics Informed Neural Networks

Let Ω = D× [0, T] and Ω∗ = ∂D× [0, T] be the space-time domain. We define the following residuals for
the PINN approximation, uθ : Ω → R and vθ : Ω → R, for the nonlinear Klein-Gordon equations (31):

Rint1[uθ, vθ](x, t) = uθt − vθ, Rint2[uθ, vθ](x, t) = ε2vθt − a2∆uθ + ε21uθ + g(uθ)− f, (33a)

Rtb1[uθ](x) = uθ(x, 0)− ψ1(x), Rtb2[vθ](x) = vθ(x, 0)− ψ2(x), (33b)

11

Rsb[vθ](x, t) = vθ(x, t)|∂D − udt(t), (33c)

where udt = ∂ud

∂t . Note that for the exact solution (u, v), Rint1[u, v] = Rint2[u, v] = Rtb1[u] = Rtb2[v] =
Rsb[v] = 0. With PINN we minimize the following generalization error,

EG(θ)2 =

∫
Ω

|Rint1[uθ, vθ](x, t)|2dxdt+
∫
Ω

|Rint2[uθ, vθ](x, t)|2dxdt+
∫
Ω

|∇Rint1[uθ, vθ](x, t)|2dxdt

+

∫
D

|Rtb1[uθ](x)|2dx+

∫
D

|Rtb2[vθ](x)|2dx+

∫
D

|∇Rtb1[uθ](x)|2dx

+

(∫
Ω∗

|Rsb[vθ](x, t)|2ds(x)dt
) 1

2

. (34)

Let û = uθ − u, v̂ = vθ − v, where (u, v) denotes the exact solution. We define the total error of the
PINN approximation of the equations (31) as,

E(θ)2 =

∫
Ω

(|û(x, t)|2 + a2|∇û(x, t)|2 + ε2|v̂(x, t)|2)dxdt. (35)

Then we choose the training set S ⊂ D × [0, T] with S = Sint ∪ Ssb ∪ Stb, based on suitable quadrature
points:

• Interior training points Sint = {zn} for 1 ≤ n ≤ Nint, with each zn = (x, t)n ∈ D × (0, T).
• Spatial boundary training points Ssb = {zn} for 1 ≤ n ≤ Nsb, with each zn = (x, t)n ∈ ∂D × (0, T).
• Temporal boundary training points Stb = {xn} for 1 ≤ n ≤ Ntb with each xn ∈ D.

The integrals in (34) are approximated by a numerical quadrature rule, resulting in the training loss,

ET (θ,S)2 = E int1
T (θ,Sint)

2 + E int2
T (θ,Sint)

2 + E int3
T (θ,Sint)

2 + Etb1
T (θ,Stb)

2 + Etb2
T (θ,Stb)

2

+ Etb3
T (θ,Stb)

2 + Esb
T (θ,Ssb), (36)

where

E int1
T (θ,Sint)

2 =

Nint∑
n=1

ωn
int|Rint1[uθ, vθ](x

n
int, t

n
int)|2, Etb1

T (θ,Stb)
2 =

Ntb∑
n=1

ωn
tb|Rtb1[uθ](x

n
tb)|2, (37a)

E int2
T (θ,Sint)

2 =

Nint∑
n=1

ωn
int|Rint2[uθ, vθ](x

n
int, t

n
int)|2, Etb2

T (θ,Stb)
2 =

Ntb∑
n=1

ωn
tb|Rtb2[vθ](x

n
tb)|2, (37b)

E int3
T (θ,Sint)

2 =

Nint∑
n=1

ωn
int|∇Rint1[uθ, vθ](x

n
int, t

n
int)|2, Etb3

T (θ,Stb)
2 =

Ntb∑
n=1

ωn
tb|∇Rtb1[uθ](x

n
tb)|2, (37c)

Esb
T (θ,Ssb)

2 =

Nsb∑
n=1

ωn
sb|Rsb[vθ](x

n
sb, t

n
sb)|2. (37d)

Here the quadrature points in space-time constitute the data sets Sint = {(xn
int, t

n
int)}

Nint
n=1 , Stb = {xn

tb)}
Ntb
n=1

and Ssb = {(xn
sb, t

n
sb)}

Nsb
n=1, and ω

n
⋆ are the quadrature weights with ⋆ being int, tb or sb.

4.3. Error Analysis

By subtracting the equations (31) from the residual equations (33), we get

Rint1 = ût − v̂, (38a)

Rint2 = ε2v̂t − a2∆û+ ε21û+ g(uθ)− g(u), (38b)

Rtb1 = û(x, 0), Rtb2 = v̂(x, 0), Rsb = v̂(x, t)|∂D. (38c)

The results on the PINN approximations to the nonlinear Klein-Gordon equations are summarized in the
following theorems.

12

Theorem 4.2. Let n ≥ 2, d, r, k ∈ N with k ≥ 3. Assume that g(u) is Lipschitz continuous, u ∈
Hk(D × [0, T]) and v ∈ Hk−1(D × [0, T]). Then for every integer N > 5, there exist tanh neural networks
uθ and vθ, each with two hidden layers, of widths at most 3⌈k+n−2

2 ⌉|Pk−1,d+2| + ⌈NT ⌉ + d(N − 1) and

3⌈d+n+1
2 ⌉|Pd+2,d+2|⌈NT ⌉Nd, such that

∥Rint1∥L2(Ω), ∥Rtb1∥L2(D) ≲ lnNN−k+1, (39a)

∥Rint2∥L2(Ω), ∥∇Rint1∥L2(Ω), ∥∇Rtb1∥L2(D) ≲ ln2NN−k+2, (39b)

∥Rtb2∥L2(D), ∥Rsb∥L2(∂D×[0,T]) ≲ lnNN−k+2. (39c)

Proof. Being similar to the proof of Theorem 3.3, we can end the proof by noting u ∈ Hk(D × [0, T]),
v ∈ Hk−1(D × [0, T]) and Lemma 8.3.

Theorem 4.2 implies that the PINN residuals in (33) can be made arbitrarily small by choosing a suffi-
ciently large N . Therefore, the generalization error EG(θ)2 can be made arbitrarily small.

We next show that the PINN total approximation error E(θ)2 can be controlled by the generalization
error EG(θ)2 (Theorem 4.3 below), and by the training error ET (θ,S)2 (Theorem 4.4 below).

Theorem 4.3. Let d ∈ N, u ∈ C1(Ω) and v ∈ C0(Ω) be the classical solution of the nonlinear Klein-Gordon
equation (31). Let (uθ, vθ) denote the PINN approximation with parameter θ. Then the following relation
holds,

E(θ)2 =

∫
Ω

(|û(x, t)|2 + a2|∇û(x, t)|2 + ε2|v̂(x, t)|2)dxdt ≤ CGT exp
(
(2 + ε21 + L+ a2)T

)
, (40)

where CG is defined by (74) in Appendix 8.2.

The proof for Theorem 4.3 is provided in the Appendix 8.2.

Theorem 4.4. Let d ∈ N and T > 0, and let u ∈ C4(Ω) and v ∈ C3(Ω) be the classical solution to the
nonlinear Klein-Gordon equation (31). Let (uθ, vθ) denote the PINN approximation with parameter θ ∈ Θ.
Then the following relation holds,∫

Ω

(|û(x, t)|2 + a2|∇û(x, t)|2 + ε2|v̂(x, t)|2)dxdt ≤ CTT exp
(
(2 + ε21 + L+ a2)T

)
= O(ET (θ,S)2 +M

− 2
d+1

int +M
− 2

d

tb +M
− 1

d

sb), (41)

where the constant CT is defined by

CT =C(R2
tb1)

M
− 2

d

tb +QD
Mtb

(R2
tb1) + ε2

(
C(R2

tb2)
M

− 2
d

tb +QD
Mtb

(R2
tb2)
)

+ a2
(
C(|∇Rtb1|2)M

− 2
d

tb +QD
Mtb

(|∇Rtb1|2)
)
+ C(R2

int1)
M

− 2
d+1

int +QΩ
Mint

(R2
int1)

+ C(R2
int2)

M
− 2

d+1

int +QΩ
Mint

(R2
int2) + a2

(
C(|∇Rint1|2)M

− 2
d+1

int +QΩ
Mint

(|∇Rint1|2)
)
,

+ 2C∂D|T | 12
(
C(R2

sb)
M

− 2
d

sb +QΩ∗
Msb

(R2
sb)
) 1

2

.

Proof. Using Lemma 8.2, Theorem 4.3 and the quadrature error formula (14) leads to this result.

It follows from Theorem 4.4 that the PINN approximation error E(θ)2 can be arbitrarily small, provided
that the training error ET (θ,S)2 is sufficiently small and the sample set is sufficiently large.

13

5. Physics Informed Neural Networks for Approximating Linear Elastodynamic Equation

5.1. Linear Elastodynamic Equation

Consider an elastic body occupying an open, bounded convex polyhedral domain D ⊂ Rd. The boundary
∂D = ΓD ∪ ΓN , with the outward unit normal vector n, is assumed to be composed of two disjoint portions
ΓD ̸= ∅ and ΓN , with ΓD ∩ ΓN = ∅. Given a suitable external load f ∈ L2((0, T];L2(D)), and suitable

initial/boundary data g ∈ C1((0, T];H
1
2 (ΓN)), ψ1 ∈ H

1
2

0,ΓD
(D) and ψ2 ∈ L2(D), we consider the linear

elastodynamic equations,

ut − v = 0, ρvt − 2µ∇ · (ε(u))− λ∇(∇ · u) = f , in D × [0, T], (42a)

u = ud in ΓD × [0, T], (42b)

2µε(u)n+ λ(∇ · u)n = g in ΓN × [0, T], (42c)

u(x, 0) = ψ1(x), v(x, 0) = ψ2(x), in D. (42d)

In the above system, u = (u1, u2, · · · , ud) and v = (v1, v2, · · · , vd) denote the displacement and the velocity,
respectively, and [0, T] (with T > 0) denotes the time domain. ε(u) is the strain tensor, ε(u) = 1

2 (∇u+∇uT).
The constants λ and µ are the first and the second Lamé parameters, respectively.

Combining the two equations in (42a), we can recover the classical linear elastodynamics equation:

ρutt − 2µ∇ · (ε(u))− λ∇(∇ · u) = f in D × [0, T]. (43)

The well-posedness of this equation is established in [29].

Lemma 5.1 ([29, 59]). Let ψ1 ∈ Hr(D), ψ2 ∈ Hr−1(D) and f ∈ Hr−1(D × [0, T]) with r ≥ 1. Then there
exists a unique solution u to the classical linear elastodynamic equation (43) such that u(x, 0) = ψ1(x),
ut(x, 0) = ψ2(x) and u ∈ Cl([0, T];Hr−l(D)) with 0 ≤ l ≤ r.

Lemma 5.2. Let k ∈ N, ψ1 ∈ Hr(D), ψ2 ∈ Hr−1(D) and f ∈ Hr−1(D× [0, T]) with r > d
2 + k, then there

exists T > 0 and a classical solution (u,v) to the elastodynamic equations (42) such that u(x, 0) = ψ1(x),
ut(x, 0) = ψ2(x), u ∈ Hk(D × [0, T]) and v ∈ Hk−1(D × [0, T]).

Proof. As r > d
2+k, H

r−k(D) is a Banach algebra. By Lemma 5.1, there exists T > 0 and the solution (u,v)
to the linear elastodynamics equations such that u(x, 0) = ψ1(x), v(x, 0) = ψ2(x), u ∈ Cl([0, T];Hr−l(D))
with 0 ≤ l ≤ r and v ∈ Cl([0, T];Hr−1−l(D)) with 0 ≤ l ≤ r − 1.

Since u ∈ ∩k
l=0C

l([0, T];Hr−l(D)) and r − l + l ≥ k with r > d
2 + k, it holds that u ∈ Hk(D × [0, T]).

Similarly, we obtain v ∈ Hk−1(D × [0, T]).

5.2. Physics Informed Neural Networks

We now consider the PINN approximation of the linear elastodynamic equations (42). Let Ω = D× [0, T],
ΩD = ΓD × [0, T] and ΩN = ΓN × [0, T] denote the space-time domain. Define the following residuals for
the PINN approximation uθ : Ω → R and vθ : Ω → R for the elastodynamic equations (42):

Rint1[uθ,vθ](x, t) = uθt − vθ, Rint2[uθ,vθ](x, t) = ρvθt − 2µ∇ · (ε(uθ))− λ∇(∇ · uθ)− f , (44a)

Rtb1[uθ](x) = uθ(x, 0)−ψ1(x), Rtb2[vθ](x) = vθ(x, 0)−ψ2(x), (44b)

Rsb1[vθ](x, t) = vθ|ΓD
− udt, Rsb2[uθ](x, t) = (2µε(uθ)n+ λ(∇ · uθ)n)|ΓN

− g. (44c)

Note that for the exact solution (u,v), we have Rint1[u,v] = Rint2[u,v] = Rtb1[u] = Rtb2[v] = Rsb1[v] =
Rsb2[u] = 0. With PINN we minimize the the following generalization error,

EG(θ)2 =

∫
Ω

|Rint1[uθ,vθ](x, t)|2dxdt+
∫
Ω

|Rint2[uθ,vθ](x, t)|2dxdt+
∫
Ω

|ε(Rint1[uθ,vθ](x, t))|2dxdt

+

∫
Ω

|∇ · (Rint1[uθ,vθ](x, t))|2dxdt+
∫
D

|Rtb1[uθ](x)|2dx+

∫
D

|Rtb2[vθ](x)|2dx

+

∫
D

|ε(Rtb1[uθ](x))|2dx+

∫
D

|∇ ·Rtb1[uθ](x)|2dx

14

+

(∫
ΩD

|Rsb1[vθ](x, t)|2ds(x)dt
) 1

2

+

(∫
ΩN

|Rsb2[uθ](x, t)|2ds(x)dt
) 1

2

. (45)

Let û = uθ−u, v̂ = vθ−v denote the difference between the solution to the elastodynamic equations (42)
and the PINN approximation with parameter θ. We define the total error of the PINN approximation as,

E(θ)2 =

∫
Ω

(|û(x, t)|2 + 2µ|ε(û(x, t))|2 + λ|∇ · û(x, t)|2 + ρ|v̂(x, t)|2)dxdt. (46)

We choose the training set S ⊂ D × [0, T] based on suitable quadrature points. The full training set is
defined by S = Sint ∪ Ssb ∪ Stb, and Ssb = Ssb1 ∪ Ssb2:

• Interior training points Sint = {zn} for 1 ≤ n ≤ Nint, with each zn = (x, t)n ∈ D × (0, T).
• Spatial boundary training points Ssb1 = {zn} for 1 ≤ n ≤ Nsb1, with each zn = (x, t)n ∈ ΓD × (0, T),
and Ssb2 = {zn} for 1 ≤ n ≤ Nsb2, with each zn = (x, t)n ∈ ΓN × (0, T).

• Temporal boundary training points Stb = {xn} for 1 ≤ n ≤ Ntb with each xn ∈ D.
Then, the integrals in (45) can be approximated by a suitable numerical quadrature, resulting in the

following training loss,

ET (θ,S)2 = E int1
T (θ,Sint)

2 + E int2
T (θ,Sint)

2 + E int3
T (θ,Sint)

2 + E int4
T (θ,Sint)

2 + Etb1
T (θ,Stb)

2

+ Etb2
T (θ,Stb)

2 + Etb3
T (θ,Stb)

2 + Etb4
T (θ,Stb)

2 + Esb1
T (θ,Ssb1) + Esb2

T (θ,Ssb2), (47)

where,

E int1
T (θ,Sint)

2 =

Nint∑
n=1

ωn
int|Rint1[uθ,vθ](x

n
int, t

n
int)|2, Etb1

T (θ,Stb)
2 =

Ntb∑
n=1

ωn
tb|Rtb1[uθ](x

n
tb)|2, (48a)

E int2
T (θ,Sint)

2 =

Nint∑
n=1

ωn
int|Rint2[uθ,vθ](x

n
int, t

n
int)|2, Etb2

T (θ,Stb)
2 =

Ntb∑
n=1

ωn
tb|Rtb2[vθ](x

n
tb)|2, (48b)

E int3
T (θ,Sint)

2 =

Nint∑
n=1

ωn
int|ε(Rint1[uθ,vθ](x

n
int, t

n
int))|2, (48c)

E int4
T (θ,Sint)

2 =

Nint∑
n=1

ωn
int|∇ ·Rint1[uθ,vθ](x

n
int, t

n
int)|2, (48d)

Etb3
T (θ,Stb)

2 =

Ntb∑
n=1

ωn
tb|ε(Rtb1[uθ](x

n
tb))|2, Etb4

T (θ,Stb)
2 =

Ntb∑
n=1

ωn
tb|∇ ·Rtb1[uθ](x

n
tb)|2, (48e)

Esb1
T (θ,Ssb1)

2 =

Nsb1∑
n=1

ωn
sb1|Rsb1[vθ](x

n
sb, t

n
sb)|2, Esb2

T (θ,Ssb2)
2 =

Nsb2∑
n=1

ωn
sb2|Rsb2[uθ](x

n
sb, t

n
sb)|2. (48f)

Here the quadrature points in space-time constitute the data sets Sint = {(xn
int, t

n
int)}

Nint
n=1 , Stb = {xn

tb)}
Ntb
n=1,

Ssb1 = {(xn
sb1, t

n
sb1)}

Nsb1
n=1 and Ssb2 = {(xn

sb2, t
n
sb2)}

Nsb2
n=1 . ωn

⋆ denote the suitable quadrature weights with ⋆
being int, tb, sb1 and sb2.

5.3. Error Analysis

Subtracting the elastodynamic equations (42) from the residual equations (44), we obtain

Rint1 = ût − v̂, (49a)

Rint2 = ρv̂t − 2µ∇ · (ε(û))− λ∇(∇ · û), (49b)

Rtb1 = û|t=0, Rtb2 = v̂|t=0, Rsb1 = v̂|ΓD
, Rsb2 = (2µε(û)n+ λ(∇ · û)n)|ΓN

. (49c)

The PINN approximation results are summarized in the following three theorems.

15

Theorem 5.3. Let n ≥ 2, d, r, k ∈ N with k ≥ 3. Let ψ1 ∈ Hr(D), ψ2 ∈ Hr−1(D) and f ∈ Hr−1(D×[0, T])
with r > d

2 + k. For every integer N > 5, there exist tanh neural networks (uj)θ and (vj)θ, with j =

1, 2, · · · , d, each with two hidden layers, of widths at most 3⌈k+n−2
2 ⌉|Pk−1,d+2| + ⌈NT ⌉ + d(N − 1) and

3⌈d+n+1
2 ⌉|Pd+2,d+2|⌈NT ⌉Nd, such that

∥Rint1∥L2(Ω), ∥Rtb1∥L2(Ω) ≲ lnNN−k+1, (50a)

∥Rint2∥L2(Ω), ∥ε(Rint1)∥L2(Ω), ∥∇ ·Rint1∥L2(Ω) ≲ ln2NN−k+2, (50b)

∥ε(Rtb1)∥L2(D), ∥∇ ·Rtb1∥L2(D), ∥Rsb2∥L2(ΓN×[0,T]) ≲ ln2NN−k+2, (50c)

∥Rtb2∥L2(D), ∥Rsb1∥L2(ΓD×[0,T]) ≲ lnNN−k+2. (50d)

Proof. Similar to the Theorem 3.3, we can complete the proof by applying Lemma 5.2 and Lemma 8.3.

It follows from Theorem 5.3 that, by choosing a sufficiently large N , one can make the PINN residuals
in (44), and thus the generalization error EG(θ)2 in (45), arbitrarily small.

Theorem 5.4. Let d ∈ N, u ∈ C1(Ω) and v ∈ C(Ω) be the classical solution to the linear elastodynamic
equation (42). Let (uθ,vθ) denote the PINN approximation with the parameter θ. Then the following relation
holds,∫

Ω

(|û(x, t)|2 + 2µ|ε(û(x, t))|2 + λ|∇ · û(x, t)|2 + ρ|v̂(x, t)|2)dxdt ≤ CGT exp ((2 + 2µ+ λ)T) ,

where CG is given by (79) in Appendix 8.2.

The proof of this theorem is provided in the Appendix 8.2. Theorem 5.4 shows that the total error of
the PINN approximation E(θ)2 can be controlled by the generalization error EG(θ)2.

Theorem 5.5. Let d ∈ N, u ∈ C4(Ω) and v ∈ C3(Ω) be the classical solution to the linear elastodynamic
equation (42). Let (uθ,vθ) denote the PINN approximation with the parameter θ. Then the following relation
holds,∫

Ω

(|û(x, t)|2 + 2µ|ε(û(x, t))|2 + λ|∇ · û(x, t)|2 + ρ|v̂(x, t)|2)dxdt ≤ CTT exp ((2 + 2µ+ λ)T)

= O(ET (θ)2 +M
− 2

d+1

int +M
− 2

d

tb +M
− 1

d

sb), (51)

where

CT =C(R2
tb1)

M
− 2

d

tb +QD
Mtb

(R2
tb1) + ρ

(
C(R2

tb2)
M

− 2
d

tb +QD
Mtb

(R2
tb2)
)
+ 2µ

(
C(|ε(Rtb1)|2)M

− 2
d

tb +QD
Mtb

(|ε(Rtb1)|2)
)

+ λ
(
C(|∇·Rtb1|2)M

− 2
d

tb +QD
Mtb

(|∇ ·Rtb1|2)
)
+ C(R2

int1)
M

− 2
d+1

int +QΩ
Mint

(R2
int1)

+ C(R2
int2)

M
− 2

d+1

int +QΩ
Mint

(R2
int2) + 2µ

(
C(|ε(Rint1)|2)M

− 2
d+1

int +QΩ
Mint

(|ε(Rint1)|2)
)

+ λ

(
C(|∇·Rint1|2)M

− 2
d+1

int +QΩ
Mint

(|∇ ·Rint1|2)
)
+ 2|T | 12CΓD

(
C(R2

sb1)
M

− 2
d

sb1 +QΩD

Msb1
(R2

sb1)
) 1

2

+ 2|T | 12CΓN

(
C(R2

sb2)
M

− 2
d

sb2 +QΩN

Msb2
(R2

sb2)
) 1

2

.

Proof. Similar to Theorem 3.5, we finish the proof by using Theorem 5.4 and the quadrature error formula
(14). The boundedness of the constants C(R2

q) can be obtained from Lemma 8.2, u ∈ C4(Ω) and v ∈ C3(Ω),
where Rq = Rtb1, Rtb2, ε(Rtb1), ∇ ·Rtb1, Rint1, Rint2, ε(Rint1), ∇ ·Rint1, Rsb1 and Rsb2.

Theorem 5.5 shows that the PINN approximation error E(θ)2 can be controlled by the training error
ET (θ,S)2 with a large enough sample set S.

16

6. Numerical Examples

The analyses from Sections 3 to 5 suggest several forms for the PINN loss function with the wave, the
nonlinear Klein-Gordon, and the linear elastodynamic equations. These forms contain certain non-standard
terms, which would be absent from the canonical PINN formulation of the loss function (see Remark 2.2).
The presence of such terms is crucial to bounding the PINN approximation errors, as shown in the previous
sections.

These non-standard forms of the loss function lead to a variant PINN algorithm. In this section we
illustrate the performance of the variant PINN algorithm suggested by the theoretical analysis and the more
standard PINN algorithm using numerical examples in one spatial dimension (1D) plus time for the wave
equation and the Sine-Gordon equation (i.e. by using g(u) = sin(u) in the nonlinear Klein-Gordon equation),
and in two spatial dimensions (2D) plus time for the linear elastodynamic equation.

Here are some common settings to the numerical simulations in this section. Let (x, t) ∈ D × [0, T]
denote the spatial and temporal coordinates in the spatial-temporal domain, where x = x and x = (x, y) for
1D and 2D, respectively. For the wave equation and the Sine-Gordon equation, the neural networks contain
two input nodes (representing x and t), two hidden layers (number of nodes to be specified below), and two
output nodes (representing the solution u and its time derivative v = ∂u

∂t). For the linear elastodynamic
equation, three input nodes and four output nodes are employed in the neural network, as will be explained
in more detail later. We employ the tanh (hyperbolic tangent) activation function for all the hidden nodes,
and no activation function is applied to the output nodes (i.e. linear). For training the neural networks, we
employ N collocation points within the spatial-temporal domain drawn from a uniform random distribution,
and also N uniform random points on each spatial boundary and on the initial boundary. In the simulations
N is varied systematically between 1000 and 3000. After the neural networks are trained, for the wave and
Sine-Gordon equations, we compare the PINN solution and the exact solution on a set of Nev = 3000× 3000
uniform grid points (evaluation points) (x, t)n ∈ D× [0, T] (n = 1, · · · , Nev) that covers the problem domain
and the boundaries. For the elastodynamic equation, we compare the PINN solution and the exact solution
at different time instants, and at each time instant the corresponding solutions are evaluated at a uniform
set of Nev = 1500× 1500 grid points in the spatial domain, xn = (x, y)n ∈ D (n = 1, · · · , Nev).

The PINN errors reported below are computed as follows. Let zn = (x, t)n ((x, t)n ∈ D × [0, T], n =
1, · · · , Nev) denote the set of uniform grid points, where Nev denote the number of evaluation points. The
errors of PINN are defined by,

l2-error =

√∑Nev

n=1 |u(zn)− uθ(zn)|2√∑Nev

n=1 u(zn)
2

, l∞-error =
max{|u(zn)− uθ(zn)|}Nev

n=1√(∑Nev

n=1 u(zn)
2
)
/Nev

, (52a)

where uθ denotes the PINN solution and u denotes the exact solution.
Our implementation of the PINN algorithm is based on the PyTorch library (pytorch.org). We combine

the Adam [33] and the L-BFGS [43] optimizers (in batch mode) to train the neural networks. We first employ
Adam to train the network for 100 epochs/iterations, and then employ L-BFGS to continue the network
training for another 30000 iterations. We employ the default parameter values in Adam, with the learning
rate 0.001, β1 = 0.9 and β2 = 0.99. The initial learning rate 1.0 is adopted in the L-BFGS optimizer.

6.1. Wave Equation

We next test the PINN algorithm for solving the wave equation (15) in one spatial dimension (plus
time), under a configuration in accordance with that of [17]. Consider the spatial-temporal domain, (x, t) ∈
D × [0, T] = [0, 5]× [0, 2], and the initial-boundary value problem with the wave equation on this domain,

∂2u

∂t2
− c2

∂2u

∂x2
= 0, (53a)

u(0, t) = u(5, t),
∂u

∂x
(0, t) =

∂u

∂x
(5, t), u(x, 0) = 2 sech3

(
3

δ0
(x− x0)

)
,

∂u

∂t
(x, 0) = 0, (53b)

where u(x, t) is the wave field to be solved for, c is the wave speed, x0 is the initial peak location of the
wave, δ0 is a constant that controls the width of the wave profile, and the periodic boundary conditions are

17

https://pytorch.org/

(a) True solution for u (b) PINN solution uθ (c) PINN u absolute error

(d) True solution for v (e) PINN solution vθ (f) PINN v absolute error

Figure 1: Wave equation: Distributions of the True solutions, the PINN solutions and the PINN point-wise absolute errors for
u and v in the spatial-temporal domain. N = 2000 training points within the domain and on each of the domain boundaries.

imposed on x = 0 and 5. In the simulations, we employ c = 2, δ0 = 2, and x0 = 3. Then the above problem
has the solution,u(x, t) = sech3

(
3

δ0
(−2.5 + ξ)

)
+ sech3

(
3

δ0
(−2.5 + η)

)
,

ξ = mod (x− x0 + ct+ 2.5, 5) , η = mod (x− x0 − ct+ 2.5, 5) ,

where mod refers to the modulo operation. We reformulate the problem (53) into the following system,

ut − v = 0, vt − c2uxx = 0, (54a)

u(0, t) = u(5, t), ux(0, t) = ux(5, t), u(x, 0) = 2 sech3
(

3

δ0
(x− x0)

)
, v(x, 0) = 0, (54b)

where v(x, t) is an auxiliary field given by the first equation in (54a).
To solve the system (54) with PINN, we employ 90 and 60 neurons in the first and the second hidden

layers of neural networks, respectively. We consider the following loss function in PINN,

Loss =
W1

N

N∑
n=1

[uθt(x
n
int, t

n
int)− vθ(x

n
int, t

n
int)]

2
+
W2

N

N∑
n=1

[vθt(x
n
int, t

n
int)− uθxx(x

n
int, t

n
int)]

2

+
W3

N

N∑
n=1

[uθtx(x
n
int, t

n
int)− vθx(x

n
int, t

n
int)]

2
+
W4

N

N∑
n=1

[
uθ(x

n
tb, 0)− 2 sech3

(
3

δ 0
(xntb − x0)

)]2

+
W5

N

N∑
n=1

[vθ(x
n
tb, 0)]

2
+
W6

N

N∑
n=1

[
uθx(x

n
tb, 0) +

18 sinh((3xntb − 3x0)/δ0)

δ0 cosh
4((3xntb − 3x0)/δ0)

]2

+
W7

N

N∑
n=1

[vθ(0, t
n
sb)− vθ(5, t

n
sb)]

2
+
W8

N

N∑
n=1

[uθx(0, t
n
sb)− uθx(5, t

n
sb)]

2

18

=:
8∑

i=1

Wi, (55)

where Wi (1 ≤ i ≤ 8) denote the different terms in the loss expression. Note that in the simulations we
have employed the same number of collocation points (N) within the domain and on each of the domain
boundaries. The formulation of the loss function here differs from what is used in the error analysis in
several aspects. First, we have added a set of penalty coefficients Wn > 0 (1 ≤ n ≤ 8) for different loss
terms in numerical simulations. Second, the collocation points used in simulations (e.g. xnint, t

n
int, x

n
sb, t

n
sb,

xntb) are generated randomly within the domain or on the domain boundaries from a uniform distribution.
In addition, the averaging used here do not exactly correspond to the numerical quadrature rule (mid-point
rule) used in the theoretical analysis.

We also consider the following form for the loss function, as given in (18),

Loss =
6∑

i=1

Wi +W7

(
1

N

N∑
n=1

[vθ(0, t
n
sb)− vθ(5, t

n
sb)]

2

)1/2

+W8

(
1

N

N∑
n=1

[uθx(0, t
n
sb)− uθx(5, t

n
sb)]

2

)1/2

.

(56)

The difference between this form and the form (55) lies in the last two terms, with the terms here containing
a square root.

It should be noted that the loss function defined by (56) is in accordance with our theoretical analysis,
while the one in (55) is akin to the more standard PINN formulation. The loss function (55) will be referred
to as the loss form #1 in subsequent discussions, and (56) will be referred to as the loss form #2. The PINN
schemes that employ these two different loss forms will be referred to as PINN-F1 and PINN-F2, respectively.

Figure 1 shows distributions of the exact solutions, the PINN solutions, and the PINN point-wise absolute
errors for u and v = ∂u

∂t in the spatial-temporal domain. Here the PINN solution is computed by PINN-F1,
in which penalty coefficients are given by W = (W1, . . . ,W8) = (0.8, 0.8, 0.8, 0.5, 0.5, 0.5, 0.9, 0.9). One can
observe that the method has captured the wave fields for u and v reasonably well, with the error for u
notably smaller than that of v.

Figures 2 and 3 provide a comparison of the solutions obtained using the two forms of loss functions.
Figure 2 compares profiles of the PINN-F1 and PINN-F2 solutions, and the exact solution, for u (top row)
at three time instants (t = 0.5, 1.0, and 1.5), as well as the error profiles (bottom row). Figure 3 shows
the corresponding results for the field variable v. These results are obtained by using N = 2000 training
data points in the domain and on each of the domain boundaries. It is observed that both PINN schemes,
with the loss functions given by (55) and (56) respectively, have captured the solution reasonably well. We
further observe that the PINN-F2 scheme (with the loss form (56)) produces somewhat less accurate results
than the PINN-F1 (with loss form (55)), especially for the field v.

We have varied the number of training data points N systematically and studied its effect on the PINN
results. Figure 4 shows the loss histories of PINN-F1 and PINN-F2 corresponding to different number of
training data points (N) in the simulations, with a total of 30, 000 training iterations. We can make two
observations. First, the history curves with the loss function form #1 seem smoother, while fluctuations in
the loss history can be observed with the form #2. Second, the eventual loss values produced by the loss
form #1 are smaller than those produced by the loss form #2.

Table 1 is another comparison between PINN-F1 and PINN-F2. Here the l2 and l∞ errors of u and v
computed by PINN-F1 and PINN-F2 corresponding to different training data points (N) have been listed.
There appears to be a general trend that the errors tend to decrease with increasing number of training
points, but the decrease is not monotonic. It can be observed that the u errors are notably smaller than
those for v, as signified earlier in e.g. Figure 1. One again observes that PINN-F1 results appear more
accurate than those of PINN-F2 for the wave equation.

Theorem 3.5 suggests the solution errors for u, v, and ∇u approximately scale as the square root of the
training loss function. Figure 5 provides some numerical evidence for this point. Here we plot the l2 errors
for u, ∂u

∂t and ∂u
∂x from our simulations as a function of the training loss value for PINN-F1 and PINN-F2

in logarithmic scales. It is evident that for PINN-F1 the scaling essentially follows the square root relation.
For PINN-F2 the relation between the error and the training loss appears to scale with a power somewhat
larger than 1

2 .

19

0 1 2 3 4 5

x

0

0.2

0.4

0.6

0.8

1

1.2

u

True solution

PINN-F1

PINN-F2

0 1 2 3 4 5

x

0.005

0.01

0.015

0.02

A
b
s
o

lu
te

 e
rr

o
r

PINN-F1

PINN-F2

(a) t = 0.5

0 1 2 3 4 5

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

u

True solution

PINN-F1

PINN-F2

0 1 2 3 4 5

x

0.005

0.01

0.015

0.02

A
b
s
o

lu
te

 e
rr

o
r

PINN-F1

PINN-F2

(b) t = 1

0 1 2 3 4 5

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

u

True solution

PINN-F1

PINN-F2

0 1 2 3 4 5

x

0.005

0.01

0.015

0.02

0.025

A
b
s
o

lu
te

 e
rr

o
r

PINN-F1

PINN-F2

(c) t = 1.5

Figure 2: Wave equation: Comparison of profiles of u (top row) and its absolute error (bottom row) between the PINN solutions
(loss forms #1 and #2) and the exact solution at time instants (a) t = 0.5, (b) t = 1.0, and (c) t = 1.5. N = 2000 training
data points within the domain and on each of the domain boundaries (x = 0 and 5, and t = 0).

Table 1: Wave equation: The u and v errors versus the number of training data points N .

N
l2-error l∞-error

PINN-F1 PINN-F2 PINN-F1 PINN-F2

uθ vθ uθ vθ uθ vθ uθ vθ
1000 5.7013e-03 1.3531e-02 4.7281e-02 9.2431e-02 1.8821e-02 4.6631e-02 1.4367e-01 3.2764e-01

1500 2.1689e-03 4.1035e-03 4.9087e-02 1.2438e-01 6.7631e-03 1.5109e-02 2.1525e-01 5.0601e-01

2000 4.6896e-03 9.6417e-03 1.8554e-02 4.9224e-02 1.3828e-02 3.3063e-02 6.0780e-02 1.6358e-01

2500 3.7879e-03 9.8574e-03 2.3526e-02 5.4266e-02 1.2868e-02 3.3622e-02 9.8690e-02 1.9467e-01

3000 2.6588e-03 6.0746e-03 1.4164e-02 3.7796e-02 8.1457e-03 1.9860e-02 5.3045e-02 1.4179e-01

6.2. Sine-Gordon Equation

We test the PINN algorithm suggested by the theoretical analysis for the Sine-Gordon equation (i.e. by
setting g(u) = sin(u) in (31)) in this subsection. Consider the spatial-temporal domain (x, t) ∈ Ω =
D × [0, T] = [0, 1]× [0, 2], and the following initial/boundary value problem on this domain,

∂2u

∂t2
− ∂2u

∂x2
+ u+ sin(u) = f(x, t), (57a)

u(0, t) = ϕ1(t), u(1, t) = ϕ2(t), u(x, 0) = ψ1(x),
∂u

∂t
(x, 0) = ψ2(x). (57b)

In these equations, u(x, t) is the field function to be solved for, f(x, t) is a source term, ψ1 and ψ2 are
the initial conditions, and ϕ1 and ϕ2 are the boundary conditions. The source term, initial and boundary
conditions appropriately are chosen by the following exact solution,

u(x, t) =

[
2 cos

(
πx+

π

5

)
+

9

5
cos

(
2πx+

7π

20

)][
2 cos

(
πt+

π

5

)
+

9

5
cos

(
2πt+

7π

20

)]
. (58)

To simulate this problem with PINN, we reformulate the problem as follows,

ut − v = 0, vt − uxx + u+ sin(u) = f(x, t), (59a)

u(0, t) = ϕ1(t), u(1, t) = ϕ2(t), u(x, 0) = ψ1(x), v(x, 0) = ψ2(x), (59b)

20

0 1 2 3 4 5

x

-3

-2

-1

0

1

2

3

4

u
t

True solution

PINN-F1

PINN-F2

0 1 2 3 4 5

x

0.05

0.1

0.15

0.2

A
b
s
o

lu
te

 e
rr

o
r

PINN-F1

PINN-F2

(a) t = 0.5

0 1 2 3 4 5

x

-2

-1

0

1

2

3

4

5

6

7

u
t

True solution

PINN-F1

PINN-F2

0 1 2 3 4 5

x

0.05

0.1

0.15

0.2

0.25

A
b
s
o

lu
te

 e
rr

o
r

PINN-F1

PINN-F2

(b) t = 1

0 1 2 3 4 5

x

-5

0

5

u
t

True solution

PINN-F1

PINN-F2

0 1 2 3 4 5

x

0.05

0.1

0.15

0.2

0.25

0.3

A
b
s
o

lu
te

 e
rr

o
r

PINN-F1

PINN-F2

(c) t = 1.5

Figure 3: Wave equation: Comparison of the profiles of v = ∂u
∂t

(top row) and its absolute error (bottom row) between the
PINN solutions (loss forms #1 and #2) and the exact solution at time instants (a) t = 0.5, (b) t = 1.0, and (c) t = 1.5.
N = 2000 training data points within the domain and on each of the domain boundaries (x = 0 and 5, and t = 0).

0.5 1 1.5 2 2.5 3

Iteration 10
4

10
-4

10
-3

10
-2

10
-1

10
0

L
o
s
s

N=1000

N=1500

N=2000

N=2500

N=3000

(a) PINN-F1

0.5 1 1.5 2 2.5 3

Iteration 10
4

10
-2

10
-1

10
0

L
o
s
s

N=1000

N=1500

N=2000

N=2500

N=3000

(b) PINN-F2

Figure 4: Wave equation: Histories of the loss function versus the training iteration with PINN-F1 and PINN-F2, corresponding
to different number of training data points (N).

where v is defined by equation (59a). In light of (36), we employ the following loss function in PINN,

Loss =
W1

N

N∑
n=1

[uθt(x
n
int, t

n
int)− vθ(x

n
int, t

n
int)]

2

+
W2

N

N∑
n=1

[vθt(x
n
int, t

n
int)− uθxx(x

n
int, t

n
int) + uθ(x

n
int, t

n
int) + sin(uθ(x

n
int, t

n
int))− f(xnint, t

n
int)]

2

+
W3

N

N∑
n=1

[uθtx(x
n
int, t

n
int)− vθx(x

n
int, t

n
int)]

2
+
W4

N

N∑
n=1

[uθ(x
n
tb, 0)− ψ1(x

n
tb)]

2

+
W5

N

N∑
n=1

[vθ(x
n
tb, 0)− ψ2(x

n
tb)]

2
+
W6

N

N∑
n=1

[uθx(x
n
tb, 0)− ψ1x(x

n
tb)]

2

+W7

(
1

N

N∑
n=1

[
(vθ(0, t

n
sb)− ϕ1t(t

n
sb))

2 + (vθ(1, t
n
sb)− ϕ2t(t

n
sb))

2
])1/2

21

10
-3

10
-2

10
-1

Loss

10
-2

10
-1

10
0

E
rr

o
r

1
1/2

||u-u ||
L

2
()

||u
t
-v ||

L
2
()

||u
x
-u

 x
||

L
2
()

(a) PINN-F1

10
-2

10
-1

Loss

10
-1

10
0

E
rr

o
r

1
1/2

||u-u ||
L

2
()

||u
t
-v ||

L
2
()

||u
x
-u

 x
||

L
2
()

(b) PINN-F2

Figure 5: Wave equation: The l2 errors of u, ∂u
∂t

, and ∂u
∂x

as a function of the training loss value. N = 2000 training data
points.

(a) True solution u (b) PINN solution u (c) Solution error u (d) True solution v (e) PINN solution v (f) Solution error v

Figure 6: Sine-Gordon equation: Distributions of the exact solution, the PINN solution and the PINN absolute error for u
(left three columns) and for v = ∂u

∂t
(right three columns). N = 2000 collocation points within the domain and on the domain

boundaries.

=:
7∑

i=1

Si, (60)

where Si (1 ≤ i ≤ 7) represent different terms in the loss expression, and Wn > 0 (1 ≤ n ≤ 7) are the
penalty coefficients for different loss terms added in the PINN implementation. It should be noted that the
loss terms S3 and S6 will be absent from the conventional PINN formulation (see [46]). These terms in the
training loss are necessary based on the error analysis in Section 4. It should also be noted that the terms
in S7 contains a square root, as dictated by the theoretical analysis of Section 4.

We have also implemented a PINN scheme with a variant form for the loss function,

Loss =
6∑

i=1

Si +
W7

N

N∑
n=1

[
(vθ(0, t

n
sb)− ϕ1t(t

n
sb))

2 + (vθ(1, t
n
sb)− ϕ2t(t

n
sb))

2
]
. (61)

The difference between (61) and (60) lies in the S7 terms. These S7 terms in (61) are squared, and they
are not in (60). We refer to the PINN scheme employing the loss function (60) as PINN-G1 and the scheme
employing the loss function (61) as PINN-G2.

In the simulations we employ a feed-forward neural network with two input nodes (representing x and t),
two output nodes (representing u and v), and two hidden layers, each having a width of 80 nodes. The tanh
activation function has been used for all the hidden nodes. We employ N collocation points generated from
a uniform random distribution within the domain, on each of the domain boundary, and also on the initial
boundary, where N is varied systematically in the simulations. The penalty coefficients in the loss functions
are taken to be W = (W1, . . . ,W7) = (0.5, 0.4, 0.5, 0.6, 0.6, 0.6, 0.8).

22

0 0.2 0.4 0.6 0.8 1

x

-4

-2

0

2

4

6

8

u

True solution

PINN-G1

PINN-G2

0 0.2 0.4 0.6 0.8 1

x

0.5

1

1.5

2

2.5

3

3.5

A
b
s
o

lu
te

 e
rr

o
r

10
-3

PINN-G1

PINN-G2

(a) t = 0.5

0 0.2 0.4 0.6 0.8 1

x

-4

-2

0

2

4

6

u

True solution

PINN-G1

PINN-G2

0 0.2 0.4 0.6 0.8 1

x

1

2

3

4

5

6

A
b
s
o

lu
te

 e
rr

o
r

10
-3

PINN-G1

PINN-G2

(b) t = 1

0 0.2 0.4 0.6 0.8 1

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

u

True solution

PINN-G1

PINN-G2

0 0.2 0.4 0.6 0.8 1

x

1

2

3

4

5

6

7

8

9

A
b
s
o

lu
te

 e
rr

o
r

10
-3

PINN-G1

PINN-G2

(c) t = 1.5

Figure 7: Sine-Gordon equation: Top row, comparison of profiles between the exact solution and PINN-G1/PINN-G2 solutions
for u at several time instants. Bottom row, profiles of the absolute error of the PINN-G1 and PINN-G2 solutions for u. N = 2000
training collocation points.

Figure 6 shows distributions of of u(x, t) and v = ∂u
∂t from the exact solution (left column) and the PINN

solution (middle column), as well as the point-wise absolute errors of the PINN solution for these fields
(right column). These results are obtained by PINN-G2 with N = 2000 random collocation points within
the domain and on each of the domain boundaries. The PINN solution is in good agreement with the true
solution.

Figures 7 and 8 compare the profiles of u and v between the exact solution, and the solutions obtained
by PINN-G1 and PINN-G2, at several time instants (t = 0.5, 1 and 1.5). Profiles of the absolute errors
of the PINN-G1/PINN-G2 solutions are also shown in these figures. We observe that both PINN-G1 and
PINN-G2 have captured the solution for u quite accurately, and to a lesser extent, also for v. Comparison of
the error profiles between PINN-G1 and PINN-G2 suggests that the PINN-G2 error in general appears to be
somewhat smaller than that of PINN-G1. But this seems not to be true consistently in the entire domain.

The effect of the collocation points on the PINN results has been studied by varying the number of
training collocation points systematically between N = 1000 and N = 3000 within the domain and on each
of the domain boundaries. The results are provided in Figure 9 and Table 2. Figure 9 shows histories of the
loss function corresponding to different number of collocation points for PINN-G1 and PINN-G2. Table 2
provides the l2 and l∞ errors of u and v versus the number of collocation points computed by PINN-G1
and PINN-G2. The PINN errors in general tend to decrease with increasing number of collocation points,
but this trend is not monotonic. It can be observed that both PINN-G1 and PINN-G2 have captured the

Table 2: Sine-Gordon equation: The l2 and l∞ errors for u and v versus the number of training collocation points N corre-
sponding to PINN-G1 and PINN-G2.

N
l2-error l∞-error

PINN-G1 PINN-G2 PINN-G1 PINN-G2

uθ vθ uθ vθ uθ vθ uθ vθ
1000 3.0818e-03 4.3500e-03 3.0674e-03 2.0581e-03 9.6044e-03 1.8894e-02 7.3413e-03 1.1323e-02

1500 3.4335e-03 4.8035e-03 1.0605e-03 1.4729e-03 1.0566e-02 1.7050e-02 2.2914e-03 6.2831e-03

2000 2.1914e-03 3.0055e-03 2.2469e-03 1.6072e-03 7.5882e-03 1.1099e-02 4.8842e-03 8.8320e-03

2500 3.0172e-03 3.5698e-03 6.6072e-04 6.0509e-04 9.2515e-03 1.4645e-02 1.4099e-03 4.3423e-03

3000 2.5281e-03 4.4858e-03 6.6214e-04 1.0830e-03 7.2785e-03 1.6213e-02 1.9697e-03 7.8866e-03

23

0 0.2 0.4 0.6 0.8 1

x

-30

-20

-10

0

10

20

30

40

u
t

True solution

PINN-G1

PINN-G2

0 0.2 0.4 0.6 0.8 1

x

0.005

0.01

0.015

0.02

0.025

A
b
s
o

lu
te

 e
rr

o
r

PINN-G1

PINN-G2

(a) t = 0.5

0 0.2 0.4 0.6 0.8 1

x

-10

-5

0

5

10

15

u
t

True solution

PINN-G1

PINN-G2

0 0.2 0.4 0.6 0.8 1

x

0.005

0.01

0.015

0.02

0.025

0.03

A
b
s
o

lu
te

 e
rr

o
r

PINN-G1

PINN-G2

(b) t = 1

0 0.2 0.4 0.6 0.8 1

x

-15

-10

-5

0

5

10

15

20

u
t

True solution

PINN-G1

PINN-G2

0 0.2 0.4 0.6 0.8 1

x

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

A
b
s
o

lu
te

 e
rr

o
r

PINN-G1

PINN-G2

(c) t = 1.5

Figure 8: Sine-Gordon equation: Top row, comparison of profiles between the exact solution and PINN-G1/PINN-G2 solutions
for v = ∂u

∂t
at several time instants. Bottom row, profiles of the absolute error of the PINN-G1 and PINN-G2 solutions for v.

N = 2000 training collocation points.

0.5 1 1.5 2 2.5 3

Iteration 10
4

10
-1

10
0

10
1

10
2

10
3

L
o
s
s

N=1000

N=1500

N=2000

N=2500

N=3000

(a) PINN-G1

0.5 1 1.5 2 2.5 3

Iteration 10
4

10
-2

10
0

10
2

L
o
s
s

N=1000

N=1500

N=2000

N=2500

N=3000

(b) PINN-G2

Figure 9: Sine-Gordon equation: Loss histories of (a) PINN-G1 and (b) PINN-G2 corresponding to various numbers of training
collocation points.

solutions quite accurately, with those errors from PINN-G2 in general slightly better.
Figure 10 provides some numerical evidence for the relation between the total error and the training loss

10
-1

10
0

Loss

10
-2

10
-1

10
0

E
rr

o
r

1
1/2

||u-u ||
L

2
()

||u
t
-v ||

L
2
()

||u
x
-u

 x
||

L
2
()

(a) PINN-G1

10
-2

10
-1

Loss

10
-2

10
-1

10
0

E
rr

o
r

1
1/2

||u-u ||
L

2
()

||u
t
-v ||

L
2
()

||u
x
-u

 x
||

L
2
()

(b) PINN-G2

Figure 10: Sine-Gordon equation: The l2 errors of u, ∂u
∂t

, and ∂u
∂x

as a function of the training loss value.

24

as suggested by Theorem 4.4. Here we plot the l2 errors for u, ∂u
∂t and ∂u

∂x as a function of the training loss
value obtained by PINN-G1 and PINN-G2. The results indicate that the total error scales approximately as
the square root of the training loss, which in some sense corroborates the error-loss relation as expressed in
Theorem 4.4.

6.3. Linear Elastodynamic Equation

In this subsection we look into the linear elastodynamic equation (in two spatial dimensions plus time)
and test the PINN algorithm as suggested by the theoretical analysis in Section 5 using this equation.
Consider the spatial-temporal domain (x, y, t) ∈ Ω = D × [0, T] = [0, 1] × [0, 1] × [0, 2], and the following
initial/boundary value problem with the linear elastodynamics equation on Ω:

ρ
∂2u

∂t2
− 2µ∇ · (ε(u))− λ∇(∇ · u) = f(x, t), (62a)

u|Γd
= ϕd,

(
2µε(u) + λ(∇ · u)

)
|Γn
n = ϕn, u(x, 0) = ψ1,

∂u

∂t
(x, 0) = ψ2, (62b)

where u = (u1(x, t), u2(x, t))
T (x = (x, y) ∈ D, t ∈ [0, T]) is the displacement field to be solved for,

f(x, t) is a source term, and ρ, µ and λ are material constants. Γd is the Dirichlet boundary and Γn is the
Neumann boundary, with ∂D = Γd ∪ Γn and Γd ∩ Γn = ∅, where n is the outward-pointing unit normal
vector. In our simulations we choose the left boundary (x = 0) as the Dirichlet boundary, and the rest are
Neumann boundaries. ϕd and ϕn are Dirichlet and Neumann boundary conditions, respectively. ψ1 and ψ2

are the initial conditions for the displacement and the velocity. We employ the material parameter values
µ = λ = ρ = 1, and the following manufactured solution ([1]) to this problem,

u(x, t) = sin(
√
2πt)

[
− sin(πx)2 sin(2πy)

sin(2πx) sin(πy)2

]
. (63)

The source term f(x, t), the boundary/initial distributions ϕd, ϕn, ψ1 and ψ2 are chosen by the expression
(63).

To simulate this problem using the PINN algorithm suggested by the theoretical analysis from Section
5, we reformulate (62) into the following system

ut − v = 0, vt − 2∇ · (ε(u))−∇(∇ · u) = f(x, t), (64a)

u|Γd
= ϕd,

(
2ε(u) + (∇ · u)

)
|Γnn = ϕn, u(x, 0) = ψ1, v(x, 0) = ψ2, (64b)

where v(x, t) is an intermediate variable (representing the velocity) as given by (64a).
In light of (47), we employ the following loss function for PINN,

Loss =
W1

N

N∑
n=1

[uθt(x
n
int, t

n
int)− vθ(xn

int, t
n
int)]

2

+
W2

N

N∑
n=1

[vθt(x
n
int, t

n
int)− 2∇ · (ε(uθ(x

n
int, t

n
int)))−∇(∇ · uθ(x

n
int, t

n
int))− f(xn

int, t
n
int))]

2

+
W3

N

N∑
n=1

[ε(uθt(x
n
int, t

n
int)− vθ(xn

int, t
n
int))]

2
+
W4

N

N∑
n=1

[∇ · (uθt(x
n
int, t

n
int)− vθ(xn

int, t
n
int))]

2

+
W5

N

N∑
n=1

[uθ(x
n
tb, 0)−ψ1(x

n
tb)]

2
+
W6

N

N∑
n=1

[vθ(x
n
tb, 0)−ψ2(x

n
tb)]

2

+
W7

N

N∑
n=1

[ε(uθ(x
n
tb, 0)−ψ1(x

n
tb))]

2
+
W8

N

N∑
n=1

[∇ · (uθ(x
n
tb, 0)−ψ1(x

n
tb))]

2

+W9

(
1

N

N∑
n=1

[vθ(x
n
sb1, t

n
sb1)− ϕdt(x

n
sb1, t

n
sb1)]

2

)1/2

25

(a) t = 0.5 (b) t = 1 (c) t = 1.5

Figure 11: Linear elastodynamic equation: Visualization of the deformed configuration at time instants (a) t = 0.5, (b) t = 1.0,
and (c) t = 1.5 from the exact solution (top row), the PINN-H1 solution (middle row) and the PINN-H2 solution (bottom row).
Plotted here are the deformed field, x + u(x, t), for a set of grid points x ∈ D = [0, 1] × [0, 1]. N = 2000 training collocation
points within domain and on the domain boundaries.

+W10

(
1

N

N∑
n=1

[2ε(uθ(x
n
sb2, t

n
sb2))n+ (∇ · uθ(x

n
sb2, t

n
sb2))n− ϕn(x

n
sb2, t

n
sb2)]

2

)1/2

=:
10∑
i=1

Ei, (65)

where we have added the penalty coefficients, Wn > 0 (1 ≤ n ≤ 10), for different loss terms in the implemen-
tation, and N denotes the number of collocation points within the domain and on the domain boundaries.
In the numerical tests we have also implemented another form for the loss function as follows,

Loss =
8∑

i=1

Ei +
W9

N

N∑
n=1

[vθ(x
n
sb1, t

n
sb1)− ϕdt(x

n
sb1, t

n
sb1)]

2

+
W10

N

N∑
n=1

[2ε(uθ(x
n
sb2, t

n
sb2))n+ (∇ · uθ(x

n
sb2, t

n
sb2))n− ϕn(x

n
sb2, t

n
sb2)]

2
. (66)

The difference between these two forms for the loss function lies in the E9 and E10 terms. It should be noted
that the E9 and E10 terms in (65) contain a square root, in light of the error terms (48a)−(48f) from the
theoretical analysis. In contrast, these terms have no square root in (66). The PINN scheme utilizing the
loss function (65) is henceforth referred to as PINN-H1, and the scheme that employs the loss function (66)
shall be referred to as PINN-H2.

In the simulations, we employ a feed-forward neural network with three input nodes, which represent
x = (x, y) and the time variable t, and four output nodes, which represent u = (u1, u2) and v = (v1, v2).

26

(a) t = 0.5 (b) t = 1 (c) t = 1.5

Figure 12: Linear elastodynamic equation: Distributions of the point-wise absolute error, ∥uθ − u∥, of the PINN-H1 solution
(top row) and the PINN-H2 solution (bottom row) at three time instants (a) t = 0.5, (b) t = 1.0, and (c) t = 1.5. N = 2000
training collocation points within domain and on the domain boundaries.

The neural network has two hidden layers, with widths of 90 and 60 nodes, respectively, and the tanh
activation function for all the hidden nodes. For the network training, N collocation points are generated
from a uniform random distribution within the domain, on each of the domain boundary, as well as on
the initial boundary. N is systematically varied in the simulations. We employ the penalty coefficients
W = (W1, ...,W10) = (0.9, 0.9, 0.9, 0.9, 0.5, 0.5, 0.5, 0.5, 0.9, 0.9) in the simulations.

In Figures 11 and 12 we compare the PINN-H1/PINN-H2 solutions with the exact solution and provide
an overview of their errors. Figure 11 is a visualization of the deformed configuration of the domain. Here
we have plotted the deformed field, x+u(x, t), for a set of grid points x ∈ D at three time instants from the
exact solution, the PINN-H1 and PINN-H2 solutions. Figure 12 shows distributions of the point-wise absolute
error of the PINN-H1/PINN-H2 solutions, ∥uθ − u∥ =

√
(uθ1(x, t)− u1(x, t))2 + (uθ2(x, t)− u2(x, t))2, at

the same three time instants. Here uθ = (uθ1, uθ2) denotes the PINN solution. While both PINN schemes
capture the solution fairly well at t = 0.5 and 1, at t = 1.5 both schemes show larger deviations from the
true solution. In general, the PINN-H1 scheme appears to produce a better approximation to the solution
than PINN-H2.

The effect of the number of collocation points (N) on the PINN results has been studied in Figure 13
and Table 3, where N is systematically varied in the range N = 1000 to N = 3000. Figure 13 shows the
histories of the loss function for training PINN-H1 and PINN-H2 under different collocation points. Table 3
lists the corresponding l2 and l∞ errors of u and v obtained from PINN-H1 and PINN-H2. One can observe
that the PINN errors in general tend to improve with increasing number of collocation points. It can also
be observed that the PINN-H1 errors in general appear better than those of PINN-H2 for this problem.

Figure 14 shows the errors of u, ut, ε(u) and ∇·u as a function of the loss function value in the network
training of PINN-H1 and PINN-H2. The data indicates that these errors approximately scale as the square
root of the training loss, which is consistent with the relation as given by Theorem 5.5. This in a sense
provides numerical evidence for the theoretical analysis in Section 5.

7. Concluding Remarks

In the present paper we have considered the approximation of a class of dynamic PDEs of second order
in time by physics-informed neural networks (PINN). We provide an analysis of the convergence and the
error of PINN for approximating the wave equation, the nonlinear Klein-Gordon equation, and the linear

27

Table 3: Linear elastodynamic equation: The l2 and l∞ errors for u = (u1, u2) and v = (v1, v2) versus the number of training
data points N from the PINN-H1 and PINN-H2 solutions.

N
l2-error l∞-error

uθ1 uθ2 vθ1 vθ2 uθ1 uθ2 vθ1 vθ2

PINN-H1

1000 4.8837e-02 6.0673e-02 4.7460e-02 5.1640e-02 1.7189e-01 2.1201e-01 6.9024e-01 6.1540e-01

1500 2.8131e-02 3.1485e-02 4.1104e-02 4.1613e-02 1.9848e-01 2.4670e-01 3.4716e-01 4.0582e-01

2000 2.7796e-02 4.0410e-02 3.5891e-02 4.6334e-02 1.4704e-01 1.7687e-01 4.0678e-01 5.0022e-01

2500 3.0909e-02 4.0215e-02 3.3966e-02 4.4024e-02 1.7589e-01 2.4211e-01 4.1403e-01 3.9570e-01

3000 2.6411e-02 3.5600e-02 4.3209e-02 5.2802e-02 1.4289e-01 1.3625e-01 5.1167e-01 5.3298e-01

PINN-H2

1000 4.9869e-02 1.3451e-01 5.6327e-02 5.4796e-02 3.2314e-01 3.4978e-01 6.7624e-01 5.7277e-01

1500 5.4708e-02 1.3987e-01 4.5871e-02 5.1622e-02 2.8609e-01 5.2598e-01 4.9343e-01 2.3518e-01

2000 6.2114e-02 1.0190e-01 6.4477e-02 5.0011e-02 2.5745e-01 3.1642e-01 5.9057e-01 5.8411e-01

2500 3.7887e-02 6.0630e-02 5.4363e-02 5.0659e-02 2.2212e-01 2.4774e-01 5.3681e-01 3.5427e-01

3000 5.4862e-02 6.3407e-02 5.5208e-02 6.0082e-02 3.4102e-01 2.1308e-01 5.1894e-01 4.4995e-01

0.5 1 1.5 2 2.5 3

Iteration 10
4

10
-1

10
0

10
1

10
2

L
o
s
s

N=1000

N=1500

N=2000

N=2500

N=3000

(a) PINN-H1

0.5 1 1.5 2 2.5 3

Iteration 10
4

10
-1

10
0

10
1

10
2

L
o
s
s

N=1000

N=1500

N=2000

N=2500

N=3000

(b) PINN-H2

Figure 13: Linear elastodynamic equation: Training loss histories of PINN-H1 and PINN-H2 corresponding to different numbers
of collocation points (N) in the simulation.

elastodynamic equation. Our analyses show that, with feed-forward neural networks having two hidden
layers and the tanh activation function for all the hidden nodes, the PINN approximation errors for the
solution field, its time derivative and its gradient can be bounded by the PINN training loss and the number
of training data points (quadrature points).

Our theoretical analyses further suggest new forms for the PINN training loss function, which contain
certain residuals that are crucial to the error estimate but would be absent from the canonical PINN for-
mulation of the loss function. These typically include the gradient of the equation residual, the gradient
of the initial-condition residual, and the time derivative of the boundary-condition residual. In addition,
depending on the type of boundary conditions involved in the problem, our analyses suggest that a norm
other than the commonly-used L2 norm may be more appropriate for the boundary residuals in the loss
function. Adopting these new forms of the loss function suggested by the theoretical analyses leads to a
variant PINN algorithm. We have implemented the new algorithm and presented a number of numerical
experiments on the wave equation, the Sine-Gordon equation and the linear elastodynamic equation. The
simulation results demonstrate that the method can capture the solution field well for these PDEs. The
numerical data corroborate the theoretical analyses.

Acknowledgments

The work was partially supported by the China Postdoctoral Science Foundation (No.2021M702747), Nat-
ural Science Foundation of Hunan Province (No.2022JJ40422), NSF of China (No.11971410 and No.12101495),

28

10
-1

10
0

Loss

10
-1

10
0

E
rr

o
r

1 1/2

||u-u ||
L

2
()

||u
t
-v ||

L
2
()

||2E(u-u)||
L

2
()

|| (u-u)||
L

2
()

(a) PINN-H1

10
-1

10
0

Loss

10
-1

10
0

E
rr

o
r

1
1/2

||u-u ||
L

2
()

||u
t
-v ||

L
2
()

||2E(u-u)||
L

2
()

|| (u-u)||
L

2
()

(b) PINN-H2

Figure 14: Linear elastodynamic equation: The errors for u, ut, ε(u) and ∇ · u versus the training loss value obtained by
PINN-H1 and PINN-H2.

General Special Project of Education Department of Shaanxi Provincial Government (No.21JK0943), and
the US National Science Foundation (DMS-2012415).

8. Appendix: Auxiliary Results and Proofs of Theorems from Sections 4 and 5

8.1. Some Auxiliary Results

Let a d-tuple of non-negative integers α ∈ Nd
0 be multi-index with d ∈ N. For given two multi-indices

α, β ∈ Nd
0, we say that α ≤ β, if and only if, αi ≤ βi for all i = 1, · · · , d. Denote |α| =

∑d
i=1 αi, α! =∏d

i=1 αi!,

(
β

α

)
= β!

α!(β−α)! . Let Pm,n = {α ∈ Nn
0 , |α| = m}, for which it holds |Pm,n| =

(
m+ n− 1

m

)
.

Lemma 8.1 (Multiplicative trace inequality, e.g. [12]). Let d ≥ 2, Ω ⊂ Rd be a Lipschitz domain and let
γ0 : H1(Ω) → L2(∂Ω) : u 7→ u|∂Ω be the trace operator. Denote by hΩ the diameter of Ω and by ρΩ the
radius of the largest d-dimensional ball that can be inscribed into Ω. Then it holds that

∥γ0u∥L2(∂Ω) ≤ ChΩ,d,ρΩ
∥u∥H1(Ω), where ChΩ,d,ρΩ

=
√
2max{2hΩ, d}/ρΩ. (67)

Lemma 8.2 ([12]). Let d, n, L,W ∈ N and let uθ : Rd → Rd be a neural network with θ ∈ Θ for L ≥
2, R,W ≥ 1, c.f. Definition 2.1. Assume that ∥σ∥Cn ≥ 1. Then it holds for 1 ≤ j ≤ d that

∥(uθ)j∥Cn(Ω) ≤ 16Ld2n(e2n4W 3Rn∥σ∥Cn(Ω))
nL. (68)

Lemma 8.3 ([12]). Let d ≥ 2, n ≥ 2,m ≥ 3, σ > 0, ai, bi ∈ Z with ai < bi for 1 ≤ i ≤ d, Ω =
∏d

i=1[ai, bi]

and f ∈ Hm(Ω). Then for every N ∈ N with N > 5 there exists a tanh neural network f̂N with two hidden

layers, one of width at most 3⌈m+n−2
2 ⌉|Pm−1,d+1| +

∑d
i=1(bi − ai)(N − 1) and another of width at most

3⌈d+n
2 ⌉|Pd+1,d+1|Nd

∏d
i=1(bi − ai), such that for k = 0, 1, 2 it holds that

∥f − f̂N∥Hk(Ω) ≤ 2k3dCk,m,d,f (1 + δ)lnk
(
βk,δ,d,fN

d+m+2
)
N−m+k, (69)

and where

Ck,m,d,f = max
0≤l≤k

(
d+ l − 1

l

)1/2
((m− l)!)1/2

(⌈m−l
d ⌉!)d/2

(
3
√
d

π

)m−l

|f |Hm(Ω),

βk,δ,d,f =
5 · 2kd max{

∏d
i=1(bi − ai), d}max{∥f∥Wk,∞(Ω), 1}
3dδmin{1, Ck,m,d,f}

.

Moreover, the weights of f̂N scale as O(Nγ +N lnN) with γ = max{m2/n, d(2 +m+ d)/n}.

29

8.2. Proof of Theorem 4.3 and Theorem 5.4

Proof of Theorem 4.3:

Proof. By taking the inner product of (38a) and (38b) with û and v̂ over D, respectively, we have

d

2dt

∫
D

|û|2dx =

∫
D

ûv̂dx+

∫
D

Rint1ûdx ≤
∫
D

|û|2dx+
1

2

∫
D

|Rint1|2dx+
1

2

∫
D

|v̂|2dx, (70)

ε2
d

2dt

∫
D

|v̂|2dx

= −a2
∫
D

∇û · ∇v̂dx+ a2
∫
∂D

v̂∇û · nds(x)− ε21

∫
D

ûv̂dx−
∫
D

(g(uθ)− g(u))v̂dx+

∫
D

Rint2v̂dx

= −a2 d

2dt

∫
D

|∇û|2dx+ a2
∫
D

∇û · ∇Rint1dx+ a2
∫
∂D

Rsb∇û · nds(x)− ε21

∫
D

ûv̂dx

−
∫
D

(g(uθ)− g(u))v̂dx+

∫
D

Rint2v̂dx

≤ −a2 d

2dt

∫
D

|∇û|2dx+
a2

2

∫
D

|∇û|2dx+
a2

2

∫
D

|∇Rint1|2dx+ C∂D

(∫
∂D

|Rsb|2ds(x)
) 1

2

+
1

2
(ε21 + L)

∫
D

|û|2dx+
1

2
(ε21 + L+ 1)

∫
D

|v̂|2dx+
1

2

∫
D

|Rint2|2dx, (71)

where C∂D = a2|∂D| 12 (∥u∥C1(∂D×[0,T]) + ||uθ||C1(∂D×[0,T])) and v̂ = ût −Rint1 have been used.
Add (70) to (71), and we get

d

2dt

∫
D

|û|2dx+ a2
d

2dt

∫
D

|∇û|2dx+ ε2
d

2dt

∫
D

|v̂|2dx

≤ 1

2
(ε21 + L+ 2)

∫
D

|û|2dx+
a2

2

∫
D

|∇û|2dx+
1

2
(ε21 + L+ 2)

∫
D

|v̂|2dx+
1

2

∫
D

|Rint1|2dx

+
1

2

∫
D

|Rint2|2dx+
a2

2

∫
D

|∇Rint1|2dx+ C∂D

(∫
∂D

|Rsb|2ds(x)
) 1

2

. (72)

Integrating (72) over [0, τ] for any τ ≤ T and applying the Cauchy–Schwarz inequality, we obtain∫
D

|û(x, τ)|2dx+ a2
∫
D

|∇û(x, τ)|2dx+ ε2
∫
D

|v̂(x, τ)|2dx

≤
∫
D

|Rtb1|2dx+ a2
∫
D

|∇Rtb1|2dx+ ε2
∫
D

|Rtb2|2dx+ (2 + ε21 + L+ a2)

∫ τ

0

∫
D

(
|û|2 + |∇û|2 + |v̂|2

)
dxdt

+

∫ T

0

∫
D

(
|Rint1|2 + a2|∇Rint1|2 + |Rint2|2

)
dxdt+ 2C∂D|T | 12

(∫ T

0

∫
∂D

|Rsb|2ds(x)dt

) 1
2

.

Applying the integral form of the Grönwall inequality to the above inequality leads to,∫
D

|û(x, τ)|2dx+ a2
∫
D

|∇û(x, τ)|2dx+ ε2
∫
D

|v̂(x, τ)|2dx ≤ CG exp
(
(2 + ε21 + L+ a2)T

)
, (73)

where

CG =

∫
D

(|Rtb1|2 + a2|∇Rtb1|2 + ε2|Rtb2|2)dx+

∫ T

0

∫
D

(|Rint1|2 + |Rint2|2 + a2|∇Rint1|2)dxdt

+ 2C∂D|T | 12
(∫ T

0

∫
∂D

|Rsb|2ds(x)dt

) 1
2

. (74)

Then, we integrate (73) over [0, T] to end the proof.

30

Proof of Theorem 5.4:

Proof. Taking the L2 inner product of (49a) and (49b) with û and v̂ over D, respectively, we have

d

2dt

∫
D

|û|2dx =

∫
D

ûv̂dx+

∫
D

Rint1ûdx ≤
∫
D

|û|2dx+
1

2

∫
D

|Rint1|2dx+
1

2

∫
D

|v̂|2dx, (75)

ρ
d

2dt

∫
D

|v̂|2dx = −2µ

∫
D

ε(û) : ∇v̂dx− λ

∫
D

(∇ · û)(∇ · v̂)dx+

∫
∂D

(2µε(û)n+ λ(∇ · û)n) · v̂ds(x)

+

∫
D

Rint2v̂dx

= − d

dt

∫
D

µ|ε(û)|2dx− d

dt

∫
D

λ

2
|∇ · û|2dx+ 2µ

∫
D

ε(û) : ∇Rint1dx+ λ

∫
D

(∇ · û)(∇ ·Rint1)dx

+

∫
ΓD

(2µε(û)n+ λ(∇ · û)n) ·Rsb1ds(x) +

∫
ΓN

Rsb2 · v̂ds(x) +
∫
D

Rint2v̂dx

≤ − d

dt

∫
D

µ|ε(û)|2dx− d

dt

∫
D

λ

2
|∇ · û|2dx+ µ

∫
D

|ε(û)|2dx+ µ

∫
D

|ε(Rint1)|2dx

+
λ

2

∫
D

|∇ ·Rint1|dx+
λ

2

∫
D

|∇ · û|dx+
1

2

∫
D

|v̂|2dx+
1

2

∫
D

|Rint2|2dx

+ CΓD

(∫
ΓD

|Rsb1|2ds(x)
) 1

2

+ CΓN

(∫
ΓN

|Rsb2|2ds(x)
) 1

2

. (76)

Here we have used v̂ = ût −Rint1, and the constants are given by CΓD
= (2µ + λ)|ΓD| 12 ∥u∥C1(ΓD×[0,T]) +

(2µ+ λ)|ΓD| 12 ||uθ||C1(ΓD×[0,T]) and CΓN
= |ΓN | 12 (∥v∥C(ΓN×[0,T]) + ||vθ||C(ΓN×[0,T])).

Add (75) to (76), and we get,

d

2dt

∫
D

|û|2dx+
d

dt

∫
D

µ|ε(û)|2dx+
d

2dt

∫
D

λ|∇ · û|2dx+ ρ
d

2dt

∫
D

|v̂|2dx

≤
∫
D

(
|û|2 + µ|ε(û)|2 + λ

2
|∇ · û|+ |v̂|2

)
dx+

1

2

∫
D

(|Rint1|2 + |Rint2|2 + 2µ|ε(Rint1)|2)dx

+
λ

2

∫
D

|∇ ·Rint1|dx+ CΓD

(∫
ΓD

|Rsb1|2ds(x)
) 1

2

+ CΓN

(∫
ΓN

|Rsb2|2ds(x)
) 1

2

. (77)

Integrating (77) over [0, τ] for any τ ≤ T and applying Cauchy–Schwarz inequality, we obtain,∫
D

|û(x, τ)|2dx+

∫
D

2µ|ε(û(x, τ))|2dx+

∫
D

λ|∇ · û(x, τ)|2dx+ ρ

∫
D

|v̂(x, τ)|2dx

≤
∫
D

|Rtb1|2dx+

∫
D

2µ|ε(Rtb1)|2dx+

∫
D

λ|∇ ·Rtb1|2dx+ ρ

∫
D

|Rtb2|2dx

+ (2 + 2µ+ λ)

∫ τ

0

∫
D

(
|û|2 + |ε(û)|2 + |∇ · û|2 + |v̂|2

)
dxdt

+

∫ T

0

∫
D

(
|Rint1|2 + 2µ|ε(Rint1)|2 + λ|∇ ·Rint1|2 + |Rint2|2

)
dxdt

+ 2|T | 12CΓD

(∫ T

0

∫
ΓD

|Rsb1|2ds(x)dt

) 1
2

+ 2|T | 12CΓN

(∫ T

0

∫
ΓN

|Rsb2|2ds(x)dt

) 1
2

.

By applying the integral form of the Grönwall inequality to the above inequality, we have∫
D

(|û(x, τ)|2 + 2µ|ε(û(x, τ))|2 + λ|∇ · û(x, τ)|2 + ρ

∫
D

|v̂(x, τ)|2)dx ≤ CG exp ((2 + 2µ+ λ)T) , (78)

where

CG =

∫
D

|Rtb1|2dx+

∫
D

2µ|ε(Rtb1)|2dx+

∫
D

λ|∇ ·Rtb1|2dx+ ρ

∫
D

|Rtb2|2dx

31

+

∫ T

0

∫
D

(
|Rint1|2 + 2µ|ε(Rint1)|2 + λ|∇ ·Rint1|2 + |Rint2|2

)
dxdt

+ 2|T | 12CΓD

(∫ T

0

∫
ΓD

|Rsb1|2ds(x)dt

) 1
2

+ 2|T | 12CΓN

(∫ T

0

∫
ΓN

|Rsb2|2ds(x)dt

) 1
2

. (79)

Then, we finish the proof by integrating (78) over [0, T].

References

[1] P. F. Antonietti, I. Mazzieri, High-order discontinuous Galerkin methods for the elastodynamics equa-
tion on polygonal and polyhedral meshes, Comput. Methods Appl. Mech. Engrg. 342 (2018) 414–437.

[2] G. Bai, U. Koley, S. Mishra, R. Molinaro, Physics informed neural networks (PINNs) for approximating
nonlinear dispersive PDEs, J. Comput. Math. 39 (6) (2021) 816–847.

[3] C. Beck, W. E, A. Jentzen, Machine learning approximation algorithms for high-dimensional fully
nonlinear partial differential equations and second-order backward stochastic differential equations, J.
Nonlinear Sci. 29 (4) (2019) 1563–1619.

[4] J. Berner, P. Grohs, A. Jentzen, Analysis of the generalization error: empirical risk minimization over
deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation of
Black-Scholes partial differential equations, SIAM J. Math. Data Sci. 2 (3) (2020) 631–657.

[5] A. Biswas, J. Tian, S. Ulusoy, Error estimates for deep learning methods in fluid dynamics, Numer.
Math. 151 (3) (2022) 753–777.

[6] Z. Cai, J. Chen, M. Liu, X. Liu, Deep least-squares methods: an unsupervised learning-based numerical
method for solving elliptic PDEs, J. Comput. Phys. 420 (2020) 109707.

[7] F. Calabro, G. Fabiani, C. Siettos, Extreme learning machine collocation for the numerical solution of
elliptic PDEs with sharp gradients, Comput. Methods Appl. Mech. Engrg. 387 (2021) 114188.

[8] O. Calin, Deep learning architectures–a mathematical approach, Springer Series in the Data Sciences,
Springer, Cham, 2020.

[9] S. Cuomo, V. Schiano Di Cola, F. Giampaolo, G. Rozza, M. Raissi, F. Piccialli, Scientific machine
learning through physics-informed neural networks: where we are and what’s next, J. Sci. Comput.
92 (3) (2022) 88.

[10] E. Cyr, M. Gulian, R. Patel, M. Perego, N. Trask, Robust training and initialization of deep neural
networks: An adaptive basis viewpoint, Proceedings of Machine Learning Research 107 (2020) 512–536.

[11] P. Davis, P. Rabinowitz, Methods of numerical integration, Dover Publications, Inc, 2007.

[12] T. De Ryck, A. D. Jagtap, S. Mishra, Error estimates for physics-informed neu-
ral networks approximating the Navier–Stokes equations, IMA J. Numer. Anal. (2023)
drac085(https://doi.org/10.1093/imanum/drac085).

[13] T. De Ryck, S. Lanthaler, S. Mishra, On the approximation of functions by tanh neural networks, Neural
Networks 143 (2021) 732–750.

[14] T. De Ryck, S. Mishra, Error analysis for physics-informed neural networks (PINNs) approximating
Kolmogorov PDEs, Adv. Comput. Math. 48 (6) (2022) 79.

[15] M. Dehghan, A. Shokri, Numerical solution of the nonlinear Klein-Gordon equation using radial basis
functions, Journal of Computational and Applied Mathematics 230 (2009) 400–410.

[16] S. Dong, Z. Li, Local extreme learning machines and domain decomposition for solving linear and
nonlinear partial differential equations, Comput. Methods Appl. Mech. Engrg. 387 (2021) 114129, (also
arXiv:2012.02895).

[17] S. Dong, Z. Li, A modified batch intrinsic plasticity method for pre-training the random coefficients of
extreme learning machines, J. Comput. Phys. 445 (2021) 110585.

[18] S. Dong, N. Ni, A method for representing periodic functions and enforcing exactly periodic boundary
conditions with deep neural networks, J. Comput. Phys. 435 (2021) 110242.

32

[19] S. Dong, Y. Wang, A method for computing inverse parametric PDE problems with randomized neural
networks, arXiv:2210.04338 .

[20] S. Dong, J. Yang, Numerical approximation of partial differential equations by a variable projection
method with artificial neural networks, Comput. Methods Appl. Mech. Engrg. 398 (2022) 115284, (also
arXiv:2201.09989).

[21] S. Dong, J. Yang, On computing the hyperparameter of extreme learning machines: algorithms and
applications to computational PDEs, and comparison with classical and high-order finite elements, J.
Comput. Phys. 463 (2022) 111290, (also arXiv:2110.14121).

[22] W. E, B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational
problems, Commun. Math. Stat. 6 (2018) 1–12.

[23] D. Elbrächter, D. Perekrestenko, P. Grohs, H. Bölcskei, Deep neural network approximation theory,
IEEE Trans. Inform. Theory 67 (5) (2021) 2581–2623.

[24] G. Fabiani, F. Calabro, L. Russo, C. Siettos, Numerical solution and bifurcation analysis of nonlinear
partial differential equations with extreme learning machines, J. Sci. Comput. 89 (2021) 44.

[25] J. He, J. Xu, MgNet: A unified framework for multigrid and convolutional neural network, Sci. China
Math. 62 (2019) 1331–1354.

[26] R. Hu, Q. Lin, R. Alan, S. Tang, Higher-order error estimates for physics-informed neural networks
approximating the primitive equations, arXiv:2209.11929 .

[27] Z. Hu, A. D. Jagtap, G. E. Karniadakis, K. Kawaguchi, When do extended physics-informed neural
networks (XPINNs) improve generalization?, SIAM J. Sci. Comput. 44 (5) (2022) A3158–A3182.

[28] Z. Hu, C. Liu, Y. Wang, Z. Xu, Energetic variational neural network discretizations to gradient flows,
arXiv:2206.07303 .

[29] T. J. R. Hughes, J. E. Marsden, Classical elastodynamics as a linear symmetric hyperbolic system, J.
Elasticity 8 (1) (1978) 97–110.

[30] A. Jagtap, G. Karniadakis, Extended physics-informed neural network (XPINNs): A generalized space-
time domain decomposition based deep learning framework for nonlinear partial differential equations,
Commun. Comput. Phys. 28 (2020) 2002–2041.

[31] A. Jagtap, E. Kharazmi, G. Karniadakis, Conservative physics-informed neural networks on discrete
domains for conservation laws: applications to forward and inverse problems, Comput. Methods Appl.
Mech. Engrg. 365 (2020) 113028.

[32] G. Karniadakis, G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-Informed Machine
Learning, Nat. Rev. Phys. 3 (2021) 422–440.

[33] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 .

[34] A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, M. Mahoney, Characterizing possible failure modes
in physics-informed neural networks, Advances in Neural Information Processing Systems 34 (2021)
26548–26560.

[35] K. Kubota, K. Yokoyama, Global existence of classical solutions to systems of nonlinear wave equations
with different speeds of propagation, Japan. J. Math. 27 (1) (2001) 113–202.

[36] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436–444.

[37] L. Lu, X. Meng, Z. Mao, G. E. Karniadakis, DeepXDE: a deep learning library for solving differential
equations, SIAM Rev. 63 (1) (2021) 208–228.

[38] S. Mishra, R. Molinaro, Physics informed neural networks for simulating radiative transfer, J. Quant.
Spectrosc. Radiat. Transfer 270 (2021) 107705.

[39] S. Mishra, R. Molinaro, Estimates on the generalization error of physics-informed neural networks for
approximating a class of inverse problems for PDEs, IMA J. Numer. Anal. 42 (2) (2022) 981–1022.

[40] S. Mishra, R. Molinaro, Estimates on the generalization error of physics-informed neural networks for
approximating PDEs, IMA J. Numer. Anal. 43 (1) (2023) 1–43.

[41] S. Mishra, T. K. Rusch, Enhancing accuracy of deep learning algorithms by training with low-
discrepancy sequences, SIAM J. Numer. Anal. 59 (3) (2021) 1811–1834.

[42] P. Niyogi, F. Girosi, Generalization bounds for function approximation from scattered noisy data, Adv.

33

Comput. Math. 10 (1) (1999) 51–80.

[43] J. Nocedal, S. J. Wright, Numerical optimization, Springer, New York, second edn., 2006.

[44] M. Penwarden, A. Jagtap, S. Zhe, G. Karniadakis, R. Kirby, A unified scalable framework for causal
sweeping strategies for Physics-Informed Neural Networks (PINNs) and their temporal decompositions,
arXiv:2302.14227 .

[45] A. F. Psaros, K. Kawaguchi, G. E. Karniadakis, Meta-learning PINN loss functions, J. Comput. Phys.
458 (2022) 111121.

[46] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: a deep learning frame-
work for solving forward and inverse problems involving nonlinear partial differential equations, J.
Comput. Phys. 378 (2019) 686–707.

[47] J. Shatah, Global existence of small solutions to nonlinear evolution equations, J. Differential Equations
46 (3) (1982) 409–425.

[48] J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math.
38 (5) (1985) 685–696.

[49] Y. Shin, J. Darbon, G. E. Karniadakis, On the convergence of physics informed neural networks for
linear second-order elliptic and parabolic type PDEs, Commun. Comput. Phys. 28 (5) (2020) 2042–2074.

[50] Y. Shin, Z. Zhang, G. E. Karniadakis, Error estimates of residual minimization using neural networks
for linear PDEs, arXiv:2010.08019 .

[51] J. Siegel, Q. Hong, X. Jin, W. Hao, J. Xu, Greedy Training Algorithms for Neural Networks and
Applications to PDEs, arXiv:2107.04466 .

[52] J. Sirignano, K. Spoliopoulos, DGM: A deep learning algorithm for solving partial differential equations,
J. Comput. Phys. 375 (2018) 1339–1364.

[53] A. Tartakovsky, C. Marrero, P. Perdikaris, G. Tartakovsky, D. Barajas-Solano, Physics-informed deep
neural networks for learning parameters and constitutive relationships in subsurface flow problems,
Water Resour. Res. 56 (2020) e2019WR026731.

[54] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Springer-Verlag, New
York, second edn., 1997.

[55] X. Wan, S. Wei, VAE-KRnet and its applications to variational Bayes, Commun. Comput. Phys. 31
(2022) 1049–1082.

[56] B. Wang, Classical global solutions for non-linear Klein-Gordon-Schrödinger equations, Math. Methods
Appl. Sci. 20 (7) (1997) 599–616.

[57] S. Wang, X. Yu, P. Perdikaris, When and why PINNs fail to train: a neural tangent kernel perspective,
J. Comput. Phys. 449 (2022) 110768.

[58] Y. Wang, G. Lin, Efficient deep learning techniques for multiphase flow simulation in heterogeneous
porous media, J. Comput. Phys. 401 (2020) 108968.

[59] K. Yosida, Functional analysis, vol. 123, Springer-Verlag, Berlin-New York, sixth edn., 1980.

[60] U. Zerbinati, PINNs and GaLS: A Priori error estimates for shallow physics informed neural networks
applied to elliptic problems, IFAC-PapersOnLine 55 (20) (2022) 61–66.

34

	Introduction
	Physics Informed Neural Networks (PINN) for Approximating PDEs
	Generic PDE of Second Order in Time
	Neural Network Representation of a Function
	Physics Informed Neural Network for Initial/Boundary Value Problem
	Numerical Quadrature Rules

	Physics Informed Neural Networks for Approximating the Wave Equation
	Wave Equation
	Physics Informed Neural Networks
	Error Analysis
	Bound on the Residuals
	Bounds on the Total Approximation Error

	Physics Informed Neural Networks for Approximating the redNonlinear Klein-Gordon Equation
	redNonlinear Klein-Gordon Equation
	Physics Informed Neural Networks
	Error Analysis

	Physics Informed Neural Networks for Approximating Linear Elastodynamic Equation
	Linear Elastodynamic Equation
	Physics Informed Neural Networks
	Error Analysis

	Numerical Examples
	Wave Equation
	Sine-Gordon Equation
	Linear Elastodynamic Equation

	Concluding Remarks
	Appendix: Auxiliary Results and Proofs of Theorems from Sections 4 and 5
	Some Auxiliary Results
	Proof of Theorem 4.3 and Theorem 5.4

