
An Extreme Learning Machine-Based Method for Computational
PDEs in Higher Dimensions

Yiran Wang, Suchuan Dong∗

Center for Computational & Applied Mathematics
Department of Mathematics

Purdue University, USA

(October 28, 2023)

Abstract

We present two effective methods for solving high-dimensional partial differential equations (PDE)
based on randomized neural networks. Motivated by the universal approximation property of this type
of networks, both methods extend the extreme learning machine (ELM) approach from low to high
dimensions. With the first method the unknown solution field in d dimensions is represented by a ran-
domized feed-forward neural network, in which the hidden-layer parameters are randomly assigned and
fixed while the output-layer parameters are trained. The PDE and the boundary/initial conditions, as
well as the continuity conditions (for the local variant of the method), are enforced on a set of random
interior/boundary collocation points. The resultant linear or nonlinear algebraic system, through its least
squares solution, provides the trained values for the network parameters. With the second method the
high-dimensional PDE problem is reformulated through a constrained expression based on an Approxi-
mate variant of the Theory of Functional Connections (A-TFC), which avoids the exponential growth in
the number of terms of TFC as the dimension increases. The free field function in the A-TFC constrained
expression is represented by a randomized neural network and is trained by a procedure analogous to the
first method. We present ample numerical simulations for a number of high-dimensional linear/nonlinear
stationary/dynamic PDEs to demonstrate their performance. These methods can produce accurate solu-
tions to high-dimensional PDEs, in particular with their errors reaching levels not far from the machine
accuracy for relatively lower dimensions. Compared with the physics-informed neural network (PINN)
method, the current method is both cost-effective and more accurate for high-dimensional PDEs.

Key words: high-dimensional PDE, extreme learning machine, randomized neural network, deep neural net-
work, scientific machine learning, deep learning

1 Introduction
This work concerns the numerical approximation of partial differential equations (PDEs) in higher dimensions
(typically beyond three). Mathematical models describing natural and physical processes or phenomena are
usually expressed in PDEs. In a number of fields and domains, including physics, biology and finance,
the models are naturally formulated in terms of high-dimensional PDEs. Well-known examples include
the Schrodinger equation for many-body problems in quantum mechanics, the Black-Scholes equation for
the price evolution of financial derivatives, and the Hamilton-Jacobi-Bellman (HJB) equation in dynamic
programming and game theory [32, 80]. Development of computational techniques for PDEs is a primary
thrust in scientific computing. In low dimensions, traditional numerical methods such as the finite difference,
finite element (FEM), finite volume, and spectral type methods (and their variants), which are typically
grid- or mesh-based, have achieved a tremendous success and are routinely used in computational science

∗Author of correspondence. Emails: wang2335@purdue.edu (Y. Wang), sdong@purdue.edu (S. Dong)

1

and engineering applications. For high-dimensional PDEs, on the other hand, these mesh-based approaches
encounter severe challenges owing to the curse of dimensionality, because the computational effort/complexity
involved therein grows exponentially with increasing problem dimension [5, 13, 40, 33].

In the past few years deep neural networks (DNN or NN) have emerged as a promising approach to
alleviate or overcome the curse of dimensionality for solving high-dimensional PDEs [4, 6, 39, 45]. DNN-
based methods usually compute the PDE solution in a mesh-free manner by transforming the PDE problem
into an optimization problem. The PDE and the boundary/initial conditions are encoded into the loss
function by penalizing their residual norms on a set of sampling points. The differential operators involved
therein are typically computed by automatic differentiation. The loss function is minimized by an optimizer,
usually based on some flavor of gradient descent type algorithms [34]. Early works on NN-based methods for
differential equations can be traced to the 1990s (see e.g. [50, 64, 14]). More recent prominent methods in this
area include the physics-informed neural network (PINN) method [78], deep Galerkin method (DGM) [84],
deep Ritz method [25], deep Nitsche method [55], deep mixed residual method [63], as well as other related
approaches, variants and extensions (see e.g. [98, 67, 52, 44, 43, 12, 88, 87, 46, 60, 48, 93, 17, 68, 61, 1, 74],
among others). Another approach for solving high-dimensional PDEs is to reformulate the problem using
stochastic differential equations, thus casting the PDE problem into a learning problem. Representative
techniques of this type include the deep backward stochastic differential equation (Deep BSDE) [24, 32]
and the forward-backward stochastic neural network method [77]. Temporal difference learning has been
employed in [95, 59] for solving high-dimensional parabolic PDEs and partial integro-differential equations,
which discretizes the problem in time and represents the solution by a neural network at each time step. A
data-driven method is developed in [68] to approximate the semi-global solutions to the HJB equations for
high-dimensional nonlinear systems and to compute the optimal feedback controls. In [61] the generalization
error bounds are derived for two-layer neural networks in the framework of deep Ritz method for solving two
elliptic PDEs, and it is shown that the errors are independent of the problem dimension. We would also like
to refer the reader to [90] for a recent review of NN-based techniques for high-dimensional PDEs.

For the neural network-based techniques reviewed above for high-dimensional PDEs, all the weight/bias
parameters in the neural network are trained and determined by an optimizer, which in most cases is Adam,
L-BFGS or some related variant. Unlike these methods, in the current work we consider another type of
neural networks for the computation of high-dimensional PDEs, referred to as randomized neural networks
(or random-weight neural networks), in which a subset of the network parameters is assigned to random
values and fixed (not trainable) while the rest of the network parameters are trained.

Randomness has long been exploited in neural networks [81]. Randomized neural networks can be traced
to the un-organized machine by Turing [89] and the perceptron by Rosenblatt [79] in the 1950s. Since the
early 1990s, methods based on randomized NNs have witnessed a strong resurgence and expansion [85, 11],
with prominent techniques widely applied and exerting a profound influence over a variety of areas [81, 29].

A simple strategy underlies randomized neural networks. Since it is extremely hard and expensive
to optimize the full set of weight/bias parameters in the neural network, it seems sensible if a subset of
the network parameters is randomly assigned and fixed, so that the resultant optimization problem of
network training can become simpler, and in certain cases linear, hopefully without severely sacrificing the
network’s achievable approximation capacity [21, 70]. When applied to different types of neural networks or
under different configurations, randomization gives rise to several techniques, including the random vector
functional link (RVFL) network [73, 72, 41], the extreme learning machine (ELM) [37, 38], and the echo-state
network [42, 62], among others.

We consider the extreme learning machine (ELM) approach for high-dimensional PDE problems. The
original work on ELM was [36, 37], developed for linear classification and regression problems with single
hidden-layer feed-forward neural networks. This method has since found widespread applications in many
fields [35, 2]. ELM is characterized by two ideas, randomly-assigned non-trainable (fixed) hidden-layer
parameters, and trainable linear output-layer parameters determined by linear least squares method or by the
pseudo-inverse of coefficient matrix [72, 8]. Randomized neural networks of the ELM type and its close cousin
RVFL type, with a single hidden layer, are universal function approximators. Their universal approximation
ability has been established by the theoretical studies of [41, 51, 38, 69]. In particular, the expected rate
of convergence for approximating Lipschitz continuous functions has been provided by [41, 76, 69] (see also
Section 2.2 below).

The adoption of ELM for scientific computing, in particular for the numerical solution of differential

2

equations, occurs only fairly recently. The existing works in this area have been confined to PDEs in
low dimensions (primarily one or two spacial dimensions) or ordinary differential equations (ODEs) so far.
Early works in this regard [91, 86, 57] have used polynomials (e.g. Chebyshev, Legendre, Bernstein) as
activation functions for solving linear ODEs/PDEs. Subsequent contributions have explored other types of
functions and made advances on a variety of fronts. While many studies are confined to linear ODE/PDE
problems (see e.g. [71, 22, 58, 10, 23, 54, 75, 9]), ELM-based methods for nonlinear PDEs/ODEs have
been developed in e.g. [15, 16, 83, 26, 21, 82, 70, 19, 27, 28] (among others). As has become clear from
these studies, the ELM technique can produce highly accurate solutions to linear and nonlinear PDEs
in low dimensions (and ODEs) with a competitive computational cost. For smooth solutions the ELM
errors decrease exponentially as the number of degrees of freedom (number of training points, or number
of trainable parameters) increases [15, 70], reminiscent of the traditional high-order methods such as the
spectral or spectral element techniques [47, 94, 97, 18, 92, 56]. Their errors can reach the level of machine
accuracy as the degrees of freedom become large [21]. In the presence of local complex features (e.g. sharp
gradient) in the solution field, a combination of domain decomposition and ELM, referred to as local ELM (or
locELM) in [15], will be critical to achieving a high accuracy [70]. ELM-based methods have been compared
extensively with the traditional numerical methods (e.g. classical FEM, high-order finite elements) and with
the dominant DNN-based solvers (e.g. PINN/DGM) for low-dimensional PDE problems; see e.g. [21, 15].
ELM far outperforms the classical FEM, and also outperforms the high-order FEM markedly when the
problem size is not very small [21]. With a small problem size, the performance of ELM and high-order FEM
is comparable, with the latter being slightly better [21]. Here “outperform” refers to the ability of a method
to achieve a better accuracy under the same computational cost or to incur a lower computational cost for
the same accuracy. ELM also considerably outperforms DGM and PINN for low-dimensional problems [15].
Very recently it has been shown by [19] that the ELM-based method exhibits a spectral accuracy for solving
inverse PDE problems (in low dimensions) if the measurement data is noise-free, when the network is trained
by nonlinear least squares or the variable projection algorithm [20].

In the current paper we focus on the computation of high-dimensional PDEs with the ELM-based ap-
proach. There seems to be very little investigation in this aspect so far. A recent work related to this topic
is [30], in which random feature neural networks are found to be able to approximate the functions with a
convolutional structure efficiently (without curse of dimensionality). Since the solutions to linear Kolmogorov
PDEs associated to exponential Levy models (e.g. Black-Scholes equation) can be expressed into this type of
functions based on the Feynman-Kac formula, this work recasts the problem of learning the solution to linear
Kolmogorov PDEs into a regression problem and employs random feature neural networks to approximate
the solution data. We note that the method in [30] relies on an external Monte-Carlo solver to first generate
the solution data to the Kolmogorov PDE in order to train the random feature neural network by regression.
We also note the interesting theoretical aspect of [30].

The technique developed in the current work computes high-dimensional PDEs in a “physics-informed”
manner, which is self-contained and does not rely on any external PDE solver. The high-dimensional
initial/boundary value problems considered here also involve more general PDEs and bounded domains.
We are especially interested in the following question:

• Is the ELM-type randomized neural network approach effective for computational PDEs in high di-
mensions?

The objective of this paper is to present two ELM-based methods for solving high-dimensional PDEs, and to
demonstrate with numerical simulations that these methods provide a positive answer to the above question,
at least for the range of problem dimensions studied in this paper.

The first method (termed simply ELM herein) extends the ELM technique and its local variant locELM
developed in [15] (for low-dimensional problems) to linear and nonlinear PDEs in high dimensions. The
solution field to the high-dimensional PDE problem is represented by a randomized feed-forward neural
network, with its hidden-layer coefficients randomly assigned and fixed and its output-layer coefficients
trained. Enforcing the PDE, the boundary and initial conditions on a random set of collocation points from
the domain interior and domain boundaries gives rise to a linear or nonlinear algebraic system of equations
about the trainable NN parameters. We seek a least squares solution to this algebraic system, attained by
either linear or nonlinear least squares method, which provides the trained values for the network parameters.
In the local variant of this method, the high-dimensional domain is decomposed along a maximum of M
(M = 2 herein) directions, and the solution field on each sub-domain is represented by an ELM-type

3

randomized neural network. We enforce the PDE, the boundary/initial conditions and appropriate continuity
conditions across sub-domains on a set of random collocation points from each sub-domain, from the domain
boundaries and from the shared sub-domain boundaries. The resultant linear or nonlinear algebraic system
yields, by its least squares solution, the trained values for the network parameters of the local NNs.

The second method (termed ELM/A-TFC herein) combines the ELM approach and an approximate vari-
ant of the theory of functional connections (TFC) for solving high-dimensional PDEs. TFC [65, 66] provides
a systematic approach for enforcing the boundary/initial conditions through a constrained expression (see
e.g. [83, 49]). However, the number of terms in TFC constrained expressions grows exponentially with respect
to the problem dimension, rendering TFC infeasible for high-dimensional problems. By noting a hierarchical
decomposition of the constrained expression, we introduce an approximate variant of TFC (referred to as
A-TFC herein) that retains only the dominant terms therein. A-TFC avoids the exponential growth in the
number of terms of TFC and is suitable for high-dimensional problems. On the other hand, since A-TFC
is an approximation of TFC, its constrained expression does not satisfy the boundary conditions uncon-
ditionally for an arbitrary free function contained therein. However, the conditions for the free function
of the A-TFC constrained expression in general involve functions of a simpler form, which is effectively a
linearized form of those of the original boundary/initial conditions. A-TFC represents a trade-off. It carries
a level of benefit of TFC for enforcing the boundary/initial conditions and is simultaneously suitable for
high-dimensional PDEs. The ELM/A-TFC method uses the A-TFC constrained expression to reformulate
the given high-dimensional PDE problem into a transformed problem about the free function contained in
the expression. This free function is then represented by an ELM-type randomized neural network, and the
reformulated PDE problem is enforced on a set of random collocation points. The least squares solution to
the resultant algebraic system provides the trained values for the network parameters, thus leading to the
solution for the free function. The solution to the original high-dimensional PDE problem is then computed
based on the A-TFC constrained expression.

Ample numerical simulations are presented to test these methods for a number of high-dimensional PDEs
that are linear or nonlinear, stationary or time-dependent. The current method has also been compared with
the PINN method for a range of problem dimensions. The numerical results show that the current methods
exhibit a clear sense of convergence with respect to the number of training parameters and the number of
boundary collocation points for high-dimensional PDEs. The rate of convergence is close to exponential for
an initial range of parameter values (before saturation). These methods can capture the solutions to high-
dimensional PDEs quite accurately, in particular with their errors reaching levels not far from the machine
accuracy for comparatively lower dimensions. The error levels produced by these two methods are generally
comparable, with ELM/A-TFC appearing slightly better in lower dimensions. On the other hand, ELM
generally involves a smaller computational effort and cost than ELM/A-TFC. Compared with PINN, the
current ELM method can achieve a significantly better accuracy under a markedly lower computational cost
(network training time) for solving high-dimensional PDEs.

The contributions of this paper lie in the ELM method and the ELM/A-TFC method presented herein
for computing high-dimensional PDE problems. To the best of the authors’ knowledge, this seems to be the
first physics-informed technique based on ELM-type randomized neural networks for solving high-dimensional
PDEs.

The methods presented in this paper are implemented in Python based on the Tensorflow and Keras
libraries. The linear and nonlinear least squares methods are based on routines from the Scipy library. The
numerical simulations are performed on a MAC computer (Apple M1 Chip, 8 cores, 8GB memory, 250GB
hard disk, macOS Ventura) in the authors’ institution.

The rest of this paper is organized as follows. In Section 2 we first briefly recall the theoretical result
on ELM-type randomized NNs for function approximations in high dimensions, and then describe the ELM
method and the ELM/A-TFC method for solving high-dimensional PDEs. In Section 3 we present extensive
numerical simulations to test these two methods with several linear and nonlinear, stationary and dynamic
PDEs for a range of problem dimensions. The current method is also compared with PINN. Section 4
concludes the presentation with a summary of the results and some further remarks.

4

2 Extreme Learning Machine for High-Dimensional PDEs
Suppose Ω = Ω1 × Ω2 × · · · × Ωd is a domain in Rd (d being a positive integer) with boundary ∂Ω, where
Ωi = [ai, bi] for given constants ai and bi (1 ⩽ i ⩽ d). We consider the boundary value problem below,

Lu(x) + µN (u(x)) = Q(x), x ∈ Ω, (1a)
Bu(x) = H(x), x ∈ ∂Ω. (1b)

Here L and N are linear and nonlinear differential operators, respectively. u(x) ∈ R is the unknown field
to be computed. B is a linear differential or algebraic operator, and equation (1b) represents the boundary
conditions. Q and H are given functions, and µ is a constant. If µ = 0, the problem is linear. We assume
that L may contain time derivatives (e.g. ∂

∂t or ∂2

∂t2 , with t being the time variable). In this case, the problem
is time dependent, and we will treat t in the same fashion as x. More specifically, we will treat this as a
(d+1)-dimensional problem with t as the last dimension, x = (x1, . . . , xd, xd+1 = t), where xi (1 ⩽ i ⩽ d+1)
denotes the components of x. Accordingly, in this case we will assume that (1b) contains appropriate initial
conditions with respect to t. The point here is that the problem (1) may represent an initial/boundary value
problem, and we will not distinguish this case in the following discussions unless necessary.

In what follows we present two methods for solving the system (1). The first is an extension to high
dimensions of the ELM technique originally developed in [15] for low-dimensional problems. The second
method is a combination of ELM with an approximate variant of the Theory of Functional Connections,
termed A-TFC, which avoids the exponential growth in the computational effort of TFC in high dimensions.

2.1 Randomized Feed-Forward Neural Networks
We consider the approximation of the solution field u(x) to system (1) by a randomized feed-forward neural
network. A feed-forward neural network (FNN) having (L + 1) (L ⩾ 2) layers represents a parameterized
function G(x; θ) given by (for the input x and parameter θ) [31],

G(x; θ) = WL · σ (WL−1 · σ (· · ·σ (W2 · σ (W1 · x+ b1) + b2) · · ·) + bL−1) + bL, (2)

where Wi and bi (1 ⩽ i ⩽ L) are the weight and bias in the i-th layer, θ = (W1, . . . ,WL, b1, . . . , bL), and
σ : R → R is the activation function. Layer 0 (input layer) contains d nodes, representing the components
of x, and layer L (output layer) contains a single node, representing u(x). The layers in between are the
hidden layers. Note that the output layer in (2) is linear, with no activation function applied. In the current
paper we further assume that the output layer has zero bias, i.e. bL = 0.

A randomized feed-forward neural network is an FNN in which a subset of the network parameters θ
are assigned to random values and fixed (non-trainable), while only the rest of the network parameters
are trained. Extreme learning machine (ELM) [37] is one type of randomized neural networks, in which
all the hidden-layer coefficients are randomly assigned and fixed and only the output-layer coefficients are
trained [15]. In the current work we approximate the solution field u(x) to the system (1) by ELM, and
assign the network coefficients in all the hidden layers to uniform random values from the interval [−Rm, Rm],
where Rm is a constant. We note that it is possible to assign the random parameters in other fashions, e.g. by
fixing the hidden-layer weights/biases to ones or zeros and randomly assigning a shape parameter introduced
in the activation function such as in [27].

Remark 1. While multiple hidden layers can be employed in ELM networks, computational experience
seems to indicate that a deeper network does not in general deliver better simulation results (they usually
seem somewhat worse) compared with a shallow network with ELM. In practice, a small number of hidden
layers (e.g. one, or perhaps two) are usually employed in the actual simulations with ELM; see e.g. [15]
(among others). In the numerical simulations with high-dimensional PDEs in this paper, we have employed
ELM networks with a single hidden layer (see Section 3).

2.2 Randomized NNs for High-Dimensional Function Approximation
Extreme learning machines (or RVFL networks) are universal function approximators; see e.g. [41, 38].
The universal approximation theorems [41, 38] basically state that any given continuous function can be

5

approximated by a randomized NN having a single hidden layer, in which the hidden-layer coefficients are
randomly assigned and fixed and the output-layer coefficients can be adjusted/trained, to any desired degree
of accuracy, if the number of hidden units is sufficiently large.

We next recall the result from [41] concerning the convergence rate of randomized NNs for function
approximations in high dimensions, which motivates the development of the current methods for high-
dimensional computational PDEs.

Define Id := [0, 1]d and consider a continuous function f ∈ C(Id) satisfying the Lipschitz condition, i.e.,
there exists a constant γ > 0 such that for any x, y ∈ Id,

|f(x)− f(y)| ≤ γ∥x− y∥, (3)

where ∥x− y∥ :=
∑d

i=1 |xi − yi|. To approximate f , we construct a sequence functions {fωn} as follows,

fωn(x) =
n∑

j=1

ajg(wj · x+ bj), (4)

where ωn is defined as ωn := (n, a1, . . . , an, b1, . . . , bn, w1, . . . , wn). In particular, λn := {b1, . . . , bn, w1, . . . , wn}
denotes a set of random parameters from some probabilistic space Sn(Ω, α), where α is a parameter. The
corresponding probability measure µn,Ω,α is specified as follows. Suppose ŵ0 = (ŵ01, . . . , ŵ0d), y0 =
(y01, . . . , y0d) and u0 are independent and uniformly distributed in V d = [0,Ω] × · · · × [−Ω,Ω], Id and
[−2Ω, 2Ω], respectively. Then w0 = αŵ0 and b0 = −w0 · y0 − u0. (w1, . . . , wn) and (b1, . . . , bn) are two sets
of samples of the random variables w0 and b0. g in (4) is the activation function, chosen to be absolutely
integrable, i.e.,∫

R
g2(x)dx < +∞. (5)

We further restrict g on some compact support
∏d

i=1[−βwi, βwi] to get gβ (β denotes a parameter). Then
the following result holds.

Theorem 1. [41] For any f ∈ C(Id) satisfying (3), any compact K ⊂ Id that is a proper subset of Id, and
any activation function gβ satisfying (5), there exists a sequence of {fωn

} and probability measure µn,Ω,α

such that

E

∫
K

|f(x)− fωn(x)|2dx ≤ Cf,g,Ω,α,β,d

n
, (6)

for some constant Cf,g,Ω,α,β,d independent of n.

Remark 2. The theorem can be generalized when Id is replaced by [a, b]d by a change of variables. We omit
this detail and consider the generic situation.

Remark 3. It is notable that the approximation error is of the order 1/
√
n as the number of basis functions

n increases, irrespective of the dimension d. This indicates that the approximation (4) with random basis
functions can be effective for high dimensions. On the other hand, one notes from [3] that the approximation
by linear combinations of deterministic and fixed bases leads to an approximation error on the order of
O(1/n

1
d). In other words, if deterministic and fixed basis functions are used, it is impossible to avoid the

exponential growth in d for the number of basis functions. The randomized bases (such as in ELM and RVFL),
however, can be effective for high-dimensional function approximations in the sense of the expectation.

2.3 Solving High-Dimensional PDEs with ELM
Adopting ELM for computational PDEs is characterized by two ideas: (i) The hidden-layer coefficients
are assigned to random values and fixed, and only the output-layer coefficients are trainable, as already
mentioned previously. (ii) The trainable network parameters are determined by the linear or nonlinear least
squares method [15], not by the gradient descent type algorithms. This means that in equation (2) the

6

coefficients (Wi, bi) for 1 ⩽ i ⩽ L− 1 will be assigned to uniform random values from [−Rm, Rm] and fixed,
while only WL is trained (noting that we set bL = 0).

Let Nu denote the number of nodes in the last hidden layer of the neural network, and Vj(x) (1 ⩽ j ⩽ Nu)
denote the output fields of the last hidden layer. Then equation (2) can be written into,

u(x) =

Nu∑
i=1

ϕjVj(x) = V(x)Φ, x ∈ Ω, (7)

where V(x) = (V1(x), . . . , VNu
(x)) = σ (WL−1 · σ (· · ·σ (W2 · σ (W1 · x+ b1) + b2) · · ·) + bL−1), and Φ =

(ϕ1, . . . , ϕNu
)T = WL. Note that V(x) is fixed once the hidden-layer coefficients are randomly assigned and

ϕj (1 ⩽ j ⩽ Nu) are the output-layer coefficients (trainable parameters) of ELM.
The residual function of the system (1) is,

R(x, y,Φ) =

[
Rpde(x,Φ)
Rbc(y,Φ)

]
=

[
LV(x)Φ+ µN (V(x)Φ)−Q(x), x ∈ Ω

BV(y)Φ−H(y), y ∈ ∂Ω

]
(8)

where Rpde and Rbc are the residuals corresponding to the PDE and the boundary/initial conditions, re-
spectively.

We next choose a set of collocation points from the domain interior and the domain boundaries, and
enforce the residual function (8) to be zero on these collocation points. For solving high-dimensional PDEs
we will employ a set of random collocation points from the interior/boundary of the domain in this work.
We note that the regular grid points, which have been used with ELM in e.g. [15, 16, 21, 70, 19] as the
sampling points for low-dimensional problems, are not feasible for high-dimensional PDEs, because of the
exponential growth in the number of points with increasing dimension.

More specifically, the collocation points are set as follows. Let Nin denote the number of random colloca-
tion points in the interior of Ω, and Nbc denote the number of random collocation points on each hyperface
of ∂Ω. To generate the interior collocation points we set

Pi = (x1,i, . . . , xd,i), for i ∈ [Nin], (9)

where xj,i ∈ (aj , bj) is a uniform random value for j ∈ [d]. Here we have used the notation in combinatorics
that [d] = {1, . . . , d}. For the boundary collocation points, we choose Nbc random points on each hyperface
of ∂Ω, which is a (d− 1)-dimensional hyperplane, and there are 2d hyperfaces in total. The total number of
boundary collocation points is N tot

bc = 2dNbc. For i ∈ [Nbc], j ∈ [d] and l ∈ {0, 1}, we set

Pi,j,l = (x1,i, . . . , xj−1,i, xj,i = ajδl,0 + bjδl,1, xj+1,i, . . . , xd,i) (10)

as the boundary collocation points, in which xk,i ∈ (ak, bk) is a uniform random value if k ̸= j. Here δi,j
denotes the Kronecker delta, δi,j = 1 if i = j and 0 otherwise. Overall, the total number of collocation points
is Nc = Nin +N tot

bc . Let Na = Nc +N tot
bc , and

xin =


...
Pi

...

 ∈ MNin×d, y =


...

Pi,j,l

...

 ∈ MNtot
bc ×d, x =

[
xin
y

]
∈ MNc×d, (11)

where Ma×b denotes the set of matrices with shape a× b.
Enforcing the residual function (8) to be zero on all the collocation points gives rise to the following

system,

0 = R(Φ) = R(x,y,Φ) =

[
Rpde(x,Φ)
Rbc(y,Φ)

]
=

[
LV(x)Φ+ µN (V(x)Φ)−Q(x)

BV(y)Φ−H(y)

]
=

[
Rpde(Φ)
Rbc(Φ)

]
. (12)

Here R(Φ) ∈ MNa×1, Rpde(Φ) ∈ MNc×1, Rbc(Φ) ∈ MNtot
bc ×1, V(x) ∈ MNc×Nu , and V(y) ∈ MNtot

bc ×Nu .

7

The system (12) is an algebraic system about Φ, containing Na equations with Nu unknowns. We seek
a least squares solution to this system. When µ = 0, this system is linear about Φ and can be written as[

LV(x)
BV(y)

]
Φ =

[
Q(x)
H(y)

]
. (13)

In this case we compute Φ by solving the system (13) using the linear least squares method (with a minimum
norm if the coefficient matrix is rank deficient) [7].

When µ ̸= 0, the algebraic system (12) is nonlinear with respect to Φ. In this case we compute Φ by
solving this system using the nonlinear least squares method with perturbations (NLLSQ-perturb) from [15,
21, 19]. The nonlinear least squares method [7] as in [15, 21, 19] represents a Gauss-Newton method combined
with a trust-region strategy. The NLLSQ-perturb algorithm requires, for an arbitrary given Φ ∈ RNu , the
computation of R(Φ) and its Jacobian matrix J(Φ) = ∂R

∂Φ ∈ MNa×Nu for the Gauss-Newton iterations
(see [15, 21] for details). The Jacobian matrix for (12) is given by

J(Φ) =

[
LV(x) + µN ′(V(x)Φ)V(x)

BV(y)

]
, (14)

where N ′(u) = ∂N
∂u .

Remark 4. In our implementation, the input data to the ELM neural network consists of x (coordinates
of all collocation points), and the output data consists of u(x) ∈ MNc×1 (the solution field evaluated on the
collocation points). After the hidden-layer coefficients are randomly assigned, V (x) is computed by a forward
evaluation of a sub-network, implemented in Keras as a sub-model of the original NN, whose input is x and
output is the last hidden layer of the original NN. The differential operators involved in LV (x) and BV (x)
are then computed by a forward-mode automatic differentiation with this sub-model. The linear least squares
method is based on the routine scipy.linalg.lstsq from the SciPy library. The NLLSQ-perturb algorithm for
the nonlinear least squares method is based on the routine scipy.optimize.least_squares from the SciPy library
(see [15] or the Appendix A of [19] for more details).

Remark 5. When the solution field contains local features (e.g. sharp gradient), it would be preferable to
combine ELM with domain decomposition for approximating the solution, thus leading to the local ELM
approach (called locELM in [15]). In this case, we represent the solution on each sub-domain by a local
randomized FNN, and impose Ck (with k related to the PDE order) continuity conditions across the shared
sub-domain boundaries.

For high-dimensional PDE problems, if domain decomposition is performed in every direction, the number
of sub-domains would increase exponentially with increasing problem dimension. To avoid the exponential
growth in the number of sub-domains in local ELM, we require that the domain should be decomposed only
along a maximum of M directions, where M is a fixed small integer (0 ⩽ M ⩽ d). The specific directions
in which the domain is decomposed can be any subset of the d directions with a size not exceeding M. We
use M = 2 in the current work, i.e. domain decomposition in a maximum of two directions with local ELM.

In the presence of domain decomposition, the residual function (8) for the system (1) needs to be modified
accordingly to account for the Ck continuity conditions across sub-domain boundaries. Let NΩ denote the
number of sub-domains, and Ωi (1 ⩽ i ⩽ NΩ) denote the i-th sub-domain. Symbolically, the modified residual
function can be written as,

R(x, y, z,Φ) =

Rpde(x,Φ)
Rbc(y,Φ)
Rck(z,Φ)

 =

 LVi(x)Φi + µN (Vi(x)Φi)−Q(x), x ∈ Ωi, 1 ⩽ i ⩽ NΩ

BVi(y)Φi −H(y), y ∈ ∂Ωi ∩ ∂Ω, 1 ⩽ i ⩽ NΩ

CVi(z)Φi − CVj(z)Φj , z ∈ ∂Ωi ∩ ∂Ωj , ∀ adjacent (Ωi,Ωj)

 , (15)

where Vi(x) = (Vi1(x), . . . , ViNu
(x)) denotes the output fields of the last hidden layer of the local NN on

Ωi, Φi = (ϕi1, . . . ϕiNu)
T denotes the vector of output-layer coefficients of the local network for Ωi, and

Φ = (ΦT
1 , . . . ,Φ

T
NΩ

)T denotes the set of training parameters of the overall problem. The solution field u(x),
when restricted to Ωi (1 ⩽ i ⩽ NΩ), is given by

ui(x) =

Nu∑
j=1

ϕijVij(x) = Vi(x)Φi, x ∈ Ωi. (16)

8

Figure 1: Illustration of random boundary collocation points on two adjacent sub-domains in two dimensions.

In (15), Rck(z,Φ) = Cui(z)−Cuj(z) denotes the residual corresponding to the continuity conditions between
ui(z) and uj(z) on their shared sub-domain boundary, and C denotes a differential (or algebraic) operator
corresponding to the continuity conditions. If the PDE order is m (m ⩾ 1) with respect to xi, we will in
general impose Cm−1 conditions across the sub-domain boundaries along the xi direction.

Accordingly, we choose a set of random collocation points on the interior and on the boundaries of each
sub-domain, and enforce the residual function (15) to be zero on these collocation points. This leads to a
linear or nonlinear algebraic system about Φ, which is solved by the linear or nonlinear least squares method
to attain a least squares solution for the training parameters Φ.

Let us next further comment on enforcing the continuity conditions across sub-domains and illustrate
it with an example. In order to impose the continuity conditions on the common boundary between two
adjacent sub-domains (Ωi,Ωj), the random boundary collocation points for Ωi and the random boundary
collocation points for Ωj, when restricted to their shared boundary, must be identical. We illustrate this point
using Figure 1, which shows two adjacent sub-domains in 2D. Two random collocation points (Nbc = 2) are
generated on each boundary of each sub-domain. Note that the collocation points for different sub-domains
are generated independently. But we need to make sure that the points for the common face l (highlighted in
orange in Figure 1) in both sub-domains sharing l should be identical.

This requirement is implemented by the following procedure in our implementation. For each sub-domain
we arrange the boundary collocation points in the following order: those random points on the left face,
followed by those on the right face, the bottom face, and the top face. We first generate the random boundary
points for all sub-domains independently. Then we go through all sub-domains, and the four boundaries (left,
right, bottom, top) on each sub-domain, successively. If the boundary being examined is a shared boundary
and the ID of the current sub-domain is higher than that of the neighboring sub-domain, then we replace the
collocation points for the this boundary of the current sub-domain by those collocation points for the same
boundary in the neighboring sub-domain. As shown in Figure 1, one can see that the random collocation
points for the left boundary of the second sub-domain will be replaced by (thus identical to) those for the right
boundary of the first sub-domain.

Remark 6. As mentioned previously, the hidden-layer coefficients of the ELM neural network are assigned
to uniform random values generated on the interval [−Rm, Rm] in this paper. We observe from numerical
simulations that the value of the constant Rm influences the ELM accuracy; see [15] for a similar observation
for low-dimensional PDEs and also [96, 53] for other types of problems with RVFL networks. In the numerical
simulations of Section 3 below, we have used Rm = Rm0, where Rm0 is a value determined by the following
procedure for a given problem. For a PDE problem of a given dimension d, we first fix the number of
training parameters in the NN and the number of collocation points to some chosen values. Then we perform
preliminary simulations of the given problem using this fixed network setting, and a set of different Rm values
for generating the random hidden-layer coefficients. We record the errors of the computed solution (when the
exact solution is available), or the norm of the residual vector R(Φ) corresponding to the computed solution
(when the exact solution is unavailable), for this set of Rm values. We choose the value with the lowest
error or the lowest residual norm, and denote it by Rm0. Then we fix Rm = Rm0 for generating the random
hidden-layer coefficients for the subsequent simulations of this PDE problem in a given dimension d, while
some other simulation parameters (e.g. number of training parameters or collocation points) are varied. We
observe that the Rm0 as determined above in general decreases with respect to the problem dimension d.

9

2.4 Solving High-Dimensional PDEs by Combined ELM and Approximate The-
ory of Functional Connections (A-TFC)

In this subsection we present an alternative strategy for approximating the solution field u(x), by combining
ELM and an approximate variant of the Theory of Functional Connections (TFC). TFC provides a systematic
technique for handling linear constraints, in particular the boundary or initial conditions [65, 66, 83, 49]. The
number of terms in TFC constrained expression, however, increases exponentially with increasing problem
dimension, rendering TFC infeasible for high-dimensional problems. The approximate variant of TFC,
termed A-TFC here, avoids the exponential growth in the number of terms of TFC and is suitable for
computational PDEs in high dimensions.

2.4.1 TFC and Approximate TFC

Consider the domain Ω = [a, b]d, where a and b are constants, and a function u(x) defined on Ω satisfying
the condition,

u|∂Ω = C(x), x ∈ ∂Ω, (17)

where C(x) is a prescribed function on ∂Ω. Then the general form of u(x) is given by [49],

u(x) = g(x)− TΩg(x) + TΩC(x), x ∈ Ω, (18)

where g is an arbitrary (free) function on Ω. TΩ is a linear operator satisfying the property that, for any
function f defined on ∂Ω, TΩf(x) is a function defined on Ω and,

TΩf |∂Ω = f(x), x ∈ ∂Ω. (19)

One can verify that u(x) as given by (18) satisfies (17) for an arbitrary g. The expression (18) is called the
constrained expression of TFC [49].

For a function f defined on ∂Ω, TΩf(x) can be constructed as follows. We first use a 2D (d = 2) example
to illustrate the procedure and then discuss the general d-dimensional case. Suppose Ω = [a, b]2 and f(x) is
a function defined on ∂Ω. Let c1i ∈ {a, b} for i ∈ {1, 2}, and define f

c1i
i (x) := f(x)|xi=c1i

. Let ci1,2 ∈ {a, b} for

i ∈ {1, 2}, and define f
c11,2,c

2
1,2

1,2 (x) := f(x1 = c11,2, x2 = c21,2). We further define

ϕ
c1i
a,b(x) = δa,c1i

b− xi

b− a
+ δb,c1i

xi − a

b− a
, ϕ

ci1,2
a,b (x) = δa,ci1,2

b− xi

b− a
+ δb,ci1,2

xi − a

b− a
, i ∈ {1, 2}. (20)

Then

TΩf(x) = T 1
Ωf(x)− T 2

Ωf(x), (21)

where

T 1
Ωf(x) =

2∑
i=1

∑
c1i∈{a,b}

ϕ
c1i
a,b(x)f

c1i
i (x) =

2∑
i=1

[
b− xi

b− a
f(x)|xi=a +

xi − a

b− a
f(x)|xi=b

]
,

T 2
Ωf(x) =

∑
c11,2,c

2
1,2∈{a,b}

ϕ
c11,2
a,b (x)ϕ

c21,2
a,b (x)f

c11,2,c
2
1,2

1,2 (x)

=
(b− x1)(b− x2)

(b− a)2
f(a, a) +

(b− x1)(x2 − a)

(b− a)2
f(a, b) +

(x1 − a)(b− x2)

(b− a)2
f(b, a)

+
(x1 − a)(x2 − a)

(b− a)2
f(b, b).

(22)

For the general case, one can construct TΩf in a similar fashion. The domain Ω = [a, b]d is a d-dimensional
hypercube (referred to as d-cube hereafter). We need to consider all j-cubes contained on the boundary ∂Ω,
for j = 0, · · · , d − 1. To this end, we define the following notations. For j = 1, . . . , d, we define Ej as the

10

collection of all j tuples (k1, . . . , kj) with 1 ≤ k1 < k2 < · · · < kj ≤ d. The cardinality of Ej is
[
d
j

]
. Hence,

there are 2j
[
d
j

]
(d− j)-cubes on ∂Ω. We define

f
c1p,...,cjp
p (x) = f(x)|

(xp1=c1p,xp2=c2p,...,xpj
=c

j
p)

, p = (p1, . . . , pj) ∈ Ej ;

ϕ
cip
a,b(x) = δa,cip

b− xpi

b− a
+ δb,cip

xpi − a

b− a
, p ∈ Ej , i ∈ [j],

(23)

where cip ∈ {a, b} for 1 ⩽ i ⩽ j. Then TΩf(x) is given by

TΩf(x) =
d∑

i=1

(−1)i−1T i
Ωf(x), (24)

where

T i
Ωf(x) =

∑
p∈Ei

∑
c1p,...,c

i
p∈{a,b}

ϕ
c1p
a,b(x) · · ·ϕ

cip
a,b(x)f

c1p,...,c
i
p

p (x), ∀i ∈ [d]. (25)

While the constrained expression (18) satisfies the condition (17) exactly, the number of terms contained

therein grows exponentially with respect to the dimension d. The expression (25) contains 2i
[
d
i

]
terms,

giving rise to a total number of (3d − 1) terms in (24). Therefore, the constrained expression (18) contains
O(3d) terms in d dimensions, rendering TFC infeasible for high-dimensional PDE problems.

To devise a TFC-like approximation of the solution field suitable for high-dimensional problems, we notice
that the expression (24) represents a hierarchical decomposition of TΩf(x) in some sense, in which T i

Ωf(x)
represents the contributions of f(x) from the (d− i)-dimensional hyperplanes on the boundary ∂Ω. Taking
d = 3 as an example, one can note that T 1

Ωf , T 2
Ωf and T 3

Ωf represent the contributions of f(x) from the
faces, the edges, and the vertices of the cube Ω = [a, b]3.

This observation inspires the following strategy for approximating TΩf(x). We can truncate the expres-
sion (24) by keeping only the leading terms, in a spirit analogous to the truncation in Taylor expansion.
Specifically, by choosing a number k ∈ [d−1] as the cut-off value, we retain all the terms T j

Ωf with 1 ⩽ j ⩽ k
in (24) and discard the rest of the terms. In the current paper we choose k = 1 for simplicity. In other
words, for a function f(x) defined on ∂Ω, we define AΩf(x) by

AΩf(x) := T 1
Ωf(x), x ∈ Ω. (26)

Then we approximate the function u(x) satisfying the condition (17) by,

u(x) = g(x)−AΩg(x) +AΩC(x), (27)

where g(x) is a function to be determined. We refer to the approximation (27) as the approximate TFC (or
A-TFC) constrained expression.

The terms AΩg and AΩC in the A-TFC expression (27) both contain 2d terms. The computation
of (27) is thus feasible for large d, and A-TFC avoids the exponential growth in the number of terms of
the TFC constrained expression (18). However, there is a trade-off with A-TFC. Specifically, the A-TFC
expression (27) for u(x) does not satisfy the boundary condition (17) unconditionally for an arbitrary function
g(x), because AΩf is an approximation of TΩf . In general, g(x) needs to satisfy a certain condition on ∂Ω
in order for u(x) to satisfy (17).

We first illustrate this point using the 2D case. Suppose Ω = [a, b]2, and we substitute the expression (27)
into (17). On the boundary x2 = a, we have

C(x1, a) = AC(x1, a) + g(x1, a)−Ag(x1, a)

= C(x1, a) + [C(a, a)− g(a, a)]
b− x1

b− a
+ [C(b, a)− g(b, a)]

x1 − a

b− a
.

(28)

11

This leads to the following condition for g,

[C(a, a)− g(a, a)]
b− x1

b− a
+ [C(b, a)− g(b, a)]

x1 − a

b− a
= 0, ∀x1 ∈ [a, b]. (29)

Similarly, by considering the other boundaries we attain the following conditions,
[C(a, b)− g(a, b)]

b− x1

b− a
+ [C(b, b)− g(b, b)]

x1 − a

b− a
= 0, ∀x1 ∈ [a, b];

[C(a, a)− g(a, a)]
b− x2

b− a
+ [C(a, b)− g(a, b)]

x2 − a

b− a
= 0, ∀x2 ∈ [a, b];

[C(b, a)− g(b, a)]
b− x2

b− a
+ [C(b, b)− g(b, b)]

x2 − a

b− a
= 0, ∀x2 ∈ [a, b].

(30)

In this 2D case, it is straightforward to choose g(a, a) = C(a, a), g(a, b) = C(a, b), g(b, a) = C(b, a) and
g(b, b) = C(b, b) as the boundary conditions for g. However, in high-dimensional cases the conditions given
by (29) and (30) are easier to implement with randomly chosen collocation points.

For the general d-dimensional case, we again use the notation in (23). The conditions for g are then given
by, ∑

j ̸=i

[(
Ca,a

i,j − ga,ai,j

) b− xj

b− a
+

(
Ca,b

i,j − ga,bi,j

) xj − a

b− a

]
= 0, on xi = a, ∀i ∈ [d]; (31a)

∑
j ̸=i

[(
Cb,a

i,j − gb,ai,j

) b− xj

b− a
+

(
Cb,b

i,j − gb,bi,j

) xj − a

b− a

]
= 0, on xi = b, ∀i ∈ [d]. (31b)

We define B̃Ω as

B̃Ωf(x) =



...∑
j ̸=i

(
fa,a
i,j

b−xj

b−a
+ fa,b

i,j
xj−a

b−a

)
∑
j ̸=i

(
f b,a
i,j

b−xj

b−a
+ f b,b

i,j
xj−a

b−a

)
...


, x ∈ ∂Ω. (32)

Then one can rewrite (31) as

B̃Ωg(x) = sΩ(x), x ∈ ∂Ω, (33)

where sΩ(x) := B̃ΩC(x) denotes the boundary data. This is the boundary condition for g(x) with A-TFC.
We can make the following observation from the above discussions. With A-TFC, while the constrained

expression does not satisfy the condition (17) exactly for an arbitrary g, the condition that g needs to satisfy
generally involves functions of a simpler form than the original condition. Specifically, there are 2(d − 1)
terms in the condition for g on each boundary, and each term involves the product of a linear function and
the g evaluated on a (d − 2)-dimensional hyperplane of the boundary. Therefore, A-TFC can simplify the
functional forms involved in the condition in some sense. Let us again use 2D as an example to illustrate this
point. Assume a boundary distribution C(x1, a) = sin(x1) on the boundary x2 = a. Then, without A-TFC,
the boundary condition for u(x) on x2 = a is given by,

u(x1, a) = sin(x1), ∀x1 ∈ [a, b].

In contrast, with A-TFC, the condition for g on x2 = a is reduced to (see (29)),

[sin(a)− g(a, a)]
b− x1

b− a
+ [sin(b)− g(b, a)]

x1 − a

b− a
= 0, ∀x1 ∈ [a, b].

The linear function involved in the condition for g with A-TFC is obviously simpler than that of the original
condition without A-TFC.

12

2.4.2 A-TFC Embedded ELM

Let us now consider how to combine ELM and A-TFC for solving the system (1). In this sub-section we will
assume that B = I (identity operator) in (1b), i.e. the problem has Dirichlet boundary conditions.

Based on A-TFC, we perform the following transformation,

u(x) = g(x)−AΩg(x) +AΩH(x), x ∈ Ω, (34)

where g(x) is an unknown function, AΩ is defined in (26), and H is the boundary distribution in (1b). The
system (1) is accordingly transformed into,

Lg(x)− LAΩg(x) + µN (AΩH(x) + g(x)−AΩg(x)) = Q(x)− LAΩH(x) = Q1(x), x ∈ Ω, (35a)

B̃Ωg(x) = B̃ΩH(x) = SΩ(x), x ∈ ∂Ω, (35b)

where B̃Ω is defined in (32). g(x) is the field function to be solved for in (35).
We represent g(x) by an ELM-type randomized neural network, following the settings as outlined in

Section 2.3. In particular, the input layer of the network contains d nodes (representing x), and the output
layer contains a single node (representing g(x)) with zero bias and no activation function. The hidden-layer
coefficients are set to uniform random values from the interval [−Rm, Rm]. Let Ng denote the number of
nodes in the last hidden layer of the neural network, and Vj(x) (1 ⩽ j ⩽ Ng) denote the output fields of the
last hidden layer. Then the network logic gives rise to,

g(x) =

Ng∑
j=1

ϕjVj(x) = V(x)Φ, (36)

where V(x) = (V1(x), . . . , VNg (x)), ϕj (1 ⩽ j ⩽ Ng) are the output-layer coefficients (training parameters),
and Φ = (ϕ1, . . . , ϕNg

)T .
We determine the training parameters Φ in (36) in a fashion similar to in Section 2.3. We again employ

random collocation points inside the domain and on the domain boundaries, and let Nin and Nbc denote
the number of interior collocation points and the number of boundary collocation points on each hyperface,
respectively. Enforcing the residual function of the system (35) to be zero on these collocation points leads
to the following algebraic system,

R(Φ) =

[
L(V(x)−AΩV(x))Φ+ µN (AΩH(x) +V(x)Φ−AΩV(x)Φ)−Q1(x)

B̃ΩV(y)Φ− SΩ(y)

]
= 0, (37)

where x and y are defined in (11), and R(Φ) ∈ RNa denotes the residual vector of the system (35) on the
collocation points, where Na = Nin + 2N tot

bc = Nin + 4dNbc.
We seek a least squares solution to the system (37), and solve this system for Φ by the linear least squares

method, if µ = 0, and by the nonlinear least squares method with perturbations (NLLSQ-perturb) [15], if
µ ̸= 0. When µ = 0, the system (37) is reduced to,[

L(V(x)−AΩV(x))

B̃ΩV(y)

]
Φ =

[
Q1(x)
SΩ(y)

]
, (38)

which is linear, and Φ can be computed by the linear least squares method. When µ ̸= 0, the system (37)
is nonlinear. The Jacobian matrix of this system is given by,

J(Φ) =
∂R

∂Φ
=

[
L(V(x)−AΩV(x)) + µN ′(AΩH(x) +V(x)Φ−AΩV(x)Φ)(V(x)−AΩV(x))

B̃ΩV(y)

]
, (39)

which is needed by the NLLSQ-perturb method [15] for solving (37).
Upon solving the system (37) by the linear or nonlinear least squares method, we set the output-layer

coefficients of the neural network by the least squares solution Φ. Afterwards, a forward evaluation of the
neural network provides g(x), and the solution field to system (1) is computed by (34).

13

3 Numerical Examples
In this section we test the performance of the proposed methods using several high-dimensional PDEs. These
include the linear and nonlinear Poisson equations, which are time-independent, and the heat, Korteweg-
de Veries (KdV), and the advection diffusion equations, which are time-dependent. For each problem we
investigate the error convergence with respect to the number of training parameters and number of collocation
points for a range of problem dimensions.

A single hidden layer has been employed in the neural network with both the ELM and the ELM/A-TFC
methods for all test problems. In subsequent discussions we denote the neural network architecture by the
following vector (or list) of positive integers, referred to as the architectural vector henceforth,

March = [min,M,mout] (40)

where min, M and mout are the number of nodes in the input layer, the hidden layer, and the output layer,
respectively. mout = 1 in all tests of this section, and M equals the number of training parameters of ELM.
The hidden-layer coefficients are assigned to uniform random values generated on the interval [−Rm, Rm]
with Rm = Rm0 in the simulations below, where Rm0 is determined by the procedure discussed in Remark 6.
The tanh activation function has been employed in the hidden layer for all the numerical tests of this section.

In all numerical experiments, after the NN with a particular setting (given number of training parameters,
and given number of training collocation points) is trained, we compute the errors of the network solution as
follows. We generate a set of test points on the d-dimensional domain Ω: N (v)

in random points on the interior
of Ω, and N

(v)
bc random points on each boundary of Ω ((d − 1)-dimensional hypercube). There is a total of

N
(v)
c = N

(v)
in + 2dN

(v)
bc random test points. They are different from the random collocation points used in

the network training, and the number is much larger than that of the latter. We evaluate the trained NN
on these test points to obtain the NN solution data, and evaluate the exact solution to the problem on the
same test points. We compare the data of the NN solution and the exact solution on these test points to
compute the maximum error (el∞) and the root-mean-squares (rms) error (el2) as follows,

el∞ = max { |u(xi)− uex(xi)| }
N(v)

c
i=1 , el2 =

√√√√ 1

N
(v)
c

N
(v)
c∑

i=1

[u(xi)− uex(xi)]
2
, (41)

where xi (1 ⩽ i ⩽ N
(v)
c) denote the test points, and u(xi) and uex(xi) denote the NN solution and the exact

solution, respectively. We refer to the computed el∞ and el2 as the errors associated with the given NN
setting that is used for training the network. In all the numerical simulations of this section we employ a
fixed N

(v)
bc = 100 and N

(v)
in = 7000 for computing the el∞ and el2 errors.

In the numerical tests below, d refers to the dimension of the spatial domain. For time-dependent
problems, the time variable t is not included in d when we talk about the problem in d dimensions. In other
words, for a d-dimensional time-dependent problem, the input layer of the neural network would contain
min = d+ 1 nodes (space and time). To make the reported results in this section exactly re-producible, we
have set the seed to a fixed value 1 in the random number generators of the Numpy and Tensorflow libraries
for all the numerical examples. The test results with the ELM method are presented in Section 3.1 first, and
those obtained with the combined ELM/A-TFC method are discussed in Section 3.2. We then compare the
current ELM method with the PINN method [78] for selected test problems in Section 3.3.

3.1 Numerical Tests with the ELM Method
3.1.1 Poisson Equation

We consider the Poisson equation on the domain Ω = [−1, 1]d,

−∆u = f(x), x ∈ Ω, (42a)
u = h(x), x ∈ ∂Ω, (42b)

14

Rm 0.01 0.05 0.1 0.15 0.25 0.5
el∞ 1.76E-6 1.30E-8 1.04E-7 1.23E-6 4.44E-5 8.33E-4
el2 1.96E-7 6.68E-10 6.91E-9 8.48E-8 2.28E-6 9.03E-5

Table 1: Poisson equation: Determining the Rm0 based on the procedure of Remark 6 for d = 5. NN architecture:
[d, 2000, 1]; (Nbc, Nin) = (100, 1000).

d 5 7 15
Rm0 0.05 0.05 0.001

Table 2: Poisson equation: Rm0 determined by the procedure from Remark 6 for several problem dimensions.

where ∆ =
∑d

i=1
∂2

∂x2
i
, h(x) =

(
1
d

∑d
i=1 xi

)2

+ sin
(

1
d

∑d
i=1 xi

)
, and f(x) = 1

d

(
sin

(
1
d

∑d
i=1 xi

)
− 2

)
. The

exact solution to this system is u(x) =
(

1
d

∑d
i=1 xi

)2

+ sin
(

1
d

∑d
i=1 xi

)
.

We solve the system (42) by the ELM method with an NN architecture March = [d,M, 1], where the d
input nodes represent x, the single output node represents u(x), and the hidden-layer width M (i.e. number of
training parameters) is varied systematically. The neural network is trained by the algorithm from Section 2.3
on a set of random collocation points, consisting of Nin points from the interior of Ω and Nbc points on each
of the 2d boundaries of ∂Ω, where (Nbc, Nin) are varied in the tests. For the network training, the input data
consists of the coordinates of all the collocation points. After the NN is trained for each case, as discussed
previously, the maximum and rms errors of the NN solution are computed on another set of random test
points, characterized by (N

(v)
bc , N

(v)
in) = (100, 7000) for the test points on each boundary and in the interior

of Ω. In addition, on selected 2D cross sections of Ω, such as the xi-xj plane (1 ⩽ i < j ⩽ d), we have
evaluated the network solution on a set of regular Q(v) ×Q(v) grid points (Q(v) = 800), and compared with
the exact solution on the same set of points to study the point-wise errors of the NN solution.

We first determine the Rm0 based on the procedure from Remark 6 for generating the random hidden-
layer coefficients. Table 1 shows the maximum and rms errors of the ELM solution for dimension d = 5,
corresponding to several Rm values for generating the random hidden-layer coefficients. These are obtained
using a network architecture [d, 2000, 1] and the collocation points (Nbc, Nin) = (100, 1000). The ELM
method produces accurate results in a range of Rm values around Rm ≈ 0.05, thus leading to Rm0 = 0.05 for
d = 5. Table 2 lists the Rm0 for several problem dimensions with the Poisson equation, which are obtained
with the same network architecture and the same number of collocation points as in Table 1. We observe
that Rm0 tends to decrease as the dimension d increases. This seems to be a characteristic common to all
the test problems in this work. In the subsequent simulations, we set Rm = Rm0 in ELM for generating the
hidden-layer coefficients, while the other simulation parameters are varied.

Figure 2 illustrates the effect of the number of training parameters on the ELM accuracy. It shows the

(a) d=5 (b) d=7 (c) d=15

Figure 2: Poisson equation: el∞ and el2 errors versus the number of training parameters (M) for dimensions (a)
d = 5, (b) d = 7, (c) d = 15. (Nbc, Nin) = (100, 2000) in (a), (100, 1000) in (b), and (120, 2000) in (c).

15

(a) d=5 (b) d=7 (c) d=15

Figure 3: Poisson equation: el∞ and el2 errors versus the number of boundary collocation points (Nbc) for dimensions
(a) d = 5, (b) d = 7, and (c) d = 15. NN architecture: [d, 2000, 1] in (a,b,c); Nin = 500 in (a), 1000 in (b), and 50 in
(c).

(a) d=5 (b) d=7 (c) d=15

Figure 4: Poisson equation: el∞ and el2 errors versus the number of interior collocation points (Nin) for dimensions
(a) d = 5, (b) d = 7, and (c) d = 15. NN architecture: [d, 2000, 1] in (a,b,c); Nbc = 100 in (a,b,c).

maximum and rms errors of ELM versus the number of training parameters (M) for the Poisson equation
in d = 5, 7 and 15 dimensions. The other crucial simulation parameters are listed in the figure caption. It is
observed that the errors decrease quasi-exponentially with increasing number of training parameters (when
M ≲ 1000), but appears to stagnate at a certain level as M increases further. The stagnant error level tends
to be larger with a higher dimension. For example, the el2 error level is on the order of 10−10, 10−7 and
10−5 for the dimensions d = 5, 7 and 15, respectively.

Figures 3 and 4 illustrate the effect of the training collocation points on the ELM accuracy. Figure 3
shows the ELM errors (el∞ and el2) as a function of the number of collocation points on each boundary
(Nbc) for dimensions d = 5, 7 and 15. Figure 4 shows the ELM errors as a function of the number of interior
collocation points (Nin). The other simulation parameters are fixed in the tests and their values are provided
in the captions of these figures. Increasing the number of boundary collocation points (Nbc) improves the
ELM accuracy significantly. The ELM maximum/rms errors decrease approximately exponentially with
increasing Nbc for d = 5, and also for d = 7 when Nbc ≲ 60 or d = 15 when Nbc ≲ 40. The errors stagnate
when Nbc increases beyond around 60 for d = 7 and beyond 40 for d = 15. On the other hand, varying
the number of interior collocation points Nin appears to have little effect on the ELM accuracy for all three
dimensions, which is evident from Figure 4. With increasing problem dimension, the surface of the hypercube
(and hence the boundary collocation points) becomes more dominant, while the interior (hence the interior
collocation points) becomes less important. Therefore, a small number of interior collocation points will
typically suffice in higher dimensions.

In all the studies so far, the el∞ and el2 errors are evaluated on a finite set of random test points from the

16

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Poisson equation (d = 7): Distributions of the exact solution (left column), the ELM solution (middle
column), and the point-wise absolute error of ELM (right column), in selected cross sections of the domain. Top
row, x1-x2 plane; Middle row, x2-x3 plane; Bottom row, x3-x5 plane. NN architecture: [d, 2000, 1]; (Nbc, Nin) =
(100, 1000).

domain, characterized by (N
(v)
bc , N

(v)
in) = (100, 7000). We have observed the error levels on the order of 10−10

to 10−5 for the problem dimensions from d = 5 to 15. We would like to consider the following question. Are
these error levels representative of the ELM solution error on the entire domain Ω?

To answer this question, ideally one would generate a regular set of grid points on Ω, with a sufficiently
large number of grid points in each direction, and then evaluate and visualize the point-wise errors of the
ELM solution on these grid points. This is feasible for low dimensions, but immediately becomes impractical
when the dimension d increases to even a moderate value. On the other hand, we note that it is possible to
extract/compute the ELM solution error on certain low-dimensional hyper-planes (e.g. 2D cross sections) in
high dimensions. By looking into the point-wise error distributions in selected cross sections, one can gain
a general sense of the representative error levels in the domain.

Figure 5 is an illustration of the ELM error for the Poisson equation in dimension d = 7, using cross
sections. It shows distributions of the exact solution, the ELM solution, and the point-wise absolute error
of ELM, on three cross sections of the domain (x1-x2 plane, x2-x3 plane, and x3-x5 plane). For a selected
xi-xj plane, the other coordinates of this plane has been set to zero, xk = 0 for k ̸= i, j (i.e. the middle of
the domain). For each cross section, the ELM solution, the exact solution, and the ELM error are evaluated
on a uniform set of Q(v) ×Q(v) (Q(v) = 800) grid points. The other simulation parameters are listed in the
caption of this figure. One can observe that the point-wise error levels as shown in these cross sections are
comparable to (or consistent with) those observed in the convergence studies for d = 7. This suggests that
the el∞ and el2 errors computed on the random set of test points with (N

(v)
bc , N

(v)
in) = (100, 7000) indeed

seems to reflect well the ELM error on the domain Ω.

17

Rm 0.01 0.05 0.1 0.5 1 2
el∞ 5.44E-6 4.10E-9 2.59E-10 1.65E-8 5.92E-6 4.59E-4
el2 9.07E-7 7.57E-10 3.16E-11 3.79E-9 1.25E-6 9.01E-5

Table 3: Nonlinear Poisson equation: Determining Rm0 by the procedure from Remark 6 for d = 3. NN architecture:
[d, 1000, 1]; (Nbc, Nin) = (100, 100).

d 3 5 9
Rm0 0.1 0.05 0.001

Table 4: Nonlinear Poisson equation: Rm0 determined by the procedure from Remark 6 for several dimensions.

3.1.2 Nonlinear Poisson Equation

We consider the domain Ω = [−1, 1]d and the following problem on Ω,

−∇ · (a(u)∇u) = f(x), x ∈ Ω, (43a)
u = g(x), x ∈ ∂Ω, (43b)

where a(u) = u2−u, g(x) = exp
(
− 1

d

∑d
i=1 xi

)
, and f(x) = 1

d

[
−3 exp

(
− 3

d

∑d
i=1 xi

)
+ 2 exp

(
− 2

d

∑d
i=1 xi

)]
.

This system has an exact solution u(x) = exp
(
− 1

d

∑d
i=1 xi

)
.

We employ the same notations as in Section 3.1.1. The simulation parameters include the network
architecture March = [d,M, 1], the random collocation points characterized by (Nbc, Nin), the random test
points characterized by (N

(v)
bc , N

(v)
in) = (100, 7000), the set of Q(v)×Q(v) uniform grid points with Q(v) = 800

on selected cross sections of the domain for evaluating the ELM and exact solutions, and Rm = Rm0 for
generating the random hidden-layer coefficients in the ELM neural network.

We first employ a fixed network architecture [d, 1000, 1] and a set of collocation points characterized by
(Nbc, Nin) = (100, 100) to determine Rm0 by the procedure from Remark 6. Table 3 lists the el∞ and el2
errors corresponding to several Rm values for generating the random hidden-layer coefficients in ELM for
d = 3, which leads to Rm0 ≈ 0.1. Table 4 lists the Rm0 values determined by this procedure for several
dimensions ranging from d = 3 to d = 9, using the same simulation parameters (network architecture,
collocation points) as in Table 3. One can again observe that Rm0 decreases with increasing d. We employ
Rm = Rm0 when generating the random hidden-layer coefficients in ELM in the subsequent tests.

Figure 6 illustrates the convergence behavior of the ELM errors with respect to the number of training
parameters. It shows the el∞ and el2 errors as a function of the number of training parameters (M) for three
problem dimensions (d = 3, 5, 9). The number of training collocation points is fixed, and their values are

(a) d=3 (b) d=5 (c) d=9

Figure 6: Nonlinear Poisson equation: el∞ and el2 errors versus the number of training parameters (M) for dimen-
sions (a) d = 3, (b) d = 5, and (c) d = 9. NN architecture: [d,M, 1] in (a,b,c); (Nbc, Nin) = (100, 100) in (a,b) and
(100,220) in (c).

18

(a) d=3 (b) d=5 (c) d=9

Figure 7: Nonlinear Poisson equation: el∞ and el2 errors versus the number of collocation points on each boundary
(Nbc). NN architecture: [d,M, 1] with M = 500 in (a), M = 2500 in (b), and M = 3000 in (c). Nin = 100 in (a,b,c).

(a) d=3 (b) d=5 (c) d=9

Figure 8: Nonlinear Poisson equation: el∞ and el2 errors versus the number of interior collocation points (Nin). NN
architecture: [d,M, 1] with M = 500 in (a), M = 2500 in (b), and M = 3000 in (c). Nbc = 100 in (a,b) and 80 in (c).

provided in the figure caption. The ELM errors decrease dramatically (quasi-exponentially) with increasing
M initially, but gradually plateau when M becomes large. The el2 error reaches a level around 10−11 for
d = 3, around 10−9 for d = 5, and around 10−5 for d = 9 in the range of parameters tested here. The
nonlinear least squares (Gauss-Newton) method typically takes several dozen iterations to converge.

The convergence of the ELM errors with respect to the number of collocation points is illustrated by
Figures 7 and 8, which show the el∞ and el2 errors as a function of the boundary collocation points (Nbc) and
the interior collocation points (Nin), respectively. The other crucial simulation parameters are provided in
the captions of these figures. The ELM errors decrease significantly (approximately exponentially initially)
with increasing number of boundary collocation points. On the other hand, increasing the number of interior
collocation points in general only slightly improves the error in dimensions d = 5 and d = 9, and the error
reduction is more significant in the lower dimension d = 3. These behaviors are similar to what has been
observed with the Poisson equation in the previous subsection.

Finally, Figure 9 shows distributions of the ELM solution, the exact solution, and the ELM point-wise
absolute error on three cross sections of the domain for d = 5: the x1-x3, x2-x4, and x4-x5 planes. For each
plane, the other coordinates of the plane are set to zero. The ELM simulation parameters are listed in the
figure caption, and the distributions are plotted on a set of 800× 800 uniform grid points in these planes. It
is evident that the ELM method has captured the solution very accurately.

19

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9: Nonlinear Poisson equation (d = 5): Distributions of the exact solution (left column), the ELM solution
(middle column), and the ELM point-wise absolute error (right column) in the x1-x3 plane (top row), x2-x4 plane
(middle row), and the x4-x5 plane (bottom row). NN architecture: [d, 2500, 1]; (Nbc, Nin) = (100, 100).

3.1.3 Advection Diffusion Equation

We next test the ELM method using the high-dimensional advection-diffusion equation. Let Ω = [−1, 1]d

and T = 1. Consider the initial boundary value problem on the spatial-temporal domain (x, t) ∈ Ω× [0, T],

∂tu−∇2u+R · ∇u = f(x, t), (x, t) ∈ Ω× [0, T], (44a)
u(x, t) = g(x, t), (x, t) ∈ ∂Ω× [0, T], (44b)
u(x, 0) = h(x), x ∈ Ω, (44c)

where R = 1
d (1, 1, . . . , 1)

T , f(x, t) = 1
d cos

(
1
d

∑d
i=1 xi

)
exp(− t

d) on ∂Ω× [0, T], and h(x) = sin
(

1
d

∑d
i=1 xi

)
.

We employ the following analytic solution for this problem, u(x, t) = sin(1d
∑d

i=1 xi) exp(− t
d). g(x, t) in (44b)

is set according to this expression.
To simulate this problem with ELM, we treat the time variable t in the same way as the spatial coordinate

x. We employ a neural network with an architecture, March = [d+1,M, 1], in which the (d+1) input nodes
represent (x, t) and the single output node represents the solution u(x, t). So the problem has been effectively
treated as a (d+ 1)-dimensional problem in the simulations. We enforce the initial condition on Nt0 = 1000
random collocation points on Ω at t = 0, and enforce the boundary condition on Nbc random collocation
points on each of the boundaries ∂Ω × [0, T]. Nin denotes the number of random collocation points on the
interior of Ω × [0, T]. After the neural network is trained, the el∞ and el2 errors are computed on a set of
random test points from Ω × {T} characterized by (N

(v)
bc , N

(v)
in) = (100, 7000). Here N

(v)
in and N

(v)
bc denote

20

Rm 5E-3 1E-2 5E-2 1E-1 5E-1 1
el∞ 9.79E-4 9.33E-5 6.21E-8 2.15E-8 1.92E-5 4.82E-4
el2 2.28E-4 8.17E-6 7.01E-9 1.38E-9 1.98E-6 8.54E-5

Table 5: Advection diffusion equation: Determining Rm0 based on the procedure from Remark 6 for d = 3. NN
architecture: [d+ 1, 1000, 1]; (Nbc, Nin, Nt0) = (100, 100, 1000).

d 3 6 10
Rm0 0.1 0.05 0.05

Table 6: Advection diffusion equation: Rm0 determined by the procedure from Remark 6 for several problem
dimensions. The simulation parameters are the same as those in Table 5.

the number of random test points from the interior of Ω×{T} and from each of the boundaries of Ω×{T},
respectively.

Table 5 shows the determination of Rm0 using the procedure from Remark 6 for dimension d = 3, leading
to Rm0 ≈ 0.1. Table 6 lists the Rm0 values corresponding to several problem dimensions for the advection
diffusion equation. In these tests for determining Rm0, we have employed an NN architecture [d+1, 1000, 1],
and the number of collocation points is characterized by (Nbc, Nin, Nt0) = (100, 100, 1000). In subsequent
tests of this section, the hidden-layer coefficients are set to uniform random values from [−Rm0, Rm0].

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10: Advection diffusion equation (d = 10): Distributions of the exact solution (left column), the ELM
solution (middle column), and the point-wise absolute error of ELM (right column) in selected cross sections of the
domain, the x1-x2 plane (first row), the x5-x6 plane (middle row), and the x9-t plane (bottom row). NN architecture:
[d+ 1, 5000, 1]; (Nbc, Nin, Nt0) = (160, 10, 1000). For each cross section, the other coordinates of the plane are in the
middle of the domain in each direction.

21

(a) d=3 (b) d=6 (c) d=10

Figure 11: Advection diffusion equation: el∞ and el2 errors versus the number of training parameters (M) for problem
dimensions (a) d = 3, (b) d = 6, and (c) d = 10. NN architecture: [d + 1,M, 1]; (Nbc, Nin, Nt0) = (200, 10, 1000) in
(a), (80, 10, 1000) in (b), and (160, 10, 1000) in (c). M is varied in (a,b,c).

(a) d=3 (b) d=6 (c) d=10

Figure 12: Advection diffusion equation: el∞ and el2 errors versus the number of boundary collocation points (Nbc)
for dimensions (a) d = 3, (b) d = 6, and (c) d = 10. NN architecture: [d+ 1,M, 1] with M = 1000 in (a), M = 2000
in (b), and M = 3000 in (c). (Nin, Nt0) = (10, 1000) in (a,b,c). Nbc is varied in (a,b,c).

Figure 10 shows distributions of the exact solution and the ELM solution, as well as the point-wise
absolute error of the ELM solution, to the advection diffusion equation in dimension d = 10 on several cross
sections of the spatial-temporal domain. These cross sections are the x1-x2 plane, the x5-x6 plane, and the
x9-t plane. Each plane is located in the middle of the spatial-temporal domain with respect to the rest of the
coordinates. For example, the xi-xj plane is characterized by t = T/2 and xk = 0 (k ̸= i, j) for 1 ⩽ k ⩽ d,
and the xi-t plane is characterized by xk = 0 (k ̸= i) for 1 ⩽ k ⩽ d. The network architecture and the other
simulation parameters are provided in figure caption. It is evident that ELM has captured the solution quite
accurately, with the maximum error on the order of 10−7 on these cross sections.

Figure 11 illustrates the effect of the trainable parameters on the ELM accuracy. Here we show the el∞
and el2 errors of ELM versus the number of training parameters M in the neural network for solving the
advection-diffusion equation in dimensions d = 3, 6 and 10. The network architecture is given by [d+1,M, 1],
where M is varied in the tests. The other simulation parameters are listed in the figure caption. The ELM
errors can be observed to decrease dramatically (close to exponential rate) with increasing number of training
parameters. The el2 (rms) error levels are on the order of 10−9 (for d = 3), and 10−6 (for d = 6 and 10) for
the range of parameters tested here.

The effect of the boundary collocation points on the ELM accuracy is illustrated in Figure 12. The
number of interior collocation points, on the other hand, has little (or much less) influence on the ELM
results compared with the boundary points. Figure 12 shows the el∞ and el2 errors versus Nbc (collocation
points on each boundary) for dimensions d = 3, 6 and 10. As Nbc increases, the errors appear to decrease

22

Rm 1E-3 5E-3 1E-2 5E-2 1E-1
el∞ 3.15E-4 1.48E-5 5.58E-6 2.51E-7 1.05E-6
el2 2.31E-5 1.90E-6 2.97E-7 3.55E-8 1.71E-7

Table 7: KdV equation: Determining Rm0 based on the procedure of Remark 6 for d = 5. NN architecture:
[d+ 1, 2000, 1]; (Nin, Nbc, Nt0) = (100, 100, 1000).

d 3 5 10
Rm0 0.05 0.05 0.05

Table 8: KdV equation: Rm0 determined by the procedure from Remark 6 for several problem dimensions. In these
tests the NN architecture and the number of collocation points are the same as those in Table 7 for d = 3 and 5. For
d = 10, the NN architecture is [d+ 1, 3000, 1], and (Nin, Nbc, Nt0) = (10, 100, 1000).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13: KdV equation (d = 5): Distributions of exact solution (left column), the ELM solution (middle column),
and the point-wise absolute error of ELM (right column) on cross sections of the spatial-temporal domain: the
x1-x2 plane (top row), x3-x4 plane (middle row), and x5-t plane (bottom row). NN architecture: [d + 1, 1000, 1];
(Nin, Nbc, Nt0) = (10, 150, 1000).

approximately exponentially, and then level off when Nbc reaches a certain level.

23

(a) d=3 (b) d=5 (c) d=10

Figure 14: KdV equation: el∞ and el2 errors versus the number of training parameters (M) for dimensions (a)
d = 3, (b) d = 5, and (c) d = 10. NN architecture: [d+ 1,M, 1]; (Nin, Nt0) = (10, 1000) in (a,b,c); Nbc = 200 in (a),
150 in (b), and 100 in (c); M is varied in (a,b,c).

3.1.4 Korteweg-De Vries Equation

In this subsection we consider the Korteweg-De Vries (KdV) equation,

∂tu+
d∑

i=1

∂3
xixixi

u = f(x, t), (x, t) ∈ Ω× [0, T], (45a)

u(x, t) = g(x, t), (x, t) ∈ ∂Ω× [0, T], (45b)
u(x, 0) = h(x), x ∈ Ω, (45c)

where Ω = [−1, 1]d and T = 1. In these equations f(x, t) = − 1
d2

[
sin

(
1
d

∑d
i=1 xi

)
+ cos

(
1
d

∑d
i=1 xi

)]
exp

(
− t

d2

)
,

g(x, t) = sin
(

1
d

∑d
i=1 xi

)
exp

(
− t

d2

)
on ∂Ω × [0, T], and h(x) = sin

(
1
d

∑d
i=1 xi

)
in Ω. This problem has an

exact solution u(x, t) = sin
(

1
d

∑d
i=1 xi

)
exp

(
− t

d2

)
. The notations below follow those of the previous sub-

sections.
Tables 7 documents the tests for determining the Rm0 for d = 5 using the procedure from Remark 6, and

Table 8 lists the resultant Rm0 values corresponding to the dimensions d = 3, 5 and 10 from this procedure.
The simulation parameters employed in these tests are provided in the captions of these figures. We use
Rm = Rm0 for generating the random hidden-layer coefficients in the following tests with ELM.

Figure 13 provides an overview of distributions of the exact solution, the ELM solution, and the ELM
point-wise absolute error in several 2D cross sections (x1-x2 plane, x3-x4 plane, x5-t plane) of the spatial-
temporal domain for the KdV equation in dimension d = 5. These cross sections are located in the middle
of the domain with regard to the rest of the coordinates. The main simulation parameters for these results
are listed in the figure caption. The ELM method has evidently captured the solution accurately, with an
absolute error on the level of 10−9 in these cross sections.

The convergence behavior of the ELM method has been investigated and the test results are documented
in Figures 14 and 15. These figures depict the el∞ and el2 errors for three problem dimensions (d = 3,
5 and 10) with respect to number of training parameters and the number of boundary collocation points
(per boundary), respectively. The crucial simulation parameters in the tests are listed in the captions of
these figures. With increasing number of training parameters in the network, the ELM errors decrease
approximately exponentially. With respect to the number of boundary collocation points (Nbc), the ELM
errors initially decreases approximately exponentially and gradually stagnates as Nbc reaches a certain level
for d = 3 and 5. But for d = 10, the reduction in the ELM errors is not as significant as for the lower
dimensions with increasing Nbc.

24

(a) d=3 (b) d=5 (c) d=10

Figure 15: KdV equation: el∞ and el2 errors versus the number of collocation points on each boundary (Nbc)
for several problem dimensions. NN architecture: [d + 1,M, 1]; M = 1000 in (a), 2000 in (b), and 3000 in (c).
(Nin, Nt0) = (100, 1000) in (a), (10, 1000) in (b,c). Nbc is varied in (a,b,c).

Rm 1E-3 5E-3 0.01 0.05 0.1
el∞ 2.65E-4 6.06E-5 2.94E-5 4.40E-5 6.64E-4
el2 3.19E-5 5.19E-6 2.51E-6 4.11E-6 6.06E-5

Table 9: Poisson equation (d = 7): determining Rm0 for the ELM/A-TFC method using the procedure from
Remark 6. NN architecture: [d, 3000, 1]; (Nbc, Nin) = (100, 1000).

3.2 Numerical Tests with the ELM/A-TFC Method
In this subsection we test the performance of the combined ELM/A-TFC method from Section 2.4 using
several high-dimensional linear/nonlinear PDEs.

3.2.1 Poisson Equation

We employ the same Poisson problem as in Section 3.1.1 to test the ELM/A-TFC method. the governing
equations are given by equations (42). The problem settings here follow those of Section 3.1.1. The notations
below follow those of the test problems in Section 3.1.

Let us first determine the Rm0 using the procedure from Remark 6 for generating the random hidden-
layer coefficients with the ELM/A-TFC method. Table 9 shows the test using this procedure for dimension
d = 7, leading to Rm0 ≈ 0.01. The Rm0 values for different dimensions are listed in Table 10, which we will
use for generating the random hidden-layer coefficients with ELM/A-TFC in subsequent tests.

An illustration of the distributions of the exact solution, the ELM/A-TFC solution, and the point-
wise absolute error of the ELM/A-TFC solution for d = 7 is provided in Figure 16 for several 2D cross-
sections of the domain (the x1-x2, x4-x5, x6-x7 planes). These planes are located in the middle of the
domain with respect to the rest of the coordinates. These results are obtained using a network architecture
March = [d, 3000, 1], with the collocation points characterized by (Nbc, Nin) = (200, 10). The ELM/A-TFC
results are observed to be quite accurate, with the maximum errors on the order of 10−6 or 10−7 in these
cross sections.

The convergence behavior of ELM/A-TFC with respect to the number of training parameters is illustrated
in Figure 17 for dimensions d = 3 and d = 7. Here the width of the single hidden layer in the network is

d 3 7
Rm0 0.1 0.01

Table 10: Poisson equation: Rm0 for ELM/A-TFC determined by the procedure from Remark 6. The simulation
parameters (NN architecture, collocation points) here follow those of Table 9, except that for d = 3 the NN architecture
is [d, 1000, 1].

25

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 16: Poisson equation (d = 7): Distributions of the exact solution (left column), the ELM/A-TFC solution
(middle column), and the point-wise absolute error of ELM/A-TFC (right column) in several 2D cross-sections of
the domain (top row: x1-x2 plane; middle row: x4-x5 plane; bottom row: x6-x7 plane). NN architecture: [d, 3000, 1];
(Nbc, Nin) = (200, 10).

varied, while the numbers of boundary/interior collocation points are fixed and listed in the figure caption.
We observe an initial exponential decrease in the el∞ and el2 errors with increasing number of training
parameters. Then the errors stagnate as the number of training parameters reaches a certain level.

Figures 18 and 19 demonstrate the convergence behavior of ELM/A-TFC with respect to the number
of boundary and interior collocation points, respectively. Here the neural network architecture is March =
[d,M, 1], with a fixed M = 1000 for d = 3 and M = 3000 for d = 7. We observe an exponential decrease in the
el∞ and el2 errors (before saturation), as the number of boundary collocation points (Nbc) increases. On the
other hand, the number of interior collocation points (Nin) appears to have little effect on the ELM/A-TFC
accuracy. These behaviors are similar to what have been observed with the ELM method in Section 3.1.

Finally we show a comparison between the ELM method and the ELM/A-TFC method for solving the
Poisson equation. Table 11 lists the el∞ and el2 errors obtained by ELM and ELM/A-TFC corresponding
to a set of Nbc values for two problem dimensions (d = 3 and 7). In these tests, the NN architecture is
March = [d,M, 1] with M = 1000 for d = 3 and M = 3000 for d = 7, and the interior collocation points is
fixed at Nin = 1000. It is observed that the accuracy with ELM and ELM/A-TFC is generally comparable,
and the ELM/A-TFC method appears to be slightly more accurate for lower dimensions. This can be
attributed to the fact that the A-TFC resembles the full TFC more closely in lower dimensions. Therefore
A-TFC enforces the boundary conditions more accurately (closer to TFC) in lower dimensions. On the other
hand, we note that the computational effort and cost involved in ELM/A-TFC is generally higher than that

26

(a) d=3 (b) d=7

Figure 17: Poisson equation: el∞ and el2 errors versus the number of training parameters (M) for dimensions (a)
d = 3 and (b) d = 7. NN architecture: [d,M, 1] (M varied); (Nbc, Nin) = (100, 1000) in (a,b).

(a) dim=3 (b) dim=7

Figure 18: Poisson equation: el∞ and el2 errors versus the number of boundary collocation points (Nbc). NN
architecture: [d,M, 1], with M = 1000 in (a) and 3000 in (b). Nin = 1000 in (a,b), while Nbc is varied.

(a) dim=3 (b) dim=7

Figure 19: Poisson equation: el∞ and el2 errors versus the number of interior collocation points (Nin). NN archi-
tecture: [d,M, 1], with M = 1000 in (a) and 3000 in (b). Nbc = 100 in (a,b), while Nin is varied.

27

ELM ELM/A-TFC
Dimension Nbc el∞ el2 el∞ el2

d = 3 10 1.16E-4 1.11E-5 6.08E-5 1.40E-5
100 1.03E-9 7.62E-11 1.10E-10 3.57E-11
500 2.96E-10 3.83E-11 6.76E-11 2.47E-11
1000 2.62E-10 3.58E-11 4.69E-11 1.50E-11

d = 7 80 1.12E-5 1.09E-6 9.81E-5 7.24E-6
90 9.26E-6 7.30E-7 6.85E-5 4.64E-6
100 8.16E-6 6.64E-7 2.96E-5 2.51E-6
110 7.30E-6 6.04E-7 2.48E-5 2.21E-6

Table 11: Poisson equation: Comparison of el∞ and el2 errors obtained with ELM and ELM/A-TFC corresponding
to a set of boundary collocation points (Nbc). NN architecture: [d,M, 1], with M = 1000 for d = 3 and with
M = 3000 for d = 7. Nin = 1000 in all cases.

Rm 0.01 0.05 0.1 0.5 1.0
el∞ 5.82E-6 5.21E-9 2.92E-9 3.47E-6 4.85E-1
el2 1.64E-6 9.78E-10 5.72E-10 7.34E-7 6.71E-2

Table 12: Nonlinear Poisson equation (d = 3): Determining Rm0 for the ELM/A-TFC method based on the procedure
from Remark 6. NN architecture: [d, 500, 1]; (Nbc, Nin) = (100, 10).

of ELM, because of the computations associated with the A-TFC terms.

3.2.2 Nonlinear Poisson Equation

In this subsection we test the ELM/A-TFC method using the nonlinear Poisson problem from Section 3.1.2,
under the same problem settings and parameters.

Tables 12 and 13 show the tests for determining the Rm0 using the procedure from Remark 6. The results
lead to Rm0 ≈ 0.1 for dimension d = 3 and Rm0 ≈ 0.01 for d = 7. These values are employed for generating
the hidden-layer coefficients in the neural network in the subsequent simulations.

Figure 20 shows distributions of the exact solution, the ELM/A-TFC solution, and the point-wise absolute
error of ELM/A-TFC in several cross sections of the domain for the nonlinear Poisson equation in dimension
d = 7. The ELM/A-TFC results are obtained with an NN architecture March = [d, 1000, 1] and the random
collocation points characterized by (Nbc, Nin) = (50, 10). The ELM/A-TFC method has captured the
solution accurately, with the maximum error on the order 10−5 in the x1-x3 and x3-x6 planes and on the
order of 10−7 in the x6-x7 plane.

The convergence behavior of the ELM/A-TFC method is illustrated by Figures 21 and 22 for problem
dimensions d = 3 and d = 7. Figure 21 shows the el∞ and el2 errors as a function of the number of training
parameters in the neural network. In this set of tests, the number of boundary/interior collocation points
is fixed while the number of training parameters is varied. We can observe a rapid decrease (approximately
exponential) in the ELM/A-TFC errors as the number of training parameters increases (before saturation).
Figure 22 shows the el∞ and el2 errors as a function of the number of boundary collocation points (Nbc). In
this set of tests the number of training parameters and the number of interior collocation points are fixed,
while the number of boundary collocation points (Nbc) is varied systematically. The ELM/A-TFC errors
initially decrease rapidly as Nbc increases, and then level off when Nbc increases beyond a certain level.
We would like to further point out that the number of interior collocation points has little effect on the
ELM/A-TFC accuracy (result not shown here), similar to what has been observed with the ELM method.

d 3 7
Rm0 0.1 0.01

Table 13: Nonlinear Poisson equation: Rm0 for ELM/A-TFC determined by the procedure from Remark 6. The
simulation parameters here for d = 3 follow those of Table 10. For d = 7, NN architecture: [d, 3000, 1], (Nc, Nin) =
(300, 100).

28

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 20: Nonlinear Poisson equation (d = 7): Distributions of the exact solution (left column), the ELM/A-TFC
solution (middle column), and the point-wise absolute error of ELM/A-TFC in several cross sections (top row: x1-x3

plane; middle row: x3-x6 plane; bottom row: x6-x7 plane) of the domain. These cross sections are located in the
middle of the domain with respect to the rest of the coordinates. NN architecture: [d, 1000, 1], (Nbc, Nin) = (50, 10).

(a) d=3 (b) dim=7

Figure 21: Nonlinear Poisson equation: el∞ and el2 errors versus the number of training parameters (M) in the
ELM/A-TFC network. NN architecture: [d,M, 1] (with M varied); (Nbc, Nin) = (100, 10) in (a) and (50, 100) in (b).

29

(a) d=3 (b) d=7

Figure 22: Nonlinear Poisson equation: el∞ and el2 errors of ELM/A-TFC versus the number of boundary collocation
points (Nbc). NN architecture: [d,M, 1], with M = 500 in (a) and M = 1000 in (b); Nin = 10 in (a) and Nin = 100
in (b); Nbc varied in (a,b).

Rm 1E-3 1E-2 5E-2 1E-1 5E-1 1
el∞ 6.05E-3 4.15E-4 3.56E-6 5.32E-7 2.64E-5 8.21E-4
el2 1.16E-3 6.18E-5 6.37E-7 9.35E-8 6.03E-6 1.54E-4

Table 14: Heat equation: Determination of Rm0 for ELM/A-TFC using the procedure from Remark 6 for d = 3.
NN architecture: [d+ 1, 1000, 1]; (Nbc, Nin, Nt0) = (100, 100, 1000).

3.2.3 Heat Equation

We next consider the domain Ω = [−1, 1]d and the heat equation on Ω× [0, T] (with T = 1),

∂tu−∆u = f(x, t), (x, t) ∈ Ω× [0, T], (46)
u(x, t) = g(x, t), (x, t) ∈ ∂Ω× [0, T], (47)
u(x, 0) = h(x), x ∈ Ω, (48)

where f(x, t) = (1d−1) cos
(

1
d

∑d
i=1 xi

)
exp(−t), g(x, t) = cos

(
1
d

∑d
i=1 xi

)
exp(−t), and h(x) = cos

(
1
d

∑d
i=1 xi

)
.

This problem has the exact solution u(x, t) = cos
(

1
d

∑d
i=1 xi

)
exp(−t).

The simulation settings and the notations here follow those of Section 3.1.3. We employ a neural network
architecture March = [d + 1,M, 1], where the (d + 1) input nodes denote (x, t) and M is the number of
training parameters in the network. Nbc, Nin and Nt0 denote the number of random collocation points on
each of the boundary of ∂Ω× [0, T], on the interior of Ω× [0, T], and on Ω at t = 0, respectively.

Table 14 summarizes the tests for determining the Rm0 with the ELM/A-TFC method using the procedure
from Remark 6 for d = 3, which lead to Rm0 ≈ 0.1. Table 15 lists the Rm0 values for the problem dimensions
we have considered for this problem. The hidden-layer coefficients are set to uniform random values generated
on [−Rm0, Rm0] in the subsequent simulations.

Figure 23 illustrates the distributions of the exact solution, the ELM/A-TFC solution, and the point-
wise absolute error of ELM/A-TFC in several cross sections of the spatial-temporal domain for the problem
dimension d = 7. It is observed that the ELM/A-TFC method has captured the solution fairly accurately,
with the maximum error on the order of 10−4 in these cross sections.

Figures 24 and 25 demonstrate the convergence behavior of the ELM/A-TFC method with respect to the
number of training parameters and the number of boundary collocation points. The simulation parameters

d 3 7
Rm0 0.1 0.005

Table 15: Heat equation: Rm0 for ELM/A-TFC determined by the procedure from Remark 6. The simulation
parameters here follow those of Table 14.

30

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 23: Heat equation: (d = 7): Distributions of the exact solution (left column), the ELM/A-TFC solution
(middle column), and the point-wise absolute error of ELM/A-TFC in several cross sections (top row: x1-x4 plane;
middle row: x4-x5 plane; bottom row: x7-t plane) of the spatial-temporal domain Ω × [0, T]. These cross sections
are located in the middle of the spatial-temporal domain with respect to the rest of coordinates. NN architecture:
[d+ 1, 3000, 1]; (Nbc, Nin, Nt0) = (120, 10, 1000).

(a) d=3 (b) d=7

Figure 24: Heat equation: el∞ and el2 errors of ELM/A-TFC versus the number of training parameters (M). NN
architecture: [d+ 1,M, 1] (with M varied); (Nbc, Nin, Nt0) = (100, 100, 1000) in (a) and (100, 10, 1000) in (b).

31

(a) dim=3 (b) dim=7

Figure 25: Heat equation: el∞ and el2 errors of ELM/A-TFC versus the number of boundary collocation points
(Nbc). NN architecture: [d + 1,M, 1], with M = 1000 in (a) and M = 3000 in (b). (Nin, Nt0) = (100, 1000) in (a)
and (10, 1000) in (b). Nbc is varied in (a,b).

Dimension Classical PINN Current (ELM)
el∞ el2 train-time(sec) el∞ el2 train-time(sec)

d = 3 3.84E-3 6.90E-4 326.8 2.34E-10 4.42E-12 2.6
d = 5 1.25E-2 1.45E-3 552.5 1.30E-8 5.20E-10 3.5
d = 7 8.12E-2 2.85E-3 688.1 8.16E-6 6.64E-7 11.2
d = 9 8.56E-1 1.16E-1 964.0 3.95E-5 5.26E-6 14.6

Table 16: Poisson equation: Comparison of el∞ and el2 errors and the network training time between ELM and
classical PINN. See the text for simulation parameters.

in these tests have been provided in the figure captions. The characteristics are similar to what have been
observed for other test problems in previous subsections. With regard to the number of interior collocation
points, we again observe that it has little influence on the accuracy of ELM/A-TFC (result not shown here).

3.3 Comparison with PINN
We next compare the current ELM method with the classical physics-informed neural network (PINN)
method [78] for the Poisson equation of Section 3.1.1 and the nonlinear Poisson equation of Section 3.1.2
for a range of problem dimensions. In PINN all the network parameters are trained, and the loss function
consists of two terms, the term for the PDE residual and the one for the residual of the boundary conditions.
We employ the penalty coefficients (1−pbc) and pbc in front of the loss terms for the PDE and the boundary
conditions, respectively, where pbc ∈ (0, 1) is a constant. The Adam optimizer is used to train the neural
network in PINN. Our PINN implementation is also based on the Tensorflow and Keras libraries.

With PINN, we have varied the random initialization of the weight/bias coefficients, the neural network
architecture, the learning rate, the learning rate schedule, and the penalty coefficient pbc systematically
for training the neural network. The PINN results reported below are the best we have obtained in these
tests. It should be noted that much poorer PINN results (not used for comparison or shown here) have been

Dimension Classical PINN Current (ELM)
el∞ el2 train-time(sec) el∞ el2 train-time(sec)

d = 3 2.23E-3 4.77E-4 1977.4 8.10E-10 1.20E-11 29.8
d = 5 2.52E-3 3.75E-4 2526.3 3.20E-8 1.13E-9 112.5
d = 7 1.89E-2 1.24E-3 3517.9 3.96E-5 3.23E-6 220.9
d = 9 4.781E-2 1.33E-2 5036.0 1.61E-4 1.27E-5 678.8

Table 17: Nonlinear Poisson equation: Comparison of el∞ and el2 errors and the network training time between
ELM and classical PINN. See the text for simulation parameters.

32

obtained in these tests.
Table 16 compares the el∞ and el2 errors, as well as the network training time (in seconds), obtained

with PINN and with the current ELM method for solving the Poisson problem from Section 3.1.1 in di-
mensions ranging from d = 3 to d = 9. The PINN results are obtained with a network architecture
[d, 30, 30, 30, 30, 30, 30, 1] (tanh activation function), a penalty coefficient pbc = 0.99, and the random col-
location points characterized by (Nbc, Nin) = (100, 3000) for the boundary and interior of the domain for
dimensions d = 3, 5 and 7 and (Nbc, Nin) = (200, 5000) for dimension d = 9. A staircase learning rate
schedule has been employed with PINN, starting with a learning rate 0.01 and decaying by a rate 0.5 every
500 epochs. The PINN has been trained for a total of 5000 epochs for the Poisson problem. The ELM
results are obtained using a network architecture [d, 2000, 1] for dimensions d = 3 and 5 and [d, 3000, 1] for
dimensions d = 7 and 9. The ELM random collocation points are characterized by (Nbc, Nin) = (100, 200)
for d = 3 and 5 and (Nbc, Nin) = (100, 1000) for d = 7 and 9 for the boundary and interior of the domain.
For generating the ELM random hidden-layer coefficients we employ Rm = 0.5 for d = 3, Rm = 0.05 for
d = 5 and d = 7, and Rm = 0.001 for d = 9. Compared with PINN, the current ELM method produces
significantly more accurate results with a much smaller training time. For example, for dimension d = 5
the PINN method produces an error on the order of 10−3 ∼ 10−2 with a network training time close to 600
seconds. In contrast, for this case the ELM method produces an error on the order of 10−10 ∼ 10−8 with a
network training time around 3 or 4 seconds.

Table 17 compares the el∞ and el2 errors, as well as the network training time, obtained by PINN
and ELM for the nonlinear Poisson problem from Section 3.1.2 for dimensions ranging from d = 3 to
d = 9. The PINN results correspond to a network architecture [d, 30, 30, 30, 30, 30, 30, 1] (tanh activation
function), a penalty coefficient pbc = 0.99, a staircase learning rate schedule starting with a learning rate
0.01 and decaying at a rate 0.8 every 1000 epochs, a set of random collocation points characterized by
(Nc, Nin) = (100, 3000) on the boundary and interior of the domain, and a total of 20000 training epochs.
The ELM results correspond to a network architecture [d, 2000, 1], and a set of random collocation points
characterized by (Nbc, Nin) = (100, 200) for dimensions d = 3, 5 and 9 and (Nbc, Nin) = (100, 100) for d = 7
on the boundary and interior of the domain. We employ Rm = 0.5 for d = 3, Rm = 0.05 for d = 5 and d = 7,
and Rm = 0.001 for d = 9 for generating the ELM random hidden-layer coefficients. The results here signify
the considerably higher accuracy and less network training cost of ELM, when compared with PINN, for the
nonlinear problem. For example, for dimension d = 5 the PINN method achieves an error level on the order
of 10−4 ∼ 10−3 with a training time around 2500 seconds, while the ELM method achieves an error on the
order of 10−9 ∼ 10−8 with a network training time around 110 seconds.

4 Concluding Remarks
In this paper we have presented two methods for computing high-dimensional PDEs based on random-
ized neural networks. These methods are motivated by the theoretical result established in the literature
that the ELM-type randomized NNs can effectively approximate high-dimensional functions, with a rate of
convergence independent of the function dimension in the sense of expectations.

The first method extends the ELM approach, and its local variant locELM, developed in a previous work
for low-dimensional problems to linear/nonlinear PDEs in high dimensions. We represent the solution field
to the high-dimensional PDE problem by a randomized NN, with its hidden-layer coefficients assigned to
random values and fixed and its output-layer coefficients trained. Enforcing the PDE problem on a set of
collocation points randomly distributed on the interior/boundary of the domain leads to an algebraic system
of equations, which is linear for linear PDE problems and nonlinear for nonlinear PDE problems, about the
ELM trainable parameters. By seeking a least squares solution to this algebraic system, attained by either
a linear or a nonlinear least squares method, we can determine the values for the training parameters and
complete the network training. ELM can be combined with domain decomposition and local randomized
NNs for solving high-dimensional PDEs, leading to a local variant of this method. In this case, domain
decomposition is performed along a maximum of two designated directions for a d-dimensional problem, and
the PDE problem, together with appropriate continuity conditions, is enforced on the random collocation
points on each sub-domain and the shared sub-domain boundaries.

Compared with the ELM for low-dimensional problems, the difference of the method here for high-

33

dimensional PDEs lies in at least two aspects. First, the collocation points employed for training the ELM
network for high-dimensional PDEs are randomly generated on the interior and the boundaries of the domain
(or the sub-domains), and the number of interior collocation points has little (essentially no) effect on the
ELM accuracy in high dimensions. In contrast, for low-dimensional PDE problems the ELM neural network
is trained largely on grid-based collocation points (e.g. uniform grid points, or quadrature points), and the
number of interior collocation points critically influences the ELM accuracy. Second, with the local variant
of ELM (plus domain decomposition) for solving high-dimensional PDEs, the domain is only decomposed
along a maximum of M directions, where M is a prescribed small integer (M = 2 in this paper), so as for
the method to be feasible in high dimensions. This is an issue not present for low-dimensional PDEs.

The second method (ELM/A-TFC) combines the ELM approach and an approximate variant of TFC
(A-TFC) for solving high-dimensional PDEs. While TFC provides a systematic approach to enforce the
boundary/initial conditions, the number of terms involved in TFC constrained expression grows exponentially
as the problem dimension increases, rendering it infeasible for high-dimensional problems. By noting that
the TFC constrained expression can be decomposed into a hierarchical form, we introduce the A-TFC by
retaining only the dominant terms in the constrained expression. A-TFC avoids the exponential growth in
the number of terms of TFC and is feasible for high-dimensional PDEs. On the other hand, the A-TFC
constrained expression does not unconditionally satisfy the boundary/initial conditions for an arbitrary
free function in the expression. However, the conditions that the free function in the A-TFC constrained
expression needs to fulfill, in order to satisfy the boundary/initial conditions, involve functions of simpler
forms, which in some sense can be considered as an effective linearization of those involved in the original
boundary/initial conditions. A-TFC carries a level of benefit of TFC for enforcing the boundary/initial
conditions and is simultaneously suitable for high-dimensional problems. With the ELM/A-TFC method,
we reformulate the high-dimensional PDE problem using the A-TFC constrained expression, and attain a
transformed problem about the free function involved in the A-TFC expression. We represent this free
function by ELM, and determine the ELM trainable parameters by the linear or nonlinear least squares
method in a fashion analogous to the first method. After the free function is determined by the ELM
network, the solution field to the original high-dimensional PDE problem is then computed by the A-TFC
constrained expression.

The two methods have been tested numerically using a number of linear/nonlinear stationary/dynamic
PDEs for a range of problem dimensions. The method has also been compared with the PINN method. We
have the following observations from these numerical results:

• Both the ELM method and the ELM/A-TFC method produce accurate solutions to high-dimensional
PDEs, in particular with their errors reaching levels not far from the machine accuracy for relatively
lower dimensions.

• Both methods exhibit a clear sense of convergence with respect to the number of trainable parameters
and the number of boundary collocation points. Their errors decrease rapidly (exponentially or nearly
exponentially) for an initial range of parameter values (before saturation).

• The number of interior collocation points appears to have a minimal (essentially no) effect on the
accuracy of ELM and ELM/A-TFC for high-dimensional PDEs.

• For a given PDE, the problem becomes more challenging to compute with increasing dimension, in the
sense that the errors of both methods in higher dimensions generally appear somewhat worse than in
lower dimensions, at least with the range of parameter values tested in this work.

• The error levels obtained by the ELM method and the ELM/A-TFC method are generally comparable,
with ELM/A-TFC appearing slightly better in lower dimensions. On the other hand, the ELM/A-
TFC method generally involves a larger computational effort and cost than ELM, due to the A-TFC
constrained expression.

• The current method exhibits a clear advantage compared with PINN for solving high-dimensional
PDEs, and achieves a significantly better accuracy under markedly smaller training time than the
latter.

The simulation results signify that the ELM-based methods developed herein are effective for computational
PDEs in high dimensions.

34

Acknowledgment
This work was partially supported by the US National Science Foundation (DMS-2012415).

References
[1] Diab W Abueidda, Qiyue Lu, and Seid Koric. Meshless physics-informed deep learning method

for three-dimensional solid mechanics. International Journal for Numerical Methods in Engineering,
122(23):7182–7201, 2021.

[2] P.A. Alaba, S.I. Popoola, L. Olatomiwa, M.B. Akanle, O.S. Ohunakin, E. Adetiba, O.D. Alex, A.A.A.
Atayero, and W.M.A.W. Daud. Towards a more efficient and cost-sensitive extreme learning machine:
a state-of-the-art review of recent trend. Neurocomputing, 350:70–90, 2019.

[3] Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE
Transactions on Information theory, 39(3):930–945, 1993.

[4] Christian Beck, Weinan E, and Arnulf Jentzen. Machine learning approximation algorithms for high-
dimensional fully nonlinear partial differential equations and second-order backward stochastic differ-
ential equations. J. Nonlinear Sci., 29(4):1563–1619, 2019.

[5] Richard E Bellman. Dynamic programming. Princeton university press, 2010.
[6] Julius Berner, Philipp Grohs, and Arnulf Jentzen. Analysis of the generalization error: empirical risk

minimization over deep artificial neural networks overcomes the curse of dimensionality in the numerical
approximation of Black-Scholes partial differential equations. SIAM J. Math. Data Sci., 2(3):631–657,
2020.

[7] A. Bjorck. Numerical Methods for Least Squares Problems. SIAM, 1996.
[8] H.A.T. Braake and G.V. Straten. Random activation weight neural net (RAWN) for fast non-iterative

training. Eng. Applic. Artif. Intell., 8:71–80, 1995.
[9] F. Calabro, S. Cuomo, D. di Serafino, G. Izzo, and E. Messina. Time discretization in the solution of

parabolic pdes with anns. Applied Mathematics and Computation, 458:128230, 2023.
[10] F. Calabro, G. Fabiani, and C. Siettos. Extreme learning machine collocation for the numerical solution

of elliptic PDEs with sharp gradients. Computer Methods in Applied Mechanics and Engineering,
387:114188, 2021.

[11] W. Cao, X. Wang, Z. Ming, and J. Gao. A review on neural networks with random weights. Neurocom-
puting, 275:278–287, 2018.

[12] E.C. Cyr, M.A. Gulian, R.G. Patel, M. Perego, and N.A. Trask. Robust training and initialization
of deep neural networks: An adaptive basis viewpoint. Proceedings of Machine Learning Research,
107:512–536, 2020.

[13] Jérôme Darbon and Stanley Osher. Algorithms for overcoming the curse of dimensionality for cer-
tain hamilton–jacobi equations arising in control theory and elsewhere. Research in the Mathematical
Sciences, 3(1):19, 2016.

[14] M.W.M.G. Dissanayake and N. Phan-Thien. Neural network-based approximations for solving partial
differential equations. Communications in Numerical Methods in Engineering, 10:195–201, 1994.

[15] S. Dong and Z. Li. Local extreme learning machines and domain decomposition for solving linear
and nonlinear partial differential equations. Computer Methods in Applied Mechanics and Engineering,
387:114129, 2021. (also arXiv:2012.02895).

[16] S. Dong and Z. Li. A modified batch intrinsic plascity method for pre-training the random coef-
ficients of extreme learning machines. Journal of Computational Physics, 445:110585, 2021. (also
arXiv:2103.08042).

[17] S. Dong and N. Ni. A method for representing periodic functions and enforcing exactly periodic boundary
conditions with deep neural networks. Journal of Computational Physics, 435:110242, 2021.

[18] S. Dong and J. Shen. A pressure correction scheme for generalized form of energy-stable open boundary
conditions for incompressible flows. Journal of Computational Physics, 291:254–278, 2015.

[19] S. Dong and Y. Wang. A method for computing inverse parametric pde problems with random-weight
neural networks. Journal of Computational Physics, 489:112263, 2023. (also arXiv:2210.04338).

[20] S. Dong and J. Yang. Numerical approximation of partial differential equations by a variable projection

35

method with artificial neural networks. Computer Methods in Applied Mechanics and Engineering,
398:115284, 2022. (also arXiv:2201.09989).

[21] S. Dong and J. Yang. On computing the hyperparameter of extreme learning machines: algorithms
and applications to computational PDEs, and comparison with classical and high-order finite elements.
Journal of Computational Physics, 463:111290, 2022. (also arXiv:2110.14121).

[22] V. Dwivedi and B. Srinivasan. Physics informed extreme learning machine (pielm) − a rapid method
for the numerical solution of partial differential equations. Neurocomputing, 391:96–118, 2020.

[23] V. Dwivedi and B. Srinivasan. A normal equation-based extreme learning machine for solving linear
partial differential equations. Journal of Computing and Information Science in Engineering, 22:014502,
2022.

[24] W. E, J. Han, and A. Jentzen. Deep learning-based numerical methods for high-dimensional parabolic
partial differential equations and backward stochastic differential equations. Commun. Math. Stat.,
5:349380, 2017.

[25] W. E and B. Yu. The deep Ritz method: a deep learning-based numerical algorithm for solving
variational problems. Communications in Mathematics and Statistics, 6:1–12, 2018.

[26] G. Fabiani, F. Calabro, L. Russo, and C. Siettos. Numerical solution and bifurcation analysis of nonlinear
partial differential equations with extreme learning machines. Journal of Scientific Computing, 89:44,
2021.

[27] G. Fabiani, E. Galaris, L. Russo, and C. Siettos. Parsimonious physics-informed random projection
neural networks for initial value problems of ODEs and index-1 DAEs. Chaos, 33:043128, 2023.

[28] M. De Florio, E. Schiassi, F. Calabro, and R. Furfaro. Physics-informed neural networks for 2nd order
ODEs with sharp gradients. Journal of Computational and Applied Mathematics, 436:115396, 2023.

[29] A.L. Freire, A.R. Rocha-Neto, and G.A. Barreto. On robust randomized neural networks for regression:
a comprehensive review and evaluation. Neural Computing and Applications, 32:16931–16950, 2020.

[30] L. Gonon. Random feature neural networks learn Black-Scholes type PDEs without curse of dimension-
ality. Journal of Machine Learning Research, 24:1–51, 2023.

[31] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. The MIT Press, 2016.
[32] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations using

deep learning. Proceedings of National Academy of Sciences of USA, 115(34):8505–8510, 2018.
[33] Jihun Han, Mihai Nica, and Adam R Stinchcombe. A derivative-free method for solving elliptic partial

differential equations with deep neural networks. Journal of Computational Physics, 419:109672, 2020.
[34] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, 1999.
[35] G. Huang, G.B. Huang, S. Song, and K. You. Trends in extreme learning machines: a review. Neural

Networks, 61:32–48, 2015.
[36] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: a new learning scheme of feed-

forward neural networks. In 2004 IEEE International Joint Conference on Neural Networks, volume 2,
pages 985–990, 2004.

[37] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: theory and applications. Neuro-
computing, 70:489–501, 2006.

[38] G.B. Huang, L. Chen, and C.-K. Siew. Universal approximation using incremental constructive feed-
forward networks with random hidden nodes. IEEE Transactions on Neural Networks, 17:879–892,
2006.

[39] M. Hutzenthaler, A. Jentzen, T. Kruse, and T.A. Nguyen. A proof that rectified deep neural networks
overcome the curse of dimensionality in the numerical approximation of semilinear heat equations.
Partial Differ. Equ. Appl., 1:34, 2020.

[40] Martin Hutzenthaler, Arnulf Jentzen, Thomas Kruse, et al. On multilevel picard numerical approx-
imations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional
nonlinear backward stochastic differential equations. Journal of Scientific Computing, 79(3):1534–1571,
2019.

[41] B. Igelnik and Y.H. Pao. Stochastic choice of basis functions in adaptive function approximation and
the functional-link net. IEEE Transactions on Neural Networks, 6:1320–1329, 1995.

[42] H. Jaeger, M. Lukosevicius, D. Popovici, and U. Siewert. Optimization and applications of echo state
networks with leaky integrator neurons. Neural Networks, 20:335–352, 2007.

[43] A.D. Jagtap and G.E. Karniadakis. Extended physics-informed neural network (XPINNs): A general-

36

ized space-time domain decomposition based deep learning framework for nonlinear partial differential
equations. Communications in Computational Physics, 28:2002–2041, 2020.

[44] A.D. Jagtap, E. Kharazmi, and G.E. Karniadakis. Conservative physics-informed neural networks on
discrete domains for conservation laws: applications to forward and inverse problems. Computer Methods
in Applied Mechanics and Engineering, 365:113028, 2020.

[45] A. Jentzen, D. Salimova, and T. Welti. A proof that artificial neural networks overcomes the curse of
dimensionality in the numerical approximation of kolmogorov partial differential equations with constant
diffusion and nonlinear drift coefficients. Commun. Math. Sci., 19:1167–1205, 2021.

[46] G.E. Karniadakis, G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. Physics-informed machine
learning. Nature Reviews Physics, 3:422–440, 2021.

[47] G.E. Karniadakis and S.J. Sherwin. Spectral/hp element methods for computational fluid dynamics, 2nd
edn. Oxford University Press, 2005.

[48] A.S. Krishnapriyan, A. Gholami, S. Zhe, R.M. Kirby, and M.W. Mahoney. Characterizing possible
failure modes in physics-informed neural networks. arXiv:2109.01050, 2021.

[49] C. Leake, H. Johnston, and D. Mortari. The Theory of Functional Connections: A Functional Interpo-
lation Framework with Applications. Lulu, 2022.

[50] H. Lee and I. Kang. Neural algorithms for solving differential equations. Journal of Computational
Physics, 91:110–117, 1990.

[51] J.-Y. Li, W. Chow, B. Igelnik, and Y.-H. Pao. Comments on “stochastic choice of basis functions in
adaptive function approximaton and the functional-link net". IEEE Trans. Neural Netw., 8:452–454,
1997.

[52] K. Li, K. Tang, T. Wu, and Q. Liao. D3M: A deep domain decomposition method for partial differential
equations. IEEE Access, 8:5283–5294, 2020.

[53] M. Li and D. Wang. Insights into randomized algorithms for neural networks: practical issues and
common pitfalls. Information Sciences, 382–383:170–178, 2017.

[54] S. Li, G. Liu, and S. Xiao. Extreme learning machine with kernels for solving elliptic partial differential
equations. Cognitive Computing, 15:413–428, 2023.

[55] Y. Liao and P. Wang. Deep Nitsche method: deep Ritz method with essential boundary conditions.
Commun. Comput. Phys., 29:1365–1384, 2021.

[56] L. Lin, Z. Yang, and S. Dong. Numerical approximation of incompressible Navier-Stokes equations
based on an auxiliary energy variable. Journal of Computational Physics, 388:1–22, 2019.

[57] H. Liu, B. Xing, Z. Wang, and L. Li. Legendre neural network method for several classes of singu-
larly perturbed differential equations based on mapping and piecewise optimization technology. Neural
Processing Letters, 51:2891–2913, 2020.

[58] M. Liu, M. Hou, J. Wang, and Y. Cheng. Solving two-dimensional linear partial differential equations
based on Chebyshev neural network with extreme learning machine algorithm. Engineering Computa-
tions, 38:874–894, 2021.

[59] L. Lu, H. Guo, X. Yang, and Y. Zhu. Temporal difference learning for high-dimensional PIDEs with
jumps. arXiv:2307.02766, 2023.

[60] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library for
solving differential equations. SIAM review, 63(1):208–228, 2021.

[61] Yulong Lu, Jianfeng Lu, and Min Wang. A priori generalization analysis of the deep ritz method for
solving high dimensional elliptic partial differential equations. In Conference on learning theory, pages
3196–3241. PMLR, 2021.

[62] M. Lukosevicius and H. Jaeger. Reservoir computing approaches to recurrent neural network training.
Comput. Sci. Rev., 3:127–149, 2009.

[63] L. Lyu, Z. Zhang, M. Chen, and J. Chen. MIM: a deep mixed residual method for solving high-order
particle differential equations. Journal of Computational Physics, 452:110930, 2022.

[64] A.J. Meade and A.A. Fernandez. The numerical solution of linear ordinary differential equations by
feedforward neural networks. Math. Comput. Modeling, 19(12):1–25, 1994.

[65] D. Mortari. The theory of connections: connecting points. Mathematics, 5:57, 2017.
[66] D. Mortari and C. Leake. The multivariate theory of connections. Mathematics, 7:296, 2019.
[67] Mohammad Amin Nabian and Hadi Meidani. A deep learning solution approach for high-dimensional

random differential equations. Probabilistic Engineering Mechanics, 57:14–25, 2019.

37

[68] Tenavi Nakamura-Zimmerer, Qi Gong, and Wei Kang. Adaptive deep learning for high-dimensional
hamilton–jacobi–bellman equations. SIAM Journal on Scientific Computing, 43(2):A1221–A1247, 2021.

[69] D. Needell, A.A. Nelson, R. Saab, and P. Salanevich. Random vector functional link networks for
function approximation on manifolds. arXiv:2007.15776, 2020.

[70] N. Ni and S. Dong. Numerical computation of partial differential equations by hidden-layer concatenated
extreme learning machine. Journal of Scientific Computing, 95:35, 2023. (also arXiv:2204.11375).

[71] S. Panghal and M. Kumar. Optimization free neural network approach for solving ordinary and partial
differential equations. Engineering with Computers, 37:2989–3002, 2021.

[72] Y.H. Pao, G.H. Park, and D.J. Sobajic. Learning and generalization characteristics of the random vector
functional-link net. Neurocomputing, 6:163–180, 1994.

[73] Y.H. Pao and Y. Takefuji. Functional-link net computing: theory, system architecture, and functional-
ities. Computer, 25:76–79, 1992.

[74] M. Penwarden, A.D. Jagtap, S. Zhe, G.E. Karniadakis, and R.M. Kirby. A unified scal-
able framework for causal sweeping strategies for physics-informed neural networks (PINNs)
and their temporal decompositions. Journal of Computational Physics, in press, 2023. DOI:
https://doi.org/10.1016/j.jcp.2023.112464.

[75] H.D. Quan and H.T. Huynh. Solving partial differential equation based on extreme learning machine.
Mathematics and Computers in Simulations, 205:697–708, 2023.

[76] A. Rahimi and B. Recht. Weighted sums of random kitchen sinks: Replacing minimization with ran-
domization in learning. In D. Koller, D. Schuurmans, Y. Bengio and L. Bottou, editors, Advances in
Neural Information Processing Systems (NIPS), 2:1316–1323, 2008.

[77] M. Raissi. Forward-backward stochastic neural networks: deep learning of high-dimensional partial
differential equations. arXiv:1804.07010, 2018.

[78] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: a deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686–707, 2019.

[79] F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the
brain. Psychol. Rev., 65:386–408, 1958.

[80] L. Ruthotto, S.J. Osher, W. Li, L. Nurbekyan, and S.W. Fung. A machine learning framework for
solving high-dimensional mean field game mean field control problems. Proceedings of National Academy
of Sciences of USA, 117:9183–9193, 2020.

[81] S. Scardapane and D. Wang. Randomness in neural networks: an overview. WIREs Data Mining Knowl.
Discov., 7:e1200, 2017.

[82] E. Schiassi, M. De Florio, B.D. Ganapol, P. Picca, and R. Furfaro. Physics-informed neural networks
for the point kinetics equations for nuclear reactor dynamics. Annuals of Nuclear Energy, 167:108833,
2022.

[83] E. Schiassi, R. Furfaro, C. Leake, M. De Florio, H. Johnson, and D. Mortari. Extreme theory of
functional connections: a fast physics-informed neural network method for solving ordinary and partial
differential equations. Neurocomputing, 457:334–356, 2021.

[84] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of computational physics, 375:1339–1364, 2018.

[85] P.N. Suhanthan and R. Katuwal. On the origins of randomization-based feedforward neural networks.
Applied Soft Computing, 105:107239, 2021.

[86] H. Sun, M. Hou, Y. Yang, T. Zhang, F. Weng, and F. Han. Solving partial differential equations based
on bernsteirn neural network and extreme learning machine algorithm. Neural Processing Letters,
50:1153–1172, 2019.

[87] S. Wang, X. Yu, and P. Perdikaris. When and why PINNs fail to train: a neural tangent kernel
perspective. Journal of Computational Physics, 449:110768, 2022.

[88] Y. Wang and G. Lin. Efficient deep learning techniques for multiphase flow simulation in heterogeneous
porous media. Journal of Computational Physics, 401:108968, 2020.

[89] C.S. Webster. Alan Turing’s unorganized machines and artificial neural networks: his remarkable early
work and future possibilities. Evol. Intel., 5:35–43, 2012.

[90] E Weinan, Jiequn Han, and Arnulf Jentzen. Algorithms for solving high dimensional pdes: from
nonlinear monte carlo to machine learning. Nonlinearity, 35(1):278, 2021.

38

[91] Y. Yang, M. Hou, and J. Luo. A novel improved extreme learning machine algorithm in solving ordinary
differential equations by legendre neural network methods. Advances in Differential Equations, 469:1–24,
2018.

[92] Z. Yang and S. Dong. An unconditionally energy-stable scheme based on an implicit auxiliary en-
ergy variable for incompressible two-phase flows with different densities involving only precomputable
coefficient matrices. Journal of Computational Physics, pages 229–257, 2019.

[93] H. You, Y. Yu, N. Trask, M. Gulian, and M. D’Elia. Data-driven learning of nonlocal physics from
high-fidelity synthetic data. Computer Methods in Applied Mechanics and Engineering, 374:113553,
2021.

[94] Y. Yu, R.M. Kirby, and G.E. Karniadakis. Spectral element and hp methods. Encyclopedia of Compu-
tational Mechanics, John Wiley and Sons, NY, 1:1–43, 2017.

[95] S. Zeng, Y. Cai, and Q. Zou. Deep neural networks based temporal-difference methods for high-
dimensional parabolic partial differential equations. Journal of Computational Physics, 468:111503,
2022.

[96] L. Zhang and P.N. Suganthan. A comprehensive evaluation of random vector functional link networks.
Inf. Sci., 367–368:1094–1105, 2016.

[97] X. Zheng and S. Dong. An eigen-based high-order expansion basis for structured spectral elements.
Journal of Computational Physics, 230:8573–8602, 2011.

[98] Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-
constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification with-
out labeled data. Journal of Computational Physics, 394:56–81, 2019.

39

	Introduction
	Extreme Learning Machine for High-Dimensional PDEs
	Randomized Feed-Forward Neural Networks
	Randomized NNs for High-Dimensional Function Approximation
	Solving High-Dimensional PDEs with ELM
	Solving High-Dimensional PDEs by Combined ELM and Approximate Theory of Functional Connections (A-TFC)
	TFC and Approximate TFC
	A-TFC Embedded ELM

	Numerical Examples
	Numerical Tests with the ELM Method
	Poisson Equation
	Nonlinear Poisson Equation
	Advection Diffusion Equation
	Korteweg-De Vries Equation

	Numerical Tests with the ELM/A-TFC Method
	Poisson Equation
	Nonlinear Poisson Equation
	Heat Equation

	Comparison with PINN

	Concluding Remarks

