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Abstract. Randomized Neural Networks (RNNs) are a variety of neural networks in which the hidden-

layer parameters are fixed to randomly assigned values, and the output-layer parameters are obtained

by solving a linear system through least squares. This improves the efficiency without degrading the

accuracy of the neural network. In this paper, we combine the idea of the Local RNN (LRNN) and

the Discontinuous Galerkin (DG) approach for solving partial differential equations. RNNs are used to

approximate the solution on the subdomains, and the DG formulation is used to glue them together.

Taking the Poisson problem as a model, we propose three numerical schemes and provide convergence

analysis. Then we extend the ideas to time-dependent problems. Taking the heat equation as a model,

three space-time LRNN with DG formulations are proposed. Finally, we present numerical tests to

demonstrate the performance of the methods developed herein. We evaluate the performance of the

proposed methods by comparing them with the finite element method and the conventional DG method.

The LRNN-DG methods can achieve higher accuracy with the same degrees of freedom, and can solve

time-dependent problems more precisely and efficiently. This indicates that this new approach has great

potential for solving partial differential equations.
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1 Introduction

Artificial Neural Networks (ANNs) have been successfully applied to solve problems of segmentation, classifica-

tion, pattern recognition, automatic control, etc. In recent years, many research works based on neural networks

have been proposed for solving Partial Differential Equations (PDEs) due to the excellent approximation capability

of Neural Networks (NNs). Some of these contributions are based on the strong form of PDEs. Physical Informed

Neural Networks (PINNs) ([37]) and the Deep Galerkin Method ([42]) are two representative methods among them.

Specifically, PINNs train the neural network by minimizing the mean squared error loss consisting of information

about the PDE, boundary conditions, and/or initial conditions on certain collocation points. The loss function

of the Deep Galerkin Method measures the residual of the PDE in the sense of the integral. Based on PINNs, a

number of new models ([9, 24, 27, 31, 32, 38, 26, 46]) have been proposed aiming to improve the performance, and

some other studies ([1, 15, 18, 20, 39]) focus on the application of this technique for different kinds of problems.

Some problems have solutions with low regularity, which cannot be described by PDEs. Therefore, some

investigations on neural networks use loss functions constructed based on weak formulations, such as the Deep

Ritz method ([8]), Deep Nitsche method ([25]), Weak Adversarial Networks ([45]), and other methods ([43, 47]).

One issue with these neural network-based methods, whether in strong or weak forms, is their limited accuracy
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and time-consuming nature. Although neural networks have a strong capability for function approximation, they

are challenging to train to reach the global optimal state due to the lack of efficient optimization methods for the

training process. Additionally, the computational cost of network training is high, hindering practical applications.

In terms of accuracy and efficiency, these neural network-based methods generally cannot compete with traditional

methods such as the finite element method (FEM), finite difference method, and finite volume method.

Randomized neural networks (RNNs) have been proposed as an alternative approach to fully parameterized

neural network models ([16, 17, 35, 34]). In RNNs, the parameters of the links between the hidden layers are

randomly chosen and then fixed during training, while the parameters for the links between the last hidden layer and

output layer are determined using a least-squares method. The extreme learning machine (ELM) ([13]) is an example

of a randomized neural network that has been successfully applied to various problems ([10, 12, 14, 22, 29, 33, 36]),

including the solution of differential equations ([3, 7, 40, 44, 4]). The feasibility analysis of ELM was proved

in [23], which demonstrates that the generalization capability of ELM is similar to that of fully parameterized

neural networks when suitable activation functions and initialization strategies are properly selected for the fixed

parameters. To solve partial differential equations, Dong and Li proposed the local extreme learning machine

and domain decomposition (locELM-DD) method in [5], which combines the ideas of local ELM and domain

decomposition to improve accuracy and efficiency. However, locELM-DD is based on the strong form of PDE

problems and may not be suitable for problems that require a weak formulation. In [41], the deep Petrov-Galerkin

method is proposed based on ELM and the Petrov-Galerkin formulation for solving partial differential equations,

and numerical examples show that this approach is accurate and efficient with respect to degrees of freedom (DoF).

In this work, we focus on the weak formulations of partial differential equations (PDEs) and their approximations

by local neural networks. We combine local randomized neural networks with the discontinuous Galerkin (DG)

approach and seek to exploit the DG framework to glue the local neural networks together. Specifically, we use the

Poisson equation and the heat equation as model problems to develop three schemes and show how to implement

them. The first scheme is the LRNN-DG (local randomized neural networks with discontinuous Galerkin) method,

which uses the output fields of the last hidden layer as the local basis functions for the DG formulation on each

subdomain. It then solves the final system of linear equations using either a linear solver or a least-squares method.

The other two schemes are the LRNN-C0DG (local randomized neural networks with C0 discontinuous Galerkin)

and LRNN-C1DG (local randomized neural networks with C1 discontinuous Galerkin) methods. These methods

enforce continuity conditions for the function and its gradients across sub-domain boundaries. We provide a

convergence analysis of these methods under certain appropriate assumptions. For the time-dependent problem,

we use the heat equation as a model and propose three space-time LRNN-DG type formulations. The space-time

approach is very natural for neural networks, and we do not need to compute the numerical solution with time

iteration. Finally, we present numerical examples to show that the proposed methods are able to compete with

traditional methods in some aspects. First, when the number of degrees of freedom is fixed and small, the accuracies

of the LRNN/DG type methods developed herein are better than the finite element method (FEM) and the usual

DG methods. Second, when the time-space approach is adopted, a notable advantage is that the error accumulation

can be avoided, and one can obtain the numerical solution at any time instant without interpolation.

The remainder of this paper is structured as follows. In Section 2, we introduce the concept of randomized

neural networks and propose three LRNN-DG formulations to solve the Poisson equation. In Section 3, we present

a convergence analysis of the methods by making certain assumptions. In Section 4, we provide three space-time

LRNN-DG methods to solve the heat equation. In Section 5, we present some numerical examples to demonstrate

the performance of the proposed methods. Finally, we summarize our findings in the last section.

2 Local randomized neural networks with DG methods

In this section, we first describe randomized neural networks, then we introduce the local randomized neural

networks with discontinuous Galerkin formulations for solving the Poisson equation.
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2.1 Randomized neural networks

The general deep neural networks can be represented as compositions of many hidden layers and an output

layer. A hidden layer is defined as a composition of a linear transformation and an activation function:

N(x) = ρ(Wx+ b),

where x ∈ Ω ⊂ Rd, N(x) ∈ Rd̄, W ∈ Rd̄×d is the matrix of weights, b ∈ Rd̄ is the bias, and ρ is a nonlinear

activation function. The first layer is usually called the input layer, and the number of layers is the depth of the

neural network. The output layer is a linear transformation

No(x) = Wx+ b,

where x ∈ Rd̄, No(x) ∈ Rno , W ∈ Rno×d̄ is the weight, and b ∈ Rno is the bias. Here, no is the dimension of

output data.

Then a fully connected neural network can be represented by

U(x) = W (L+1)(N (L) ◦ · · ·N (2) ◦N (1)(x)) + b(L+1),

where L is the depth of the neural network, W (l) ∈ Rnl×nl−1 and b ∈ Rnl are the parameters, and nl is the width

of the l-th layer of the neural network. Given the depth of the network and the width of each layer, we denote the

set of NN functions by

M(θ, L) = {U(x) = W (L+1)(N (L) ◦ · · · ◦N (1)(x)) + b(L+1) : W (l) ∈ Rnl×nl−1 , b(l) ∈ Rnl , l = 1, ..., L+ 1},

where θ = {(W (l), b(l))}L+1
l=1 .

Next, let us introduce randomized neural networks. While the structure of randomized neural networks is the

same as that of fully connected neural networks, there is a key difference. In fully connected neural networks, all

parameters are trained. In randomized neural networks, however, the output-layer parameters are adjustable while

the hidden-layer parameters are randomly assigned and fixed. We focus on single-hidden-layer neural networks

with the dimension of the output layer being one, that is, W (2) ∈ R1×n1 , and b(2) is set to zero. In the context of

randomized neural networks, we define the function space

MRNN (K) =

U(α, θ,x) =
M∑
j=1

αK
j ϕK(θj ,x) : x ∈ K

 , (2.1)

where K ⊂ Ω is the domain, M = n1 is the width of the last hidden layer, θ represents the parameters of the

hidden layers, α denotes the parameters of the output layer, and ϕ represents the nonlinear function that produces

the output of the last hidden layer. For simplicity, we will use ϕK
j (x) instead of ϕK(θj ,x) for the remainder of this

paper.

2.2 LRNN-DG method

In [5], the authors demonstrated the success of locELM, which combines the concepts of randomized neural

networks and domain decomposition, in solving partial differential equations. This method has proven to be

competitive with traditional methods like FEM and has shown strong potential for solving PDEs numerically.

However, locELM is based on the strong form of PDEs, which may not be suitable for problems that require weak

formulations. The main contribution of this paper is to combine local randomized neural networks with the DG

methods to solve PDEs in weak form. In this approach, the output fields of the last hidden layers of the local

neural networks are utilized to construct local basis functions for numerical solutions, which are then connected

using DG formulation.
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Let us introduce the local randomized neural networks with the discontinuous Galerkin formulation. Here, we

take the Poisson equation as a model problem,

−∆u = f in Ω, (2.2a)

u = g on ∂Ω, (2.2b)

where f is a given source term, ∂Ω is the boundary of Ω, and g is a function defined on ∂Ω. The weak formulation

of the above problem is: Find u ∈ H1
g (Ω) such that

a(u, v) =

∫
Ω

f v dx ∀v ∈ H1
0 (Ω). (2.3)

Here, H1
g (Ω) = {v ∈ H1(Ω) : v = g on ∂Ω} and

a(u, v) =

∫
Ω

∇u · ∇v dx.

Like the setting in the DG method, we partition the domain into some subdomains, and approximate the

solution on each subdomain by using a local neural network. First, we give some notation. Let {Th} be the

decomposition of Ω̄, where h = maxK∈Th
{diam(K)}. For each Th, Ne denotes the number of elements in Th, that

is, |Th| = Ne. Let Eh be the union of the boundaries of all the elements K ∈ Th, E i
h is the set of all interior edges,

and E∂
h = Eh\E i

h. Let K
+ and K− be two neighboring elements sharing a common edge e. Denote by n± = n|∂K±

the unit outward normal vectors on ∂K±. For a scalar function v and a vector-valued function q, let v± = v|∂K±

and q± = q|∂K± . We define the averages {·} and the jumps J·K, [·] on e ∈ E i
h by

{v} =
1

2
(v+ + v−), JvK = v+n+ + v−n−,

{q} =
1

2
(q+ + q−), [q] = q+ · n+ + q− · n−.

If e ∈ E∂
h , we set

JvK = vn, {q} = q,

where n is the unit outward normal vector on ∂Ω. In the analysis, we need the following identities:∫
K

∇v · q dx = −
∫
K

v (∇ · q) dx+

∫
∂K

v q · nK ds, (2.6)∑
K∈Th

∫
∂K

vq · nK ds =

∫
Eh

JvK · {q} ds+
∫
Ei
h

{v}[q] ds. (2.7)

We introduce the following DG space based on local randomized neural networks associated with the partition

Th:

Vh = {vh ∈ L2(Ω) : vh|K ∈ MRNN (K) ∀K ∈ Th},

where MRNN (K) denotes the function space of the randomized neural networks given in (2.1). So for each vh ∈ Vh,

vh|K =
∑M

j=1 v
K
j ϕK

j (x).

We make the following assumption.

Assumption 2.1 For any K ∈ Th, assume that the functions {ϕK
j (x) : j = 1, 2, · · · ,M} of last hidden layers in

subdomain K are linearly independent.
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For example, let ϕK
j (x) = sin(W jx+bj), then {sin(W jx+bj), j = 1, 2, · · · ,M} is a set of linearly independent

functions if proper values of weights W j and bias bj are chosen. Of course, this assumption can be satisfied for

other activation functions, like ϕK
j (x) = tanh(W jx+ bj).

The local randomized neural networks with DG (LRNN-DG) method for solving the Poisson problem is: Find

uh ∈ Vh such that

ah(uh, vh) = l(vh) ∀ vh ∈ Vh, (2.8)

where

ah(u, v) =

∫
Ω

∇hu · ∇hvdx−
∫
Eh

{∇hu} · JvKds−
∫
Eh

JuK · {∇hv}ds+
∫
Eh

ηJuK · JvKds, (2.9)

l(vh) =

∫
Ω

fvhdx−
∫
E∂
h

gn · ∇hvhds+

∫
E∂
h

ηgvhds. (2.10)

Here, ∇hvh denotes the broken gradient of vh with respect to the decomposition Th, i.e., ∇hvh = ∇vh|K , and∫
Eh

ηJuK · JvK ds is the penalty term, where the function η equals a constant ηe(he)
−1 on each e ∈ Eh, with ηe being

a positive number. In this paper, we focus on the interior penalty DG (IPDG) scheme, although other DG schemes

studied in [2] can also be considered, provided that the bilinear form (2.9) and the linear form (2.10) are modified

accordingly.

The outputs of the last hidden layer, i.e., {ϕK
j (x) : K ∈ Th, j = 1, 2, · · · ,M}, can be regarded as the local basis

functions of the LRNN-DG. We can obtain the global stiffness matrices A and the right-hand side L using these

local basis functions. It should be noted that the penalty parameter in the IPDG scheme (2.8) needs to be chosen

appropriately for the given problem. From (2.8), we obtain the system of equations,

AU = L, (2.11)

where A is a NeM ×NeM matrix, L is a NeM × 1 vector, and there are NeM unknown variables U = {uK
j : K ∈

Th, j = 1, 2, · · · ,M}.

2.3 Some properties of the LRNN-DG method

The following lemma shows the consistency of the DG scheme, a similar argument can be found in [2] and other

references on DG methods. For completeness, we give brief proof as well.

Lemma 2.2 (Consistency) The LRNN-DG scheme is consistent, i.e., for the solution u ∈ H2(Ω) of problem

(2.3), we have

ah(u, vh) = l(vh) ∀vh ∈ Vh. (2.12)

Proof. We know that u ∈ H2(Ω) implies JuK = 0, [∇u] = 0 on E i
h and u = g on E∂

h . Then, by the identities (2.6),

(2.7) and (2.2), we have

ah(u, vh) =

∫
Ω

∇u · ∇hvhdx−
∫
Eh

{∇hu} · JvhKds−
∫
E∂
h

gn · ∇hvhds+

∫
E∂
h

ηgvhds

=−
∫
Ω

∆uvhdx+
∑

K∈Th

∫
K

∇u · nKvhds−
∫
Eh

{∇hu} · JvhKds−
∫
E∂
h

gn · ∇hvhds+

∫
E∂
h

ηgvhds

=l(vh).

From the LRNN-DG scheme (2.8) and Lemma 2.2, we have

ah(u− uh, vh) = 0 ∀ vh ∈ Vh. (2.13)
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Next, let V (h) = Vh +H2(Ω), then we define some seminorms and norms by the following relations:

|v|21,h =
∑

K∈Th

|v|21,K , |v|21,∗ =
∑
e∈Eh

h−1
e ∥JvK∥20,e,

∥v∥2w = |v|21,h + |v|21,∗, ∥v∥2∗ = ∥v∥2w +
∑

K∈Th

h2
K |v|22,K .

(2.14)

The norms ∥v∥2w and ∥v∥2∗ are well-defined because

∥v∥0 ≤ C∥v∥w ≤ C∥v∥∗ ∀v ∈ V (h). (2.15)

Here, and in the rest of the paper, C denotes a constant that is independent of h and M .

Then we have the boundedness and stability of the bilinear form ah by standard argument (see [2] and the

references therein).

Lemma 2.3 (Boundedness) ah(u, v) satisfies

ah(u, v) ≤ Cb∥u∥∗∥v∥∗ ∀ v ∈ V (h). (2.16)

Lemma 2.4 (Stability) Set η0 = infe ηe > 0, if η0 is large enough, then ah satisfies

ah(v, v) ≥ Cs∥v∥2∗ ∀ v ∈ Vh. (2.17)

By Assumption 2.1, Lemma 2.3 and Lemma 2.4, we know that problem (2.8) is well-posed and A is symmetric

positive definite (SPD). Therefore, many solvers for the SPD system can be used to solve (2.11). The randomized

neural network has a certain possibility that the functions {ϕK
j (x) : j = 1, 2, · · · ,M} are not linearly independent,

which means that A is singular, and we need to solve the linear system (2.11) by the least-squares approach. Then,

the parameters U in the neural networks’ output layers can be obtained by a least-squares method.

2.4 LRNN-C0DG method

The LRNN-DG method presented in the previous subsection is based on the IPDG scheme. It is known that

the performance of the IPDG method depends on the choice of the penalty parameter η. It can be cumbersome to

determine an appropriate value for the penalty parameter. Of course, we can use other DG formulations, such as

local DG, to avoid the difficulty of choosing a proper penalty parameter. However, by taking advantage of the least

squares method, we can enforce the C0-continuous condition on each e ∈ E i
h and the Dirichlet boundary condition

on E∂
h to overcome this issue.

We add additional equations to enforce the solution to satisfy the boundary condition (2.2b), that is, we choose

some collocation points on the boundary edge, P g
h = {xe

j ∈ e : e ∈ E∂
h , j = 1, 2, · · · , Ng} and |P g

h | = Ng, such that

uh(x
e
j) = g(xe

j) ∀xe
j ∈ P g

h . (2.18)

In addition, we also need to make sure that the numerical solution uh satisfies certain C0-continuity conditions

across the interior edges e ∈ E i
h. We choose some collocation points on the interior edges, P i

h = {xe
j ∈ e : e ∈

E i
h, j = 1, 2, · · · , Nin} and |P i

h| = Nin, on these points, we set

Juh(x
e
j)K = 0 ∀xe

j ∈ P i
h. (2.19)

Then we obtain a system of equations with respect to (2.18) and (2.19),

A2U = L2, (2.20)
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where A2 is a (Ng +Nin)×NeM matrix, U is the NeM × 1 unknown vector, and L2 is a (Ng +Nin)× 1 vector.

Condition (2.19) makes JuhK ≈ 0, so the LRNN-C0DG scheme is to find uh ∈ Vh such that

a0h(uh, vh) = l0(vh) ∀vh ∈ Vh,

Juh(x
e
j)K = 0 ∀xe

j ∈ P i
h,

uh(x
e
j) = g(xe

j) ∀xe
j ∈ P g

h ,

(2.21)

where

a0h(uh, vh) =

∫
Ω

∇huh · ∇hvhdx−
∫
Eh

{∇huh} · JvhKds−
∫
Eh

{∇hvh} · JuhKds, (2.22)

l0(vh) =

∫
Ω

fvhdx−
∫
E∂
h

gn · ∇hvhds. (2.23)

Here, we keep the term
∫
Eh
{∇hvh} · JuhKds for the symmetry of the bilinear form a0h. Note that this scheme is free

of penalty parameters. Finally, from (2.21), we get a linear system,[
A1

A2

]
U =

[
L1

L2

]
, (2.24)

where A1 is a NeM ×NeM matrix, L1 is a NeM × 1 vector. We look for the least-squares solution for this linear

system.

Remark 2.5 From numerical examples, we see that the scheme (2.21) has a good performance. But note that the

following scheme which destroys the symmetry still works well.

ã0h(uh, vh) =

∫
Ω

fvhdx ∀ vh ∈ Vh, (2.25)

where

ã0h(uh, vh) =

∫
Ω

∇huh · ∇hvhdx−
∫
Eh

{∇huh} · JvhKds. (2.26)

2.5 LRNN-C1DG method

In the previous subsection, we simplified the DG scheme by enforcing the continuity of uh on internal edges,

i.e., by setting JuhK = 0 on e ∈ E i
h. Can we take this one step further? Let us introduce the LRNN-C1DG method

in this subsection.

In each subdomain K, −∆u = f , so we have the FEM formulation:∫
K

∇u · ∇vdx−
∫
∂K

∇u · nKvds =

∫
K

fvdx ∀K ∈ Th, (2.27)

where nK is the unit outer normal vector on ∂K. However, (2.27) with Dirichlet boundary condition (2.2b) is not

equivalent to the Poisson problem because the local problems lack connections with each other. From the domain

decomposition method ([28]), we know that we need the continuity of u and flux, i.e., we require JuhK = 0 and

[∇uh] = 0 on each e ∈ E i
h.

We need to ensure that local representations of the solution satisfy C1-continuity conditions across the subdo-

main boundaries due to consistency. We select some points on the internal edges P i
h as described in Section 2.4.
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At these points, using the same set-up as the LRNN-C0DG method, we obtain the LRNN-C1DG method: find

uh ∈ Vh such that

aKh (uh, vh) =

∫
K

fvhdx ∀ vh ∈ Vh ∀ K ∈ Th,

Juh(x
e
j)K = 0 ∀xe

j ∈ P i
h,

[∇uh(x
e
j)] = 0 ∀ xe

j ∈ P i
h,

uh(x
e
j) = g(xe

j) ∀xe
j ∈ P g

h ,

(2.28)

where

aKh (uh, vh) =

∫
K

∇huh · ∇hvhdx−
∫
∂K

∇huh · nKvhds. (2.29)

Finally, we obtain the following linear system,[
A1

A2

]
U =

[
L1

L2

]
,

where A1 is a NeM×NeM matrix, L1 is a NeM×1 vector. A2 is a (2Nin+Ng)×NeM matrix, U is a NeM×1 vector

of unknown variables, L2 is a (2Nin +Ng)× 1 vector. We look for the least-squares solution to this system. After

the weights of the output layer in each local neural network are obtained by the linear least-squares computation,

we can get all the values of the problem (2.2) in the domain Ω.

3 Convergence of the LRNN with DG methods

3.1 Convergence of the LRNN-DG method

We now turn to the error analysis of the LRNN-DG method. In [16], the authors prove that a randomized neural

network with one hidden layer can approximate any continuous function on a compact domain, as long as the hidden

layer size is large enough. According to [23], if the exact solution is a smooth function, the generalization capability

of neural networks is not degraded by ELM with proper activation functions and random initialization strategies.

In addition, [11, 19] have shown that neural networks can approximate the solution well with appropriate depth

and width. Based on these findings, we make the following assumption: let uσ ∈ Vh be a suitable approximation

of the exact solution u.

Assumption 3.1 Given a decomposition Th with |Th| = Ne and Vh is the associated DG space of LRNN. For

any small positive number ϵ, there exists a positive integer Mϵ such that if M > Mϵ, we have a function uσ ∈ Vh

satisfying

∥u− uσ∥0,K ≤ ChKN−1/2
e ϵ, |u− uσ|1,K ≤ CN−1/2

e ϵ, |u− uσ|2,K ≤ Ch−1
K N−1/2

e ϵ.

Here, M is the number of the basis of MRNN (K), and C denotes a constant number that is independent of h and

M .

Remark 3.2 For any function u ∈ Hp+1(K), we know that there exists a polynomial function uI ∈ Pp(K) such

that

∥u− uI∥0,K ≤ Chp+1
K |u|p+1,K , |u− uI |1,K ≤ Chp

K |u|p+1,K ,

|u− uI |2,K ≤ Chp−1
K |u|p+1,K .

Similarly, we make Assumption 3.1 in light of good approximation properties of neural networks.
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From the above assumption and the trace inequality, we have

∥u− uσ∥2∗ =
∑

K∈Th

|u− uσ|21,K +
∑

K∈Th

h2
K |u− uσ|22,K +

∑
e∈Eh

h−1
e ∥Ju− uσK∥20,e

≤C

( ∑
K∈Th

|u− uσ|21,K +
∑

K∈Th

h2
K |u− uσ|22,K +

∑
K∈Th

h−2
K ∥u− uσ∥20,K

)
≤Cϵ. (3.1)

For the LRNN-DG method, we have the following Ceá-type inequality.

Theorem 3.3 Let u and uh be solutions of the problem (2.3) and the LRNN-DG scheme (2.8), we obtain

∥u− uh∥∗ ≤ (1 + Cb/Cs) inf
vh∈Vh

∥u− vh∥∗. (3.2)

Proof. For any vh ∈ Vh, by the boundedness (2.16) and stability (2.17) of the bilinear form ah, as well as (2.13),

we have
Cs∥vh − uh∥2∗ ≤ ah(vh − uh, vh − uh)

= ah(vh − u, vh − uh) + ah(u− uh, vh − uh)

≤ Cb∥vh − u∥∗∥vh − uh∥∗,

then we get

∥vh − uh∥∗ ≤ Cb/Cs∥u− vh∥∗. (3.3)

Finally, by triangle inequality, we obtain

∥u− uh∥∗ ≤ ∥u− vh∥∗ + ∥vh − uh∥∗ ≤ (1 + Cb/Cs)∥u− vh∥∗, (3.4)

which completes the proof of the theorem.

From the Ceá-type inequality and (3.1), let vh = uρ in (3.2), we can obtain the convergence of the LRNN-DG

scheme (2.8).

Corollary 3.4 Let u and uh be solutions of the problems (2.3) and (2.8), respectively. If Assumption 3.1 holds,

then for any small positive number ϵ, there exists a positive integer Mϵ such that if M > Mϵ, then

∥u− uh∥∗ ≤ Cϵ. (3.5)

3.2 Convergence of the LRNN-C0DG method

In this subsection, we denote the solution of the LRNN-C0DG scheme (2.21) as ũh. By enforcing the conditions

(2.18) and (2.19), we can ensure that ũh − g ≈ 0 on boundary edges and JũhK ≈ 0 on interior edges. In particular,

increasing the number of points xe
j on each edge e results in smaller values of ũh − g and JũhK. Therefore, we make

the following assumption.

Assumption 3.5 Given a decomposition Th with |Th| = Ne and Vh is the associated DG space of LRNN. For any

small positive number ϵ, on every edge e ∈ Eh, there exist Ne
ϵ such that if Ne > Ne

ϵ , then

∥JũhK∥0,e ≤ Ch1/2
e ϵ and ∥ũh − g∥0,e ≤ Ch1/2

e ϵ.

Here, Ne is the number of points xe
j on the edge e and C denotes a constant number that is independent of h and

M .
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Next, we prove the convergence of the LRNN-C0DG scheme (2.21).

Theorem 3.6 Let u and ũh be solutions of the problem (2.3) and the LRNN-C0DG scheme (2.21), respectively.

If Assumption 3.1 and Assumption 3.5 hold, for any small positive number ϵ, there exist positive integers Mϵ, N
e
ϵ

such that if M > Mϵ, N
e > Ne

ϵ , then

∥u− ũh∥∗ ≤ Cϵ. (3.6)

Proof. From the LRNN-C0DG scheme (2.21) and the LRNN-DG scheme (2.8), we know that

a0h(ũh, vh) = l0(vh) ∀ vh ∈ Vh,

ah(uh, vh) = l(vh) ∀ vh ∈ Vh,
(3.7)

so

ah(ũh, vh)−
∫
Eh

ηJũhK · JvhKds = l(vh)−
∫
E∂
h

ηgvhds. (3.8)

And by the consistency (2.12), we have

ah(ũh − u, vh) =

∫
Eh

ηJũhK · JvhKds−
∫
E∂
h

ηgvhds. (3.9)

From the stability and boundedness of ah and (2.13), we get

Cs∥ũh − uh∥2∗ ≤ ah(ũh − uh, ũh − uh)

= ah(ũh − u, ũh − uh) + ah(u− uh, ũh − uh)

=

∫
Eh

ηJũhK · Jũh − uhKds−
∫
E∂
h

ηg(ũh − uh)ds

≤ ηmax

∑
e∈Ei

h

h−1
e ∥JũhK∥20,e +

∑
e∈E∂

h

h−1
e ∥ũh − g∥20,e

 1
2

|ũh − uh|1,∗.

Therefore, by Assumption 3.5, we have

∥ũh − uh∥∗ ≤ ηmax

Cs

∑
e∈Ei

h

h−1
e ∥JũhK∥20,e +

∑
e∈E∂

h

h−1
e ∥ũh − g∥20,e

 1
2

≤ Cϵ.

Finally, by triangle inequality and Corollary 3.4, we obtain

∥u− ũh∥∗ ≤ ∥u− uh∥∗ + ∥uh − ũh∥∗ ≤ Cϵ.

3.3 Convergence of the LRNN-C1DG method

In this subsection, we denote the solution of the LRNN-C1DG scheme (2.28) by uh. Similar to the LRNN-

C0DG method, by enforcing the condition [∇uh(x
e
j)] = 0 for each point xe

j on e, we can ensure that [∇uh(x
e
j)] ≈ 0.

Therefore, we make the following assumption.

Assumption 3.7 Given a decomposition Th with |Th| = Ne and Vh is the associated DG space of LRNN. For any

small positive number ϵ, on every edge e ∈ Eh, there exists Ne
ϵ such that if Ne > Ne

ϵ , then

∥JuhK∥0,e ≤ Ch1/2
e ϵ, ∥uh − g∥0,e ≤ Ch1/2

e ϵ and ∥[∇uh(x
e
j)]∥0,e ≤ Ch−1/2

e ϵ.

Here, Ne is the number of the points xe
j on edge e and C denotes a constant number that is independent of h and

M .
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Remark 3.8 To demonstrate the validity of Assumption 3.5 and Assumption 3.7, in Section 5, we provide numer-

ical evidence which shows that the quantities ∥JuhK∥0,e, ∥[∇uh]∥0,e on interior edges and ∥uh − g∥0,e on boundary

edges decrease as the number of collection points increases.

Finally, we show the convergence of the LRNN-C1DG scheme.

Theorem 3.9 Let u and uh be solutions of the problem (2.3) and the LRNN-C1DG scheme (2.28), respectively.

If Assumption 3.1 and Assumption 3.7 hold, for any small positive number ϵ, there exist positive integers Mϵ, N
e
ϵ

such that if M > Mϵ, N
e > Ne

ϵ , then

∥u− uh∥∗ ≤ Cϵ. (3.10)

Proof. We know that in each subdomain,∫
K

∇huh · ∇hvhdx−
∫
∂K

∇huh · nKvhds =

∫
K

fvhdx ∀K ∈ Th. (3.11)

Then we add all the elements to obtain

a1h(uh, vh) =

∫
Ω

fvhdx ∀vh ∈ Vh, (3.12)

where

a1h(uh, vh) =

∫
Ω

∇huh · ∇hvhdx−
∑

K∈Th

∫
∂K

∇huh · nKvhds

=

∫
Ω

∇huh · ∇hvhdx−
∫
Eh

{∇huh} · JvhKds−
∫
Ei
h

{vh} · [∇huh]ds.

(3.13)

So

ah(uh, vh)−
∫
Ei
h

{vh} · [∇huh]ds+

∫
Eh

JuhK · {∇hvh}ds−
∫
Eh

ηJuhK · JvhKds

=l(vh) +

∫
E∂
h

gn · ∇hvhds−
∫
E∂
h

ηgvhds.

(3.14)

And we know ah(u, vh) = l(vh), so we have

ah(uh − u, vh) =

∫
Ei
h

{vh} · [∇huh]ds−
∫
Eh

JuhK · {∇hvh}ds

+

∫
Eh

ηJuhK · JvhKds+
∫
E∂
h

gn · ∇hvhds−
∫
E∂
h

ηgvhds.

(3.15)

By the stability and boundedness of ah and (2.13), we get

Cs∥uh − uh∥2∗ ≤ ah(uh − uh, uh − uh) = ah(uh − u, uh − uh) + ah(u− uh, uh − uh)

=

∫
Ei
h

{uh − uh} · [∇huh]ds−
∫
Eh

JuhK · {∇h(uh − uh)}ds+
∫
Eh

ηJuhK · Juh − uhKds

+

∫
E∂
h

gn · ∇h(uh − uh)ds−
∫
E∂
h

ηg(uh − uh)ds

≤C

∑
e∈Ei

h

h−1
e ∥JuhK∥20,e +

∑
e∈Ei

h

he∥[∇huh]∥20,e +
∑
e∈E∂

h

h−1
e ∥uh − g∥20,e

 1
2

∥uh − uh∥∗,
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so

∥uh − uh∥∗ ≤ C

Cs

∑
e∈Ei

h

h−1
e ∥JuhK∥20,e +

∑
e∈Ei

h

he∥[∇huh]∥20,e +
∑
e∈E∂

h

h−1
e ∥uh − g∥20,e

 1
2

≤ Cϵ.

(3.16)

Finally,

∥u− uh∥∗ ≤ ∥u− uh∥∗ + ∥uh − uh∥∗ ≤ Cϵ. (3.17)

4 Space-time LRNN with DG methods for heat equation

In this section, we investigate the use of local randomized neural networks with DG methods for solving a

typical time-dependent PDE, namely the heat equation. Unlike traditional methods that solve the problem by

iterating over time steps, we adopt a space-time approach where temporal and spatial variables are treated equally

and simultaneously. This approach allows us to avoid the accumulation of errors.

Consider

ut(t,x)− λ∆u(t,x) = f(t,x) in Σ, (4.1a)

u(0,x) = u0(x) in Ω, (4.1b)

u(t,x) = g(t,x) on I × ∂Ω, (4.1c)

where Ω ⊂ Rd is a bounded space domain, I = (0, T ) is the time interval, Σ = I × Ω is the space-time domain,

u is the unknown solution to be solved, f is the given source term, u0 is the initial condition and g is a function

defined on I × ∂Ω. For convenience, we set the coefficient λ = 1.

Here we present the notation of the space-time approach. We partition the space-time domain Σ into some

subdomains and approximate the solution on each subdomain by using a local neural network. First, we give the

decomposition of the time interval Dτ = {Ii = (ti−1, ti), 0 = t0 < t1 < · · · < tNt
= T}, where τ = max

Ii∈Dτ

{length(Ii)}
and Nt denotes the number of subintervals along the temporal direction. Let Pτ = {ti, i = 0, · · · , Nt} be the

union of the boundary points of all the intervals Ii = (ti−1, ti) ∈ Dτ , and Pi
τ = Pτ\{t0, tNt

} be the set of all

interior points. Let {Th} be the decomposition of Ω̄, where h = maxK∈Th
{diam(K)}. Eh, E i

h and E∂
h have the same

definitions stated in Section 2.2. Let {Dτ × Th} denote the decomposition of the space-time domain Σ̄. For Th,
Ns denotes the number of elements in Th, that is, Ne = |Dτ × Th| = NtNs. Let σ+

h and σ−
h be two neighboring

elements sharing a common spatial face f . Denote by n± = n|∂K± the unit outward normal vectors on ∂K±. For

a scalar-valued function v and a vector-valued function q, let v± = v|∂σ± and q± = q|∂σ± . We define the averages

{·} and the jumps J·K, [·] on f ∈ (Dτ × E i
h) by

{v} =
1

2
(v+ + v−), JvK = v+n+ + v−n−,

{q} =
1

2
(q+ + q−), [q] = q+ · n+ + q− · n−.

If f ∈ (Dτ × E∂
h ), we set

JvK = vn, {q} = q,

where n is the unit outward normal vector on ∂Ω.
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Moreover, if σ+
τ and σ−

τ are two neighboring elements sharing a common temporal face f , we have w(t±i ,x) =

w(ti,x)|∂σ±
τ

for a scalar function w. The average {·} and the jump [·] on fτ ∈ (Pi
τ × Th) are defined by

{w(ti,x)} =
1

2

(
w(t+i ,x) + w(t−i ,x)

)
, [w(ti,x)] = w(t+i ,x)− w(t−i ,x).

If fτ ∈ (P∂
τ × Th), we set

[w(t0,x)] = −w(t0,x), [w(tNt ,x)] = w(tNt ,x), {w(t,x)} = w(t,x).

4.1 Space-time LRNN-DG method

We introduce the following DG space based on the local randomized neural network associated with the partition

Dτ × Th:

V τ
h = {vτh ∈ L2(Σ) : vτh|Ii×K ∈ MRNN (Ii ×K) ∀ Ii ∈ Dτ ∀K ∈ Th},

Qτ
h = {qτ

h ∈ [L2(Σ)]d : qτ
h|Ii×K ∈ [MRNN (Ii ×K)]d ∀ Ii ∈ Dτ ∀K ∈ Th}.

We rewrite the heat equation as the first-order system,

p = ∇u in Σ,

∂u

∂t
−∇ · p = f in Σ.

In the above equations, multiply the test functions q and v respectively on subdomain σ = Ii ×K, then we get by

integration by parts, ∫
σ

p · qdxdt = −
∫
σ

u∇ · qdxdt+
∫
Ii×∂K

uq · ndsdt,

−
∫
σ

u
∂v

∂t
dxdt+

∫
σ

p · ∇vdxdt+

∫
K

(uv)|titi−1
dx =

∫
σ

fvdxdt+

∫
Ii×∂K

p · nvdsdt.

We append subscript h on ∇, append subcript τ on ∂ and append subscript h and τ on u, v, p and q. Besides,

we use numerical traces ûτ
h and p̂τ

h to approximate u and p in spatial cross-section f ∈ Dτ × Eh and use numerical

traces ũτ
h to approximate u in temporal cross-section f ∈ Pτ × Th,∫

σ

pτ
h · qτ

hdxdt = −
∫
σ

uτ
h∇h · qτ

hdxdt+

∫
Ii×∂K

ûτ
hq

τ
h · ndsdt,

−
∫
σ

uτ
h

∂τv
τ
h

∂τ t
dxdt+

∫
σ

pτ
h · ∇hv

τ
hdxdt+

∫
K

(ũτ
hv

τ
h)|

ti
ti−1

dx =

∫
σ

fvτhdxdt+

∫
Ii×∂K

p̂τ
h · nvτhdsdt.

Then we add over all the elements, use integration by parts and (2.7)∫
Σ

pτ
h · qτ

hdxdt =

∫
Σ

∇hu
τ
h · qτ

hdxdt+

∫
Dτ×Eh

Jûτ
h − uτ

hK · {qτ
h}dsdt+

∫
Dτ×Ei

h

[qτ
h] · {ûτ

h − uτ
h}dsdt,∫

Σ

∂τu
τ
h

∂τ t
vτhdxdt+

∫
Σ

pτ
h · ∇hv

τ
hdxdt+

Nt∑
i=0

∫
Th

[
ũτ
h(ti,x)− uτ

h(ti,x)
]
· {vτh(ti,x)}dx

−
∫
Σ

fvτhdxdt+

Nt−1∑
i=1

∫
Th

[vτh(ti,x)] · {ũτ
h(ti,x)− uτ

h(ti,x)}dx

=

∫
Dτ×Eh

JvτhK · {p̂τ
h}dsdt+

∫
Dτ×Ei

h

[p̂τ
h] · {v

τ
h}dsdt.
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Here, we take

ûτ
h = {uτ

h} on f ∈ Dτ × E i
h,

ûτ
h = g on f ∈ Dτ × E∂

h ,

ũτ
h = {uτ

h} − η [uτ
h] on f ∈ Pi

τ × Th,

ũτ
h = u0 on f ∈ {t0} × Th,

ũτ
h = uτ

h on f ∈ {tNt
} × Th,

p̂τ
h = {∇hu

τ
h} − ηJuτ

hK on f ∈ Dτ × E i
h,

p̂τ
h = ∇hu

τ
h − η(u− g)n on f ∈ Dτ × E∂

h ,

where η = ηf (hf )
−1

, and ηf can be different by the choice of the face f . And we choose qτ
h = ∇hv

τ
h, then the

space-time LRNN-DG scheme for solving the heat problem is: Find uτ
h ∈ V τ

h such that

Bhτ (u
τ
h, v

τ
h) = l(vτh) ∀vτh ∈ V τ

h , (4.8)

where

Bhτ (u
τ
h, v

τ
h) =

∫
Σ

∂τu
τ
h

∂τ t
vτhdxdt+

∫
Σ

∇hu
τ
h · ∇hv

τ
hdxdt

−
Nt−1∑
i=0

∫
Th

[uτ
h(ti,x)] · {vτh(ti,x)}dx−

Nt−1∑
i=1

∫
Th

η [uτ
h(ti,x)] · [vτh(ti,x)] dx

−
∫
Dτ×Eh

(Juτ
hK · {∇hv

τ
h}+ JvτhK · {∇hu

τ
h} − ηJuτ

hK · JvτhK) dsdt,

(4.9)

l(vτh) =

∫
Σ

fvτhdxdt−
∫
Dτ×E∂

h

(gn · ∇hv
τ
h − ηgvτh)dtds+

∫
Th

u0(x)v
τ
h(t0,x)dx. (4.10)

From the above scheme, we can get a linear system of equations

AU = L, (4.11)

where A is a NeM × NeM matrix, L is a NeM × 1 vector, and there are NeM unknown variables U = {uIi×K
j :

Ii ∈ Dτ ,K ∈ Th, j = 1, 2, · · · ,M}. Here, the width of the last hidden layer is M . We look for the least-squares

solution for this system. Therefore, the parameters U in the neural networks’ output layers are obtained by the

linear least-squares computation.

Remark 4.1 Because the variables x and t are treated as inputs of the randomized neural networks, the LRNN-DG

scheme (4.8) is based on a space-time approach. Using this approach, we can solve this time-dependent problem in

a single least-squares computation, which is more efficient than traditional iterative approaches.

We give the following lemma to show the consistency of the space-time LRNN-DG method.

Lemma 4.2 The space-time LRNN-DG scheme is consistent, i.e., for the solution u ∈ C0(I;H2(Ω)) of the heat

equation (4.1), we have

Bhτ (u, v
τ
h) = l(vτh) ∀vτh ∈ V τ

h . (4.12)

Proof. We know that u ∈ C0(I;H2(Ω)) implies JuK = 0, [∇u] = 0 on E i
h, u = g on E∂

h , [u(ti,x)] = 0 for
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i = 1, 2, · · · , Nt − 1 and u(t0,x) = u0(x). Then, by the identities (2.6) and (2.7), we have

Bhτ (u, v
τ
h) =

∫
Σ

∂u

∂t
vτhdxdt+

∫
Σ

∇u · ∇hv
τ
hdxdt−

∫
Dτ×Eh

JvτhK · {∇u}dsdt

−
∫
Dτ×E∂

h

gn · ∇hv
τ
hdtds+

∫
Dτ×E∂

h

ηgvτhdtds+

∫
Th

u0(x)v
τ
h(t0,x)dx

=

∫
Σ

(
∂u

∂t
−∆u)vτhdxdt+

∫
Dτ×Eh

∇u · nKvτhdtds−
∫
Dτ×Eh

JvτhK · {∇u}dsdt

−
∫
Dτ×E∂

h

gn · ∇hv
τ
hdtds+

∫
Dτ×E∂

h

ηgvτhdtds+

∫
Th

u0(x)v
τ
h(t0,x)dx

=l(vh).

4.2 Space-time LRNN-C0DG method

In this subsection, we introduce the space-time LRNN-C0DG method to address the difficulty of choosing a

proper value of the penalty parameter in the space-time LRNN-DG.

The setting of local randomized neural networks and the partition is the same as described above. In this

approach, we enforce the C0-continuous condition on f ∈
(
Dτ × E i

h

)
∪
(
Pi
τ × Th

)
, the initial condition on f ∈

{t0}×Th and Dirichlet boundary condition on f ∈ Dτ ×E∂
h to solve this problem. We add the additional equations

to enforce the solution to satisfy the boundary condition (4.1c). Specifically, we choose some points on boundary

faces, denoted by P g
h = {(tfj ,x

f
j ) ∈ f : f ∈ Dτ × E∂

h , j = 1, 2, · · · , Ng
h} and |P g

h | = Ng
h , and require that

uτ
h(t

f
j ,x

f
j ) = g(tfj ,x

f
j ) ∀(tfj ,x

f
j ) ∈ P g

h . (4.13)

We add additional equations to ensure that the solution satisfies the initial condition (4.1b). In particular,

we choose points at the initial time t0, denoted by P t0
τ = {(t0,xf

j ) ∈ f : f ∈ {t0} × Th, j = 1, 2, · · · , N t0
τ } with

|P t0
τ | = N t0

τ , and enforce that

uτ
h(t0,x

f
j ) = u0(x

f
j ) ∀(t0,xf

j ) ∈ P t0
τ . (4.14)

We also ensure that the numerical solution uh satisfies certain C0-continuity conditions along the spatial and

temporal directions across the interior faces f ∈
(
Dτ × E i

h

)
∪
(
Pi
τ × Th

)
. To achieve this, we pick points on

the boundary faces denoted by PSi
h = {(tfj ,x

f
j ) ∈ f : f ∈

(
Dτ × E i

h

)
, j = 1, 2, · · · , N i

h} with |PSi
h | = N i

h and

PTi
τ = {(tfj ,x

f
j ) ∈ f : f ∈

(
Pi
τ × Th

)
, j = 1, 2, · · · , N i

τ} with |PTi
τ | = N i

τ , and enforce that:

Juτ
h(t

f
j ,x

f
j )K = 0 ∀(tfj ,x

f
j ) ∈ PSi

h . (4.15)[
uτ
h(t

f
j ,x

f
j )
]
= 0 ∀(tfj ,x

f
j ) ∈ PTi

τ . (4.16)

The system of equations with respect to (4.13)-(4.16) confirms the boundary conditions, initial conditions and

continuity conditions of interior edges, so we have

A2U = L2,

where A2 is a (Ng
h+N t0

τ +N i
h+N i

τ )×NeM matrix, U is a NeM×1 unknown vector, L2 is a (Ng
h+N t0

τ +N i
h+N i

τ )×1

vector. This system of equations reduces the jump of the solution to nearly zero, so the LRNN-C0DG scheme aims
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to find uτ
h ∈ V τ

h such that

B0
hτ (u

τ
h, v

τ
h) = l0(vτh) ∀ vτh ∈ V τ

h ,

Juτ
h(t

f
j ,x

f
j )K = 0 ∀(tfj ,x

f
j ) ∈ PSi

h ,[
uτ
h(t

f
j ,x

f
j )
]
= 0 ∀(tfj ,x

f
j ) ∈ PTi

τ ,

uτ
h(t

f
j ,x

f
j ) = g(tfj ,x

f
j ) ∀(tfj ,x

f
j ) ∈ P g

h ,

uτ
h(t0,x

f
j ) = u0(x

f
j ) ∀(t0,xf

j ) ∈ P t0
τ ,

(4.17)

where

B0
hτ (u

τ
h, v

τ
h) =

∫
Σ

∂τu
τ
h

∂τ t
vτhdxdt+

∫
Σ

∇hu
τ
h · ∇hv

τ
hdxdt

−
∫
Dτ×Eh

(Juτ
hK · {∇hv

τ
h}+ JvτhK · {∇hu

τ
h})dsdt, (4.18)

l0(vτh) =

∫
Σ

fvτhdxdt−
∫
Dτ×E∂

h

gn · ∇hv
τ
hdtds.

Then we can get global stiffness matrix A1 and the right-hand side L1 of (4.8), where A1 is a NeM × NeM

matrix, L1 is a NeM × 1 vector. Combine A1, A2, L1 and L2, we get a linear system[
A1

A2

]
U =

[
L1

L2

]
. (4.19)

We seek the least-squares solution to this system, and once we have obtained the weights of the output layer in

each local neural network via linear least-squares computation, we can obtain all the values of the problem (4.1)

in the domain Σ. Notably, this scheme does not rely on the penalty parameter.

Remark 4.3 Based on numerical experiments, we observe that the scheme (4.17) performs well. Surprisingly, even

when we remove the term −
∫
Dτ×EhJuτ

hK · {∇hv
τ
h}dsdt in (4.18), the modified scheme still yields good numerical

results:

B̃0
hτ (u

τ
h, v

τ
h) =

∫
Σ

fvτhdxds ∀ vτh ∈ V τ
h , (4.20)

where

B̃0
hτ (u

τ
h, v

τ
h) =

∫
Σ

∂τu
τ
h

∂τ t
vτhdxdt+

∫
Σ

∇hu
τ
h · ∇hv

τ
hdxdt−

∫
Dτ×Eh

JvτhK · {∇hu
τ
h}dsdt. (4.21)

4.3 Space-time LRNN-C1DG method

We briefly outline the space-time LRNN-C1DG method for solving the heat equation, building upon the ideas

presented in Section 2.5.

We introduce a system of equations to enforce that the solution uτ
h satisfies the boundary condition, the ini-

tial condition, and C0-continuity conditions along both spatial and temporal directions, similar to (4.13)-(4.16).

Additionally, we require that the numerical solution uτ
h satisfies C1-continuity conditions across the interior faces

f ∈ (Dτ × E i
h) along the spatial direction:

[∇hu
τ
h(x

f
j )] = 0 ∀xf

j ∈ PSi
h . (4.22)

So we have the new problem that finding uh ∈ V τ
h such that

Bσ
hτ (u

τ
h, v

τ
h) =

∫
σ

fvτhdtdx ∀σ = (Ii ×K) ∈ (Dτ × Th) , (4.23)
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where

Bσ
hτ (u

τ
h, v

τ
h) = −

∫
σ

uτ
h

∂vτh
∂t

dtdx+

∫
K

uτ
hv

τ
h|

ti
ti−1

dx+

∫
σ

∇uτ
h · ∇vτhdtdx−

∫
Ii×∂K

∇uτ
h · nvτhdsdt. (4.24)

Then we can get the global stiffness matrix A1 and the right-hand side L1, where A1 is a NeM ×NeM matrix, L1

is a NeM × 1 vector, such that A1U = L1.

Let uτ
h satisfy the conditions (4.13)-(4.16), C1-continuity condition (4.22). Then we can obtain a system of

equations

A2U = L2, (4.25)

where A2 is a (Ng
h + N t0

τ + 2N i
h + N i

τ ) × NeM matrix, U is a NeM × 1 matrix of unknown variables, L2 is a

(Ng
h +N t0

τ + 2N i
h +N i

τ )× 1 vector. Combine A1, A2, L1 and L2, we obtain[
A1

A2

]
U =

[
L1

L2

]
. (4.26)

We look for the least-squares solution to this system. After the weights of the output layer in each local neural

network are obtained by the linear least-squares computation, we can get all the values of the problem (4.1) in the

domain Σ.

Remark 4.4 We have presented a space-time formulation for solving the heat equation based on LRNN-DG in

the above. Convergence analysis of this method for dynamic problems, however, remains elusive at this point. The

main difficulty lies in proving the stability of the space-time formulation. This outstanding problem requires further

research and will be addressed in a future publication.

5 Numerical Examples

In this section, we present several test problems to demonstrate the performance of the methods developed

herein.

For implementing the neural network, we use the PyTorch library in Python, as stated in Section 2.1. Each

local neural network, for each sub-domain, consists of a single hidden layer with pre-assigned and fixed parameters

that are uniform random values generated from [−w0, w0], where w0 is a constant. Note that w0 affects the shape

of the basis functions, so it has an influence on the accuracy of the proposed methods, see more discussion in

[6]. The overall neural network is composed of all the local neural networks, which are coupled with one another

through the DG formulation or the C0/C1 conditions. The integrals in the weak formulations are computed using

Gaussian quadrature, and we employ different numbers of quadrature points for integrals in different examples.

For the following experiments, we use the Tanh function as the activation function. Other activation functions may

be suitable for different problems. For solving the linear system of equations about the output-layer coefficients,

we use the linear least-squares routine from LAPACK, available through wrapper functions in the scipy package in

Python. The DoFK or DoFσ in all tables below denote the degrees of freedom on each subdomain, and the DoF

in the figures refers to the total degrees of freedom.

Example 5.1 (One-Dimensional Helmholtz Equation) The first test problem is a one-dimensional Helmholtz

equation on the domain Ω = [0, 1],
−uxx + λu = f(x),

u(0) = g1(x),

u(1) = g2(x),

where the λ = 10 and f(x) is a prescribed source term, g1(x) and g2(x) are boundary conditions, with the manu-

factured exact solution

u(x) =
1

2

(
x2 + 1

)
ecos(81 x3+8π−24).
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h 2−4 2−5 2−6

DoFK

Norm
L2 H1 L2 H1 L2 H1

20 4.14E-03 2.80E+00 1.17E-04 1.95E-01 1.06E-05 2.53E-02

40 3.46E-05 7.20E-02 2.19E-06 5.44E-03 3.65E-08 1.76E-04

80 1.70E-06 3.00E-03 4.03E-09 1.60E-05 3.32E-10 2.54E-06

160 2.46E-07 3.86E-04 6.12E-10 2.49E-06 1.72E-10 1.31E-06

320 5.23E-08 1.03E-04 2.74E-10 1.11E-06 9.70E-11 8.26E-07

640 1.02E-08 2.56E-05 2.49E-10 7.97E-07 9.62E-11 6.85E-07

Table 1: Errors of the LRNN-DG method for 1-d Helmholtz equation in Example 5.1.

h 2−4 2−5 2−6

DoFK

Norm
L2 H1 L2 H1 L2 H1

20 1.14E-02 5.82E+00 3.45E-04 4.02E-01 2.88E-05 8.18E-02

40 9.24E-05 1.34E-01 2.07E-06 6.11E-03 6.64E-07 2.98E-03

80 1.40E-06 2.46E-03 4.12E-09 1.30E-05 5.19E-10 4.90E-06

160 7.41E-08 1.10E-04 3.79E-10 1.62E-06 1.24E-10 1.04E-06

320 1.48E-08 1.91E-05 1.32E-10 8.29E-07 5.47E-11 6.32E-07

640 3.56E-09 1.15E-05 1.33E-10 9.66E-07 5.11E-11 6.74E-07

Table 2: Errors of the LRNN-C0DG method for 1-d Helmholtz equation in Example 5.1.

h 2−4 2−5 2−6

DoFK

Norm
L2 H1 L2 H1 L2 H1

20 3.10E-03 2.19E+00 9.46E-05 1.40E-01 8.86E-05 2.68E-01

40 1.02E-04 1.19E-01 8.89E-06 1.35E-02 7.07E-08 2.95E-04

80 1.13E-06 1.17E-03 2.22E-09 8.07E-06 1.14E-09 8.31E-06

160 1.14E-07 1.48E-04 4.35E-10 1.21E-06 8.81E-11 6.80E-07

320 5.79E-09 6.76E-06 1.56E-10 6.74E-07 5.87E-11 4.62E-07

640 2.87E-09 9.48E-06 8.06E-11 5.42E-07 4.11E-11 4.96E-07

Table 3: Errors of the LRNN-C1DG method for 1-d Helmholtz equation in Example 5.1.

We partition the interval Ω into non-overlapping uniform subintervals of size h and choose the source term f

such that the solution satisfies the boundary value problem given above. The numerical errors in the L2 norm and

the H1 seminorm for different numbers of degrees of freedom are shown in Table 1, Table 2, and Table 3.

Table 1 presents the LRNN-DG errors in terms of the number of degrees of freedom per subinterval (DoFK)

and the subinterval size h. In these tests, we set the penalty parameter η to 4, the parameter w0 of the uniform

distribution to 5.0, and use 70 quadrature points in each subinterval. It can be observed that for a fixed h, the

errors initially decrease rapidly as the degrees of freedom per subinterval increase, and then the reduction slows

down. For a fixed DoFK , there is a general decrease in errors as h decreases. To further illustrate the performance

of our methods, we show the real solution, numerical solution, and error in Figure 1 for a mesh size h = 2−5 and

DoFK = 160. It can be seen that the LRNN-DG method can approximate the real solution well, whether the

frequency is high or low.

Table 2 shows the corresponding errors of LRNN-C0DG in terms of the number of degrees of freedom per

interval and the size of the element, while Table 3 displays the errors of LRNN-C1DG in terms of DoFK and h.
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Figure 1: Solution and error obtained from LRNN-DG methods in Example 5.1 with h = 2−5 and DoFK = 160.
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(c) L2 errors with h = 2−5
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(d) H1 errors with h = 2−5

Figure 2: Comparison of the errors obtained by the three methods in Example 5.1.

For LRNN-C0DG, the parameter w0 is set to 6 and the number of quadrature points is 70. For LRNN-C1DG, the

parameter w0 is set to 5.7 and the number of quadrature points is 70. The trends of errors with respect to the size
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h and the DoFK are similar to those observed for LRNN-DG.

Figure 2 compares the errors of the three methods for different sizes h and different norms. Generally, we can

observe that the performance of the three methods is similar, with LRNN-C1DG performing better than LRNN-

C0DG and LRNN-C0DG performing better than LRNN-DG. However, it is important to note that the last two

methods involve more equations due to continuity restrictions on edges, so it is not surprising that they have better

performance.

Additionally, in Example 5.1, we investigate the performance of the LRNN-DG method with reduced DoFK as

the mesh size h decreases. Table 4 presents the errors obtained with fewer local basis functions and smaller grid

sizes. In this test, we set η = 1, w0 = 0.4, and use 14 quadrature points in each dimension. Table 4 demonstrates

that the LRNN-DG method can accurately approximate the solution even with relatively few basis functions, as

long as the mesh size is small enough.

DoFK 10 20

h

Norm
L2 H1 L2 H1

2−3 3.09E+01 3.10E+02 3.09E+01 3.07E+02

2−4 3.14E-01 4.12E+01 3.04E-01 3.55E+01

2−5 1.43E-02 9.63E+00 8.53E-03 5.93E+00

2−6 5.77E-04 7.49E-01 7.84E-04 9.38E-01

2−7 3.32E-06 8.43E-03 1.96E-06 5.13E-03

2−8 6.11E-08 2.68E-04 1.32E-08 6.72E-05

2−9 1.20E-08 9.99E-05 2.08E-09 2.16E-05

Table 4: Errors of the LRNN-DG method for smaller mesh size h in Example 5.1.

Example 5.2 (Two-Dimensional Poisson Equation) Consider the Poisson equation (2.2) on Ω = [0, 1]2 and

the exact solution u = ex+y sin(3πx+ 0.5π) cos(πy + 0.2π).

In this example, we partition the domain Ω into non-overlapping uniform square elements with edge length h.

The number of quadrature points used in each direction is 14. The numerical errors in the L2 norm and the H1

seminorm for different DoFK and h are shown in Table 5, Table 6, and Table 7.

h 2−1 2−2 2−3

DoFK

Norm
L2 H1 L2 H1 L2 H1

10 3.40E+00 3.95E+01 3.04E+00 7.42E+01 7.64E-01 3.17E+01

20 3.62E-01 6.82E+00 1.26E+00 4.99E+01 5.70E-02 4.91E+00

40 1.49E-02 5.46E-01 2.04E-03 1.43E-01 1.47E-03 2.18E-01

80 1.13E-04 6.31E-03 1.39E-05 1.53E-03 2.64E-06 6.01E-04

160 3.07E-06 2.19E-04 1.63E-07 2.31E-05 3.11E-08 8.92E-06

320 6.60E-07 6.08E-05 2.16E-07 3.51E-05 2.94E-08 1.13E-05

Table 5: Errors of the LRNN-DG method for 2-d Poisson equation in Example 5.2

Table 5 presents the errors of LRNN-DG in terms of degrees of freedom on each element and the size of the

element. In this set of tests, the weight/bias coefficients in the hidden layer of each local network are initialized

with uniform random values generated in the range [-1.2, 1.2], and the penalty parameter is set to ηe = 1. The L2

norm and H1 seminorm errors initially decrease rapidly with increasing DoFK and then more slowly for fixed h.

We also observe that reducing the size h leads to a decrease in errors for a fixed DoFK .
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h 2−1 2−2 2−3

DoFK

Norm
L2 H1 L2 H1 L2 H1

10 9.62E-01 1.27E+01 2.81E-01 6.88E+00 3.29E-01 5.13E+00

20 1.46E-01 2.55E+00 3.03E-02 1.35E+00 8.57E-03 7.13E-01

40 1.40E-02 3.97E-01 2.24E-03 1.43E-01 4.57E-04 5.89E-02

80 3.39E-04 1.53E-02 1.55E-05 1.54E-03 4.64E-06 9.39E-04

160 1.00E-06 6.90E-05 4.21E-08 5.80E-06 1.23E-08 3.16E-06

320 4.11E-07 2.80E-05 1.24E-07 2.08E-05 1.98E-08 7.20E-06

Table 6: Errors of the LRNN-C0DG method for 2-d Poisson equation in Example 5.2

h 2−1 2−2 2−3

DoFK

Norm
L2 H1 L2 H1 L2 H1

10 1.31E+00 1.33E+01 1.04E+00 8.92E+00 8.96E-01 8.59E+00

20 2.80E-01 2.97E+00 4.42E-02 1.15E+00 1.97E-02 8.08E-01

40 2.28E-02 4.99E-01 1.86E-03 8.19E-02 5.24E-04 4.45E-02

80 2.45E-04 5.60E-03 1.05E-05 7.59E-04 2.99E-06 4.26E-04

160 1.03E-06 4.46E-05 7.57E-08 4.72E-06 7.91E-09 1.46E-06

320 3.07E-07 1.09E-05 1.78E-08 1.66E-06 7.96E-09 9.62E-07

Table 7: Errors of the LRNN-C1DG method for 2-d Poisson equation in Example 5.2

Tables 6 and 7 show the errors of LRNN-C0DG and LRNN-C1DG, respectively, in terms of the number of

degrees of freedom on each element and the size of the element. In Table 6, the parameter w0 is set to 1.2, and the

number of collocation points is 14. In Table 7, the parameter w0 is set to 1.0, and the number of collocation points

is 14. The trends observed for LRNN-C0DG and LRNN-C1DG are similar to those of the LRNN-DG method.

Figure 3 compares the errors of the three methods for different sizes h and different norms. Overall, the

performance of the three schemes is similar, with LRNN-C1DG outperforming LRNN-C0DG and LRNN-C0DG

outperforming LRNN-DG.

We also compare the proposed methods with the finite element method and the discontinuous Galerkin method

programmed with FEniCS ([21]) for this problem. Figure 4 compares the performance of the proposed LRNN-

C1DG and LRNN-DG methods with the FEM and DG methods using piecewise Pk polynomial functions. The

results show that the proposed methods achieve significantly smaller errors than the traditional methods with the

same degrees of freedom. However, as the number of basis functions increases, the errors of the LRNN methods tend

to stagnate. This could be attributed to the fact that the basis functions {ϕK
j (x) : j = 1, 2, · · · ,M} may become

linearly dependent as M increases, resulting in a rank deficient linear system. To further support this observation,

we provide Table 8 which shows the condition number of the global stiffness matrices of the LRNN-DG method in

Example 5.2 with different numbers of basis functions and mesh sizes. As shown in the table, the condition number

increases with the increase of DoFK and the decrease of h. As shown in Table 4 of Example 5.1, one way to reduce

errors is to increase the number of subdomains, i.e., use elements with a smaller size h. Another approach is to

design better neural networks that can provide improved basis functions. This is an aspect we will further explore

in future work.

Figure 5 illustrates the distribution of point-wise absolute errors computed using the three methods with an

element size of h = 2−2 and DofK = 320. It can be observed that the absolute error of LRNN-DG is larger but

smoother, while the absolute error of LRNN-C0DG and LRNN-C1DG is smaller but with a larger variation.

Table 9 provides numerical evidence to support the reasonableness of Assumption 3.5 and Assumption 3.7. We
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(c) L2 errors with h=2−2
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(d) H1 errors with h=2−2

Figure 3: Errors obtained from three different methods in Example 5.2

perform a test to examine how the jump of the numerical solution uh and its gradient ∇uh vary as the number of

collocation points increases using the LRNN-C1DG method. We consider a vertical interior edge and a horizontal

interior edge and compute the L2(e)-norm of JuhK and [∇uh] on these edges. We also consider a vertical boundary

edge and a horizontal boundary edge and compute the L2(e)-norm of uh − g on these boundary edges. In these

tests, DofK = 320, and the size of element is h = 2−2. Table 9 lists these errors corresponding to a set of collocation

points. We observe that ∥JuhK∥0,e, ∥[∇uh]∥0,e and ∥uh−g∥0,e decrease rapidly with increasing number of collection

points Ne, reaching a level close to machine zero as Ne becomes large.

Example 5.3 (2-D Poisson Equation with Corner Singularities) In this experiment, we use the LRNN-DG

methods to solve the Poisson problem (2.2) with a non-smooth solution around a reentrant corner, which has been

considered recently in [30]. The problem is defined on the L-shaped domain Ω = OABCDEO, as shown in Figure

6. The exact solution is given by u(x, y) = r
2
3k sin( 23kθ), where (r, θ) denotes the polar coordinates, and k ≥ 1

is a prescribed integer. We employ a source term f = 0 and set the boundary condition g according to the exact

solution.

The exact solution is smooth in Ω only when k is a multiple of 3. Otherwise, the ⌈ 2
3k⌉- th derivative of

the solution is singular at the reentrant corner and the solution is non-smooth. Moreover, the solution becomes

smoother as the integer k increases. We apply the LRNN-DG method and LRNN-C1DG method to solve this

problem with k = 1, 3, 5. We divide the square domains DEOG, GOFC and OABF into smaller square subdomains

{K} uniformly, and h is the size of each subdomain. Then we show the performances of the LRNN-DG method

and LRNN-C1DG method with different degrees of freedom and sizes of subdomains in Table 10 and Table 11
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(d) H1 errors by DG and LRNN-DG

Figure 4: Errors obtained by FEM, DG and LRNN with DG methods in Example 5.2

respectively. For the LRNN-DG method, we choose w0 = 2.2, η = 130/h when k = 1, w0 = 1.4, η = 5/h when

k = 3 and w0 = 1.4, η = 10/h when k = 5. For the LRNN-C1DG method, the number of the collocation points on

each edge is 11, we choose w0 = 1.1 when k = 1, w0 = 0.6 when k = 3 and w0 = 0.9, when k = 5.

From Table 10 and Table 11, we observe that with both methods the accuracy improves with more degrees of

freedom in each subdomain and smaller subdomains, for both smooth and non-smooth solutions. The LRNN-DG

method, which is based on a weak formulation, has a better performance for non-smooth solutions than the LRNN-

C1DG method. However, for the smooth solution, the result is opposite. One possible reason is that the penalty

parameter of the LRNN-DG method increases the condition number of the stiffness matrix. We also compare our

results with those in [30]. The LRNN-DG method and LRNN-C1DG method achieve smaller errors for non-smooth

solutions, but for smooth solutions, the methods in [30] perform better.

Furthermore, we show distributions of the exact solution, numerical solution, and absolute errors of the LRNN-

DG method for k = 1, 3, 5 in Figure 7. The size of the subdomain is h = 1/2, the degrees of freedom in each

subdomain is DoFK = 160, and other parameters are the same as above.

Example 5.4 (1-D Heat Equation) Consider the heat equation (4.1) with Ω = [0, 1], I = [0, 1], and the constant

λ = 0.001. We employ the manufactured exact solution

u = −ecos(πx+3π)+t2 .

Let us consider the space-time LRNN with DG methods for solving the heat equation. Tables 12, 13, and 14

show the numerical errors measured in the L2 norm and the H1 seminorm at t = 1 for different numbers of degrees
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DoFK

h
2−1 2−2 2−3

5 5.57E+02 7.81E+04 2.65E+05

10 1.12E+04 2.77E+06 4.97E+06

20 8.72E+06 6.60E+08 5.95E+08

40 2.36E+10 2.13E+12 2.56E+12

80 1.01E+16 3.17E+16 1.46E+17

160 8.47E+16 3.97E+17 2.04E+18

320 2.13E+17 1.11E+18 3.41E+18

Table 8: Condition number of stiffness matrices computed by LRNN-DG in Example 5.2

Ne
Vertical Edge Horizontal Edge

∥JuhK∥0,e ∥[∇uh]∥0,e ∥uh − g∥0,e ∥JuhK∥0,e ∥[∇uh]∥0,e ∥uh − g∥0,e
5 2.46E-05 3.77E-04 4.24E-06 6.01E-05 3.87E-04 1.87E-05

10 1.91E-08 1.68E-06 5.14E-09 3.23E-08 1.27E-06 7.67E-09

20 1.07E-11 1.24E-10 5.43E-11 6.80E-11 4.12E-10 1.46E-10

40 2.08E-12 5.32E-12 5.66E-12 1.08E-12 1.48E-11 4.72E-12

80 2.57E-12 3.29E-12 5.90E-12 1.67E-12 1.51E-12 6.40E-13

Table 9: Norm of JuhK, [∇uh], and uh − g computed by LRNN-C1DG in Example 5.2

of freedom. The domain I × Ω is partitioned into non-overlapping subdomains σ = Ii × K, where Ii is a time

interval, K is a space interval, and both have the same size h. In these methods, 14 quadrature points are used in

each direction.

Table 12 presents the L2 and H1 errors of the space-time LRNN-DG method at t = 1, in terms of the number

of degrees of freedom per element and the element size. For these tests, we have set the penalty parameter ηe = 4,

and the weight/bias coefficients in the hidden layer of each local network are initialized as uniform random values

within the range [−0.9, 0.9]. Table 13 reports the errors of the space-time LRNN-C0DG method at t = 1. In this

case, we use 12 collection points on each edge, and the parameter w0 is set to 1. Table 14 presents the errors of

the space-time LRNN-C1DG method at t = 1. We use 14 collection points on each edge and choose the parameter

w0 to be 1.2.

For comparison, we also solved this problem using P2 finite element for spatial discretization and the backward

Euler scheme for time stepping. The numerical errors for t = 1 are presented in Table 15, where h denotes the mesh

size and ∆t denotes the time step. By comparing the results in this table with those of our proposed methods, we

observe that the space-time LRNN-DG methods can achieve more accurate numerical solutions.

Figure 8 shows the distribution of point-wise absolute errors in the spatial-temporal domain obtained using the

proposed methods and the traditional FEM programmed with FEniCS. In the space-time LRNN with DG methods,

the size of each element is h = 2−2 and the number of degrees of freedom in each element is DoFσ = 320. In the P2

FEM with the backward Euler scheme, the size of the mesh is h2 = 2−9 and the size of the time step is ∆t = 2−18.

We can see that the absolute error of the LRNN-DG method is larger but smoother, while the absolute error of the

LRNN-C0DG and LRNN-C1DG methods are smaller but have stronger variations. Due to time marching, error

accumulation over time is evident in the result of FEM, whereas there is little or essentially no error accumulation

for the proposed space-time LRNN with DG methods.

Example 5.5 (2-D Heat Equation) We consider a two-dimensional heat equation (4.1) with spatial domain

Ω = [0, 1]× [0, 1] and temporal interval I = (0, 5). The exact solution for this test is given by

u = e−0.2t sin(2πx) sin(2πy).
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(b) Absolute error for LRNN-DG method
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(c) Absolute error for LRNN-C0DG method
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(d) Absolute error for LRNN-C1DG method

Figure 5: Absolute errors computed by three methods in Example 5.2

Table 16 presents the L2 and H1 errors of the space-time LRNN-DG method at t = 5, in terms of the number of

degrees of freedom in each element and the element size. In this numerical experiment, we set the penalty parameter

ηe = 3, the parameter w0 = 0.49, and the number of quadrature points is 9 for each direction. The space-time

LRNN-DG method has very good performance in this example as well. Note that the space-time LRNN-C0DG and

LRNN-C1DG schemes exhibit similar performance to the LRNN-DG method, and so their results are not included

here.

Figure 9 compares the point-wise absolute errors at t = 5 and the total computation time obtained by the

space-time LRNN-DG method and the traditional DG method (together with the Crank-Nicolson scheme). In the

DG method, we use the IPDG scheme with P2 elements applied on uniform triangular meshes with a mesh size h3,

and the Crank-Nicolson scheme is employed with a time step ∆t. The DG implementation is based on the FEniCS

library (version 2019.1.0), and the current LRNN-DG method is implemented based on PyTorch 1.12.1. To collect

the computation time, all these programs for Example 5.5 have been run on the same CPU. Comparing Figures 9a

with 9c and 9b with 9d, we observe that LRNN-DG achieves a better accuracy with less computation time. Note

that the FEniCS library implements a number of techniques to boost performance and is highly optimized for its

(traditional) DG implementation. In contrast, the LRNN-DG is based on our current implementation, which lacks

those optimizations in FEniCS (and is available to the traditional DG). But still, the current method shows a very

competitive performance.
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6 Summary

The local randomized neural networks with discontinuous Galerkin formulations offer a new approach to solving

partial differential equations. By decomposing the domain, we use LRNNs to approximate the solution on each

subdomain and apply the IPDG scheme to couple these LRNNs together. The weights of output layers are ob-

tained by the least-squares method. With appropriate assumptions, we prove the convergence of these methods.

Additionally, we propose space-time LRNN-DG methods to solve the heat equation, which offer several advantages:

(i) achieving better accuracy than FEM or the usual DG method with fewer degrees of freedom; (ii) LRNN-C0DG

and LRNN-C1DG methods are penalty parameter-free compared to DG methods; (iii) the space-time LRNN-DG

methods can solve time-dependent problems more precisely and efficiently.

We are confident that the proposed methods have significant potential for solving partial differential equations.

However, there are still several aspects of these methods that require further investigation. In this paper, we have

only considered linear partial differential equations. An immediate question is the following. Can one extend the

methods and the analysis to nonlinear partial differential equations? This problem is non-trivial and currently

under investigation, and it will be addressed in a future publication. Our numerical examples suggest that the

errors of these methods plateau when the number of degrees of freedom reaches a certain threshold. Is it possible to

design other neural networks (e.g., deep neural networks) to avoid this issue? Can we leverage parallel processing

to improve their efficiency? How can we incorporate mesh adaptation to enhance their performance for complex

problems? Additionally, deriving error estimates for the proposed methods is another crucial area for future work.

Acknowledgement. The authors are grateful to Professor Zongben Xu for his valuable suggestions and discus-

sions, and to the anonymous referee for the insightful comments and feedback that improved the paper.
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k 1 3 5

h,DoFK

Norm
L2 H1 L2 H1 L2 H1

1, 160 3.14E-04 3.25E-02 1.86E-07 6.51E-06 1.32E-06 4.89E-05

1/2, 160 1.00E-04 2.08E-02 4.78E-08 3.44E-06 1.50E-07 1.10E-05

1/4, 160 3.21E-05 1.30E-02 1.93E-08 2.88E-06 3.89E-08 5.84E-06

1/4, 40 4.65E-04 3.45E-02 3.22E-02 2.63E+00 4.00E-03 3.26E-01

1/4, 80 8.20E-05 1.72E-02 1.29E-06 1.52E-04 2.08E-06 2.48E-04

1/4, 160 3.21E-05 1.30E-02 1.93E-08 2.88E-06 3.89E-08 5.84E-06

1/4, 320 3.55E-05 1.14E-02 1.28E-08 2.03E-06 2.38E-08 3.83E-06

Table 10: Errors of the LRNN-DG method for 2-d Poisson equation with the non-smooth solution in Example 5.3

k 1 3 5

h,DoFK

Norm
L2 H1 L2 H1 L2 H1

1, 160 5.10E-03 1.53E-01 1.10E-08 2.43E-07 3.91E-06 1.12E-04

1/2, 160 1.92E-03 7.36E-02 4.56E-09 1.88E-07 1.14E-07 5.38E-06

1/4, 160 1.03E-03 4.61E-02 1.57E-09 1.25E-07 1.09E-08 8.10E-07

1/4, 40 4.05E-03 1.83E-01 2.52E-05 9.82E-04 1.69E-04 7.10E-03

1/4, 80 2.62E-03 9.87E-02 1.23E-08 8.47E-07 4.60E-07 3.32E-05

1/4, 160 1.03E-03 4.61E-02 1.57E-09 1.25E-07 1.09E-08 8.10E-07

1/4, 320 1.39E-03 4.29E-02 1.27E-09 1.12E-07 7.44E-09 4.71E-07

Table 11: Errors of the LRNN-C1DG method for 2-d Poisson equation with the non-smooth solution in Example

5.3
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Figure 7: The exact solution (a, d, g), the numerical solution (b, e, h) of the LRNN-DG method and the point-wise

absolute error of the LRNN-DG method (c, f, i) to the Poisson equation. a–c: k = 1 (non-smooth), d–f: k = 3

(smooth) and g–i: k = 5 (non-smooth) in Example 5.3
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(a) Absolute error for LRNN-DG method
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(b) Absolute error for LRNN-C0DG method
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(c) Absolute error for LRNN-C1DG method
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(d) Absolute error for FEM with back Euler

Figure 8: Absolute errors computed by proposed methods and FEM in Example 5.4
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(a) Pointwise absolute error for LRNN-DG with h =

2−1, τ = 5×2−1 and DoFσ = 640. L2 error is 1.48E-05,

total computation time is 22 seconds.
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(b) Pointwise absolute error for LRNN-DG with h =

3−1, τ = 5×3−1 and DoFσ = 640. L2 error is 1.66E-06,

total computation time is 338 seconds.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

(c) Pointwise absolute error for traditional DG with

h3 = 2−5, ∆t = 5 × 2−6. L2 error is 1.61E-05, total

computation time is 69 seconds.
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(d) Pointwise absolute error for traditional DG with

h3 = 2−6, ∆t = 5 × 2−6. L2 error is 1.94E-06, total

computation time is 656 seconds.

Figure 9: Distributions of the pointwise absolute error at t = 5 and the computation time obtained by the LRNN-

DG method and the traditional DG method in Example 5.5
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