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Abstract. Randomized Neural Networks (RNNs) are a variety of neural networks in which the hidden-
layer parameters are fixed to randomly assigned values, and the output-layer parameters are obtained
by solving a linear system through least squares. This improves the efficiency without degrading the
accuracy of the neural network. In this paper, we combine the idea of the Local RNN (LRNN) and
the Discontinuous Galerkin (DG) approach for solving partial differential equations. RNNs are used to
approximate the solution on the subdomains, and the DG formulation is used to glue them together.
Taking the Poisson problem as a model, we propose three numerical schemes and provide convergence
analysis. Then we extend the ideas to time-dependent problems. Taking the heat equation as a model,
three space-time LRNN with DG formulations are proposed. Finally, we present numerical tests to
demonstrate the performance of the methods developed herein. We evaluate the performance of the
proposed methods by comparing them with the finite element method and the conventional DG method.
The LRNN-DG methods can achieve higher accuracy with the same degrees of freedom, and can solve
time-dependent problems more precisely and efficiently. This indicates that this new approach has great
potential for solving partial differential equations.
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1 Introduction

Artificial Neural Networks (ANNs) have been successfully applied to solve problems of segmentation, classifica-
tion, pattern recognition, automatic control, etc. In recent years, many research works based on neural networks
have been proposed for solving Partial Differential Equations (PDEs) due to the excellent approximation capability
of Neural Networks (NNs). Some of these contributions are based on the strong form of PDEs. Physical Informed
Neural Networks (PINNs) ([37]) and the Deep Galerkin Method ([12]) are two representative methods among them.
Specifically, PINNs train the neural network by minimizing the mean squared error loss consisting of information
about the PDE, boundary conditions, and/or initial conditions on certain collocation points. The loss function
of the Deep Galerkin Method measures the residual of the PDE in the sense of the integral. Based on PINNs, a
number of new models ([9, 24, 27, 31, 32, 38, 26, 46]) have been proposed aiming to improve the performance, and
some other studies ([1, 15, 18, 20, 39]) focus on the application of this technique for different kinds of problems.

Some problems have solutions with low regularity, which cannot be described by PDEs. Therefore, some
investigations on neural networks use loss functions constructed based on weak formulations, such as the Deep
Ritz method ([8]), Deep Nitsche method ([25]), Weak Adversarial Networks ([15]), and other methods ([13, 17]).
One issue with these neural network-based methods, whether in strong or weak forms, is their limited accuracy
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and time-consuming nature. Although neural networks have a strong capability for function approximation, they
are challenging to train to reach the global optimal state due to the lack of efficient optimization methods for the
training process. Additionally, the computational cost of network training is high, hindering practical applications.
In terms of accuracy and efficiency, these neural network-based methods generally cannot compete with traditional
methods such as the finite element method (FEM), finite difference method, and finite volume method.

Randomized neural networks (RNNs) have been proposed as an alternative approach to fully parameterized
neural network models ([16, 17, 35, 34]). In RNNs, the parameters of the links between the hidden layers are
randomly chosen and then fixed during training, while the parameters for the links between the last hidden layer and
output layer are determined using a least-squares method. The extreme learning machine (ELM) ([13]) is an example
of a randomized neural network that has been successfully applied to various problems ([10, 12, 14, 22, 29, 33, 36]),
including the solution of differential equations ([3, 7, 40, 44, 4]). The feasibility analysis of ELM was proved
in [23], which demonstrates that the generalization capability of ELM is similar to that of fully parameterized
neural networks when suitable activation functions and initialization strategies are properly selected for the fixed
parameters. To solve partial differential equations, Dong and Li proposed the local extreme learning machine
and domain decomposition (locELM-DD) method in [5], which combines the ideas of local ELM and domain
decomposition to improve accuracy and efficiency. However, locELM-DD is based on the strong form of PDE
problems and may not be suitable for problems that require a weak formulation. In [11], the deep Petrov-Galerkin
method is proposed based on ELM and the Petrov-Galerkin formulation for solving partial differential equations,
and numerical examples show that this approach is accurate and efficient with respect to degrees of freedom (DoF).

In this work, we focus on the weak formulations of partial differential equations (PDEs) and their approximations
by local neural networks. We combine local randomized neural networks with the discontinuous Galerkin (DG)
approach and seek to exploit the DG framework to glue the local neural networks together. Specifically, we use the
Poisson equation and the heat equation as model problems to develop three schemes and show how to implement
them. The first scheme is the LRNN-DG (local randomized neural networks with discontinuous Galerkin) method,
which uses the output fields of the last hidden layer as the local basis functions for the DG formulation on each
subdomain. It then solves the final system of linear equations using either a linear solver or a least-squares method.
The other two schemes are the LRNN-C°DG (local randomized neural networks with C° discontinuous Galerkin)
and LRNN-C'DG (local randomized neural networks with C! discontinuous Galerkin) methods. These methods
enforce continuity conditions for the function and its gradients across sub-domain boundaries. We provide a
convergence analysis of these methods under certain appropriate assumptions. For the time-dependent problem,
we use the heat equation as a model and propose three space-time LRNN-DG type formulations. The space-time
approach is very natural for neural networks, and we do not need to compute the numerical solution with time
iteration. Finally, we present numerical examples to show that the proposed methods are able to compete with
traditional methods in some aspects. First, when the number of degrees of freedom is fixed and small, the accuracies
of the LRNN/DG type methods developed herein are better than the finite element method (FEM) and the usual
DG methods. Second, when the time-space approach is adopted, a notable advantage is that the error accumulation
can be avoided, and one can obtain the numerical solution at any time instant without interpolation.

The remainder of this paper is structured as follows. In Section 2, we introduce the concept of randomized
neural networks and propose three LRNN-DG formulations to solve the Poisson equation. In Section 3, we present
a convergence analysis of the methods by making certain assumptions. In Section 4, we provide three space-time
LRNN-DG methods to solve the heat equation. In Section 5, we present some numerical examples to demonstrate
the performance of the proposed methods. Finally, we summarize our findings in the last section.

2 Local randomized neural networks with DG methods

In this section, we first describe randomized neural networks, then we introduce the local randomized neural
networks with discontinuous Galerkin formulations for solving the Poisson equation.



2.1 Randomized neural networks

The general deep neural networks can be represented as compositions of many hidden layers and an output
layer. A hidden layer is defined as a composition of a linear transformation and an activation function:

N(z) = p(Wz +b),

where x € Q C R?, N(x) € ]RCZ, W € R?%4 ig the matrix of weights, b € RY is the bias, and p is a nonlinear
activation function. The first layer is usually called the input layer, and the number of layers is the depth of the
neural network. The output layer is a linear transformation

N°(xz) =Wx+b,

where x© € ]R‘Z, Ne(xz) € R, W € R"*d ig the weight, and b € R™ is the bias. Here, n, is the dimension of
output data.

Then a fully connected neural network can be represented by
Ux) = W(L‘H)(N(L) 0---N® o N(l)(w)) 4 pLtD),

where L is the depth of the neural network, W e Rmxni-1 and b € R™ are the parameters, and n; is the width
of the [-th layer of the neural network. Given the depth of the network and the width of each layer, we denote the
set of NN functions by

MO, L) ={U(x) = W(L+1)<N(L) 6.0 N(l)(w)) + pE+D) ) ¢ Rnlxnl—l7b(l) eR™ 1=1,.. L+1},

where § = {(W®, b(l))}lell.

Next, let us introduce randomized neural networks. While the structure of randomized neural networks is the
same as that of fully connected neural networks, there is a key difference. In fully connected neural networks, all
parameters are trained. In randomized neural networks, however, the output-layer parameters are adjustable while
the hidden-layer parameters are randomly assigned and fixed. We focus on single-hidden-layer neural networks
with the dimension of the output layer being one, that is, w® e R>™ and b is set to zero. In the context of
randomized neural networks, we define the function space

M
Meyn(E) = U(a,0,@) =Y aXe®(0;,@): z e K}, (2.1)

j=1

where K C 2 is the domain, M = n; is the width of the last hidden layer, 6 represents the parameters of the
hidden layers, a denotes the parameters of the output layer, and ¢ represents the nonlinear function that produces
the output of the last hidden layer. For simplicity, we will use ngK (x) instead of ¢% (6;, ) for the remainder of this

paper.

2.2 LRNN-DG method

In [5], the authors demonstrated the success of locELM, which combines the concepts of randomized neural
networks and domain decomposition, in solving partial differential equations. This method has proven to be
competitive with traditional methods like FEM and has shown strong potential for solving PDEs numerically.
However, locELM is based on the strong form of PDEs, which may not be suitable for problems that require weak
formulations. The main contribution of this paper is to combine local randomized neural networks with the DG
methods to solve PDEs in weak form. In this approach, the output fields of the last hidden layers of the local
neural networks are utilized to construct local basis functions for numerical solutions, which are then connected
using DG formulation.



Let us introduce the local randomized neural networks with the discontinuous Galerkin formulation. Here, we
take the Poisson equation as a model problem,

—Au=f inQ, (2.2a)
u=g on 0%, (2.2b)

where f is a given source term, 0f2 is the boundary of €2, and g is a function defined on 9€). The weak formulation
of the above problem is: Find u € H}(€) such that

a(u,v) = / fvdx VYove H (Q). (2.3)
Q
Here, H}(Q) = {v € H'(Q) : v = g on 9Q} and

a(u,v) = / Vu-Voudz.
Q

Like the setting in the DG method, we partition the domain into some subdomains, and approximate the
solution on each subdomain by using a local neural network. First, we give some notation. Let {7} be the
decomposition of Q, where h = maxg¢7, {diam(K)}. For each Ty, N, denotes the number of elements in Ty, that
is, | Tn| = Ne. Let &, be the union of the boundaries of all the elements K € Ty, & is the set of all interior edges,
and 5}‘? = Eh\é'};. Let K+ and K~ be two neighboring elements sharing a common edge e. Denote by n* = n|yx+
the unit outward normal vectors on K *. For a scalar function v and a vector-valued function q, let v = v|yx+
and g% = g|yx+. We define the averages {-} and the jumps [-], [-] on e € & by

{v} = %(v'|r +v7), ] =vtnt+ovn",

1

{at=35@" +q7) lad=g"n"+q -n".

Ifee 5,?, we set

[v]l =vn, {4} =gq,

where m is the unit outward normal vector on 9f). In the analysis, we need the following identities:

/Vv-qu:—/v(V~q)dx+/ vq-ngds, (2.6)
K K

oK

) /BKW'"Kd8=/5h[[UH~{q}d8+/gz’{v}[Q] ds. (2.7)

KeTy,

We introduce the following DG space based on local randomized neural networks associated with the partition

Th:
Vi, = {U}L S LZ(Q) : rUh‘K S MRNN(K) VK € 77L},

where Mprnn(K) denotes the function space of the randomized neural networks given in (2.1). So for each vy, € V4,
_ M KK
vplx = Ej:l Ui @ (z).

We make the following assumption.

Assumption 2.1 For any K € Ty, assume that the functions {ngJK(m) :j=1,2,--- M} of last hidden layers in
subdomain K are linearly independent.



For example, let gi)f(m) =sin(W z+b;), then {sin(W,xz+b;), j =1,2,--- , M} is a set of linearly independent
functions if proper values of weights W; and bias b; are chosen. Of course, this assumption can be satisfied for
other activation functions, like ¢ (x) = tanh(W ;a + b;).

The local randomized neural networks with DG (LRNN-DG) method for solving the Poisson problem is: Find
up, € Vi, such that
ah(uh,vh) = l(vh) Yup € Vi, (2.8)

where

ap(u,v) :/Qth - Vypvder — i {Vyu} - [v]ds —/g [u] - {Vnv}ds —|—/g nu] - [v]ds, (2.9)
I(vp) z/ﬂfvhd:c — /ga gn - Vyopds + /58 ngupds. (2.10)

Here, Vjvy, denotes the broken gradient of v, with respect to the decomposition 7y, i.e., Vyvp, = Voup|k, and
/. g, Mul - [v] ds is the penalty term, where the function 7 equals a constant 7, (he)™! on each e € &, with 7. being
a positive number. In this paper, we focus on the interior penalty DG (IPDG) scheme, although other DG schemes
studied in [2] can also be considered, provided that the bilinear form (2.9) and the linear form (2.10) are modified
accordingly.

The outputs of the last hidden layer, i.e., {¢§((m) K eTy, j=1,2,--- , M}, can be regarded as the local basis
functions of the LRNN-DG. We can obtain the global stiffness matrices A and the right-hand side L using these
local basis functions. It should be noted that the penalty parameter in the IPDG scheme (2.8) needs to be chosen
appropriately for the given problem. From (2.8), we obtain the system of equations,

AU =L, (2.11)

where A is a No.M x N, M matrix, L is a N.M x 1 vector, and there are N.M unknown variables U = {uf( K e
77’L7.j = 1727"' 7M}

2.3 Some properties of the LRNN-DG method

The following lemma shows the consistency of the DG scheme, a similar argument can be found in [2] and other
references on DG methods. For completeness, we give brief proof as well.

Lemma 2.2 (Consistency) The LRNN-DG scheme is consistent, i.e., for the solution u € H?(Q) of problem
(2.3), we have
ap(u,vp) =l vp) Yoy € Vi (2.12)

Proof. We know that u € H?(f2) implies [u] = 0, [Vu] =0 on & and u = g on 7. Then, by the identities (2.6),
(2.7) and (2.2), we have

ap(u,vp) = Vthvhdx—/ {th}~[[vh]]d8—/ gn-thhdsﬂL/ ngvpds
Q En £9 &

:—/Auvhdx+ Z
Q

/ Vu - ngvpds — / {Vru} - [op]ds — / gn - Vyopds +/ ngupds
Ker K &n &? &2

1
=l(vp).
|
From the LRNN-DG scheme (2.8) and Lemma 2.2, we have

ap(u —up,vp) =0 Yo € V. (2.13)



Next, let V(h) =V}, + H?(2), then we define some seminorms and norms by the following relations:

=D Tl Tolf. = b Il
2 IZGTh 2 2 eeg; 2 1,12 (2.14)
ol = [olf 5+ [0l IolE = oll%, + > Aklol3 k-
K€7_’L
The norms ||v]|?, and ||v]|? are well-defined because
[ollo < Clvllw < Cllvlls Vo € V(h). (2.15)

Here, and in the rest of the paper, C denotes a constant that is independent of h and M.

Then we have the boundedness and stability of the bilinear form aj by standard argument (see [2] and the
references therein).

Lemma 2.3 (Boundedness) ap,(u,v) satisfies

ap(u,v) < Cypllull«|jv]l« Yv e V(h). (2.16)

Lemma 2.4 (Stability) Set ny = inf.n. > 0, if no is large enough, then aj satisfies

an(v,v) > Cyllv]|2 Vv € V. (2.17)

By Assumption 2.1, Lemma 2.3 and Lemma 2.4, we know that problem (2.8) is well-posed and A is symmetric
positive definite (SPD). Therefore, many solvers for the SPD system can be used to solve (2.11). The randomized
neural network has a certain possibility that the functions {quK (£):5=1,2,---, M} are not linearly independent,
which means that A is singular, and we need to solve the linear system (2.11) by the least-squares approach. Then,
the parameters U in the neural networks’ output layers can be obtained by a least-squares method.

2.4 LRNN-CDG method

The LRNN-DG method presented in the previous subsection is based on the IPDG scheme. It is known that
the performance of the IPDG method depends on the choice of the penalty parameter n. It can be cumbersome to
determine an appropriate value for the penalty parameter. Of course, we can use other DG formulations, such as
local DG, to avoid the difficulty of choosing a proper penalty parameter. However, by taking advantage of the least
squares method, we can enforce the C%-continuous condition on each e € & and the Dirichlet boundary condition
on 5}‘? to overcome this issue.

We add additional equations to enforce the solution to satisfy the boundary condition (2.2b), that is, we choose
some collocation points on the boundary edge, Py = {x§ €e:e € EP,j=1,2,--- Ny} and |P/| = N, such that
up(xf) = g(x5) Vx§ € Py (2.18)

In addition, we also need to make sure that the numerical solution wu; satisfies certain C%-continuity conditions
across the interior edges e € £/. We choose some collocation points on the interior edges, P} = {:cje €Ee:ec€
EL,j=1,2,--- Ny} and |P{| = N;y, on these points, we set

[un(z$)] =0 Va§ € Py (2.19)
Then we obtain a system of equations with respect to (2.18) and (2.19),

AsU = Ly, (2.20)



where Ay is a (Ng + Nyy) X NeM matrix, U is the N.M x 1 unknown vector, and Ls is a (Ng + N;jp) x 1 vector.
Condition (2.19) makes [us] =~ 0, so the LRNN-CYDG scheme is to find uj, € V}, such that

a%(uh,vh) = ZO(’Uh) Yoy € Vi,
[un ()] =0 v € Py, (2.21)
uh(wj) = g(a:j) v € Py,
where
a%(uh,vh) = / thh . thhdx — / {thh} . [[vh]]ds — / {thh} . [[uh]]ds, (222)
Q En En
1°(vp,) = / fopda —/ gn - Vyopds. (2.23)
Q ep

Here, we keep the term | g, {Vnun} - [un]ds for the symmetry of the bilinear form a?. Note that this scheme is free
of penalty parameters. Finally, from (2.21), we get a linear system,

D“ij U= Ej , (2.24)

where A; is a N.M x N.M matrix, L; is a N.M x 1 vector. We look for the least-squares solution for this linear
system.

Remark 2.5 From numerical examples, we see that the scheme (2.21) has a good performance. But note that the
following scheme which destroys the symmetry still works well.

&E(uh,vh) = / f’l)hd$ Yo € Vy, (225)
Q
where

;[Z(uh,vh) = / thh . thhdsc - / {thh} . [[v;J]ds. (2.26)
Q En

2.5 LRNN-C'DG method

In the previous subsection, we simplified the DG scheme by enforcing the continuity of w; on internal edges,
i.e., by setting [un] =0 on e € £ . Can we take this one step further? Let us introduce the LRNN-C'DG method
in this subsection.

In each subdomain K, —Au = f, so we have the FEM formulation:

/ Vu - Vodzx —/ Vu-ngvds = / fvdx VK €Ty, (2.27)
K oK K

where n is the unit outer normal vector on JK. However, (2.27) with Dirichlet boundary condition (2.2b) is not
equivalent to the Poisson problem because the local problems lack connections with each other. From the domain
decomposition method ([28]), we know that we need the continuity of u and flux, i.e., we require Jup] = 0 and
[Vup] =0 on each e € &F.

We need to ensure that local representations of the solution satisfy C!-continuity conditions across the subdo-
main boundaries due to consistency. We select some points on the internal edges P} as described in Section 2.4.



At these points, using the same set-up as the LRNN-C°DG method, we obtain the LRNN-C'DG method: find
up, € Vj, such that

a¥ (up,vp) :/ fopdx Vo, eV, VKEeTh,
K

[un(a5)] = 0 va§ e Py, (2.28)
[Vun(5)] = 0 vV af € P,
up(x5) = g(x5) V€ Py,
where
a,}f(uh, vp) = / Vawup - Vyvpdr — Viup - nivpds. (2.29)
K oK

Finally, we obtain the following linear system,

Al s

-1
where A; is a N M x N. M matrix, Ly is a N M x1 vector. As is a (2N;,+Ny) x NoM matrix, U is a N.M x 1 vector
of unknown variables, Lo is a (2N;, + Ng) x 1 vector. We look for the least-squares solution to this system. After

the weights of the output layer in each local neural network are obtained by the linear least-squares computation,
we can get all the values of the problem (2.2) in the domain €.

3 Convergence of the LRNN with DG methods

3.1 Convergence of the LRNN-DG method

We now turn to the error analysis of the LRNN-DG method. In [16], the authors prove that a randomized neural
network with one hidden layer can approximate any continuous function on a compact domain, as long as the hidden
layer size is large enough. According to [23], if the exact solution is a smooth function, the generalization capability
of neural networks is not degraded by ELM with proper activation functions and random initialization strategies.
In addition, [11, 19] have shown that neural networks can approximate the solution well with appropriate depth
and width. Based on these findings, we make the following assumption: let u, € V}, be a suitable approximation
of the exact solution .

Assumption 3.1 Given a decomposition Ty, with |T,| = N and Vj, is the associated DG space of LRNN. For
any small positive number €, there exists a positive integer M, such that if M > M., we have a function us, € Vj
satisfying

[u = uollo,x < Chre N6, |u—uoliw < CN Y26, |u—uglox < Chg' NS Y2

Here, M is the number of the basis of Mrnn(K), and C denotes a constant number that is independent of h and
M.

Remark 3.2 For any function u € HPY(K), we know that there exists a polynomial function u; € Py(K) such
that

llu —urllo,x < Ch§(+l‘u|p+1,K7 lu—url1,xk < Chbe|ulptr i,

u—uslo, i < CRE ulpir k-

Similarly, we make Assumption 3.1 in light of good approximation properties of neural networks.



From the above assumption and the trace inequality, we have

lu —uolly = D Ju—usli e+ D hiclu—uol3 e+ D b I[u—uolll3c

KeTy, KeTy, ecEn
(z I o TN S o Py uaum)
KeTh K€7_h Ke7—h
<Ce. (3.1)

For the LRNN-DG method, we have the following Ced-type inequality.

Theorem 3.3 Let u and uyp, be solutions of the problem (2.3) and the LRNN-DG scheme (2.8), we obtain

llu —uplls < (14 Cp/Cs) inf |Ju— vplx. (3.2)
vREVR

Proof. For any vj, € V3, by the boundedness (2.16) and stability (2.17) of the bilinear form ay, as well as (2.13),
we have )
OSHU}L - uhH* S llh(’Uh — Uh, Vh — Uh)

= ap(vn — u, vp — up) + ap(u — up, vy — up)
< Cyllon — ull+]|vn — unl+,
then we get
llon = unll« < Cyp/Csllu — vn [« (3.3)
Finally, by triangle inequality, we obtain
lu = unll« < llu—=onlls + lon = unlls < (14 Cp/Cs)llu— v, (3.4)
which completes the proof of the theorem. H

From the Cea-type inequality and (3.1), let v, = u, in (3.2), we can obtain the convergence of the LRNN-DG
scheme (2.8).

Corollary 3.4 Let u and uy be solutions of the problems (2.3) and (2.8), respectively. If Assumption 3.1 holds,
then for any small positive number €, there exists a positive integer M such that if M > M., then

Il — up|l« < Ce. (3.5)

3.2 Convergence of the LRNN-C'DG method

In this subsection, we denote the solution of the LRNN-C?DG scheme (2.21) as uy,. By enforcing the conditions
(2.18) and (2.19), we can ensure that u, — ¢g = 0 on boundary edges and [uy] ~ 0 on interior edges. In particular,
increasing the number of points x§ on each edge e results in smaller values of up — g and [up]. Therefore, we make
the following assumption.

Assumption 3.5 Given a decomposition Ty, with |T,| = N. and V}, is the associated DG space of LRNN. For any
small positive number €, on every edge e € &y, there exist NS such that if N¢ > N, then

I[@nlllo.e < ChY%e and  |un — gllo.e < Chl/2e.

Here, N is the number of points x§ on the edge e and C' denotes a constant number that is independent of h and
M.



Next, we prove the convergence of the LRNN-CDG scheme (2.21).

Theorem 3.6 Let u and uy, be solutions of the problem (2.3) and the LRNN-C°DG scheme (2.21), respectively.

If Assumption 3.1 and Assumption 3.5 hold, for any small positive number €, there exist positive integers M¢, N

such that if M > M., N° > N£, then
llu = uplls < Ce.

Proof. From the LRNN-C°DG scheme (2.21) and the LRNN-DG scheme (2.8), we know that

a%(&}vh) = lo(vh) Yo, € Vy,

ah(uh,vh) = l(’l}h) Yoy, € Vi,

an (@r, vn) — /
Ep

And by the consistency (2.12), we have

ap(up —u,vp) = / nlur] - [vn]ds —/ ngupds.
En £9

SO

nlun] - [vn]ds = I(vy) — /ga ngvpds.

v h

From the stability and boundedness of ap, and (2.13), we get
Collan, —unll? < an(un — un, dp, — up)

= ap(up — u, up, — up) + ap(u — up, up — up)

- /5 ][ s - /5 70— )

< max | D b HMl@adlfe + Y helun —glse | an — unlis.

ek} ec&?

Therefore, by Assumption 3.5, we have

[N

I = unlle < 722 S h M@ IGe + D2 et gl | < Ce.
5 \eegi ce€?

Finally, by triangle inequality and Corollary 3.4, we obtain

[l = unl« < llu = unlls + lun = unlls < Ce.

3.3 Convergence of the LRNN-C'DG method

€

(3.6)

(3.7)

(3.8)

(3.9)

In this subsection, we denote the solution of the LRNN-C'DG scheme (2.28) by . Similar to the LRNN-
C°DG method, by enforcing the condition Vg (z$)] = 0 for each point @§ on e, we can ensure that [V, (z$)] ~ 0.

Therefore, we make the following assumption.

Assumption 3.7 Given a decomposition Ty, with |T,| = N. and V}, is the associated DG space of LRNN. For any

small positive number €, on every edge e € &y, there exists NS such that if N¢ > N, then

I@]llo.c < Che/?e,  ak = gllo.e < Che/*e and [V (a)]llo. < Cho e

Here, N is the number of the points  on edge e and C denotes a constant number that is independent of h and

M.
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Remark 3.8 To demonstrate the validity of Assumption 3.5 and Assumption 3.7, in Section 5, we provide numer-

ical evidence which shows that the quantities ||[up]

edges decrease as the number of collection points increases.

Finally, we show the convergence of the LRNN-C'DG scheme.

lo.e; I[Vunlllo,e on interior edges and ||up, — gllo,e on boundary

Theorem 3.9 Let u and Uy, be solutions of the problem (2.3) and the LRNN-C'DG scheme (2.28), respectively.
If Assumption 3.1 and Assumption 3.7 hold, for any small positive number €, there exist positive integers M, NE

such that if M > M., N° > N¢, then
llu = uplls < Ce.

Proof. We know that in each subdomain,

/ Vyuy - Vyvpdx — Viuy - ngopds = / fopde VK €Ty
K K

oK

Then we add all the elements to obtain

o} (a, vn) = / Fonda Von € Vi,
Q

where
1/— _ __ _
ah(uh,vh) = / thh . thhdf[ — Z / thh . nthds
Q KeT, JOK
— [ Vour - Vaodz — / (Vo) - [on]ds — / {on} - [Vaamlds.
Q En &
So

on(ron) ~ [ {on}- (wmilds + [ ol - (Vaon}ds = [ o] - fenlds
& En En
=l(vp) +/ gn~thhds—/ ngupds.
& &)
And we know ap,(u,vy) = l(vy), so we have
an (R — u,vp) :/, {vn} - [Vrap)ds — / [@n] - {Vhop}ds
&l En
—|—/ nlan] - [[vh]]ds—i—/ gn - Vyopds —/ ngupds.
En £o £o

By the stability and boundedness of a; and (2.13), we get

Csl[an — un|? < an(@h — un, @ — up) = ap (@ — w, Ty — up) + ap (v — up, T — up)

_ Ei{uh—uh}.[thh]ds—/gh[[uh]].{Vh(uh—uh)}ds—i—/gh o] - [ — wnds

+ / gn -V (ay — up)ds — / ng(ay, — up)ds
ey gy
1
2

<C | D h Ml e + D hellVaamllls.e + Y he'lun = gllge | Ilan — unll.

e€g} e€g} eeg?

11

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)



SO

=

_ c 1y . 1y
e = unlls < & D h G e + Y hellVamllla e + D ke Hiww — gllg .

eef} e€s} ec&?

(3.16)
< Ce.

Finally,
lw = unll« < llu = unlls + lun = Tnlls < Ce. (3.17)

4 Space-time LRNN with DG methods for heat equation

In this section, we investigate the use of local randomized neural networks with DG methods for solving a
typical time-dependent PDE, namely the heat equation. Unlike traditional methods that solve the problem by
iterating over time steps, we adopt a space-time approach where temporal and spatial variables are treated equally
and simultaneously. This approach allows us to avoid the accumulation of errors.

Consider
us(t, ) — AMu(t,x) = f(t,z) in 3, (4.1a)
u(0,z) = up(x) in Q, (4.1b)
u(t,x) = g(t,x) on I x 9N, (4.1c)

where 2 C R? is a bounded space domain, I = (0, T) is the time interval, ¥ = I x € is the space-time domain,
u is the unknown solution to be solved, f is the given source term, ug is the initial condition and g is a function
defined on I x 0€2. For convenience, we set the coefficient A = 1.

Here we present the notation of the space-time approach. We partition the space-time domain ¥ into some
subdomains and approximate the solution on each subdomain by using a local neural network. First, we give the
decomposition of the time interval D, = {I; = (t;—1,t;),0 =1tg < t; < --- <tn, =T}, where 7 = max {length(7;)}

€Dy

and N; denotes the number of subintervals along the temporal direction. Let P, = {t;;i = 0,--- , N;} be the
union of the boundary points of all the intervals I; = (t;_1,t;) € D,, and P: = P,\{to,tn,} be the set of all
interior points. Let {7} be the decomposition of Q, where h = maxx e, {diam(K)}. &, £ and £Y have the same
definitions stated in Section 2.2. Let {D, x T} denote the decomposition of the space-time domain ¥.. For Ty,
N denotes the number of elements in 7y, that is, N. = |D; x Tp| = N;N;. Let U}J{ and o, be two neighboring
elements sharing a common spatial face f. Denote by n* = n|gx= the unit outward normal vectors on dK*. For
a scalar-valued function v and a vector-valued function g, let v* = v|5,+ and a* = q|po=. We define the averages
{-} and the jumps [-], [] on f € (D; x &}) by

o} = 50F +v7), Bl=vint +vns,
1 _ o
{ad=5(@" +a7), ld=g"-n"+q -n".
If f € (D, x &), we set

[v]l =vn, {q} =g,

where n is the unit outward normal vector on 0S2.
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Moreover, if o and o are two neighboring elements sharing a common temporal face f, we have w(tf, x) =
w(t;, x)|,,= for a scalar function w. The average {-} and the jump [-] on f; € (PL x T3,) are defined by

(w(t) ) +w(t; @), [wt,z)] =wtf z) —wt;, ).

DN =

{w(ti7w)} =
If f, € (P2 x Tp), we set
[w(th m)} = 7w(t07 :13), [w(tNt7m)] = w(tNmm)7 {w(ta CC)} = w(ta :C)

4.1 Space-time LRNN-DG method

We introduce the following DG space based on the local randomized neural network associated with the partition
D, X Ty:

Vi = {v] € L*(%) : (IixK) VI; € D; VK € Tp},
Qz = {q,: S [LZ(Z)]d : qh|1i><K S [MRNN(Ii X K)]d VIZ' €D, VK € 'Th}

We rewrite the heat equation as the first-order system,

p=Vu inX,
ou
ot

In the above equations, multiply the test functions q and v respectively on subdomain o = I; X K, then we get by
integration by parts,

—-V.-p=f inZX

/p -qdzdt = — / uV - qdzdt + / uq - ndsdt,

I; xOK
—/u@dxdt—k/p-Vvdxdt—F/ (uv) Z?ldx:/fvdxdt—l—/ p - nvdsdt.
o ot o K o I; x0K

We append subscript h on V, append subcript 7 on 0 and append subscript A and 7 on u, v, p and q. Besides,
we use numerical traces uj and pj to approximate u and p in spatial cross-section f € D, x &, and use numerical

traces uj to approximate u in temporal cross-section f € P x Ty,

/p; - qpdxdt = — / up Vy, - qdadt + / ﬁq; - ndsdt,
o o I;x0K

- 0rv —~
/ 8 /pﬁ - Vi, dadt + / (uhvh _do = / fopdadt + / pj, - nvj dsdt.
o Ii><8K

Then we add over all the elements, use integration by parts and (2.7)

[ pi- izt = [ G- aqiardre [ i) danjasat+ [ fai]- 4 - uidasar,
b)) D, xE, D, x&}

a T T
/2 ot hdxdtJr/ph thhdxdtJrZ/ uh (t;,x) — h(ti,m)} Ay, (t;, ) }dx

N¢—1

/fvgdmdt+ Z/ W (15, @)] - {7 (11, @) — ] (s, @) Ve

<[ R [ Rl s

i
h "'Sh
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Here, we take

az:{u;} on f €D, x &,
uA;:g onf€DT><5f3,
uj, = {up} = nluf] on f€P;xT
ﬁ:uo on f € {to} X Tn,
EZ:u}rL on fe{tn,} X Th,
pi, = {Vaui} —nluf] on f €D, x &,
ﬁzvhu;—n(u—g)n on feD,xE&,

where n = nf(hf)fl, and 7y can be different by the choice of the face f. And we choose g} = V,v], then the
space-time LRNN-DG scheme for solving the heat problem is: Find uj, € V;7 such that

Bir (up,vf,) = Uvy) Vo € Vi, (4.8)

where

By, (up, vy,) / ot dxdt—i—/vhuh Vpvpdzdt

N;—1 Ny—1

_ Z / [u},(t;, )] - {v],(t;, ) }dx — Z / n [up (ti, )] - [v],(t;, )] dz (4.9)

- /D (@1 AT} + [ Ay = ] - [o7D) dsat,

l(vp) = / fopdadt — / (gn - Vyvp — nguy )dtds —|—/ uo(x)vj, (to, x)dx. (4.10)
> D, xEP Th

From the above scheme, we can get a linear system of equations
AU =1L, (4.11)

where A is a N.M x N.M matrix, L is a N.M x 1 vector, and there are N.M unknown variables U = {u§iXK :
I, € D.,K € Tp,j =1,2,--- ,M}. Here, the width of the last hidden layer is M. We look for the least-squares
solution for this system. Therefore, the parameters U in the neural networks’ output layers are obtained by the
linear least-squares computation.

Remark 4.1 Because the variables x and t are treated as inputs of the randomized neural networks, the LRNN-DG
scheme (4.8) is based on a space-time approach. Using this approach, we can solve this time-dependent problem in
a single least-squares computation, which is more efficient than traditional iterative approaches.

We give the following lemma to show the consistency of the space-time LRNN-DG method.

Lemma 4.2 The space-time LRNN-DG scheme is consistent, i.e., for the solution u € C°(I; H*())) of the heat
equation (4.1), we have

B (u,vi) =l(vy) Yvj € V. (4.12)

Proof. We know that u € C°(I; H*(Q)) implies [u] = 0, [Vu] = 0 on &, u = g on &2, [u(t;,z)] = O for
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i=1,2,---, Ny — 1 and u(to, ) = ug(x). Then, by the identities (2.6) and (2.7), we have

By (u,vy,) :/ %v;dxdt —|—/ Vu - Vyvpdedt —/ [vr] - {Vu}dsdt
) b D

rXEy

—/ gn - Vyvpdtds +/ ngvydtds —|—/ uo(x)vy, (to, x)dx
D, xEP D, xEP Tr

h

:/@Eﬁmwmw+/ Wrwﬁﬂmf/ [vF] - {Vu}dsdt
% ot D, xEn

DrxE,

—/ gn - Vyvpdtds +/ ngvy dtds +/ uo(x)vy, (to, ¢)dx
D, xEP D, xEP Th

:l(vh).
n

4.2 Space-time LRNN-C'DG method

In this subsection, we introduce the space-time LRNN-C°DG method to address the difficulty of choosing a
proper value of the penalty parameter in the space-time LRNN-DG.

The setting of local randomized neural networks and the partition is the same as described above. In this
approach, we enforce the C°-continuous condition on f € (DT X S,ZL) U (P}. X ﬁ), the initial condition on f €
{to} x T;, and Dirichlet boundary condition on f € D, x 5,? to solve this problem. We add the additional equations
to enforce the solution to satisfy the boundary condition (4.1c). Specifically, we choose some points on boundary
faces, denoted by PY = {(t{,wf) ef:feD, x&,j=1,2,--- N/} and |P/| = N, and require that

up(t], al) = g(t],xl) V(] x]) e Py (4.13)

We add additional equations to ensure that the solution satisfies the initial condition (4.1b). In particular,
we choose points at the initial time ¢y, denoted by Pl = {(to,:cf) e f:fe{to} xThj=12--- Nt} with
|Plo| = N0, and enforce that

up(to, =) = uo(x]) V(to,x]) € Plo. (4.14)

We also ensure that the numerical solution wuy, satisfies certain C°-continuity conditions along the spatial and
temporal directions across the interior faces f € (’DT X E}L) U (’P; X 77L) To achieve this, we pick points on

the boundary faces denoted by Pyt = {(tjf,m;) ef:fe(D-x&),j=12- ,Nj} with |[PJ| = N} and

Pri={@],alyef:fe(PLxT),j=1,2- Ni} with [PT{| = Ni, and enforce that:

[ui(t], 2] =0 v, 2]) e P (4.15)
[%@}@ﬂ:o v(t!,z!) e P, (4.16)

The system of equations with respect to (4.13)-(4.16) confirms the boundary conditions, initial conditions and
continuity conditions of interior edges, so we have

AoU = Lo,

where As is a (NJ+ N+ N} + N%)x N, M matrix, U is a N.M x 1 unknown vector, L is a (N + NP+ N} + Ni)x1
vector. This system of equations reduces the jump of the solution to nearly zero, so the LRNN-C°DG scheme aims
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to find uj € V7 such that

B, (uf,vf) = 1°(vf) Vo, €V,

[up(t],2)] =0 v(t], =l) e P,
[ur(t],2])] =0 v(t!,2]) € PT", (4.17)

ui(t],al) =gt} 2l) V(] =]) e P,

uf,(to, &) = uo(x) Y(to, x]) € P,

where
BY_(ul,v]) = a(;“f vrdadt + / Vaul - Vyoldzdt
> T b
- [ (@1 (T} + 7] (s st (4.18)
xEn

°wp) = [ fopdedt — / gn - Vyvpdids.
= D, xEP

Then we can get global stiffness matrix A; and the right-hand side L; of (4.8), where A; is a NoM x N.M
matrix, L; is a N.M x 1 vector. Combine A, Ay, L1 and Lo, we get a linear system

Al o L1
o= ] w
We seek the least-squares solution to this system, and once we have obtained the weights of the output layer in

each local neural network via linear least-squares computation, we can obtain all the values of the problem (4.1)
in the domain ¥. Notably, this scheme does not rely on the penalty parameter.

Remark 4.3 Based on numerical experiments, we observe that the scheme (4.17) performs well. Surprisingly, even
when we remove the term — [ . [uj] - {Vpv] }dsdt in (4.18), the modified scheme still yields good numerical
results:

BY_(uf,v]) = / foldads Vol € V7, (4.20)
b
where 9ur
BY (uj,v]) = / éuh vy dadt +/ Vpug, - Vyvpdedt — / [vr] - {Vruyp tdsdt. (4.21)
s Ot D) D, xEn

4.3 Space-time LRNN-C'DG method

We briefly outline the space-time LRNN-C'DG method for solving the heat equation, building upon the ideas
presented in Section 2.5.

We introduce a system of equations to enforce that the solution uj, satisfies the boundary condition, the ini-
tial condition, and C°-continuity conditions along both spatial and temporal directions, similar to (4.13)-(4.16).
Additionally, we require that the numerical solution uj satisfies C'-continuity conditions across the interior faces
J € (D; x &) along the spatial direction:

[Vaup(x])] =0 vzl € P (4.22)
So we have the new problem that finding uj, € V}7 such that

By (up,vf) = / fopdtde Vo= (I; x K) € (Dr X Tn), (4.23)
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where
.
T avh

B (i of) = - [ i)

Then we can get the global stiffness matrix A; and the right-hand side Ly, where A; is a N.M x N.M matrix, Lq
isa N.M x 1 vector, such that A U = L.

dtdx + / upvpl  da + / Vuj, - Vi dtdz — / Vuj, - nvj dsdt. (4.24)
K ) o I;x0K

Let u] satisfy the conditions (4.13)-(4.16), C'-continuity condition (4.22). Then we can obtain a system of
equations
AU = Lo, (4.25)

where A, is a (Nﬁt7 + Nio + 2N,i + Ni) x N.M matrix, U is a N.M x 1 matrix of unknown variables, Lo is a
(NJ + Nio +2Nj + NI) x 1 vector. Combine Ay, Ay, Ly and Lo, we obtain

Al o L1
Blu- e w0
We look for the least-squares solution to this system. After the weights of the output layer in each local neural

network are obtained by the linear least-squares computation, we can get all the values of the problem (4.1) in the
domain .

Remark 4.4 We have presented a space-time formulation for solving the heat equation based on LRNN-DG in
the above. Convergence analysis of this method for dynamic problems, however, remains elusive at this point. The
main difficulty lies in proving the stability of the space-time formulation. This outstanding problem requires further
research and will be addressed in a future publication.

5 Numerical Examples

In this section, we present several test problems to demonstrate the performance of the methods developed
herein.

For implementing the neural network, we use the PyTorch library in Python, as stated in Section 2.1. Each
local neural network, for each sub-domain, consists of a single hidden layer with pre-assigned and fixed parameters
that are uniform random values generated from [—wyg, wy], where wq is a constant. Note that wg affects the shape
of the basis functions, so it has an influence on the accuracy of the proposed methods, see more discussion in
[6]. The overall neural network is composed of all the local neural networks, which are coupled with one another
through the DG formulation or the C°/C?! conditions. The integrals in the weak formulations are computed using
Gaussian quadrature, and we employ different numbers of quadrature points for integrals in different examples.
For the following experiments, we use the Tanh function as the activation function. Other activation functions may
be suitable for different problems. For solving the linear system of equations about the output-layer coefficients,
we use the linear least-squares routine from LAPACK, available through wrapper functions in the scipy package in
Python. The DoF i or DoF, in all tables below denote the degrees of freedom on each subdomain, and the DoF
in the figures refers to the total degrees of freedom.

Example 5.1 (One-Dimensional Helmholtz Equation) The first test problem is a one-dimensional Helmholtz
equation on the domain Q = [0, 1],
—Uge + Au = f(2),
u(0) = g1(x),
u(l) = ga2(),
where the A = 10 and f(x) is a prescribed source term, g1(x) and g2(x) are boundary conditions, with the manu-
factured exact solution

1 S
u(z) = 5 (xz +1) ecos(81a°+8m—24)
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h 24 279 2-6
Norm 2 1 2 1 2 1
DoF . L H L H L H

20 4.14E-03 | 2.80E4+00 | 1.17E-04 | 1.95E-01 | 1.06E-05 | 2.53E-02
40 3.46E-05 | 7.20E-02 2.19E-06 | 5.44E-03 | 3.65E-08 | 1.76E-04
80 1.70E-06 | 3.00E-03 | 4.03E-09 | 1.60E-05 | 3.32E-10 | 2.54E-06
160 2.46E-07 | 3.86E-04 | 6.12E-10 | 2.49E-06 | 1.72E-10 | 1.31E-06
320 5.23E-08 | 1.03E-04 | 2.74E-10 | 1.11E-06 | 9.70E-11 | 8.26E-07
640 1.02E-08 | 2.56E-05 2.49E-10 | 7.97E-07 | 9.62E-11 | 6.85E-07

Table 1: Errors of the LRNN-DG method for 1-d Helmholtz equation in Example 5.1.

h 24 279 276
Norm 2 1 2 1 2 1
DoF . L H L H L H

20 1.14E-02 | 5.82E+00 | 3.45E-04 | 4.02E-01 | 2.88E-05 | 8.18E-02
40 9.24E-05 | 1.34E-01 2.07E-06 | 6.11E-03 | 6.64E-07 | 2.98E-03
80 1.40E-06 | 2.46E-03 | 4.12E-09 | 1.30E-05 | 5.19E-10 | 4.90E-06
160 7.41E-08 | 1.10E-04 | 3.79E-10 | 1.62E-06 | 1.24E-10 | 1.04E-06
320 1.48E-08 | 1.91E-05 1.32E-10 | 8.29E-07 | 5.47E-11 | 6.32E-07
640 3.56E-09 | 1.15E-05 1.33E-10 | 9.66E-07 | 5.11E-11 | 6.74E-07

Table 2: Errors of the LRNN-CDG method for 1-d Helmholtz equation in Example 5.1.

h 24 27° 2-6
Norm 2 1 2 1 2 1
DoF . L H L H L H

20 3.10E-03 | 2.19E400 | 9.46E-05 | 1.40E-01 | 8.86E-05 | 2.68E-01
40 1.02E-04 | 1.19E-01 8.89E-06 | 1.35E-02 | 7.07E-08 | 2.95E-04
80 1.13E-06 | 1.17E-03 2.22E-09 | 8.07E-06 | 1.14E-09 | 8.31E-06
160 1.14E-07 | 1.48E-04 | 4.35E-10 | 1.21E-06 | 8.81E-11 | 6.80E-07
320 5.79E-09 | 6.76E-06 1.56E-10 | 6.74E-07 | 5.87E-11 | 4.62E-07
640 2.87E-09 | 9.48E-06 8.06E-11 | 5.42E-07 | 4.11E-11 | 4.96E-07

Table 3: Errors of the LRNN-C'DG method for 1-d Helmholtz equation in Example 5.1.

We partition the interval £ into non-overlapping uniform subintervals of size h and choose the source term f
such that the solution satisfies the boundary value problem given above. The numerical errors in the L2 norm and
the H' seminorm for different numbers of degrees of freedom are shown in Table 1, Table 2, and Table 3.

Table 1 presents the LRNN-DG errors in terms of the number of degrees of freedom per subinterval (DoF k)
and the subinterval size h. In these tests, we set the penalty parameter n to 4, the parameter wg of the uniform
distribution to 5.0, and use 70 quadrature points in each subinterval. It can be observed that for a fixed h, the
errors initially decrease rapidly as the degrees of freedom per subinterval increase, and then the reduction slows
down. For a fixed DoF g, there is a general decrease in errors as h decreases. To further illustrate the performance
of our methods, we show the real solution, numerical solution, and error in Figure 1 for a mesh size h = 27° and
DoFg = 160. It can be seen that the LRNN-DG method can approximate the real solution well, whether the
frequency is high or low.

Table 2 shows the corresponding errors of LRNN-CDG in terms of the number of degrees of freedom per
interval and the size of the element, while Table 3 displays the errors of LRNN-C'DG in terms of DoFg and h.
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Figure 1: Solution and error obtained from LRNN-DG methods in Example 5.1 with h = 275 and DoF g = 160.
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Figure 2: Comparison of the errors obtained by the three methods in Example 5.1.

For LRNN-C°DG, the parameter wq is set to 6 and the number of quadrature points is 70. For LRNN-C'DG, the
parameter wq is set to 5.7 and the number of quadrature points is 70. The trends of errors with respect to the size



h and the DoF g are similar to those observed for LRNN-DG.

Figure 2 compares the errors of the three methods for different sizes h and different norms. Generally, we can
observe that the performance of the three methods is similar, with LRNN-C'DG performing better than LRNN-
C°DG and LRNN-C°DG performing better than LRNN-DG. However, it is important to note that the last two
methods involve more equations due to continuity restrictions on edges, so it is not surprising that they have better
performance.

Additionally, in Example 5.1, we investigate the performance of the LRNN-DG method with reduced DoF g as
the mesh size h decreases. Table 4 presents the errors obtained with fewer local basis functions and smaller grid
sizes. In this test, we set n = 1, wy = 0.4, and use 14 quadrature points in each dimension. Table 4 demonstrates
that the LRNN-DG method can accurately approximate the solution even with relatively few basis functions, as
long as the mesh size is small enough.

DoF g 10 20
, Norm 2 7 12 !
2-3 3.09E+01 | 3.10E+02 | 3.09E+01 | 3.07TE+02
2—4 3.14E-01 4.12E+01 | 3.04E-01 3.55E+01
2-b 1.43E-02 9.63E+00 | 8.53E-03 5.93E4-00
2-6 5.77E-04 7.49E-01 7.84E-04 9.38E-01
2-7 3.32E-06 8.43E-03 1.96E-06 5.13E-03
2-8 6.11E-08 2.68E-04 1.32E-08 6.72E-05
2-9 1.20E-08 9.99E-05 2.08E-09 2.16E-05

Table 4: Errors of the LRNN-DG method for smaller mesh size h in Example 5.1.

Example 5.2 (Two-Dimensional Poisson Equation) Consider the Poisson equation (2.2) on = [0,1]? and
the exact solution u = ™Y sin(3rz + 0.57) cos(ry + 0.27).

In this example, we partition the domain €2 into non-overlapping uniform square elements with edge length h.
The number of quadrature points used in each direction is 14. The numerical errors in the L? norm and the H'!
seminorm for different DoF i and h are shown in Table 5, Table 6, and Table 7.

h 2-1 272 273
Norm 2 1 2 1 2 1
DoF L H L H L H

10 3.40E+00 | 3.95E401 | 3.04E+00 | 7.42E401 | 7.64E-01 | 3.17E+01
20 3.62E-01 | 6.82E+00 | 1.26E400 | 4.99E401 | 5.70E-02 | 4.91E+00
40 1.49E-02 | 5.46E-01 2.04E-03 1.43E-01 1.47E-03 | 2.18E-01
80 1.13E-04 | 6.31E-03 | 1.39E-05 | 1.53E-03 | 2.64E-06 | 6.01E-04
160 3.07E-06 | 2.19E-04 | 1.63E-07 | 2.31E-05 | 3.11E-08 | 8.92E-06
320 6.60E-07 | 6.08E-05 | 2.16E-07 | 3.51E-05 | 2.94E-08 | 1.13E-05

Table 5: Errors of the LRNN-DG method for 2-d Poisson equation in Example 5.2

Table 5 presents the errors of LRNN-DG in terms of degrees of freedom on each element and the size of the
element. In this set of tests, the weight/bias coefficients in the hidden layer of each local network are initialized
with uniform random values generated in the range [-1.2, 1.2], and the penalty parameter is set to . = 1. The L?
norm and H'! seminorm errors initially decrease rapidly with increasing DoF x and then more slowly for fixed h.
We also observe that reducing the size h leads to a decrease in errors for a fixed DoF .
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h 2-1 272 23
Norm 2 1 2 1 2 1
DoF . L H L H L H

10 9.62E-01 | 1.27E+01 | 2.81E-01 | 6.88E+00 | 3.29E-01 | 5.13E400
20 1.46E-01 | 2.55E+00 | 3.03E-02 | 1.35E+400 | 8.57TE-03 | 7.13E-01
40 1.40E-02 | 3.97E-01 2.24E-03 | 1.43E-01 4.57E-04 | 5.89E-02
80 3.39E-04 | 1.53E-02 1.55E-05 | 1.54E-03 | 4.64E-06 | 9.39E-04
160 1.00E-06 | 6.90E-05 | 4.21E-08 | 5.80E-06 1.23E-08 | 3.16E-06
320 4.11E-07 | 2.80E-05 1.24E-07 | 2.08E-05 1.98E-08 | 7.20E-06

Table 6: Errors of the LRNN-C°DG method for 2-d Poisson equation in Example 5.2

h 2~ 1 272 273
Norm 2 1 2 1 2 1
DoF L H L H L H

10 1.31E400 | 1.33E+01 | 1.04E400 | 8.92E+00 | 8.96E-01 | 8.59E+400
20 2.80E-01 | 2.97E+00 | 4.42E-02 | 1.15E+00 | 1.97E-02 | 8.08E-01
40 2.28E-02 | 4.99E-01 | 1.86E-03 | 8.19E-02 | 5.24E-04 | 4.45E-02
80 2.45E-04 | 5.60E-03 | 1.05E-05 | 7.59E-04 | 2.99E-06 | 4.26E-04
160 1.03E-06 | 4.46E-05 | 7.57E-08 | 4.72E-06 | 7.91E-09 | 1.46E-06
320 3.07E-07 | 1.09E-05 | 1.78E-08 | 1.66E-06 | 7.96E-09 | 9.62E-07

Table 7: Errors of the LRNN-C'DG method for 2-d Poisson equation in Example 5.2

Tables 6 and 7 show the errors of LRNN-C°DG and LRNN-C'DG, respectively, in terms of the number of
degrees of freedom on each element and the size of the element. In Table 6, the parameter wy is set to 1.2, and the
number of collocation points is 14. In Table 7, the parameter wy is set to 1.0, and the number of collocation points
is 14. The trends observed for LRNN-C°DG and LRNN-C'DG are similar to those of the LRNN-DG method.

Figure 3 compares the errors of the three methods for different sizes h and different norms. Overall, the
performance of the three schemes is similar, with LRNN-C'DG outperforming LRNN-C°DG and LRNN-C°DG
outperforming LRNN-DG.

We also compare the proposed methods with the finite element method and the discontinuous Galerkin method
programmed with FEniCS ([21]) for this problem. Figure 4 compares the performance of the proposed LRNN-
C'DG and LRNN-DG methods with the FEM and DG methods using piecewise P; polynomial functions. The
results show that the proposed methods achieve significantly smaller errors than the traditional methods with the
same degrees of freedom. However, as the number of basis functions increases, the errors of the LRNN methods tend
to stagnate. This could be attributed to the fact that the basis functions {gij(a:) :j=1,2,--- M} may become
linearly dependent as M increases, resulting in a rank deficient linear system. To further support this observation,
we provide Table 8 which shows the condition number of the global stiffness matrices of the LRNN-DG method in
Example 5.2 with different numbers of basis functions and mesh sizes. As shown in the table, the condition number
increases with the increase of DoF i and the decrease of h. As shown in Table 4 of Example 5.1, one way to reduce
errors is to increase the number of subdomains, i.e., use elements with a smaller size h. Another approach is to
design better neural networks that can provide improved basis functions. This is an aspect we will further explore
in future work.

Figure 5 illustrates the distribution of point-wise absolute errors computed using the three methods with an
element size of h = 272 and Dofx = 320. It can be observed that the absolute error of LRNN-DG is larger but
smoother, while the absolute error of LRNN-C°DG and LRNN-C'DG is smaller but with a larger variation.

Table 9 provides numerical evidence to support the reasonableness of Assumption 3.5 and Assumption 3.7. We
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Figure 3: Errors obtained from three different methods in Example 5.2

perform a test to examine how the jump of the numerical solution wuj and its gradient Vuy vary as the number of
collocation points increases using the LRNN-C*DG method. We consider a vertical interior edge and a horizontal
interior edge and compute the L?(e)-norm of Juy] and [Vuy] on these edges. We also consider a vertical boundary
edge and a horizontal boundary edge and compute the L?(e)-norm of uj — g on these boundary edges. In these
tests, Dof - = 320, and the size of element is h = 272. Table 9 lists these errors corresponding to a set of collocation
points. We observe that ||[ux]lo,e, [[[Vur]llo,e and ||up —gllo,. decrease rapidly with increasing number of collection
points N, reaching a level close to machine zero as N, becomes large.

Example 5.3 (2-D Poisson Equation with Corner Singularities) In this experiment, we use the LRNN-DG
methods to solve the Poisson problem (2.2) with a non-smooth solution around a reentrant corner, which has been
considered recently in [30]. The problem is defined on the L-shaped domain Q = OABCDEQ, as shown in Figure
6. The exact solution is given by u(x,y) = r%ksin(gk‘ﬁ), where (r,0) denotes the polar coordinates, and k > 1
is a prescribed integer. We employ a source term f = 0 and set the boundary condition g according to the exact
solution.

The exact solution is smooth in @ only when £ is a multiple of 3. Otherwise, the (%lﬂ— th derivative of
the solution is singular at the reentrant corner and the solution is non-smooth. Moreover, the solution becomes
smoother as the integer k increases. We apply the LRNN-DG method and LRNN-C'DG method to solve this
problem with £ = 1,3,5. We divide the square domains DEOG, GOFC and OABF into smaller square subdomains
{K} uniformly, and h is the size of each subdomain. Then we show the performances of the LRNN-DG method
and LRNN-C'DG method with different degrees of freedom and sizes of subdomains in Table 10 and Table 11
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Figure 4: Errors obtained by FEM, DG and LRNN with DG methods in Example 5.2

respectively. For the LRNN-DG method, we choose wy = 2.2, n = 130/h when k = 1, wy = 1.4, n = 5/h when
k=3 and wg = 1.4, n = 10/h when k = 5. For the LRNN-C'DG method, the number of the collocation points on
each edge is 11, we choose wg = 1.1 when k£ =1, wy = 0.6 when k = 3 and wy = 0.9, when k = 5.

From Table 10 and Table 11, we observe that with both methods the accuracy improves with more degrees of
freedom in each subdomain and smaller subdomains, for both smooth and non-smooth solutions. The LRNN-DG
method, which is based on a weak formulation, has a better performance for non-smooth solutions than the LRNN-
C'DG method. However, for the smooth solution, the result is opposite. One possible reason is that the penalty
parameter of the LRNN-DG method increases the condition number of the stiffness matrix. We also compare our
results with those in [30]. The LRNN-DG method and LRNN-C*DG method achieve smaller errors for non-smooth
solutions, but for smooth solutions, the methods in [30] perform better.

Furthermore, we show distributions of the exact solution, numerical solution, and absolute errors of the LRNN-
DG method for k = 1,3,5 in Figure 7. The size of the subdomain is h = 1/2, the degrees of freedom in each
subdomain is DoF g = 160, and other parameters are the same as above.

Example 5.4 (1-D Heat Equation) Consider the heat equation (4.1) with Q = [0,1], I = [0, 1], and the constant
A =0.001. We employ the manufactured exact solution

u = _ecos(7r1+37r)+t2.
Let us consider the space-time LRNN with DG methods for solving the heat equation. Tables 12, 13, and 14
show the numerical errors measured in the L2 norm and the H' seminorm at ¢ = 1 for different numbers of degrees
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h 1 _2 -3
DoF 2 2 2

5 5.57TE+02 | 7.81E4+04 | 2.65E+05
10 1.12E404 | 2.77TE+06 | 4.97E+06
20 8.72E+06 | 6.60E+08 | 5.95E+08
40 2.36E+10 | 2.13E+12 | 2.56E+12
80 1.01E4+16 | 3.17TE+16 | 1.46E+17
160 8.47E+16 | 3.97TE+17 | 2.04E+18
320 2.13E+17 | 1.11E+18 | 3.41E+18

Table 8: Condition number of stiffness matrices computed by LRNN-DG in Example 5.2

N Vertical Edge Horizontal Edge

* [ Tundlow [ MV unllow | Tun— glloe | Mundlow | NV unllow | Tun—glloe
5 2.46E-05 | 3.77E-04 | 4.24E-06 6.01E-05 | 3.87E-04 | 1.87E-05
10 | 1.91E-08 | 1.68E-06 | 5.14E-09 3.23E-08 | 1.27E-06 | 7.67E-09
20 | 1.07E-11 1.24E-10 | 5.43E-11 6.80E-11 | 4.12E-10 | 1.46E-10
40 | 2.08E-12 | 5.32E-12 | 5.66E-12 1.08E-12 | 1.48E-11 | 4.72E-12
80 | 2.57E-12 | 3.29E-12 | 5.90E-12 1.67E-12 | 1.51E-12 | 6.40E-13

Table 9: Norm of [un], [Vup], and uj, — g computed by LRNN-C'DG in Example 5.2

of freedom. The domain I x € is partitioned into non-overlapping subdomains ¢ = I; x K, where I; is a time
interval, K is a space interval, and both have the same size h. In these methods, 14 quadrature points are used in
each direction.

Table 12 presents the L? and H' errors of the space-time LRNN-DG method at ¢t = 1, in terms of the number
of degrees of freedom per element and the element size. For these tests, we have set the penalty parameter 7, = 4,
and the weight /bias coefficients in the hidden layer of each local network are initialized as uniform random values
within the range [—0.9,0.9]. Table 13 reports the errors of the space-time LRNN-C°DG method at ¢ = 1. In this
case, we use 12 collection points on each edge, and the parameter wq is set to 1. Table 14 presents the errors of
the space-time LRNN-C'DG method at t = 1. We use 14 collection points on each edge and choose the parameter
wq to be 1.2.

For comparison, we also solved this problem using P» finite element for spatial discretization and the backward
Euler scheme for time stepping. The numerical errors for ¢ = 1 are presented in Table 15, where h denotes the mesh
size and At denotes the time step. By comparing the results in this table with those of our proposed methods, we
observe that the space-time LRNN-DG methods can achieve more accurate numerical solutions.

Figure 8 shows the distribution of point-wise absolute errors in the spatial-temporal domain obtained using the
proposed methods and the traditional FEM programmed with FEniCS. In the space-time LRNN with DG methods,
the size of each element is A = 272 and the number of degrees of freedom in each element is DoF, = 320. In the P,
FEM with the backward Euler scheme, the size of the mesh is ho = 279 and the size of the time step is At = 2718,
We can see that the absolute error of the LRNN-DG method is larger but smoother, while the absolute error of the
LRNN-C°DG and LRNN-C'DG methods are smaller but have stronger variations. Due to time marching, error
accumulation over time is evident in the result of FEM, whereas there is little or essentially no error accumulation
for the proposed space-time LRNN with DG methods.

Example 5.5 (2-D Heat Equation) We consider a two-dimensional heat equation (4.1) with spatial domain
Q2 =10,1] x [0,1] and temporal interval I = (0,5). The exact solution for this test is given by

—0.2t

u=e sin(2mx) sin(27y).
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(a) Exact solution (b) Absolute error for LRNN-DG method
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Figure 5: Absolute errors computed by three methods in Example 5.2

Table 16 presents the L? and H' errors of the space-time LRNN-DG method at ¢ = 5, in terms of the number of
degrees of freedom in each element and the element size. In this numerical experiment, we set the penalty parameter
7. = 3, the parameter wy = 0.49, and the number of quadrature points is 9 for each direction. The space-time
LRNN-DG method has very good performance in this example as well. Note that the space-time LRNN-C°DG and
LRNN-C'DG schemes exhibit similar performance to the LRNN-DG method, and so their results are not included
here.

Figure 9 compares the point-wise absolute errors at ¢ = 5 and the total computation time obtained by the
space-time LRNN-DG method and the traditional DG method (together with the Crank-Nicolson scheme). In the
DG method, we use the IPDG scheme with P, elements applied on uniform triangular meshes with a mesh size hs,
and the Crank-Nicolson scheme is employed with a time step At. The DG implementation is based on the FEniCS
library (version 2019.1.0), and the current LRNN-DG method is implemented based on PyTorch 1.12.1. To collect
the computation time, all these programs for Example 5.5 have been run on the same CPU. Comparing Figures 9a
with 9c and 9b with 9d, we observe that LRNN-DG achieves a better accuracy with less computation time. Note
that the FEniCS library implements a number of techniques to boost performance and is highly optimized for its
(traditional) DG implementation. In contrast, the LRNN-DG is based on our current implementation, which lacks
those optimizations in FEniCS (and is available to the traditional DG). But still, the current method shows a very
competitive performance.
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Figure 6: The L-shaped domain 2 = OABCDEQ with an reentrant corner at O.

6 Summary

The local randomized neural networks with discontinuous Galerkin formulations offer a new approach to solving
partial differential equations. By decomposing the domain, we use LRNNs to approximate the solution on each
subdomain and apply the IPDG scheme to couple these LRNNs together. The weights of output layers are ob-
tained by the least-squares method. With appropriate assumptions, we prove the convergence of these methods.
Additionally, we propose space-time LRNN-DG methods to solve the heat equation, which offer several advantages:
(i) achieving better accuracy than FEM or the usual DG method with fewer degrees of freedom; (ii) LRNN-C°DG
and LRNN-C'DG methods are penalty parameter-free compared to DG methods; (iii) the space-time LRNN-DG
methods can solve time-dependent problems more precisely and efficiently.

We are confident that the proposed methods have significant potential for solving partial differential equations.
However, there are still several aspects of these methods that require further investigation. In this paper, we have
only considered linear partial differential equations. An immediate question is the following. Can one extend the
methods and the analysis to nonlinear partial differential equations? This problem is non-trivial and currently
under investigation, and it will be addressed in a future publication. Our numerical examples suggest that the
errors of these methods plateau when the number of degrees of freedom reaches a certain threshold. Is it possible to
design other neural networks (e.g., deep neural networks) to avoid this issue? Can we leverage parallel processing
to improve their efficiency? How can we incorporate mesh adaptation to enhance their performance for complex
problems? Additionally, deriving error estimates for the proposed methods is another crucial area for future work.

Acknowledgement. The authors are grateful to Professor Zongben Xu for his valuable suggestions and discus-
sions, and to the anonymous referee for the insightful comments and feedback that improved the paper.
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k 1 3 5
Norm 2 1 2 1 2 1
h, Do L H L H L H
1, 160 3.14E-04 | 3.25E-02 | 1.86E-07 | 6.51E-06 1.32E-06 | 4.89E-05
1/2, 160 1.00E-04 | 2.08E-02 | 4.78E-08 | 3.44E-06 1.50E-07 | 1.10E-05
1/4, 160 3.21E-05 | 1.30E-02 | 1.93E-08 | 2.88E-06 3.89E-08 | 5.84E-06
1/4, 40 4.65E-04 | 3.45E-02 | 3.22E-02 | 2.63E+00 | 4.00E-03 | 3.26E-01
1/4, 80 8.20E-05 | 1.72E-02 | 1.29E-06 | 1.52E-04 2.08E-06 | 2.48E-04
1/4, 160 3.21E-05 | 1.30E-02 | 1.93E-08 | 2.88E-06 3.89E-08 | 5.84E-06
1/4, 320 3.55E-05 | 1.14E-02 | 1.28E-08 | 2.03E-06 2.38E-08 | 3.83E-06

Table 10: Errors of the LRNN-DG method for 2-d Poisson equation with the non-smooth solution in Example 5.3

k 1 3 5
Norm
h, Do L? o' L? H! L? H!

1, 160 5.10E-03 | 1.53E-01 | 1.10E-08 | 2.43E-07 | 3.91E-06 | 1.12E-04
1/2,160 | 1.92E-03 | 7.36E-02 | 4.56E-09 | 1.88E-07 | 1.14E-07 | 5.38E-06
1/4,160 | 1.03E-03 | 4.61E-02 | 1.57E-09 | 1.25E-07 | 1.09E-08 | 8.10E-07
1/4, 40 4.05E-03 | 1.83E-01 | 2.52E-05 | 9.82E-04 | 1.69E-04 | 7.10E-03
1/4, 80 2.62E-03 | 9.87E-02 | 1.23E-08 | 8.47TE-07 | 4.60E-07 | 3.32E-05
1/4,160 | 1.03E-03 | 4.61E-02 | 1.57E-09 | 1.25E-07 | 1.09E-08 | 8.10E-07
1/4, 320 | 1.39E-03 | 4.29E-02 | 1.27E-09 | 1.12E-07 | 7.44E-09 | 4.71E-07

Table 11: Errors of the LRNN-C'DG method for 2-d Poisson equation with the non-smooth solution in Example
5.3
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Figure 7: The exact solution (a, d, g), the numerical solution (b, e, h) of the LRNN-DG method and the point-wise
absolute error of the LRNN-DG method (c, f, i) to the Poisson equation. a—c: k = 1 (non-smooth), d-f: k = 3
(smooth) and g-i: k = 5 (non-smooth) in Example 5.3
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Figure 8: Absolute errors computed by proposed methods and FEM in Example 5.4
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Figure 9: Distributions of the pointwise absolute error at t = 5 and the computation time obtained by the LRNN-
DG method and the traditional DG method in Example 5.5
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