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AbstractAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
An understanding of human brain individuality requires the integration of data on brain orga-

nization across people and brain regions, molecular and systems scales, as well as healthy

and clinical states. Here, we help advance this understanding by leveraging methods from

computational genomics to integrate large-scale genomic, transcriptomic, neuroimaging,

and electronic-health record data sets. We estimated genetically regulated gene expression

(gr-expression) of 18,647 genes, across 10 cortical and subcortical regions of 45,549 people

from the UK Biobank. First, we showed that patterns of estimated gr-expression reflect

known genetic–ancestry relationships, regional identities, as well as inter-regional correla-

tion structure of directly assayed gene expression. Second, we performed transcriptome-

wide association studies (TWAS) to discover 1,065 associations between individual varia-

tion in gr-expression and gray-matter volumes across people and brain regions. We bench-

marked these associations against results from genome-wide association studies (GWAS)

of the same sample and found hundreds of novel associations relative to these GWAS.

Third, we integrated our results with clinical associations of gr-expression from the Vander-

bilt Biobank. This integration allowed us to link genes, via gr-expression, to neuroimaging

and clinical phenotypes. Fourth, we identified associations of polygenic gr-expression with

structural and functional MRI phenotypes in the Human Connectome Project (HCP), a small

neuroimaging-genomic data set with high-quality functional imaging data. Finally, we
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showed that estimates of gr-expression and magnitudes of TWAS were generally replicable

and that the p-values of TWAS were replicable in large samples. Collectively, our results

provide a powerful new resource for integrating gr-expression with population genetics of

brain organization and disease.

IntroductionAU : Pleasenotethatrefs1582; 1733; 1834; 3957; 4560; 4649and5492areduplicatereferences; hence;wedeletedtheduplicatedreferencesandthereferencecitationsintexthavebeenreorderedtobeinsequentialorder:Pleasecheckandcorrectwherenecessary:
Much of human neuroscience seeks to understand the biological basis of individual variation

in brain organization [1–6]. Studies have shown that this variation is stable over time [7,8],

predicts function or behavior [9,10], and can act as a fingerprint of healthy [11,12] and dis-

eased [13,14] brain states. They have also shown that much of this variation is strongly herita-

ble and therefore genetically encoded [15–18]. Separately, complementary studies have shown

the presence of correlated variation in gene expression and neural organization across brain

regions [19–27]. Collectively, this literature motivates the need for integrative analyses of brain

individuality across people and brain regions.

Such integrative analyses ultimately require data on genomes, brain-wide gene expression,

as well as neuroimaging and clinical phenotypes in the same human populations. Correspond-

ingly, such analyses are hampered, at present, by the lack of these multifaceted data. Instead,

the genetic basis of individual variation in neuroimaging phenotypes is primarily investigated

with genome-wide association studies (GWAS) [16–18,28–32]. Prominent examples of these

studies have used data from the ENIGMA Consortium [33,34], the UK Biobank [35–37], and

the ABCD Project [38]. These studies have linked variation in phenotypes to single-nucleotide

polymorphisms (SNPs), variants of DNA base pairs at specific positions in the genome.

Strengths of these studies include the ability to scan whole genomes and to directly discover

nucleotide-level underpinnings of neuroimaging phenotypes. Limitations of these studies

include the inability to disambiguate correlated association patterns of adjacent SNPs (known

in genetics as linkage disequilibrium) and, more generally, to identify biological mechanisms

of variation in neuroimaging phenotypes. They also include the need to test millions of associ-

ations (1 test for each pair of SNP and phenotype) and the consequent burden on statistical

power necessitated by stringent correction for these many tests. In practice, robust GWAS for

many complex phenotypes, such as height or blood pressure, can require samples from mil-

lions of people [39–41]. The costs of imaging the brain, however, make it impossible to acquire

samples of this size in neuroimaging research [42]. Collectively, these limitations have left gaps

in existing analyses of human brain individuality.

Here, we help to bridge these gaps by estimating genetically regulated gene expression, or

gr-expression, across cortical and subcortical brain regions. Gene expression is regulated by

multiple genetic and environmental factors. Our estimation focuses on one of these factors,

genetically encoded elements that are close to the gene along the linear genome (cis-genetic

regulation) [43]. We do not consider other factors, including genetically encoded elements far

from the gene (trans-genetic regulation), as well as environmental factors. The genetics litera-

ture includes a variety of methods for estimating regional gr-expression from genetic data

[44,45]. Our study uses Joint-Tissue Imputation, a state-of-the-art method that trains linear

regression models of gr-expression on directly measured gene expression from postmortem

samples [43].

We used this estimated gr-expression to perform transcriptome-wide association studies or

TWAS. We specifically associated Joint-Tissue estimates of gr-expression with neuroimaging
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phenotypes and brain-related clinical phenotypes. TWAS follow the same methodology as

GWAS, except that they link variation of neuroimaging phenotypes to regionally specific gr-

expression of genes, rather than to regionally agnostic variation of SNPs. TWAS have several

advantages over GWAS: they integrate signals across multiple SNPs, provide interpretable

results at the level of genes, are less susceptible to linkage disequilibrium, and require many

fewer statistical tests. However, TWAS are also limited to genes with available estimates of

regional gr-expression and, like GWAS, are ultimately association studies that cannot alone

establish causal effects of genes on phenotypes[46].

TWAS are common in the wider genomics literature [44–48] but, despite their advantages,

are rare in neuroimaging genomics. We hypothesize that one major reason for their lack of

adoption lies in the relatively theoretical nature of their appeal to neuroimaging researchers.

First, the indirect nature of estimated gr-expression can make it difficult to relate this quantity

to directly assayed gene expression of regional transcriptomic studies. Second, the similarly

indirect nature of TWAS can make it difficult to ascertain the practical advantages of these

studies relative to the more established GWAS. For example, the few existing TWAS of neuro-

imaging phenotypes in the literature [49–52] have not benchmarked these analyses against

GWAS. Third, and related to these limitations, the field lacks integrated resources that link

associations of regional estimates of gr-expression and SNPs on the one hand, to neuroimag-

ing and clinical phenotypes on the other hand.

We propose that overcoming these limitations can help facilitate the adoption of TWAS in

neuroimaging genomics. Here, we help to do so by using estimated gr-expression to integrate

large-scale genomic, transcriptomic, neuroimaging, and clinical data sets. First, we showed

that patterns of estimated gr-expression recapitulate brain regional identities and inter-

regional correlation structure of directly assayed gene expression. Second, we used these esti-

mates to perform TWAS of gr-expression and gray-matter volumes in the UK Biobank data

set [35–37]. We directly benchmarked these TWAS against GWAS to show broad similarities

but also important differences in the interpretability and statistical power of these approaches.

Third, we integrated our results with an independent TWAS of brain-related clinical pheno-

types from BioVU, the Vanderbilt Biobank [53]. This integration linked SNPs and genes to

neuroimaging and clinical phenotypes through associations with estimated gr-expression.

Fourth, we built polygenic models of gr-expression to discover associations of gr-expression

with neuroimaging phenotypes in the Human Connectome Project (HCP) [54], a small neuro-

imaging-genomic data set with high-quality functional imaging data. Finally, we showed that

estimates of gr-expression were replicable in an independent data set. We also showed that

magnitudes of TWAS were generally replicable while p-values of TWAS were replicable in

large samples of the UK Biobank. We developed a browser-based application for interactive

exploration of our multifaceted association results. Collectively, our analyses help to facilitate

the adoption of TWAS in neuroimaging genomics.

Results

Estimation of genetically regulated gene expression across brain regions at

biobank scale

We used Joint-Tissue Imputation [43], a recently developed state-of-the-art method from

computational genomics, to estimate the genetically regulated expression of 18,647 genes

across 10 cortical and subcortical brain regions for 45,549 people from the UK Biobank

(64 ± 7.7 years old, 52% female) and 657 people in the HCP (29 ± 3.6 years old, 52% female).

Joint-Tissue Imputation models estimate genetically regulated gene expression (gr-expres-

sion) as a weighted linear combination of SNPs that are close to the gene of interest along the
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Fig 1. AU : AbbreviationlistshavebeencompiledforthoseusedinFigs1to6andTable1:Pleaseverifythatallentriesarecorrect:Estimation of genetically regulated gene expression from genetic data. (A) Pipeline for estimation of gr-

expression with Joint-Tissue Imputation. Left: Joint-Tissue Imputation models are trained on genetic sequences and

directly assayed gene expression from postmortem brain samples in the GTEx and PsychEncode projects. Center: The

models are trained to estimate gr-expression as a weighted sum of SNPs that are close to the gene of interest along the

linear genome. The estimation includes elastic-net regularization because the number of these SNPs typically exceeds

the number of samples in the training data. Right: The trained models were used to estimate gr-expression from

genetic sequences of neuroimaging-genomic samples in the UK Biobank and the HCP. (B) An illustration of the 10

cortical and subcortical regions with available models of gr-expression. Numbers in parentheses refer to all models that

passed baseline performance thresholds for the prediction of observed gene expression on held-out data (r2 > 0.01 and

pFDR < 0.05). (C, D) Predictive performance of gr-expression models on held-out data from the GTEx data set. (C)

Histograms of r2, the variance of directly assayed gene expression explained by estimated gr-expression. (D)

Histograms of p-values (−log10 pFDR) on these r2 values. Regions are colored as in panel B. FDR, false discovery rate;

GTEx, Genotype-Tissue Expression Project; HCP, Human Connectome Project; SNP, single-nucleotide

polymorphism.

https://doi.org/10.1371/journal.pbio.3002782.g001
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linear genome. These models learn weights for each tissue–gene pair by training on genetic

sequences and directly measured gene expression from postmortem samples (Fig 1A). Joint-

Tissue Imputation leverages shared patterns of genetic regulation across brain regions to

improve the estimation of gr-expression in individual regions. In this way, this method extends

and generalizes PrediXcan, a pioneering estimation method that models gr-expression by

training models only on expression data from the brain region of interest [55].

In our study, we used Joint-Tissue Imputation models that were previously trained on

whole-genome sequences and gene-expression data from 838 brain samples in the Genotype-

Tissue Expression Project (GTEx) [56]. The samples comprise 10 cortical and subcortical

regions (Fig 1B). To test the replicability of our analyses, we additionally used the same models

trained on sequencing and expression data from 415 independent samples of the dorsolateral

prefrontal cortex (DLPFC) in the PsychENCODE Project [57]. Collectively, we considered

94,345 Joint-Tissue Imputation models, or all performant brain-regional models currently

available in the literature.

Joint-Tissue Imputation models have been extensively validated in previous work [44–48].

This validation included quantifying the relationship of gr-expression to directly assayed

expression. In this study, we adopted all models of gr-expression that passed baseline perfor-

mance thresholds for the prediction of observed gene expression on held-out data (r2 > 0.01

and pFDR < 0.05). In practice, the predictive performance of gr-expression models spanned a

wide range (Fig 1C and 1D). Low predictive performance does not necessarily mean that the

models are inaccurate because the genetic regulation of gene expression—the upper bound on

predictive performance—varies considerably for individual genes. Moreover, relatively low

associations between gr-expression and assayed expression are more than offset by gains in

statistical power of transcriptome-wide association analyses, as we describe below.

Genetically regulated gene expression recapitulates the organization of

directly assayed gene expression

We began by testing the extent to which gr-expression recapitulated existing knowledge of

genetic-ancestry relationships, brain-regional identities, as well as inter-regional correlations

of directly assayed gene expression.

First, we tested if gr-expression patterns reflected known genetic-ancestry relationships

from the ethnically diverse sample of the UK-Biobank cohort (Methods, S1 Table). Genetic

ancestry denotes genetic commonalities within groups of people but does not necessarily

reflect genealogical ancestry (family lines) or self-reported ethnicity. We followed standard

practice to estimate genetic ancestry using principal component analysis of gene data. We spe-

cifically used principal component analysis to generate low-dimensional embeddings of brain-

wide gr-expression from each person (using the people × [brain-wide gr-expression] matrix).

As expected, this analysis partitioned people into clusters of African, Asian, and European

populations with gradients between these clusters reflecting known patterns of genetic admix-

ture (Fig 2A). This embedding reflects patterns of genetic ancestry that are known and were

previously described in analyses of genetic-sequence data [58].

Second, we tested if gr-expression patterns reflected regional brain identities across people

in the same sample. For this analysis, we generated principal component embeddings of indi-

vidual region-specific gr-expression (using the regions × [regional gr-expression] matrix). This

analysis partitioned gr-expression into well-delineated regional clusters and revealed anatomi-

cally interpretable groups of cortical, limbic, and basal ganglionic clusters (Fig 2B). Collec-

tively, these results show that gr-expression simultaneously reflects genetic-ancestry identities

across people and brain-regional identities within people. They imply, specifically, that
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Fig 2. Genetic ancestry, regional identity, and inter-regional organization of estimated gr-expression. (A, B)

Principal component embeddings of estimated gr-expression from the ethnically diverse sample of the UK-Biobank

cohort (S1 Table). (A) An embedding of brain-wide gr-expression: scatter plots of principal components of the people
× [brain-wide gr-expression] matrix, where people denote people from the UK-Biobank sample and brain-wide gr-
expression denotes brain-wide estimates of gr-expression for all genes that had Joint-Tissue Imputation models for

each of the 10 regions. (B) An embedding of regional gr-expression: scatter plots of principal components of the

regions × [regional gr-expression] matrix where regions denote the 10 regions of people from the UK-Biobank sample

and regional gr-expression denotes regional estimates of gr-expression for all genes that had Joint-Tissue Imputation

models for each of these regions. (C–K) A 3 × 3 matrix of plots of inter-regional coexpression: correlations between

directly assayed expression and estimated gr-expression. The first row and column show results on directly assayed

gene expression data from the Allen Human Brain Atlas. The second row and column show results on directly assayed

gene expression data from the GTEx project. The third row and column show results on estimated gr-expression from

the ethnically diverse sample of the UK-Biobank sample. (C, G, K) Associations between inter-regional coexpression

PLOS BIOLOGY Integration of estimated gene expression with neuroimaging and clinical phenotypes
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associations of gr-expression, or TWAS, can capture variation across people, similarly to

GWAS, as well as variation across regions, similarly to regional transcriptomic studies.

Third, we compared inter-regional correlations of estimated gr-expression to inter-regional

correlations of directly assayed expression data from the Allen Human Brain Atlas and the

GTEx Project. Recent studies have shown that inter-regional coexpression exponentially

decays as a function of inter-regional distance [59,60]. We reproduced these relationships by

showing strong inverse nonlinear relationships between inter-regional coexpression in the

Allen and GTEx data and Euclidean distance: Allen versus distance rspearman = −0.711 and

GTEx versus distance rspearman = −0.721 (Fig 2C and 2G). We found a similar, albeit weaker,

relationship in the estimated gr-coexpression data: UK Biobank versus distance rspearman =

−0.480 (Fig 2K). More directly, we found strong linear relationships between the inter-

regional coexpression in the Allen and GTEx data: Allen versus GTEx rpearson = 0.683 (Fig

2D). We found similar relationships between estimated and directly assayed inter-regional

coexpression: UKB versus Allen rpearson = 0.613 and UKB versus GTEx rpearson = 0.861 (Fig 2E

and 2H). Heatmaps of all coexpression patterns reflected associations between cortical, basal

ganglionic, and other subcortical systems (Fig 2F, 2I and 2J). Finally, we showed that the rela-

tionship of coexpression with distance was not sufficient to explain these similarities of coex-

pression (p � 0.005 for all tests).

Collectively, these results provide multifaceted support for the biological validity, anatomi-

cal interpretability, and practical utility of estimated gr-expression. In this way, they establish a

foundation for the use of gr-expression in neuroimaging TWAS.

TWAS link genetically regulated gene expression with regional gray-matter

volumes

We hypothesized that the integration of multiple SNPs into models of regional gr-expression

would allow us to detect novel and neurobiologically meaningful associations. To test this

hypothesis, we performed TWAS to identify associations between individual variation of

regional gr-expression and gray-matter volumes (Fig 3A). Gray-matter volumes are heritable

phenotypes that have been linked to many genetic variants in previous GWAS [16,17,31]. We

focused our association studies on 8 regions with available FreeSurfer [61] segmentations and

therefore excluded substantia nigra and hypothalamus from subsequent analyses (see Methods

for regional definitions).

Our first TWAS inferred associations between gray-matter volumes and gr-expression of

the same regions. To minimize the confounders of genetic ancestry, we restricted our analyses

to the “White British” sample of the UK-Biobank cohort (S1 Table) [37]. We therefore per-

formed TWAS on 39,565 people (52.2% female, 64.3 ± 7.7 years old), with covariates of genetic

ancestry, sex, and age (Methods).

We identified 1,065 associations (of 778 unique genes) between gr-expression and the vol-

umes of 8 brain regions (pFDR < 0.05, Fig 3B and S1 and S2 Tables). The number of regional

associations varied from 68 genes in the amygdala to 205 genes in the cerebellar hemisphere.

Many genes that were found in this analysis, including CRHR1, ARL17A, NSF, and OGFOD2,

and Euclidean distance in each data set. (D, E, H) Associations between inter-regional coexpression across data sets. P-

values denote the probability of obtaining coexpression of at least equal magnitude in data with preserved correlation

coefficients between coexpression and Euclidean distance (estimated from 10,000 random samples). (F, I, J) Heatmaps

of inter-regional coexpression, averaged across people in each data set (regional numbers follow numbers in panel B).

DLPFC, dorsolateral prefrontal cortex; GTEx, Genotype-Tissue Expression Project.

https://doi.org/10.1371/journal.pbio.3002782.g002
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Fig 3. Variation of regional gr-expression and regional volumes across people. (A) A pipeline for transcriptome-

wide association studies, or TWAS, of neuroimaging phenotypes. The inputs to TWAS comprise values of regional gr-

expression (left) and regional phenotypes (right), estimated in the same people. The outputs are associations between

the individual variation of regionally specific gr-expression and neuroimaging phenotypes across people (center). (B)

Within-regional associations of gr-expression and gray-matter volumes for 2 representative regions. Each point denotes

an association between the individual variation of gr-expression and volume in the same region. The horizontal axis

shows the chromosome location of individual genes. The vertical axis shows the p-values (–log10 p) of associations.

Solid-color points represent associations that pass the thresholds of pFDR = 0.05 or pBonferroni = 0.05 (horizontal lines).

Source data can be found in S2 Table. (C) Associations between SNP-based GWAS and gene-based TWAS for 2

representative regions. Left: Scatter plots of p-values (–log10 p) for associations of all genes and SNPs. These plots

preserve all genes and SNPs but lack the one-to-one relationship between genes and SNPs. Right: Corresponding scatter

plots for the best-performing genes and SNPs. Each gene in TWAS matches with its best-performing SNP in GWAS.

Similarly, each SNP in GWAS matches with its best-performing gene in TWAS. These plots show one-to-one

relationships but exclude many genes and SNPs. (D) Numbers of associations (pFDR < 0.05 or pBonferroni < 0.05)

detected with TWAS and GWAS. Solid colors denote numbers of associations detected with TWAS alone. Beige colors

denote number of genes detected with GWAS alone. Stripe patterns denote numbers of genes detected with both TWAS

and GWAS. The top bar for each region adopts an FDR correction for TWAS associations (pFDR < 0.05), while the

bottom bar adopts a stricter Bonferroni correction (pBonferroni < 0.05). (E, F) Enrichment analyses of TWAS for

biological annotations in the NHGRI-EBI GWAS Catalog. (E) Enrichment for biological annotations of genes whose gr-

expression predicted regional volumes (pFDR < 0.05). Each point represents a biological annotation associated with at

least 1 gene. The horizontal axis shows the p-values (–log10 pFDR) of individual annotations. Source data can be found in

S3 Table. (F) Relationship between p-values and brain-relatedness of biological annotations. The horizontal axis shows

bins of p-values (–log10 pFDR). The vertical axis shows the fraction of brain-related annotations within each bin. The p-

value on the correlation coefficient was computed by permuting the annotations (estimated from 10,000 random

samples). (G, H) Heatmaps of inter-regional TWAS between gr-expression and regional volumes. (G) Absolute

numbers of associations. Numbers of genes whose gr-expression in 1 region (columns) predicted (pFDR < 0.05) the

volume of another region (rows). Source data can be found in S4 Table. (H) Overlap coefficients. Number of genes that

were common to both intra-regional and inter-regional associations in G, normalized by the size of the smaller of the

intra- and inter-regional gene sets. FDR, false discovery rate; GWAS, genome-wide association studies; SNP, single-

nucleotide polymorphism; TWAS, transcriptome-wide association studies.

https://doi.org/10.1371/journal.pbio.3002782.g003
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have been implicated in previous GWAS of regional brain volumes, and have also been linked

to brain disorders, including epilepsy, schizophrenia, and brain cancer [62–64].

TWAS reinforce GWAS associations and discover novel associations

To directly show the methodological advantages of gene-based TWAS, we directly compared

these studies to SNP-based GWAS. We made this comparison in 3 complementary ways.

Direct relationship to GWAS. First, we performed a GWAS on the same sample and com-

pared our TWAS associations for individual genes to GWAS results for the SNPs that formed

part of corresponding models of gr-expression. These comparisons were dominated by many-

to-many relationships between genes and SNPs, because several SNPs typically predict the gr-

expression of a single gene, and similarly, a single SNP can help predict the gr-expression of

several genes. The correlations between GWAS and TWAS p-values were moderate but statis-

tically significant (0.275 � rspearman � 0.373, p < 0.001 for all regions, Fig 3C left, S1 Fig). To

focus on the strongest TWAS and GWAS signals, we filtered these data in a way that retained

the lowest p-value SNP for each gene and, simultaneously, the lowest p-value gene for each

SNP. This process resulted in much stronger and strictly one-to-one relationships (0.479 �

rspearman � 0.583, p < 0.001 for all regions, Fig 3C right and S1 Fig). Collectively, these results

show that gene-based TWAS associations are related to, but also distinct from, SNP-based

GWAS associations.

Statistical power. Second, we investigated the nature of these differences by contrasting the

number of associations detected by TWAS and GWAS. The high multiple-testing burden of

GWAS typically requires strict genome-wide Bonferroni corrections. By contrast, the relatively

smaller number of statistical tests in TWAS results in a lower multiple testing burden, and the

expected polygenic associations of many phenotypes make it common to adopt less strict false

discovery rate (FDR) corrections as an alternative to Bonferroni [48]. In our analyses, TWAS

under both corrections identified many more genes than the corresponding GWAS (Fig 3D).

Specifically, under FDR correction, TWAS detected associations of 673 unique genes (pFDR <

0.05) that lacked GWAS associations of corresponding SNPs (pBonferroni < 0.05). Many of

these genes have been previously linked to brain-related disorders, including Alzheimer’s dis-

ease (WDR12, AGFG2, and CDK5RAP3), schizophrenia (SRA1, WDR55, CORO7, DDAH2,

PCDHA8), autism spectrum disorder (MAPK3, PCDHA13), and major depressive disorder

(ZMAT2 and ITIH4) [65–74]. Separately, under Bonferroni correction, TWAS detected associ-

ations of 110 unique genes (pBonferroni < 0.05) that lacked GWAS associations of correspond-

ing SNPs (pBonferroni < 0.05). These results show that TWAS discovers associations of many

genes that are undetected with GWAS.

Neurobiological interpretability. Third, to interpret the function of discovered genes more

systematically, we tested the enrichment of our TWAS results using the NHGRI-EBI GWAS

Catalog, a catalog of gene annotations curated from all human GWAS in the current literature

[75]. We discovered 276 enriched biological annotations at pFDR < 0.05 (Fig 3E and S3 Table)

and found that brain-related annotations were much more likely to be enriched than other

annotations in the catalog (p < 0.001). Moreover, in addition to the overall enrichment for

brain-related annotations, we found a strong positive correlation between the p-values of the

enrichment and the fraction of discovered brain-related annotations (rspearman = 0.964,

p < 0.001, Fig 3F). In other words, we found that the most enriched gene annotations were

primarily brain related. S2 Fig shows that these enrichments were replicable with a Bonferroni

correction on TWAS associations. Collectively, these results show the neurobiological rele-

vance of our discoveries.
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TWAS discover associations of genetically regulated gene expression in one

brain region with gray-matter volumes of other regions

Separately, we built on our region-specific TWAS findings to test for associations between gr-

expression in one brain region and gray-matter volumes of other regions. Such associations

are undefined for SNPs (because all cells share the same genome), but are interpretable for gr-

expression (because of known inter-regional similarities in gene expression and organization

[15,20,23,25]). In practical terms, these analyses also help to discover associations of regional

volumes with genes for which these regions currently lack models of gr-expression (Fig 1B).

Inter-regional TWAS discovered between 73 and 209 (median 133) associations (pFDR <

0.05) of gr-expression in one region with the volume of another region (Fig 3G and S4 Table).

gr-Expression in the amygdala and anterior cingulate had the largest number of such associa-

tions (Fig 3G, columns) relative to the total available number of gr-expression models in each

region (Fig 1B). For example, the gr-expression of FOXO3 in the anterior cingulate predicted

the volumes of all 8 regions. This gene has been strongly linked to healthy aging in diverse

human populations [76–78]. By contrast, the volume of putamen was predicted by the largest

number of genes from other regions (Fig 3G, rows). Several of these genes—including

MYLK2, KTN1, DCC, BCL2L1, TPX2, and HELZ—were associated with putamen volume in

previous studies [16,79–84]. In particular, in our study, the gr-expression of MYLK2 and

KTN1 predicted putamen volume in all regions that had gr-expression models of these genes

(in 8 and 4 regions, respectively). In other cases, gr-expression of some genes in many regions

predicted volumes of many other regions. For example, the gr-expression of LRRC37A2 in all

8 regions predicted volumes of all regions except putamen and caudate. Similarly, gr-expres-

sion of MAPT in the cerebellar hemisphere predicted all volumes except putamen and caudate.

Both LRRC37A2 and MAPT have been linked to Parkinson’s disease, and MAPT encodes for

tau and has been well studied in the Alzheimer’s disease literature [50,85,86].

We finally quantified the overlap between intra-regional and inter-regional associations. A

heatmap of overlap coefficients of these associations formed 3 anatomically distinct groupings

of cortical, basal ganglionic, and limbic regions (Fig 3H). These groupings show that the vol-

umes of anatomically similar regions are more likely to share gene associations or, alterna-

tively, that genes from one region are associated with volumes of anatomically similar regions.

S2 Fig shows that these groupings were replicable with a Bonferroni correction on TWAS

associations.

Collectively, these results suggest a strong relationship between gr-expression profiles of

anatomically similar brain regions and, more generally, show the utility of inter-regional

TWAS of neuroimaging phenotypes.

Genetically regulated gene expression links regional volumes with clinical

phenotypes

We next moved beyond literature-based annotations to test whether gr-expression associations

can link regional volumes with clinical phenotypes. To achieve this, we integrated our results

with a separate TWAS on a sample of 70,439 people in BioVU, a biobank that contains DNA

samples and de-identified electronic health records for patients at Vanderbilt University Medi-

cal Center [53,87,88]. Clinical phenotypes derived from electronic health records in BioVU

were represented by phenotype codes extracted from International Classification of Diseases

(ICD-9) billing codes. The BioVU TWAS used the same Joint-Tissue Imputation models to

estimate gr-expression and to discover clinical associations (Fig 4A). In what follows, we fil-

tered this clinical TWAS to focus on 156 brain-related clinical phenotypes. We then compared
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associations of regional gr-expression with these phenotypes to associations in our inter-

regional neuroimaging TWAS.

We identified 98 genes whose gr-expression in a specific region associated (pFDR < 0.05)

with both volumes in the UK Biobank TWAS and with brain-related clinical phenotypes in the

BioVU TWAS (Fig 4B). There were 22 genes in this set whose gr-expression in 4 or more

regions linked volumes and clinical phenotypes. In previous GWAS and clinical studies, these

genes have been associated with neurogenesis (WNT3) [89,90], neurodevelopmental delays

(QRICH1) [91,92], addiction (HCG27) [93], depression (CCDC71, CYP21A2) [94,95], and

other brain-related disorders [96,97].

BioVU clinical phenotypes that shared associations of gr-expression with regional volumes

included a variety of nervous system symptoms and disorders including, most prominently,

demyelinating diseases, motor-related symptoms, and dementia (Fig 4C). Several HLA genes

that play a major role in the immune response (including HLA-B/C, HLA-DRB1, and

HLA-DRB5) were associated with 2 or more regional volumes and simultaneously with demye-

linating diseases, including multiple sclerosis, a prominent immune-mediated disorder [98].

In addition, genes in the HLA-DR and HLA-DQ families were associated with volumes of the

cerebellar hemisphere and hippocampus in the UK Biobank and simultaneously with the

abnormal movement phenotype in the BioVU TWAS. These associations represent candidate

causal mechanisms for linking these genes with Parkinson’s disease and other movement dis-

orders [99–102]. Genes C4B, MST1, and LRRC37A showed similar patterns of associations, in

this way supporting and expanding previous links to motor disorders [86,103–105].

Separately, we identified 9 brain-related clinical phenotypes that were enriched (pFDR <

0.05) for genes whose gr-expression predicted regional volumes (Fig 4D and S5 Table). Most

of these phenotypes were enriched for genes that predicted multiple regional volumes. For

example, myoclonus was enriched for genes that predicted volumes of 6 regions, while multiple
sclerosis and lack of coordination were enriched for genes that predicted volumes of 4 regions.

Further, senile dementia was enriched for genes that predicted hippocampal and cerebellar vol-

umes, while speech disturbances was enriched for genes that predicted anterior cingulate vol-

ume. The majority of motor-related clinical phenotypes were enriched for genes that predicted

volumes of the cerebellum, a well-known center of motor control. S3 Fig shows that our asso-

ciation and enrichment analyses were replicable with a Bonferroni correction on TWAS

associations.

Overall, these results show that associations of gr-expression with phenotypes at different

biological scales can be combined to reveal genes that link regional volumes and clinical phe-

notypes. Despite differences in samples and phenotype modalities, we identified a large overlap

in the 2 TWAS between associations with regional gr-expression. Furthermore, we found evi-

dence in related literature that supports associations between regional volumes and an array of

brain-related disorders. Collectively, these findings highlight the integrated relationships

between gene expression and brain phenotypes and the implications of these relationships for

the study of brain-related disorders.

Polygenic models of genetically regulated gene expression detect

associations in a small neuroimaging data set

Recent studies have shown the potential of combining the gr-expression of multiple genes into

polygenic models to improve the prediction of phenotypes (Fig 5A) [106–108]. Such polygenic

models may be particularly relevant for highly polygenic phenotypes of brain anatomy and

activity. They can also capture the polygenic nature of structural and functional MRI pheno-

types and further reduce the number of statistical tests.
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Fig 4. Association of gr-expression with both neuroimaging and clinical phenotypes. (A) Pipeline for BioVU

TWAS: transcriptome-wide association studies of regional gr-expression and clinical phenotypes from the BioVU

Biobank. Top left: Inputs to TWAS comprise electronic health records and DNA samples of the same people. Top

center: Clinical phenotypes are extracted from ICD-9 codes present in electronic health records. Bottom left and

center: Regional gr-expression is estimated from DNA samples of the same people. Right: Clinical phenotypes and

regional gr-expression are combined in the BioVU TWAS. (B) Heatmap showing the number of times by which genes

(rows) with regional gr-expression (columns) were linked to both regional volumes and clinical phenotypes. Each

count denotes a regional gr-expression that was associated (pFDR < 0.05) with both a regional volume in the UK

Biobank TWAS and with a brain-related clinical phenotype in the BioVU TWAS. (C) Heatmap showing the number

of genes with regional gr-expression that linked regional volumes (columns) with clinical phenotypes (rows). Each

count denotes a regional gr-expression that was associated (pFDR < 0.05) with both a regional volume in the UK

Biobank TWAS and with a brain-related clinical phenotype in the BioVU TWAS. (D) Enrichment of clinical

phenotypes for genes whose gr-expression predicted (pFDR < 0.05) regional volumes (rows) in the UK Biobank TWAS.
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Here, we tested the power of such analyses using the HCP [54], a small but prominent neu-

roimaging genomic data set with high-quality functional MRI data. To minimize the con-

founders of genetic ancestry, we restricted our analysis of this data set to a sample of 657 non-

twins of European genetic ancestry. Our analyses considered regional volume phenotypes, as

well as a representative set of functional MRI phenotypes. The functional MRI phenotypes

track properties of regional activity (amplitude of low-frequency fluctuations [109]), within-

regional correlation (regional homogeneity [110]), and average inter-regional correlated activ-

ity (mean coactivity [111]). Specifically, amplitude reflects the power of low-frequency activity,

homogeneity reflects the extent of intra-regional correlated activity, while coactivity comple-

mentarily reflects the extent of inter-regional correlated activity (Methods). These phenotypes

provide insights into the organization of brain activity and have been extensively studied in

neuroimaging genomics [26,27,112–114].

We first performed a single-gene TWAS on these phenotypes. The relatively small size of

our sample, however, necessarily resulted in few associations that survived corrections for

multiple comparisons. For example, and in contrast to the UK Biobank TWAS, most regional

phenotypes in this analysis showed no associations at pFDR < 0.05. Moreover, as expected, the

strongest associations in this sample had much higher p-values (best pFDR = 0.017) than the

strongest associations in the UK Biobank TWAS (best pFDR = 1.34 × 10−21).

We then estimated polygenic gr-expression as the mean normalized gr-expression of genes

that had nominal TWAS associations with phenotypes (p < 0.001, uncorrected). We tested

associations of polygenic gr-expression against null associations of equivalently estimated

polygenic gr-expression on data with randomized (permuted) assignment of phenotypes to

subjects.

Associations of polygenic gr-expression with phenotypes had mean ± standard deviation

r = 0.434 ± 0.113 (Figs 5B and S4). For regional volume and homogeneity phenotypes, these

associations tended to be higher than null associations (p < 0.05) and have lower p-values than

single-gene associations (Fig 5C and 5D and S1 Data). By contrast, for amplitude and coactiv-

ity phenotypes, these associations did not tend to be higher than null associations and had sim-

ilar p-values as single-gene associations (Fig 5C and 5D and S1 Data). Note also that

polygenic gr-expression estimated from more selected genes tended to have higher associa-

tions in absolute terms and relative to the null associations (S5 Fig). Collectively, these analyses

show that polygenic modeling can further improve the ability of TWAS to infer associations of

groups of genes with complex phenotypes.

Replicability of estimated genetically regulated gene expression and TWAS

We finally tested the replicability of our analyses in 3 complementary ways.

First, we tested the replicability of gr-expression models by comparing the estimated gr-

expression of the DLPFC using models trained on 2 distinct postmortem samples: our main

sample from GTEx and an independent replication sample from PsychEncode [43]. We found

that models trained on the 2 samples had highly similar patterns of gr-expression (rpearson of

gr-expression: median 0.799, Q1–Q3 0.559–0.917, Fig 6A). Likewise, we found similar TWAS

of these models with DLPFC volumes (rspearman = 0.540, p < 0.001, Figs 6B and S6). These

results suggest that our framework for estimating gr-expression is robust to the training data,

at least for sufficiently large samples.

Each point represents a brain-related clinical phenotype associated with at least 1 gene. The horizontal axis shows the

p-values (–log10 pFDR) of individual phenotypes. Source data can be found in S5 Table. FDR, false discovery rate;

TWAS, transcriptome-wide association studies.

https://doi.org/10.1371/journal.pbio.3002782.g004
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Fig 5. Associations of polygenic gr-expression with neuroimaging phenotypes. (A) A framework for polygenic modeling of

regional phenotypes. Polygenic gr-expression was defined as the mean normalized gr-expression of genes that were nominally

associated with phenotypes at p < 0.001, uncorrected. To make the mean well defined, the signs of gr-expressions with negative

associations were reversed. Model performance was evaluated using permutation testing. (B) Representative scatter plots of

neuroimaging phenotypes and polygenic gr-expression. Points represent individuals, and colors denote regions as labeled in C. (C)

Pearson correlation coefficients between neuroimaging phenotypes and polygenic gr-expression (square points), polygenic gr-

expression from permutation tests (box plots; n = 10,000), and best single-gene gr-expression from TWAS (round points). Stars

represent p-values of polygenic associations with permutation testing (* p < 0.05, ** p < 0.005, *** p < 0.0005). Source data can be

found in S1 Data. (D) Comparison of p-values (−log10 pFDR) from polygenic gr-expression associations and best single-gene TWAS.

Colors denote regions, while lines denote p = 0.05. DLPFC, dorsolateral prefrontal cortex; FDR, false discovery rate; TWAS,

transcriptome-wide association studies.

https://doi.org/10.1371/journal.pbio.3002782.g005
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Second, we tested the replicability of association p-values and magnitudes in the UK Bio-

bank using the independent HCP TWAS. As we saw above, the small HCP sample produced

almost no associations at pFDR < 0.05. Correspondingly, we found that a small percentage of

associations with pFDR < 0.05 in the UK Biobank were also present at the nominal threshold of

p < 0.05 in the HCP TWAS (median 7.00%, Q1–Q3 4.53%–7.75%, Fig 6C). By contrast, the

magnitudes of individual associations are strongly correlated with p-values (rspearman between

magnitudes and −log10p: median 0.783, Q1–Q3 0.773–0.786, S6 Fig) but, unlike p-values, are

relatively independent of the sample size [115]. Correspondingly, we found consistently strong

correlations between magnitudes of associations that passed pFDR < 0.05 in the UK Biobank

TWAS (rspearman: median 0.518, Q1–Q3 0.486–0.622, all p < 0.005, Figs 6D, 6E and S6).

Third, we repeated these analyses on TWAS of discovery and replication subsets generated

from 1,200 random splits of the white-British UK-Biobank sample (S2 Data). These additional

analyses showed that replication samples of the same size as our HCP sample (657 people) had

similarly small percentages of replicable associations (median 6.60%, Q1–Q3 6.20%−6.82%) and

that larger samples showed much higher percentages (Fig 6C). Likewise, these analyses showed

that replication samples of the same size as our HCP sample had strong correlations between

magnitudes of effects (rspearman: median 0.575, Q1–Q3 0.568–0.579; all p < 0.001) and that larger

samples showed modestly increased correlations between magnitudes (Figs 6D and S6).

Collectively, these analyses suggest that the estimated gr-expression and magnitudes of

TWAS associations were generally replicable, while the p-values of TWAS associations were

replicable in large replication samples.

Interactive application to facilitate adoption of TWAS in neuroimaging

genomics

To increase the accessibility of our results, we created a browser-based application to explore

our SNP-based and gene-based associations (https://github.com/nhunghoang/twas-webapp).

The application allows users to compare neuroimaging GWAS with neuroimaging TWAS and

with clinical TWAS and, in this way, links analyses of SNPs, genes, neuroimaging phenotypes,

and clinical phenotypes. It also allows users to interactively explore associations and provides

more direct gene-based interpretations of SNP-based results.

Discussion

Summary

We adopted state-of-the-art methods from computational genomics to estimate genetically

regulated gene expression, or gr-expression, across 10 cortical and subcortical brain regions in

more than 40,000 people. First, we showed that estimates of gr-expression across people and

brain regions recapitulate the neurobiological organization of directly assayed gene expression.

Second, we showed that TWAS based on estimated gr-expression aligned with, and extended,

associations from corresponding GWAS. Third, we integrated these results with a set of inde-

pendent associations between regional gr-expression and brain-related clinical phenotypes

extracted from electronic health records. Fourth, we showed that polygenic models of gr-

expression can further increase the statistical power of our approach. Finally, we showed that

estimated gr-expression levels and the magnitudes of TWAS associations were generally repli-

cable while the p-values of TWAS associations were replicable in large samples.
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Fig 6. Replicability of estimated genetically regulated gene expression and TWAS. (A, B) Replication of estimated gr-expression trained on independent

PsychEncode data. (A) Histogram of correlations between gr-expression of the DLPFC estimated with models trained on GTEx data and independent

PsychEncode data. (B) Scatter plot of TWAS associations based on gr-expression of the DLPFC estimated with models trained on GTEx data and

independent PsychEncode data. Each point denotes p-values of associations between estimated gr-expression and DLPFC gray-matter volumes in the white-

British sample of the UK-Biobank cohort. (C–E) Replication of genes that passed pFDR = 0.05 in discovery TWAS of gray-matter volumes. (C) Percentages of

genes that were replicated at nominal p < 0.05 in replication TWAS. Source data can be found in S2 Data. (D) Correlations between effect magnitudes of

genes in the replication and discovery TWAS. Dots denote analyses on the full UK Biobank (discovery) and HCP (replication) samples. Box plots denote

analyses of discovery-replication splits of the white-British UK-Biobank sample, ordered from small to large replication samples. Each box plot was estimated

from 300 random splits. (E) Scatter plots of effect magnitudes in the UK Biobank and HCP TWAS. Each point denotes effect magnitudes for a gene that

showed pFDR < 0.05 in the UK Biobank TWAS. DLPFC, dorsolateral prefrontal cortex; FDR, false discovery rate; GTEx, Genotype-Tissue Expression Project;

HCP, Human Connectome Project; TWAS, transcriptome-wide association studies.

https://doi.org/10.1371/journal.pbio.3002782.g006
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Advances

Our study shows that gene-based association analyses can bridge gaps in existing neuroimag-

ing genomic studies. Specifically, the approach begins to fill the mechanistic gap in traditional

GWAS by extending these studies to identify associations of phenotypes with regionally spe-

cific gr-expression, rather than with regionally agnostic SNPs. Moreover, the approach reduces

the multiple-testing burden of GWAS by orders of magnitude. Separately, the approach com-

plements regional transcriptomic studies by extending these studies to thousands of people

with available genomes.

We demonstrated the unique combination of these advantages with 3 complementary anal-

yses. First, we showed that, like GWAS, our method separates people by genetic ancestry (Fig

2A). Second, we showed that, like regional transcriptomic analyses, our method separates

brain regions by patterns of gr-expression (Fig 2B). Third, we showed strong similarities

between the inter-regional correlation of gr-expression from the UK Biobank and directly

assayed expression from the Allen Human Brain Atlas and the GTEx Project (Fig 2C–2K). In

this way, we showed that our approach produces neurobiologically interpretable estimates of

regionally specific gr-expression in large human populations.

Our method allowed us to directly benchmark gene-based TWAS against SNP-based

GWAS. First, we showed that TWAS associations are broadly related to, but also distinct from,

GWAS associations (Fig 3C). Second, we showed that TWAS can discover associations of

many genes that are otherwise undetected with GWAS (Fig 3D) and that these discoveries

strongly favor brain-related annotations (Fig 3E). Third, we showed that inter-regional associ-

ations are interpretable and further increase the utility of TWAS (Fig 3F). Collectively, these

results directly demonstrate the conceptual and practical strengths of TWAS.

Separately, our study built on these results in 3 additional ways. First, it integrated estimates

of regionally specific gr-expression with gray-matter volumes and brain-related clinical pheno-

types (Fig 4). Second, it extended the single-gene TWAS to build polygenic models of neuro-

imaging phenotypes (Fig 5). Third, it showed that the magnitudes of TWAS associations are

generally replicable but that the p-values of TWAS associations are highly sensitive to sample

sizes (Fig 6). These results outline a path towards the replicable integration of polygenic gr-

expression with complex neuroimaging and clinical phenotypes.

Separately, the study of gr-expression provides unique advantages over the study of directly

assayed expression because it allows to focus on the stable, genetically regulated aspects of

gene expression without the need to control for the potential confounders of environmental

factors and acquisition biases, including batch effects [116]. Similarly, an important advantage

of this study relative to group-averaged transcriptomic studies is the lack of evident bias attrib-

utable to distance effects [60]. This lack of bias arises because the associations are computed

over people, rather than over brain regions. For example, while we found that the observed

inter-regional correlation between estimated gr-expression and directly assayed expression

could not be explained solely by distance dependence, a distance-based explanation would not

invalidate our results because it would reflect biological, rather than artifactual, effects.

Limitations

Our approach has many benefits, but it also has limitations. First, our analyses still require

large samples to enable replicable associations (Fig 6C–6E). Nonetheless, the lower multiple-

testing burden of TWAS makes this problem less acute than for tests of millions of SNPs in

GWAS. Similarly, much like correlations of adjacent SNPs in GWAS, correlations of gr-

expression in TWAS, while generally smaller and less common, can make it difficult to fine-

map causal genes. Future studies could adopt mendelian randomization to enable causal
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inference, although this approach comes with its own limitations, including the difficulty of

accounting for horizontal pleiotropy (the effect of one gene on unrelated phenotypes) [117–

119]. Finally, our focus on genes necessarily misses the effects of variants that operate through

means other than the regulation of gene expression.

Second, relative to spatially specific transcriptomic studies, our approach is restricted to a

small number of brain regions. In future studies, we propose to overcome this limitation by

modeling known relationships between regional and network organization [120]. We also pro-

pose that the adoption of similar models will allow researchers to integrate regional associa-

tions with high-resolution single-cell atlases of gene expression and link these associations to

specific cell types [121].

Third, our results integrate genomic biobanks with available data on genetics, gene expres-

sion, neuroimaging, and clinical phenotypes. Such integration necessarily comes with the chal-

lenges of demographic diversity and matching. Our analyses were primarily based on

European populations and may not necessarily generalize to other populations. As genomic,

transcriptomic, neuroimaging, and clinical data continue to increase in size and scope, it will

be important to extend these results to analyses of other populations.

Conclusions

We identified associations between individual genetic variation, gene expression, neuroimag-

ing phenotypes, and brain-related clinical phenotypes in large samples for which we cannot

otherwise directly measure all these variables. Our analyses allowed us to integrate gene-level

data and discover candidate mechanisms that link gr-expression via neuroimaging phenotypes

to brain disorders. Collectively, these analyses demonstrate the advantages of gene-based

methods in human neuroscience. Our resource can help facilitate wider adoption of these

methods in future studies and thus advance the understanding of individual variation in brain

organization and function.

Methods

Joint-Tissue Imputation models

We used Joint-Tissue Imputation models of gr-expression that were previously trained on

postmortem gene expression data from GTEx. In this section, we describe the main aspects of

quality control and training of these models. We refer the readers to the original studies of

Joint Tissue Imputation [43] and the GTEx v8 data set [56] for a more detailed discussion of

these approaches.

Joint-Tissue Imputation models estimate gr-expression as the linear combination of SNPs

that are close to the gene of interest along the linear genome. The training of these models,

therefore, required data on tissue-specific gene expression and whole-genome sequencing

from the same people. The GTEx v8 data set included these data for brain regions of 838

donors that passed internal GTEx biospecimen quality controls [122]. The donors had the fol-

lowing demographics: Age, 21 to 70 years (mean 53); sex, 34% female; ancestry, 85.3% Euro-

pean American/12.3% African American/1.4% Asian American. The data set contained RNA-

seq from ten brain regions. Table 1 summarizes the names of these regions and the number of

samples used to train models in each region. For completeness, it also summarizes our defini-

tions of the corresponding regions in volumetric Allen Human Brain Atlas data, and in sur-

face-based UK-Biobank and Human-Connectome Project data.

The following steps were taken to maximize the predictive accuracy of estimation and to

minimize confounders. First, the assayed gene expression levels were controlled for sex,

sequencing platform, the top 5 principal components, as well as probabilistic estimation of
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expression residuals, a Bayesian model of hidden confounders [123]. Second, the models were

trained only on biallelic SNPs that had a minor allele frequency of at least 0.05 and that were in

Hardy–Weinberg equilibrium (p > 0.05), i.e., only on SNPs that had both sufficient and stable

variation. Third, to reduce the effects of linkage disequilibrium, highly correlated (r2 � 0.9)

SNPs were pruned and the models were trained only on SNPs near the gene of interest. The

optimal threshold for proximity was determined separately for each gene by cross-validation.

Finally, to additionally control for overfitting, the models incorporated elastic-net regulariza-

tion and the training was based on 5-fold cross-validation.

As part of the replication analysis (S6 Fig), we also considered Joint-Tissue Imputation

models that were trained on 415 samples of sequencing and expression data from the DLPFC

in the PsychENCODE project [57]. These data were processed and trained in the same way as

the original study of Joint-Tissue Imputation. All pretrained models are available online at

https://doi.org/10.5281/zenodo.3842289 (GTEx-trained models) and https://doi.org/10.5281/

zenodo.3859065 (PsychEncode-trained models).

Genotype-Tissue Expression Project (GTEx) and Allen Human Brain Atlas

Data

Our analyses of inter-regional correlations (Fig 2) compared the estimated gr-expression data

described in the previous section to directly assayed expression data from GTEx and the Allen

Human Brain Atlas. This section describes our preprocessing of these latter data sets.

We downloaded the most recent release (v8) of the GTEx gene-expression data from

https://gtexportal.org/home/downloads/adult-gtex. These data were acquired from 340 donors

(an average of 199 donors per region). Gene expression levels were quantified and normalized

by GTEx, and genes were selected based on expression thresholds as previously described [56].

We downloaded the Allen Human Brain Atlas microarray gene-expression data from

https://human.brain-map.org/static/download. The data were acquired from 6 donors

(42 ± 12 years old, 1 female). Brain-wide gene expression levels were quantified and normal-

ized by the Allen Institute, as previously described [130].

Our preprocessing of these data followed current best practices [131]. All imputed and

directly assayed expression data were normalized to have zero mean and unit variance across

regions. In addition, data from the Allen Human Brain Atlas were filtered to exclude genes

whose expression level did not exceed the background signal (as specified by the file PACall.

csv). These data were also nonlinearly registered to reference coordinate space [132], assigned

to regions with a 2 mm distance threshold, and averaged across all available probes and the left

and right hemispheres.

UK Biobank genomic and neuroimaging data

We analyzed data from 45,549 people, or all available people from the UK Biobank with

genome-wide genotyping and neuroimaging volumes. Our sample had the following demo-

graphics: Age, 64 ± 7.7 years old; sex, 52% female; self-reported ethnicity, 96.7% white/0.6%

black/1.1% South Asian/0.3% Chinese/0.5% Mixed/0.8% Other (S1 Table). In this section, we

describe the main aspects of quality control and processing of these data by the UK Biobank.

We refer the readers to the original publications [17,37,133] for a more detailed discussion of

these and other questions.

Genome-wide genotype imputation was performed using data from the Haplotype Refer-

ence Consortium [134] as the main imputation reference panel, as well as merged UK10K and

1000 Genomes Phase 3 data sets as the secondary imputation reference panel [135]. The data

passed an automated quality-control pipeline [37]. This pipeline comprised marker-based and
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sample-based quality control. Marker-based control included tests for batch effects, plate

effects, deviation from Hardy–Weinberg equilibrium, sex effects, array effects, and sequencing

replicability. Separately, sample-based control included tests for unusually high fractions of

heterozygous or missing loci, as well as for mismatch between self-reported sex and the inten-

sity of sex-chromosome markers.

Our TWAS (Figs 3 and 4) sought to minimize the confounders of genetic ancestry by

focusing on the “White British” sample of the UK-Biobank cohort (39,565 people). We fol-

lowed UK Biobank analyses to select people who self-reported as “White British” and who had

similar genetic ancestry based on UK-Biobank principal component analysis on 147,604 geno-

type markers (pruned to minimized linkage disequilibrium) over 407,219 unrelated people

[37]. By contrast, our analyses of genetic ancestral relationships, regional identities, and inter-

regional correlations (Fig 2) focused on the remaining ethnically diverse sample of the

UK-Biobank cohort (5,984 people).

All UK Biobank neuroimaging data were processed by the UK Biobank automated brain-

imaging pipeline [133]. The pipeline flagged missing and distorted data, registered images to

common reference space, and computed imaging-derived phenotypes. We used phenotypes

computed on MRI scans from the first imaging visit. Our analyses included only cortical and

subcortical brain regions that had available estimates of gray-matter volume and gr-expression

and that passed UK Biobank quality control exclusion criteria (see the original reference [133]

for a detailed discussion). Volumes of these regions were computed by the UK Biobank using

FreeSurfer cortical and subcortical segmentations [61] (Table 1) and were averaged across the

left and right hemispheres.

Table 1. GTEx regions (tissues) and corresponding definitions of volume-based and surface-based imaging parcellations.

Name of GTEx tissue

(number of available tissue

samples).

Label names of volume-based parcellation for the Allen

Human Brain Atlas gene expression. Parcels for the substantia

nigra and hypothalamus are from the subcortical atlas of Pauli

abd colleagues [124]. Parcel for the cerebellar hemisphere is from

the atlas of Diedrichsen and colleagues [125]. All other parcels are

from the Harvard Oxford Atlas [126].

Label names of surface-based parcellation for the UK-Biobank

and Human-Connectome Project neuroimaging phenotypes.

Parcels for Brodmann Areas 9 and 24 are from the Desikan-

Killiany-Tourville Atlas [127] (for the UK Biobank) or the

Desikan-Killiany Atlas [128] (for the HCP). All other parcels are

from the FreeSurfer subcortical segmentation [129].

DLPFC/Brodmann Area 9

(175 samples).

Middle frontal gyrus Middle frontal gyrus (rostral and caudal divisions)

Anterior Cingulate/

Brodmann Area 24 (147

samples).

Cingulate gyrus, anterior division Cingulate cortex (rostral anterior and caudal anterior divisions)

Amygdala (129 samples). Amygdala Amygdala
Hippocampus (165 samples). Hippocampus Hippocampus
Caudate (194 samples). Caudate Caudate
Putamen (170 samples). Putamen Putamen
Nucleus accumbens (202

samples).

Accumbens Accumbens

Cerebellar hemisphere (175

samples).

Cerebellar lobules I-X Cerebellum

Substantia nigra (114

samples).

Substantia nigra (pars compacta and pars reticulata) N/A

Hypothalamus (170 samples). Hypothalamus N/A

DLPFC, dorsolateral prefrontal cortex; GTEx, Genotype-Tissue Expression Project; HCP, Human Connectome Project.

https://doi.org/10.1371/journal.pbio.3002782.t001
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Human Connectome Project genomic and neuroimaging data

The full HCP contains 1,142 people with brain-wide genotyping sequences and neuroimaging

data. This cohort had the following demographics: Age 29 ± 3.7 years old, 54% females, 149

pairs of monozygotic twins. In this section, we describe our curation of these data to generate

a sample of 657 people. We also describe the main aspects of quality control and processing of

these data by the HCP, and our estimation of phenotypes from these data. We refer the readers

to the original HCP publications [136–139] for an additional extensive discussion of quality

control and data processing.

Genotyping of all people was derived from blood or saliva samples. The genotype data com-

prised probabilities of single-nucleotide variants, estimated using the Illumina Multi-Ethnic

Global Array. Quality-control procedures of these data included verification of self-reported

common ancestry for siblings, as well as zygosity for twins.

As in our analyses of the UK Biobank, we sought to minimize the confounders of genetic

ancestry by focusing our association analyses on a sample of 657 non-twins of European

genetic ancestry. We estimated genetic ancestry using the principal components of genotyping

data from this cohort, computed with EIGENSTRAT [140]. We defined people to be of Euro-

pean ancestry when they self-reported as European and when they had similar genetic ancestry

based on principal-component structure [37]. Finally, we randomly removed a single person

from all pairs of monozygotic twins.

We analyzed structural and resting-state functional MRI phenotypes from the HCP. All

data were processed using the HCP minimal preprocessing pipeline [137] and were passed

through a standardized quality control pipeline [138]. Structural MRI acquisitions were ini-

tially reviewed for image blurriness, motion, and other artifacts. Volumes of these regions

were then estimated using FreeSurfer cortical and subcortical segmentations [61]. FreeSurfer-

based reconstructions were inspected for obvious errors. Separately, resting-state functional

MRI acquisitions were scored for 9 quality control measures that centered on the temporal sig-

nal-to-noise ratio, image smoothness, as well as the extent of absolute and relative head

motion. The data were registered with MSM-All [141] and denoised with ICA-FIX [139].

In our study, we computed 3 functional MRI phenotypes on these data. First, we computed

the amplitude of low-frequency fluctuations as the total power of spontaneous intra-regional

activity within the 0.01 to 0.08 Hz range. Second, we computed regional homogeneity as the

mean Pearson correlation between all pairs of intra-regional voxels. Third, we computed mean

coactivity as the mean Pearson correlation between the activity of the region and all other

regions of interest.

Individual variation in homogeneity and coactivity strongly correlated with individual vari-

ation of the global signal, the mean activity of all brain voxels. This variation can reflect artifact

but also aspects of vigilance and non-neuronal physiology [142]. To focus on correlation struc-

ture unaffected by such properties, we computed these phenotypes after regressing out the

global signal from voxel time series (for homogeneity) or regional time series (for coactivity).

We computed each phenotype separately for each scan of each person and then averaged

the phenotypes across the 4 available scans and the left and right hemispheres.

Analyses of genetic ancestry, regional identity, and inter-regional

correlation structure

We created principal component embeddings of ancestral and regional gr-expression for the

ethnically diverse sample of the UK-Biobank cohort. We first constructed a 3D array of 5,984

people × 1,892 genes × 10 regions, where people comprised the UK-Biobank sample (S1

Table), and genes comprised all genes with available estimates of gr-expression in all the 10
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GTEx regions. We then analyzed reshaped versions of this array. First, to extract ancestral

structure, we computed principal components of the 5,984 × 18,920 matrix of brain-wide gr-

expression across people. Second, to extract regional structure, we computed principal compo-

nents of the 59,840 × 1,892 matrix of region-specific gr-expression across people.

We likewise compared inter-regional correlations of expression on subsets of genes that

simultaneously had available expression in the UK-Biobank, GTEx, and Allen Human Brain

Atlas data. These subsets ranged from 2,837 to 4,220 genes (median 3,642) and differed for

each region of interest because each region had a distinct set of available gr-expression models.

For all pairs of regions, we computed inter-regional coexpression using the subsets of genes

that had expression data in both regions. Finally, we averaged the inter-regional coexpression

matrices across all people in each data set.

To test for distance effects, we computed Spearman correlation coefficients between inter-

regional coexpression and Euclidean distance between centroids of regions in the volume-

based parcellation (Table 1). To test the effects of distance on the similarity of inter-regional

coexpression, we generated 10,000 coexpression matrices with permuted ranks and empirical

Spearman correlations with Euclidean distance.

Association of genetically regulated gene expression with neuroimaging

phenotypes

Transcriptome-wide association studies (TWAS). We estimated associations of gr-

expression and neuroimaging phenotypes using ordinary least square regression models, with

covariates of genetic ancestry, sex, and age. We followed common practices for addressing

population stratification by modeling genetic ancestry by the top 40 principal components of

the genotypes in each sample. We used the precomputed principal components for the UK

Biobank [37] and EIGENSTRAT [140] to compute principal components for the HCP. We

tested associations between the gr-expression and volume of the same region (intra-regional

TWAS, S2 Table) and between the gr-expression of one region and the volumes of other

regions (inter-regional TWAS, S4 Table).

Genome-wide association studies (GWAS). We used REGENIE [143] to perform GWAS

on the regional gray-matter volumes for the white-British sample of the UK-Biobank cohort.

REGENIE is a machine-learning method for fitting genome-wide regressions to complex phe-

notypes, particularly for large samples with multiple phenotypes of interest. We first filtered

(directly genotyped and imputed) autosomal SNPs with a minor allele frequency greater than

1% and an information score greater than 0.2 based on the full UK-Biobank cohort of roughly

500,000 people (information score denotes the fraction of data at an imputed marker that

approximately equates to perfectly observed genotype calls [37]). We then set imputed SNPs

using a hard-call threshold of 0.01 and, with respect to our sample of interest, filtered the SNPs

with a minor allele frequency greater than 1%, missingness less than 5%, and Hardy–Weinberg

equilibrium test p < 10−5. We performed GWAS on the remaining 8,072,589 SNPs, after

regressing out age, sex, and the top 40 principal components.

Comparison of genome-wide and transcriptome-wide associations. Joint-Tissue Impu-

tation models of gene gr-expression can, in general, contain several SNPs. Similarly, one SNP

can, in general, be part of several gr-expression models. We used this knowledge to map

GWAS-derived SNP associations to TWAS-derived gene associations (Fig 3C). We made this

mapping using 2 approaches:

Many-to-many mapping: In this mapping, we linked each TWAS-derived gene association

with all SNPs that comprised the gr-expression model of that gene. Equivalently, we linked
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each GWAS-derived SNP association to all the gr-expression models of which that SNP was a

part.

One-to-one mapping: We next filtered the many-to-many mapping in 2 steps. First, we fil-

tered TWAS-derived gene associations to preserve links to the strongest available GWAS-

derived SNP association. Second, we filtered the remaining GWAS-derived SNP associations

to preserve links to the strongest remaining TWAS-derived gene association. This two-step fil-

tering of many-to-many associations therefore guaranteed one-to-one relationships.

Polygenic modeling association studies. We modeled associations between polygenic gr-

expression and phenotypes with covariates of genetic ancestry, sex, and age. First, we selected

genes that had nominal TWAS associations with phenotypes (p < 0.001, uncorrected). Second,

we averaged the normalized gr-expression of these selected genes (reversing the sign of gr-

expression that had negative associations). Third, we computed the Pearson correlation coeffi-

cient between these averaged gr-expression and phenotypes. Finally, we repeated this process

10,000 times on data that had randomized (permuted) assignment of phenotypes to subjects,

but the same values of individual phenotypes and gr-expression.

Gene-set enrichment analyses

We performed gene-set enrichment analysis for biological annotations from the NHGRI-EBI

GWAS catalog [75] (Fig 3E). Each phenotype in this catalog is situated within the Experimen-

tal Factor Ontology, a general ontology that includes terms from multiple more specialized

ontologies and describes a wide range of measurements, including healthy and diseased phe-

notypes. All annotations reflect findings from curated GWAS analyses.

We used a semi-automated pipeline to detect brain-related terms in this ontology in 2

steps. In the first step, we flagged each term as brain-related if words in its ontology tree

included at least one of the following word segments: nerv, neur, cogn, psyc, ment,

brai. Second, 2 authors (NH and MR) manually and independently checked these candidate

terms to confirm or exclude their brain-related nature. S3 Table lists the phenotypes that were

enriched for TWAS genes at pFDR < 0.05 and also lists their brain-relatedness indicator.

We performed gene-set enrichment analyses for clinical phenotypes in the BioVU TWAS, a

database of associations between genetically regulated gene expression and clinical phenotypes

derived from the Vanderbilt Biobank. For these analyses, we considered 70,439 people of

European ancestry. Phenotypes were represented as phenotype codes based on ICD-9 codes

[144]. We restricted our analyses to mental disorders and neurological phenotype code catego-

ries and included all gene-phenotype pairs that showed associations in the BioVU TWAS at

pFDR < 0.05.

We performed gene-set enrichment analyses using WebGestalt [145,146]. In both cases, we

used a hypergeometric null model to test the enrichment of genes that had TWAS associations

of pFDR < 0.05 against a reference set of all genes in the TWAS (in other words, against all

genes with relevant gr-expression models that passed baseline performance thresholds).

Interactive application

We developed a browser-based application for interactive analysis of our association results.

This application is available on GitHub at https://github.com/nhunghoang/twas-webapp.

Supporting information

S1 Fig. UK Biobank TWAS results for all considered brain regions. Left. TWAS of gr-

expression and brain volumes for all regions. Each point denotes an association between the

individual variation of gr-expression of a gene and volume in the same region. The horizontal
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axis denotes the chromosome location of individual genes. The vertical axis denotes–log10 p-

values. Solid-color points represent associations that passed pFDR = 0.05 or pBonferroni = 0.05

(horizontal lines). Right. Associations between SNP-based GWAS and gene-based TWAS for

all regions. Left: Scatter plots of p-values (–log10 p) for associations of all genes and SNPs.

These plots preserve all genes and SNPs but lack the one-to-one relationship between genes

and SNPs. Right: Corresponding scatter plots of the best-performing genes and SNPs. Each

gene in TWAS matches with its best-performing SNP in GWAS. Similarly, each SNP in

GWAS matches with its best-performing gene in TWAS. These plots show one-to-one rela-

tionships but exclude many genes and SNPs.

(TIFF)

S2 Fig. Effects of Bonferroni correction on enrichment analyses and inter-regional TWAS.

(A, B) Effects of Bonferroni correction on enrichment analyses in the NHGRI-EBI Catalog.

(A) Enrichment for biological annotations of genes whose gr-expression predicted regional

volumes (pBonferroni < 0.05). Each point represents a biological annotation associated with at

least 1 gene. The horizontal axis denotes the p-values (–log10 pFDR) of individual annotations.

(B) Comparison of pFDR for biological annotations of genes whose gr-expression predicted

regional volumes under FDR and Bonferroni corrections. (C, D) Effects of Bonferroni correc-

tion on inter-regional associations between gr-expression and regional brain volumes. (C)

Absolute numbers of associations. Numbers of genes whose gr-expression in one region (col-

umns) predicted (pBonferroni < 0.05) the volume of another region (rows). (D) Overlap coeffi-

cients. Number of genes that were common to both intra-regional and inter-regional

associations in C, normalized by the size of the smaller of the intra- and inter-regional gene

sets.

(TIFF)

S3 Fig. Effects of Bonferroni correction on associations of gr-expression with both neuro-

imaging and clinical phenotypes. (A) Heatmap showing the number of times by which genes

(rows) with regional gr-expression (columns) were linked to both regional volumes and clini-

cal phenotypes. Each count denotes a regional gr-expression that was associated with both a

regional volume in the UK Biobank TWAS and with a brain-related clinical phenotype in the

BioVU TWAS (pBonferroni < 0.05). (B) Heatmap showing the number of genes with regional

gr-expression that linked regional volumes (columns) with clinical phenotypes (rows). Each

count denotes a regional gr-expression that was associated with both a regional volume in the

UK Biobank TWAS and with a brain-related clinical phenotype in the BioVU TWAS (pBonfer-

roni < 0.05). (C) Enrichment of clinical phenotypes for genes whose gr-expression predicted

regional volumes (rows) in the UK Biobank TWAS (pBonferroni < 0.05). Each point represents a

brain-related clinical phenotype associated with at least 1 gene. The horizontal axis denotes the

p-values (–log10 pFDR) of individual phenotypes. (D) Comparison of pFDR for clinical pheno-

types of genes whose gr-expression predicted regional volumes under FDR and Bonferroni

corrections.

(TIFF)

S4 Fig. Associations of polygenic gr-expression with neuroimaging phenotypes. Scatter

plots of polygenic gr-expression and neuroimaging phenotypes. The horizontal axis shows val-

ues of observed phenotypes, and the vertical axis denotes values of polygenic gr-expression.

Points represent single individuals.

(TIFF)

S5 Fig. Association of gene numbers with r-values and p-values in polygenic models. Scatter

plots showing the number of genes in each polygenic model and model r-values and p-values (–
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log10 pFDR from permutation testing). Each plot shows a distinct phenotype. Colors denote

brain regions as in Fig 5.

(TIFF)

S6 Fig. Replicability of estimated genetically regulated gene expression and TWAS. (A)

Left. Within-regional associations of gr-expression and gray-matter volumes for the DLPFC,

based on gr-expression models trained on GTEx and PsychEncode data. Each point denotes

an association between the individual variation of gr-expression and volume in the same

region. The horizontal axis shows the chromosome location of individual genes. The vertical

axis shows the p-values (–log10 p) of associations. Solid-color points show associations that

passed pFDR = 0.05 or pBonferroni = 0.05 (horizontal lines). (A) Right. Associations between

SNP-based GWAS and gene-based TWAS for the DLPFC, based on gr-expression models

trained on GTEx and PsychEncode data. Left: Scatter plots of p-values (–log10 p) for associa-

tions of all genes and SNPs. These plots preserve all genes and SNPs but lack the one-to-one

relationship between genes and SNPs. Right: Corresponding scatter plots for the best-perform-

ing genes and SNPs. Each gene in TWAS matches with its best-performing SNP in GWAS.

Similarly, each SNP in GWAS matches with its best-performing gene in TWAS. These plots

show one-to-one relationships but exclude many genes and SNPs. (B) Scatter plots of effect

magnitudes and p-values (–log10 p) for the UK Biobank TWAS of regional gray-matter vol-

umes. Dots denote associations for all genes from the TWAS. Note the double-logarithmic

scale. (C) Correlations between effect magnitudes of all gene associations in the replication

and discovery TWAS of regional gray-matter volumes. Dots denote analyses on the full UK

Biobank (discovery) and HCP (replication) samples. Box plots denote analyses of discovery-

replication splits of the white-British UK-Biobank sample, ordered from small to large replica-

tion samples. Each box plot was estimated from 300 random splits of the white-British

UK-Biobank sample. Fig 6D shows a similar plot, but filtered to include only genes that passed

pFDR < 0.05 in the discovery TWAS.

(TIFF)

S1 Table. Demographics of the UK Biobank samples. Demographics of the diverse-ancestry

and White-British samples of the UK Biobank.

(XLSX)

S2 Table. Summary of intra-regional associations in the UK Biobank TWAS. All associa-

tions from Figs 3B and S1 that passed pFDR = 0.05, ordered by region name, then pFDR.

(XLSX)

S3 Table. Summary of enrichment analyses for biological annotations in the NHGRI-EBI

Catalog. All enrichment associations from Fig 3E that passed pFDR = 0.05, grouped by brain-

relatedness, annotation, and region volume.

(XLSX)

S4 Table. Summary of inter-regional associations in the UK Biobank TWAS. All interre-

gional associations from Fig 3G that passed pFDR = 0.05, ordered by region name, then pFDR.

(XLSX)

S5 Table. Summary of enrichment analyses for brain-related clinical phenotypes in the

BioVU Catalog. All enrichment associations from Fig 4D that passed pFDR = 0.05, ordered by

pFDR of TWAS.

(XLSX)
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S1 Data. Association of polygenic gr-expression with neuroimaging phenotypes (Fig 5C).

This data set (hdf5 file) contains arrays for reproducing associations in Fig 5C. It specifically

contains single-gene correlations (file key twas-pearsons), poly-gene correlations (file key

poly-pearsons), permutation-test correlations (file key poly-null-pearsons), and

order of regional phenotype in these arrays (file key reg-phen-order).

(HDF5)

S2 Data. Replication of effects and p-values (Fig 6C and 6D). This data table contains the

replication fractions of discovery TWAS genes in Fig 6C (column replication_
fraction). It also contains the correlations between effect magnitudes for these discovery-

replication TWAS pairings in Fig 6D (column effect_spearman). TWAS are identifiable

by their regional volume phenotype of interest (column region), the replication cohort and

size (column cohort), and the random-sample iteration (column iteration).

(CSV)
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