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Abstract

We introduce BPMF (backprojection and matched filtering)—a complete and fully auto-
mated workflow designed for earthquake detection and location, and distributed in a
Python package. This workflow enables the creation of comprehensive earthquake cat-
alogs with low magnitudes of completeness using no or little prior knowledge of the
study region. BPMF uses the seismic wavefield backprojection method to construct an
initial earthquake catalog that is then densified with matched filtering. BPMF integrates
recent machine learning tools to complement physics-based techniques, and improve
the detection and location of earthquakes. In particular, BPMF offers a flexible frame-
work in which machine learning detectors and backprojection can be harmoniously
combined, effectively transforming single-station detectors into multistation detectors.
The modularity of BPMF grants users the ability to control the contribution of machine
learning tools within the workflow. The computation-intensive tasks (backprojection
and matched filtering) are executed with C and CUDA-C routines wrapped in Python
code. This leveraging of low-level, fast programming languages and graphic processing
unit acceleration enables BPMF to efficiently handle large datasets. Here, we first sum-
marize the methodology and describe the application programming interface. We then
illustrate BPMF’s capabilities to characterize microseismicity with a 10 yr long applica-
tion in the Ridgecrest, California area. Finally, we discuss the workflow's runtime scaling
with numerical resources and its versatility across various tectonic environments and
different problems.
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Introduction (e.g., Arrowsmith et al., 2022). This information will feed the

Small-magnitude earthquakes occur much more frequently
than large ones (Gutenberg-Richter law; Gutenberg and
Richter, 1941), and therefore bring essential information about
fault and crustal processes either in tectonic (e.g., Rubin et al.,
1999; Shelly et al., 2007; Sanchez-Reyes et al., 2021), volcanic
(e.g., Scholz et al., 2019; Shelly and Thelen, 2019), or induced
seismicity (e.g., De Barros et al., 2021; Kwiatek et al., 2022)
settings. Seismic noise and wave scattering within the crust
may hide the signals of small earthquakes in the seismic
records. Studying these small events is therefore limited by
our capability to detect and locate them, which requires both
good-quality data and modern detection techniques that go
beyond the visual identification of earthquake signals by ana-
lysts. Thus, automating the earthquake catalog building proc-
ess is a necessary step toward fully using the information
encoded in the large and ever-growing volumes of seismic data
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next advances in Earth sciences from gaining detailed knowl-
edge of physical processes at the local scale to understanding
natural systems over long timescales. Here, we present BPMF
(backprojection and matched filtering)—a new community
tool to automatically build low magnitude of completeness

1. Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York,
U.S.A., @ https://orcid.org/0000-0003-3138-9082 (EB); 2. Department of Earth,
Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology,
Cambridge, Massachusetts, U.S.A., @& https://orcid.org/0000-0001-7892-3081
(WBF); @ https://orcid.org/0000-0003-1650-6818 (RDvdH); 3. Institut de physique du
globe de Paris, Université Paris cité, Paris, France, @ https:/orcid.org/0000-0002-
6596-5896 (LS); 4. Dipartimento di Geoscienze, Universita di Padova, Padova, Italy;
5. Strabo Analytics, Inc, New Ulm, Minnesota, U.S.A., ( https://orcid.org/0000-0002-
6535-1739 (NG); 6. Institut des Sciences de la Terre, Université Grenoble Alpes,
Grenoble, France, (& https://orcid.org/0000-0001-6971-4499 (MC)

*Corresponding author: ebeauce@ldeo.columbia.edu

© Seismological Society of America

Volume 95 « Number 2A « March 2024


https://orcid.org/0000-0003-3138-9082
https://orcid.org/0000-0001-7892-3081
https://orcid.org/0000-0002-6596-5896
https://orcid.org/0000-0002-6535-1739
https://orcid.org/0000-0003-1650-6818
https://orcid.org/0000-0001-6971-4499
https://doi.org/10.1785/0220230230
https://doi.org/10.1785/0220230230
https://orcid.org/0000-0003-3138-9082
https://orcid.org/0000-0003-3138-9082
https://orcid.org/0000-0001-7892-3081
https://orcid.org/0000-0003-1650-6818
https://orcid.org/0000-0002-6596-5896
https://orcid.org/0000-0002-6596-5896
https://orcid.org/0000-0002-6535-1739
https://orcid.org/0000-0002-6535-1739
https://orcid.org/0000-0001-6971-4499

BackProjection and
Matched-Filtering workflow

Continuous
seismograms

\

Backprojection
Initial
& v catalog
Relocation +—> @
v
Template selection
Updated
LEL v catalog
Matched-filtering | > .
Final
v catalog

Combine catalogs

~g'8-0

Postprocessing
Magnitude estimation
Relative relocation

Figure 1. BPMF (backprojection and matched filtering) workflow.
Multistation, multichannel continuous seismic data is first
processed with a backprojection algorithm to build an initial
catalog (backprojection catalog). Some of the detected events
are selected to serve as template events that are then used in a
matched-filter search to produce an updated catalog (matched
filtering catalog). The backprojection and matched filtering
catalogs are combined to make the final catalog. Additional
postprocessing, such as magnitude estimation or relative
relocation, may be achieved outside of the BPMF main work-
flow. The color version of this figure is available only in the
electronic edition.

and short interevent time-resolution earthquake catalogs using
large seismic datasets.

Our automated earthquake detection and location work-
flow, BPMF (Fig. 1), is based upon two seismic array process-
ing techniques: backprojection (also called beamforming, e.g.,
Capon, 1970; Ringdal and Husebye, 1982; Rost and Thomas,
2002; Fan and Shearer, 2016) and matched filtering (also called
template matching, e.g., Gibbons and Ringdal, 2006; Shelly
et al.,, 2007; Beaucé et al.,, 2018); it also includes the recent
phase-picking machine learning technologies (e.g., Zhu and
Number 2A . March 2024
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Beroza, 2019; Mousavi et al., 2020; Zhou et al, 2022).
Backprojection emerged in the second-half of the twentieth
century as a powerful tool to detect, locate, and characterize
earthquake sources (Capon, 1970; Ringdal and Husebye,
1982) in the context of nuclear test ban monitoring. More
recently, it has been used to find aftershocks hidden in the coda
of large earthquakes (Kiser and Ishii, 2013; Fan and Shearer,
2016) that conventional methods like the short-term average/
long-term average (STA/LTA; Allen, 1982) failed to detect. It is
now used to detect small, local earthquakes in continuous seis-
mic data from local and regional arrays (Frank and Shapiro,
2014; Beaucé et al., 2019; Feng et al., 2020). The matched filter-
ing technique consists of detecting near-repeating earthquakes
using known events and waveform correlation to overcome the
signal-to-noise ratio limitations that power detectors such as
backprojection suffer from. It became popular in seismology
at the beginning of the century (Gibbons and Ringdal, 2006;
Shelly et al., 2007) and is now commonly used to lower the
detection threshold in existing catalogs (Frank et al., 2013;
Ross, Trugman, et al., 2019; Beaucé et al., 2022). In the past
five years, several machine learning models have proven more
effective at identifying seismic phases than traditional algo-
rithms like STA/LTA or the Akaike information criterion
(Takanami and Kitagawa, 1988). These models either use
three-component single-station seismograms (generalized
phase detection [Ross et al, 2018], PhaseNet [Zhu and
Beroza, 2019], and EQTransformer [Mousavi et al, 2020])
or, recently, multistation seismograms (EdgePhase [Feng
et al., 2022]).

The BPMF workflow leverages the complementary nature
of backprojection and matched filtering, and proposes a novel
approach to enhancing these techniques with machine learn-
ing. The workflow is distributed with a user-friendly, flexible
Python package that harnesses the computational efficiency
of low-level C and CUDA-C routines. This new open-source
software aims at fostering the use of modern detection tech-
niques and comprehensive workflows within the seismology
community. The workflow is applicable with no or little prior
knowledge about the study region, although a more realistic
model of the velocity structure ensures increased detection
capability and more accurate locations. Because machine
learning models do not perform well on data outside of
the training distribution (e.g., Miinchmeyer et al., 2022),
for which they require fine-tuning of their constituent param-
eters (e.g., Jozinovi¢ et al., 2022), BPMF also offers a machine-
learning-free alternative workflow. Furthermore, machine
learning tools are usually built for regular earthquakes and,
therefore, are not directly applicable to the monitoring of
atypical earthquakes such as tectonic low-frequency earth-
quakes (e.g., Frank et al., 2013, 2014; Poiata et al, 2021),
mid-ocean ridge earthquakes (e.g., Ekstrom, 2006; Fan, 2023;
Poli, 2023), or volcanic long-period earthquakes (e.g., Shapiro
et al., 2017).
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TABLE 1
Main Object Classes in the Backprojection and
Matched-Filtering (BPMF) Python Package

Class (Object) Name Description

BPMF.dataset.Network Seismic station metadata

BPMF.dataset.Data Seismic data and metadata

BPMF.template_search.TravelTimes Travel times

BPMF.dataset.Event Event data, metadata with
methods for phase picking,
relocation, and other useful

operations

Subclass of the Event class with
extra methods tailored for
matched filtering

BPMF.dataset. Template

BPMF.dataset. TemplateGroup Collections of templates with
methods to format inputs for

matched filtering

BPMF.template_search.Beamformer Backprojection (or beamforming)
given network, data, and travel-

time information

BPME.similarity_search.MatchedFilter ~ Matched filtering given network,

data, and templates information

Past studies have applied earlier versions of BPMF and
described in detail the methodology upon which it is based
(Frank and Shapiro, 2014; Frank et al., 2014; Beaucé et al.,
2019, 2022). Here, we introduce the first official release of
BPMF (v.2.0.0; see Data and Resources), describe the work-
flow, and decribe the object-oriented application program-
ming interface (API). A detailed online tutorial provides
more information on the API (see Data and Resources).
Finally, we present a decade-long application to the seismicity
of the Ridgecrest, California area, where the BPMF workflow
enabled the discovery of increasing modulation of the rate of
seismicity by the solid Earth tides in the years preceding the
2019 M,, 7.1 Ridgecrest earthquake (Beaucé et al., 2023).

Workflow

Overview

BPMF’s workflow (Fig. 1) is divided into multiple sequential

steps. The final earthquake catalog is the product of two detec-

tion methods: backprojection (BP) and matched filtering (MF).
BPMEF is object-oriented software in which data are manip-

ulated via classes, or structures, that provide a flexible user

experience. The eight main classes are listed in Table 1 and

will be described in this section.

Backprojection

Backprojecting the seismic wavefield recorded across a network
of seismic stations, which involves migrating the network seis-
mic information as a function of a potential source location at
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depth, has extensively been used to detect and locate seismic
events (e.g., Kiser and Ishii, 2013; Frank et al., 2014; Fan and
Shearer, 2016; Poiata et al, 2016; Beaucé et al, 2019;
Soubestre et al., 2019; Feng et al., 2020). A sum of time-shifted
seismograms is called a beam (Capon, 1970; Ringdal and
Husebye, 1982; Rost and Thomas, 2002), which quantifies
how well the seismic wavefield focuses at a given point in space
and time (see Fig. 2):

bt) = Y use(t + 1), )

SGp

in which b () is the beam at time ¢ that backprojects the wave-

field at the source location indexed by k, and u (t + rﬁf‘p)) is

the seismogram at seismometer s, channel ¢, and time shifted
by the time delay (moveout) Tﬁf‘g between source k and seis-
mometer s for the seismic phase indexed by p (e.g., P or S wave).
rﬁf;) can model an arbitrarily complicated wave front geometry.

The opposite slip direction on either side of a fault generates
waves with opposite polarity (Aki and Richards, 2002), poten-
tially causing the beam to sum up to zero. Furthermore, coher-
ently stacking the high-frequency waveform content requires
accurate moveouts, involving the rarely known detailed veloc-
ity structure and computationally expensive fine grid spacing.
Thus, equation (1) is typically modified to sum the radiated
energy or any other smooth positive-valued transform /. of
the original seismogram:

bi(t) =Y U (t+ 1), ©)

S,6p

in which by, represents the beam power. For large arrays, BPMF
allows to restrict the computation of by(t) to the X closest sta-
tions with X to be defined by the user.

The choice of the waveform transform ¢/, depends on the
nature of the target signals and the user’s goals. The envelope
of the waveforms (see Fig. 2) can be used to compute an
energy-based beam that constitutes an efficient detector for
both regular earthquakes (e.g., Beaucé et al., 2019) as well
as low-frequency earthquakes (e.g, Frank and Shapiro,
2014). In the application presented in the Application to the
Ridgecrest, California Area section, we leveraged the recent
developments in machine learning earthquake detectors
(Zhu and Beroza, 2019; Mousavi et al, 2020) and used
PhaseNet’s output probability time series (Zhu and Beroza,
2019) as the waveform transform U/, . (we discuss other options
in the Tuning the workflow and applicability to other tectonic
contexts section). PhaseNet computes P- and S-wave arrival
probabilities at any given time of a three-component seismic
recording (see Fig. 2). Thus, backprojection is an efficient,
physics-based method to turn single-station machine learning
detectors into multistation detectors (see also Shi et al., 2022)
Number 2A
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(d) Application programming interface for backprojection

Backprojection class
BPMF .template_search.Beamformer

Data and metadata classes

BPMF .dataset .Network
> backproject ()

> find_detections ()—— BPMF.dataset .Event
BPMF .dataset .Data .

BPMF .dataset . TravelTimes

and effectively solve the phase association problem (McBrearty
et al., 2019).

For continuous earthquake detection, the beam power is
computed at every source k at each time ¢, and the maximum
beam power by (t) and the corresponding source index k*(t)
are found at each time:

by (1) =m]?.X{l;k(t)}, with k*(t) = argmax, {bc(t)}.  (3)

Peaks above a given threshold define the detection of new
events. This threshold can be based on the statistics of by« (f)
or set entirely empirically (as in the Application to the
Ridgecrest, California Area section). The maximum pooling
operation in equation (3) prevents the detection of multiple
events simultaneously, for which the use of subarrays is neces-
sary. We observe that, because of the trade-off between hypocen-
tral time and location caused by uncertainties, the backprojection
method cannot resolve short interevent times (specific numbers
March 2024 -«

Volume 95 « Number 2A .

Downloaded from http://pubs.geoscienceworld.org/ssal/srl/article-pdf/95/2A/1030/6257418/srl-2023230.1.pdf
bv Columbia lIniversitv user

www.srl-online.org

Figure 2. lllustration of the travel-time-based shift-and-stack
operation in the backprojection method. (a) The wavefield is con-
tinuously recorded at multiple seismic stations, and, when an
earthquake occurs, the P and S waves are observed with a station-
dependent time delay (moveout) determined by the source—receiver
geometry. Given a velocity model, the P- or S-wave travel times are
computed at discrete points (test sources, black dots). Test sources
that are closer to the real source location also have closer moveouts
to the true ones. Not all sources of the 3D grid are shown for the
sake of clarity. (b) The recorded waveforms, the waveform enve-
lopes, and PhaseNet's output (see Backprojection section) are time
shifted using the correct S-wave moveouts and stacked. (c) The same
as panel (b) but for incorrect S-wave moveouts. The difference in
peak height between panels (b) and (c) increases as the number of
stacked recordings increases. (d) Overview of BPMF’s classes involved
in the execution of backprojection. The Network, TravelTimes and
Data classes contain the information required by the Beamformer
class to backproject the wavefield. The detected events are identified
on the maximum beam, by (t) in equation (3), given a user-defined
threshold, and are represented by instances of the Event class. The
color version of this figure is available only in the electronic edition.

Seismological Research Letters 1033



Location likelihood
0.000 0.111 0.222 0.333 0.444 0.556 0.667 0.778 0.889 1.000

(@

40.775°N

40.75°N

40.725°N

40.7°N

40.675°N

40.65°N

40.625°N

® NonlLinLoc location
* Backprojection loc.
¥V Seismic stations

~Now
n o

Depth (km)

[ S = R
N o Noo
o u o

20.0 =

(d) Application programming interface for (Re)location
BPMF .dataset .Event

—> pick_PS_phases|()

> OR relocate (method="beam")

Figure 3. (a—c) Event location with the two methods implemented in BPMF: backprojection (black
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which uses information format-

(b) ted in instances of the Network,

TravelTimes, and Data classes
(see Fig. 2d and Table 1).

Relocation and location
uncertainties
Backprojection provides pre-
liminary locations for the
detected events, and the spa-
tial beam field b, (f) may be
used to quantify location
uncertainties (Fig. 3).
However, the beam-based
location uncertainties have
multiple they
depend on grid size and grid
resolution, require expensive
computation for large grids,
and are sensitive to the prop-
erties of the waveform trans-
form U, (equation 2). To
overcome the aforementioned
BPMF proposes a
relocation that is
based on the nonlinear earth-
quake
NonLinLoc (see Data and
Resources and Lomax et al.,
2000) and a machine-learn-
ing-based phase-picking
routine (Zhu and Beroza,
2019; Mousavi et al., 2020;
Woollam et al, 2022).
NonLinLoc combines grid

drawbacks:

0 5 10 15 20
Depth (km)

issues,
routine

location software

star and colored contours) and NonLinLoc (red dot). The NonLinLoc earthquake location software
uses the P- and S-wave picks given by the machine learning phase picker. The uncertainty ellipse
computed by NonLinLoc represents the 1-sigma error from the covariance matrix derived in the
Gaussian approximation about the solution. See the Relocation and Location Uncertainties section
for comments on the two location methods. (d) The NonLinLoc and backprojection location

methods are implemented in an Event class method. The color version of this figure is available only

search and sampling methods
(OCT-Tree algorithm) to effi-
ciently find the global solution
to the location problem and
estimate location uncertainties

in the electronic edition.

(see Fig. 3). Furthermore, the

depend on the grid geometry). We leveraged the embarrassingly
parallel structure of evaluating equations (2) and (3) in time
(over t) and in space (over k) to design an efficient backprojec-
tion algorithm for central processing units (CPUs; C language)
and graphic processing units (GPUs; CUDA-C language). The
backprojection routines are distributed in a separate Python
package, Beampower (see Data and Resources and Fig. S1, avail-
able in the supplemental material to this article), to allow usage
outside of the BPMF workflow. In BPMF’s API, the backprojec-
tion and event identification are done with the Beamformer class,
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automated workflow highly
benefits from NonLinLoc’s
robust formulation of the location problem (i.e., its robust
loss function) that strongly mitigates the effects of outliers
in the P- and S-wave picks. In summary, two location routines
are implemented in BPMF: one based on machine learning
phase pickers and NonLinLoc, and a beam-based location
routine that does not require any machine learning tools.
The latter may be preferred with datasets or signals (e.g.,
low-frequency earthquakes) with which machine learning
phase pickers perform poorly. Both the location methods
are implemented within an Event class method (see Fig. 3d
Number 2A .
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(c) Application programming interface for template matching

Data and metadata classes
BPMF .dataset .Network
BPMF .dataset . TemplateGroup
BPMF .dataset .Data

and Table 1). Users can choose to use every station with
P- and S-wave picks or focus on a subset of trusted stations.

Matched filtering and template selection

The earthquakes detected and located at this stage of the work-
flow (Fig. 1) are used in a matched-filter search to densify, in time
and space, the backprojection catalog. Matched filtering (also
called template matching) consists in scanning the continuous
recordings in search of events with similar waveforms and move-
outs than that of a reference event (template, see Fig. 4) at one or
multiple stations (Gibbons and Ringdal, 2006; Shelly et al., 2007;
Beaucé et al., 2022; Cabrera et al., 2022). Waveform and moveout
similarity implies the colocation and mechanism similarity of the
sources. The similarity between the template event’'s waveforms
e, .(t) and the continuous recordings u; () at time ¢ is quantified
with the network-averaged correlation coefficient (CC; Fig. 4a):
Volume 95 « Number 2A .
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Backprojection class

BPMF.similarity search.MatchedFilter
> run_matched_filter_search()

|—> BPMF .dataset .Event

Figure 4. Detecting new events with matched filtering (also called
template matching). (a) Similarity between the template event
and the continuous recordings measured by the network-aver-
aged correlation coefficient (CC; equation 4). Peaks above the
user-defined detection threshold are detections of new events.
Here, the threshold is set to eight times the running root mean
square of the CCs. (b) Examples of detected events based on the
network-averaged CC shown in panel (a). The template event
(red waveforms) detects itself with CC = 1. We are showing the
waveforms on a single three-component station, but the CC is
computed across the entire network (8 stations). (c) Overview of
BPMF's classes involved in the execution of matched filtering. The
Network, TemplateGroup, and Data classes contain the infor-
mation required by the MatchedFilter class to run the matched-
filter search. The detected events are identified on the network-
averaged CC (panel (a), given a user-defined threshold, and are
represented by instances of the Event class. The color version of
this figure is available only in the electronic edition.
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in which 7, is the moveout at station s, and channel c used to
align the continuous recordings with the template waveforms,
W, is a user-prescribed weight (with ) w;. = 1 to compute
an average CC and all weights equal to compute the arithmetic
mean), N is the template waveform duration in samples, At is
the sampling time in seconds, and &;, and i, are the template
and windowed continuous data means. The evaluation of
equation (4) over large timescales and seismic networks is a
computationally intensive task but also embarrassingly paral-
lel, for which we have developed the Fast Matched Filter GPU-
accelerated algorithm (Beaucé et al., 2018). In BPMF’s API, the
matched-filter search and event identification are done with
the MatchedFilter class, which uses information stored in
Network, TemplateGroup, and Data class instances (see
Fig. 4c and Table 1).

Because nearby events with similar focal mechanisms share
similar waveforms and moveouts, they detect the same events
when used as templates in a matched-filter search (see Fig. S2).
Thus, to avoid redundant computation and reduce the compu-
tation footprint of matched filtering, we identify groups of sim-
ilar events and select only one event per group as a template.
Choosing the similarity threshold above which earthquakes
are grouped together trades off a reduction in computation time
against increasing the number of detected events. Templates are
further selected based on their location uncertainties. Poorly
located events are associated with low signal-to-noise ratio sig-
nals and poor knowledge of the P- and S-wave arrivals, both
reducing the chances of successful matched-filter searches.

The matched filtering method is able to detect very low sig-
nal-to-noise ratio events, and improves magnitude and inter-
event time completeness with respect to the initial catalog.
However, because of the nature of similarity-based detection,
the spatial completeness of a matched filtering catalog is
entirely set by the initial catalog.

Compiling the final catalog and postprocessing
The backprojection and matched filtering catalogs are comple-
mentary. Even though the backprojection catalog is used to
build the template database, not all events are used as templates
(see the Matched Filtering and Template Selection section),
and, therefore, some events of the backprojection catalog
may not be included in the matched filtering catalog. User-
defined criteria on interevent time and distance allow to find
the events of the backprojection catalog that are not included
in the matched filtering catalog to complement the latter and
build the final catalog.

Before merging the two catalogs, the matched filtering cata-
log needs to be cleaned to remove multiple detections of
unique events. Neighboring template earthquakes with similar
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mechanisms tend to detect similar events. The identification of
these shared detections is achieved through user-defined cri-
teria on intertemplate similarity, distance, and interevent
times. Events detected within AT seconds of one another
represent redundant detections of the same event if they were
detected with template earthquakes that are separated by less
than AR kilometers and with an average interevent CC above S.
This cleaning procedure is essential for the interpretability of
the final catalog (e.g., interevent time or frequency-magnitude
analyses).

BPMF limits its core purpose to the detection and location
of seismic events. However, BPMF provides tools to facilitate
the estimation of event magnitudes (e.g., waveform extraction,
displacement spectrum estimation). Postprocessing of the cata-
log may also commonly include the relative event relocation
with the double-difference method (e.g., Poupinet et al.,
1984; Waldhauser and Ellsworth, 2000).

Application to the Ridgecrest,
California Area

We present an application of the BPMF workflow to the
Ridgecrest, California area in the decade preceding the
M, 6.4 and 7.1 earthquake sequences that struck the region
in July 2019 (e.g., Shelly, 2020, and see Fig. 5). The catalog pre-
sented here (available online; see Data and Resources) was ini-
tially developed to study the statistical properties of small-
magnitude seismicity in the region (Beaucé et al., 2023). We
compare our BPMF catalog to the Southern California
Seismological Network (SCSN; see Data and Resources) cata-
log and the Quake Template Matching (QTM; see Data and
Resources) catalog (Ross, Trugman, et al., 2019). The QTM
catalog is a matched filtering extension of the SCSN catalog.
We stress that these catalogs were built in different contexts
using more extended seismic arrays and for different purposes
than our BPMF catalog. Thus, we here acknowledge the lim-
itations of the following comparison.

We used the seismograms from eight broadband seismic
stations (see Fig. 5) from 1 January 2009 to 3 July 2019, band-
pass filtered them between 1 and 12 Hz, downsampled them to
50 Hz, and applied the BPMF workflow (Fig. 1). We used the
deep-learning model PhaseNet to transform the three-compo-
nent seismograms (i, in equation 1) into time series of P-
wave and S-wave arrival probability (/. in equation 2; see also
Fig. 2). The model used here was trained on seismic data from
northern California (Zhu and Beroza, 2019). The P- and S-
wave travel times were computed by solving the Eikonal equa-
tion with PyKonal (White et al., 2020; see Data and Resources)
in the 3D velocity model from Zhang and Lin (2014). We
empirically set the backprojection detection threshold to
Number 2A  « March 2024
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1.25 after a series of tests with manual checking of the detected
events. We set the matched filtering detection threshold to 8
times the CC root mean square (rms), which compares with
QTM’s detection threshold of 12 times the CC median absolute
deviation (MAD; 8 x rms = 11.86 x MAD). We focused the
catalog comparison on the earthquakes located nearer to the
stations (see black polygon in Fig. 5).

We detected and located 44,717 events with the backprojec-
tion and PhaseNet methods, out of which we selected 13,594
templates. Templates were made of 8 s waveforms, starting one
second before the P-wave arrival on the vertical components
and four seconds before the S-wave arrival on the horizontal
components. Matched filtering tripled the number of earth-
quakes with a total of 151,229 events over the =10.5 yr (and
inside the black polygon in Fig. 5f), which is 39 times more
than the SCSN catalog (3863 events, Fig. 5d) and 13 times
more than the QTM catalog (9403 events, Fig. 5e; Ross,
Trugman, et al., 2019; stopping the comparison in 2018 when
the QTM catalog ends). Because of the nature of matched fil-
tering (see the Matched Filtering and Template Selection sec-
tion), the spatial completeness of the QTM catalog is restricted
to that of the SCSN catalog (see Fig. 5a vs. 5b). Differences in
earthquake locations between these two catalogs arise because
events in the QTM catalog were relocated with the double-dif-
ference method (Ross, Trugman, ef al, 2019). In contrast, the
BPMEF catalog shows a more scattered seismicity (Fig. 5¢), with
small-magnitude events (a quantitative magnitude analysis
follows) missing from the SCSN catalog and thus undetected
in the QTM catalog. The scatter is also due to location
Volume 95 « Number 2A
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Figure 5. Comparison of the Southern California Seismological
Network (SCSN), Quake Template Matching (QTM; with a
detection threshold of 12x the median absolute deviation of CCs;
Ross, Trugman, et al., 2019), and BPMF (this study) seismicity
catalogs in the Ridgecrest, California area. (a—c) Map of the
earthquake epicenters with color-coded hypocentral depths. The
inset at the top right corner in panel (a) shows the location of the
Ridgecrest study region (red square) in California. For reference,
the San Andreas fault (SAF) is shown with a black line. In panel (c),
earthquake epicenters with uncertainties lower than 2.5 km are
colored, and all others are shown with gray dots. Black lines are
known faults, and the thick lines show the surface rupture of the
M,, 6.4 and 7.1 2019 earthquakes. (d—f) Cumulative number of
earthquakes as a function of time. The QTM catalog ends on 1
January 2018. The BPMF catalog (our study) reports 39 x more
events than the SCSN catalog (over the entire time span) and
13 x more than the QTM catalog (between 2009 and 2018). The
color version of this figure is available only in the electronic edition.

uncertainties that are higher than that of the relative locations
given in the QTM catalog.

Double-difference relative relocation techniques (e.g.,
Poupinet et al, 1984; Waldhauser and Ellsworth, 2000) can
be applied to the BPMF catalog to reduce uncertainties related
to our limited knowledge of the velocity structure and build
high-resolution maps of active faults. We applied the double-dif-
ference algorithm HypoDD (Waldhauser and Ellsworth, 2000,
and see Data and Resources) to PhaseNet’s P- and S-wave picks
to refine BPMF’s earthquake locations in selected subareas of the
study region (Fig. 6). We only used picks that were within 10%
of the predicted arrival times and for events that were located
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with a horizontal uncertainty of less than 5 km. The scatter in
earthquake hypocenters decreased, and hypocenter alignments
revealed fault structures that compare to the QTM catalog
(Fig. 6). Better spatial resolution could be achieved by measuring
differential arrival times with correlation techniques (e.g., Schaff
et al, 2004). The relocated BPMF catalog reveals active
structures missing from the SCSN and QTM catalogs, like
the northeast-southwest striking faults, mostly below 35.70°
(Fig. 6a). Similarly striking faults were illuminated by the
2019 Ridgecrest aftershocks (Ross, Idini, et al., 2019).

We characterized the shape of the magnitude distributions by
fitting the parameters a and b of the Gutenberg-Richter
law (Gutenberg and Richter, 1941) to the data: log(N(M)) =
a — bM, in which N(M) is the number of earthquakes exceeding
magnitude M during the observation period. The b-value relates
to fault zone attributes such as stress (Scholz, 2015) or structural
heterogeneity (Mogi, 1967). We computed a local earthquake
magnitude M, for each of our 151,229 cataloged events (see
Fig. S3 and the supplemental section Magnitude Estimation),
and compared the magnitude distribution against that of the
SCSN and QTM catalogs (see Fig. 7). For this comparison,
we only considered the BPMF events with horizontal location
uncertainties (h,,,.) smaller than 2.5 km to exclude mislocated
events that are actually further outside the study region.
However, it is not possible to fully mitigate selection effects
caused by the northern edge crossing a highly seismically active
area (see Fig. 5). We computed the magnitude of completeness
M, with the maximum curvature method (Wiemer and Wyss,
2000). We obtained M ppyr = —0.34 for the BPMF catalog and
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Figure 6. (a) Double-difference (DD) relative relocation of the BPMF
catalog earthquake hypocenters with the HypoDD algorithm
(Waldhauser and Ellsworth, 2000). For computational and per-
formance concerns, we applied HypoDD to subsets of the catalog
(black boxes). To limit the propagation of PhaseNet's pick errors
into the relocation problem, we discarded outlier picks by
selecting picks that were within 10% of the initial hypocenter’s
predicted time. Gray lines connect the initial and relocated epi-
centers. In each box from north to south, the number of selected
versus relocated events was: box 1: 1433 versus 1279, box 2: 909
versus 802, box 3: 743 versus 612, box 4: 395 versus 223, and
box 5: 154 versus 122. (b) For comparison, the QTM catalog is
shown in the same selected boxes. The inset at the top right
corner shows the location of the Ridgecrest study region (red
square) in California. For reference, the San Andreas fault (SAF) is
shown with a black line. The color version of this figure is available
only in the electronic edition.

M_pp = —0.14 for the backprojection-only catalog (Fig. 7a) with
a factor =3 increase in both the total number of detected events
and the number of events with h,, < 2.5 km in the BPMF
catalog. This is a reminder that the magnitude of completeness
is a function of time and space, and that a scalar value does not
fully describe catalog completeness. The small difference in
event numbers indicates that backprojection and PhaseNet have
already detected most of the events that matched filtering could
find. Such good performance may not always be achieved for
other datasets if the deep-learning model is not retrained.
Matched filtering, importantly, improves the smallest resolved
interevent time with respect to the backprojection catalog.
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Comparison of magnitude distributions

(a) Backprojection vs. final BPMF catalog
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The BPMF catalog magnitude of completeness is 0.41 and
1.03 units smaller than that of the QTM and SCSN catalogs,
respectively. We conclude that the M, difference is less than
the 1 unit difference that one could expect to explain a 10-fold
event number difference, despite the factor =10 difference in
the number of events between the BPMF and QTM catalogs.
Thus, we conclude that BPMF’s improvement over the QTM
catalog primarily lies in its better spatial coverage, that is, its

more homogeneous magnitude of completeness than that of

the QTM catalog, which is limited by the sparse event distri-
bution of the SCSN catalog.

We computed the maximum-likelihood estimate of the b-
value (Aki, 1965) and its standard error following Shi and Bolt
(1982). We found that the BPMF and SCSN catalogs share sim-
ilar estimates (bgpyp = 0.96 £ 0.006 vs. bgcgy = 0.91 £ 0.025,
respectively; see Fig. 7), whereas the QTM catalog yielded a
significantly lower b-value (bqry = 0.75 £ 0.010). When

matched filtering significantly decreases the magnitude of

completeness with respect to the template catalog, as in the
QTM catalog, it may result in a more spatially heterogeneous
M. if the template spatial coverage was sparse and, thus, bias

the estimate of the b-value. In the geometrical interpretation of

the b-value, in which b is related to the spatial hypocenter dis-
tribution (the fractal spatial dimension, e.g., Aki, 1981), one
might expect that failing to detect isolated events artificially
lowers the b-value.

Discussion
Runtime and runtime scaling

We built the catalog presented here in about one month using
48 Intel Xeon Silver 4310 2.10 GHz CPUs and 1 Nvidia A100
Number 2A .«
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Figure 7. Comparison of magnitude distributions. (a) The back-
projection-only catalog (abbreviated as BP, red histogram) from the
first part of the workflow (see Fig. 1) is compared against the
final catalog (BPMF, blue histogram). Only M, from events with
hmax < 2.5 km is considered here. There is only a factor =3
difference in both the total number of detected earthquakes,
suggesting that backprojection with PhaseNet (see the
Backprojection and Application to the Ridgecrest, California Area
sections) is particularly efficient for the Ridgecrest data. Because
the matched-filtering-only catalog is indistinguishable from the
BPMF catalog, indicating that all events in the BP catalog were
detected with matched filtering, it is not plotted here. (b) The final
BPMF catalog is compared against the QTM and SCSN catalogs
(see also Fig. 5). All catalogs were cut before 2018 for fair
comparison with the QTM catalog. The BPMF catalog shows a
magnitude of completeness M. thatis 0.41 and 1.03 units smaller
than that of the QTM and SCSN catalogs, respectively. The color
version of this figure is available only in the electronic edition.

GPU, spending three days on the backprojection catalog
and three weeks on the matched filtering catalog (13,594 tem-
plates). During the early development stages of the study in
Beaucé et al. (2023), we ran the entire matched filtering process
in 12 hr using four nodes of the Frontera supercomputer (see
Data and Resources), each equipped with 32 Intel Xeon E5-
2620 v.4 CPUs and 4 NVIDIA Quadro RTX 5000 GPUs.
Also using Frontera’s computing resources, we conducted run-
time scaling tests for the two core routines of BPMF that run
backprojection (Beampower) and matched filtering (Fast
Matched Filter). The results (Fig. S4) show that the runtime
7 of Beampower’s and Fast Matched Filter’s CPU implemen-
tations scales inversely proportionally to the CPU count
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N (r ~ 1/N), meaning that parallelization makes optimal use
of the resources. Beampower’s and Fast Matched Filter's GPU
implementations offer great speed-up with respect to their
CPU counterparts. We note that, although the runtime scaling
T~ 1/N is preserved for large-scale problems, it may be ham-
pered for small-scale problems because of overhead computa-
tion that accounts for a nonnegligible portion of the total
runtime for very short runtimes. Therefore, users might con-
sider running multiple single-GPU jobs to process many small-
scale problems at the same time. We note that the runtime scal-
ing of the overall workflow with CPU and GPU resources
depends on user choices about assembling the BPMF modules.
For example, a user may choose or not to parallelize phase
picking and event location, which is easily achieved because
of BPMF’s modularity but does not come as a built-in feature.

Tuning the workflow and applicability to other
tectonic contexts

The BPMF workflow is applicable in various tectonic contexts
(including shear zones, subduction zones, and stable continental
regions), diverse environments (onland and ocean bottom seis-
mometers), and even in the context of human-induced seismicity.
In each specific scenario, achieving optimal results entails fine-
tuning the workflow. This fine-tuning involves adapting the fre-
quency band of the filtered seismograms, carefully selecting the
number of stations over which a beam (equation 1) or a CC
(equation 4) is computed, and choosing the most suitable trans-
form U for backprojection (equation 2). Among these consid-
erations, designing U, . is one of the most important choices.

Exploring multiple deep-learning phase pickers, such as
generalized phase detection (Ross et al, 2018), PhaseNet
(Zhu and Beroza, 2019), or EQTransformer (Mousavi et al.,
2020), is a valuable approach that can optimize detection per-
formances. For the application presented in the Application to
the Ridgecrest, California Area section, we used PhaseNet,
because it was trained on Californian data and runs fast thanks
to its relatively few model parameters. These machine learning
tools may be compared against conventional earthquake detec-
tors like STA/LTA (Allen, 1982) or the waveform envelope,
which may be more performant for detecting unconventional
earthquakes such as low-frequency earthquakes.

Finally, it is crucial to establish appropriate detection
thresholds for backprojection and matched filtering. These
thresholds should align with the specific scientific question that
the seismic catalog aims to address, taking into consideration
the acceptable balance between false positive and false negative
detections. Ultimately, this decision relies on whether your task
is more adversely affected by false detections and mislocated
earthquakes, or by missing seismic events.

Summary and Concluding Remarks
We have presented a new open-source community tool,
BPMF (backprojection and matched filtering), for automatic
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earthquake detection and location. The workflow (Fig. 1) is
based on the association of two modern array detection meth-
ods—backprojection and matched filtering—to build low mag-
nitude of completeness and short interevent time resolution
catalogs. BPMF integrates the recent machine learning tools
for phase picking (PhaseNet; Zhu and Beroza, 2019), which
enables automatic earthquake location with NonLinLoc
(Lomax et al., 2000). We have also demonstrated here (see
the Backprojection and Application to the Ridgecrest,
California Area sections) that backprojection and existing
machine learning detectors efficiently together.
Alternatively, the BPMF workflow can run without any
machine learning tool to avoid the common shortcomings
of learning-based algorithms. The BPMF API is introduced
in detail in the online tutorial (see Data and Resources).

We presented an application of BPMF to the Ridgecrest,
California seismicity (see the Application to the Ridgecrest,
California Area section) and showed that we detected 151,229
between 1 January 2009 and 3 July 2019 with a magnitude of
completeness M. — 0.34. The BPMF catalog contains 39 times
more events than the SCSN catalog and 13 times more than the
QTM catalog, with a magnitude of completeness that is 1.03
and 0.41 units smaller than each catalog’s, respectively. As
an open-source tool, BPMF aims to encourage the analysis
of large-scale seismic datasets to promote new discoveries

work

and answer longstanding questions.

Data and Resources

This article describes the backprojection and matched-filter (BPMF)
Python package v.2.0.0beta (https://zenodo.org/badge/latestdoi/
346391253, last accessed July 2023). The latest version of BPMF can
be accessed at https://github.com/ebeauce/Seismic_ BPMF (last accessed
September 2023). The backprojection core routine is distributed in its
own Python package, Beampower (https://github.com/ebeauce/
beampower, v.1.0.2, last accessed September 2023), and the
matched-filtering core routine is distributed in the Python package
Fast Matched Filter (https:/github.com/beridel/fast_matched_filter,
v.1.5.0, last accessed September 2023). A detailed tutorial is available
online at https://ebeauce.github.io/Seismic_BPMF/tutorialhtml (last
accessed July 2023). BPMF depends on the seisbench package
(v.0.4.0, https://github.com/seisbench/seisbench, last accessed July
2023; Woollam et al., 2022) to use the machine learning phase picker
PhaseNet (Zhu and Beroza, 2019). NonLinLoc (Lomax et al., 2000)
v.7.0 can be downloaded at http://alomax.free.fr/nlloc/ (last accessed
July 2023). PyKonal (White et al., 2020) v.0.4.0 is available at https://
github.com/malcolmw/pykonal (last accessed July 2023). We used
HypoDD v.2.1b (Waldhauser and Ellsworth, 2000), which can be down-
loaded at ~http://www.ldeo.columbia.edu/~felixw/HYPODD2.1b/ (last
accessed July 2023). The runtime scaling tests discussed in the Runtime
and Runtime Scaling section, and shown in Figure S4 were run on the
Frontera supercomputer, which is part of the Texas Advanced
Computing Center (TACC). The earthquake catalog in the Ridgecrest,
California area presented in the Application to the Ridgecrest, California
Area section can be downloaded at DOI: 10.5281/zenodo.8393318
(v2.0.1). The Southern California Seismological Network (SCSN)
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catalog is available at https:/service.scedc.caltech.edu/eq-catalogs/
date_mag loc.php (last accessed July 2023) and the Quake Template
Matching (QTM) catalog is available at https://scedc.caltech.edu/data/
qtm-catalog.html (last accessed July 2023). The supplemental material
to this article includes additional figures (Figs. S1-S4) providing infor-
mation on the Beampower algorithm (Fig. S1), the identification of sim-
ilar templates (Fig. S2), the comparison of BPMF magnitudes with SCSN
and QTM magnitudes (Fig. $3), and the runtime scaling with numerical
resources (Fig. S4). Details on the magnitude calculation are provided
in text S2.
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