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Abstract

Repeating earthquakes—sequences of colocated, quasi-periodic earthquakes of similar
size—are widespread along California’s San Andreas fault (SAF) system. Catalogs of
repeating earthquakes are vital for studying earthquake source processes, fault proper-
ties, and improving seismic hazard models. Here, we introduce an unsupervised machine
learning-based method for detecting repeating earthquake sequences (RES) to expand
existing RES catalogs or to perform initial, exploratory searches. We implement the
“SpecUFEx” algorithm (Holtzman et al., 2018) to reduce earthquake spectrograms into
low-dimensional, characteristic fingerprints, and apply hierarchical clustering to group
similar fingerprints together independent of location, allowing for a global search for
potential RES throughout the data set. We then relocate the potential RES and subject
them to the same detection criteria as Waldhauser and Schaff (2021). We apply our
method to ~4000 small (M, 0-3.5) earthquakes located on a 10 km long segment of
the creeping SAF and double the number of detected RES, allowing for greater spatial
coverage of slip-rate estimations at seismogenic depths. Our method is novel in its ability
to detect RES independent of initial locations and is complimentary to existing cross-cor-
relation-based methods, leading to more complete RES catalogs and a better understand-
ing of slip rates at depth.
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Supplemental Material

Introduction 2004). Highly periodic RES can be used to estimate source

Groups of small magnitude (M, < 3.5) earthquakes with highly
similar waveforms, locations, and magnitudes that occur in a
periodic or quasi-periodic fashion were first observed on the
San Andreas fault (SAF) decades ago (Geller and Mueller,
1980; Poupinet et al., 1984; Vidale et al, 1994; Nadeau ef al.,
1995). Each repeating earthquake sequence (RES) is presumably
generated by near-identical failures on an asperity embedded
within a region of aseismic creep (Nadeau and Johnson,
1998; Dreger et al., 2007; Uchida, 2019). Some RES are included
in long lived, horizontal streaks of seismicity, suggesting that
they represent asperities from different rock strata intersecting
the fault zone, or that they delineate regions of creep from the
locked sections of the fault where larger magnitude earthquakes
occur (Rubin et al., 1999; Schaff et al., 2002; Waldhauser et al.,
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parameters and fault properties for small earthquakes (Vidale
et al, 1994; Nadeau and Johnson, 1998; Peng et al, 2005),
and infer slip rates at depth (Nadeau and McEvilly, 1999;
Biirgmann et al., 2000; Templeton et al., 2008; Shakibay and
Funning, 2019; Waldhauser and Schaff, 2021, hereafter referred
to as WS2021).
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Figure 1. (@) Map view of repeating earthquake sequences (RES) from
Waldhauser and Schaff (2021) (blue circles) and newly detected or
updated RES from this study (red circles) along a 10 km segment of the
San Andreas fault (SAF) in central California (inset). The gray circles are
background seismicity (1984-2019). The brown lines are fault surface
traces. (b) Depths of earthquakes along strike, colors the same as in panel
(a). Each RES sequence is represented by one circle.

The successes of many of these studies depend on the rel-
ative completeness of RES catalogs, because missing repeating
earthquakes in a given sequence can erroneously extend
recurrence intervals, and missing sequences can degrade
observational spatial resolution. To detect RES, most studies
analyze cross-correlation (CC) coefficients between seismo-
grams of earthquakes observed at common stations (Uchida
and Biirgmann, 2019). However, at times, repeating earth-
quakes may not generate waveforms with high CC coeffi-
cients. Colocated events, for example, may rupture in
different directions (Abercrombie et al., 2020) and generate
dissimilar waveforms. In addition, the introduction of noise
to seismograms can reduce the similarity between waveforms.
Multiple studies have found that the range of CC coefficient
thresholds used to detect RES is highly inconsistent and, as a
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sole criterion, is often insufficient to determine true RES
(Uchida, 2019; Gao et al., 2021; WS2021).

Overcoming these obstacles requires reliable, high-resolu-
tion earthquake catalogs, and strict detection criteria regarding
colocation, size, and waveform similarity of events, such as
those used in the recent studies. WS2021 developed a two-step
procedure to compile a comprehensive RES catalog for
northern California. In the first step, using the double-differ-
ence earthquake catalog of Waldhauser and Schaff (2008), and
the underlying database of billions of P- and S-wave CC coef-
ficients between pairs of seismograms, clusters of potentially
repeating earthquakes with high-waveform similarities are
formed. In a second step, actual RES are confirmed if a detailed
analysis of the relative location and size of earthquakes in each
cluster shows that they rupture the same (inferred) asperity.
WS2021 is the most comprehensive catalog of RES in
California to date, and yet, through this study, we discover that
it most likely underestimates the number of RES in the area.

Here, we introduce a novel method to contribute to step
one—the identification of potentially repeating earthquakes.
Rather than relying on a database of CC coefficients, which
is expensive to compute on a large scale, we compare spectral
characteristics of the seismic waves using unsupervised machine
learning. Many seismological studies have benefited from the
recent advances in supervised machine learning that require
labeled data sets (e.g., reviews by Kong et al., 2018; Mousavi
and Beroza, 2022). In this study, we use an unsupervised
machine learning method applied to spectrograms (Holtzman
et al., 2018) to detect potentially repeating earthquakes without
identifying waveform templates or calculating waveform corre-
lation coefficients beforehand. When applied to a portion of the
SAF north of Parkfield, California, we find about twice as many,
when missing only 20%, of the repeaters compared with the
WS2021. We demonstrate the advantages of complementing
RES detection and selection methods with those aided by unsu-
pervised machine learning, and discuss the resultant increased
spatial resolution in RES-based slip-rate estimates.

Data

Our study region is a 10 km long segment of the SAF about
80 km north of Parkfield positioned between the locked portion
of the fault to the northwest and the creeping section in the
southeast (Fig. 1). We select 3968 events from the updated
(1984-2019) double-difference (DD) catalog of Waldhauser
and Schaff (2008) that are within 500 m from the main lineation
of seismicity associated with the SAF. The local magnitudes
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(M) of the events are between 0 and 3.5, and relative location
errors are 10 m on average. Of these events, 3481 occurred
between 1984 and 2014—the period covered by WS2021, which
identifies 1024 repeating earthquakes divided among 145
sequences at depths up to 8 km (blue circles in Fig. 1).

To find potentially repeating earthquakes (step one), we
choose the seven seismic stations that have been continuously
operating since 1984 and are located within 25 km of the study
area. We acquire 20 s long vertical-component waveforms
from the Northern California Earthquake Data Center cen-
tered on the P-wave arrival for the 3968 events recorded at each
station when available.

Methods

The workflow (Fig. 2) involves converting waveforms to spec-
trograms, to which we apply unsupervised feature extraction
and then hierarchical clustering, followed by analysis of several
selection criteria to determine true RES.

Spectral Unsupervised Feature Extraction
(SpecUFEXx)

We convert the waveforms into spectrograms by calculating
short-time Fourier transforms (STFTs) applied to 1 s Tukey
windows with a shape parameter of 0.25 and 99% overlap
between adjacent windows. We trim the spectrograms to 10 s
by keeping 1 s before the P-wave arrival and 9 s after it, long
enough to capture both the P and S waves while minimizing
the effect of coda waves. We apply a boxcar filter from 2 to
17 Hz to each spectrogram to reduce noise, and then, following
Holtzman et al. (2018), we demean the spectrograms by dividing
them by their median amplitude. We convert the spectrograms
to decibels by multiplying the base-ten logarithm of the spectro-
gram by 20 and setting all negative values to zero to comply with
the nonnegativity constraint of nonnegative matrix factoriza-
tion (NMF).

We reduce the spectrograms to low-dimensionality “finger-
prints” that retain the time-varying spectral information using
the SpecUFEx algorithm (Fig. 2a; Holtzman et al, 2018). The
first step of SpecUFEx is NMF, wherein each spectrogram is
decomposed into the inner product of an activation coefficient
matrix (ACM) that is unique for each spectrogram, and a dic-
tionary shared by all spectrograms. The ACM is composed of
spectral patterns through time, creating a lower dimensionality
representation of the spectrogram. The ACMs are then used as
the inputs for the hidden Markov model (HMM), which learns
how spectral patterns in the ACMs cooccur in time. Concurrent
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spectral patterns are expressed as time-varying states in the state
emissions matrix, then, transitions between states are counted to
form a fingerprint matrix of dimension dim(T,T) in which T, the
number of states in the HMM, is a user-defined parameter. As in
Holtzman et al. (2018), we choose T = 15 states, although slight
deviations from this number do not significantly change overall
results. Unlike waveforms and spectrograms, fingerprints are
not time dependent, because they are based on counts of state
transitions over one time step. Consequently, fingerprints need
not be aligned in time prior to computing similarity. For a more
thorough description of the algorithm, see Holtzman et al.
(2018).

Hierarchical Clustering to Find Potential RES
For each station, we cluster the fingerprints using hierarchical
clustering applied to an N x N Euclidean distance matrix
between N fingerprints (Fig. 2b). Initially, each fingerprint is
assumed to be its own singleton cluster. Then, the nearest sin-
gleton clusters are merged such that a linkage function (in this
case Ward linkage, the variance between clusters) is mini-
mized. This process is repeated until all the clusters are merged,
or, in our case, until a user-defined depth threshold is reached.
We choose a depth threshold that maximizes the number of
potentially repeating earthquakes.

Although the hierarchical clustering is distance indepen-
dent, we screen potentially repeating earthquake clusters by
their locations. We search for clusters of potentially repeating
earthquakes with hypocenters separated from the cluster cent-
roid by not more than two times the estimated rupture radius
of the largest event. We assume the circular rupture model of
Brune (1970) with a radius (R, in km) defined as follows:

7 x 10" Mma\ 1/3
R=001—F—]) , 1
( 16Ac0 ) L

in which M, is the maximum magnitude of all clustered events
and assuming a stress drop, Ao, of 3 MPa. We also impose a
magnitude similarity constraint that all events in a cluster must
be within 0.3 magnitude units of the cluster’s median magnitude
(Waldhauser and Ellsworth, 2002). Uncertainties in relative loca-
tions and magnitudes are accounted for when the selection
parameters are applied to each cluster.

We apply two processing steps to the potential RES that
reduce the sensitivity of results to the hierarchical clustering
depth threshold, and empirically lead to more complete and
robust potential RES. First, if an earthquake is closely located
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to a potential RES, is within 0.3-unit magnitude of the median
magnitude, and is not already in another RES, we cross-correlate
the 10 s waveform with that of the largest magnitude earthquake
in the RES (since the largest magnitude earthquake should have
the highest signal-to-noise ratio). If the pair achieves a CC coef-
ficient higher than 0.9, the event is added to the potential RES. In
addition, we calculate the median of the CC coefficients between
all earthquakes in the RES. If the median increases when we add
the event, then we add it to the RES. If it does not increase, or the
largest magnitude-pair CC coefficient is less than 0.9, then the
event is not added to the RES.

Second, we merge potential RES if the distance between the
centroids of two sequences is less than the radius of the circular
rupture area (equation 1) based on the median magnitude of all
events in both the sequences. And, if the difference between the
median magnitudes between the two sequences is less than 0.3
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Figure 2. Data processing and analysis workflows. (a) At each station,
waveforms are converted to spectrograms and serve as input to the
Spectral Unsupervised Feature Extraction (SpecUFEx) program. SpecUFEx
uses two layers of unsupervised feature extraction (nonnegative matrix
factorization [NMF] and hidden Markov model [HMM]) to generate
fingerprints for each spectrogram. (b) Hierarchical clustering is applied to
the fingerprints, with depth of clustering (i.e., the number of clusters)
chosen to optimize the number of potential RES. Sequence processing
involves adding closely located earthquakes (within two rupture radii
from cluster centroid) to potential RES and merging closely located RES
waveforms for which are highly correlated (cross correlation [CC] > 0.9)
and with magnitudes within 0.3 units of the median magnitude.

(c) Potential RES catalogs for each station are merged, combining
sequences with shared events. Each potential RES is relocated, and
evaluated for colocation and similar magnitudes, resulting in an actual
RES catalog. This actual RES catalog is merged with that from WS2021 to
produce an updated RES catalog after a final analysis of each merged
sequence to ensure colocation (all hypocenters within half rupture radii).
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magnitude units, then we calculate CC on the 10 s waveforms
of the largest amplitude events in each potential RES. If the CC
coefficient is greater than 0.95, then we combine the potential
sequences. We repeat this process for the seven stations and
then concatenate all catalogs, merging potential RES from dif-
ferent stations if they share at least one similar event (Fig. 2¢).

Identification of Actual RES

Each potential RES found by our unsupervised machine learning
approach is individually analyzed to confirm true RES following
WS2021. We relocate the events in each potential RES using
P- and S-wave correlation delay times based on 1 s windows
and CC coefficients >0.7 between all events and all stations
that recorded the events and compute least-squares relative
location errors using the double-difference algorithm HypoDD
(Waldhauser and Ellsworth, 2000; Waldhauser, 2001). We only
keep colocated events in a sequence, that is, those that are
located within each other’s circular rupture area, accounting
for both uncertainty in the magnitudes (+0.1 magnitude unit)
and uncertainty in the relative location estimated from the
covariance matrix, choosing a lower bound of 10 m to acknowl-
edge possible error underestimation. The resulting sequences are
then combined with the WS2021 catalog and after a final relo-
cation analysis and manual inspection of each potential RES a
catalog of actual RES is established (see Data and Resources).
Note that, to combine this study’s RES with those of WS2021,
we had to adjust the depths in the WS2021 catalog to the Geoid
because the U.S. Geological Survey started reporting Geoid-ref-
erenced depths after the WS2021 study. This reanalysis resulted
in removing 10 RES (mostly small-magnitude doublets) of the
144 original WS2021 RES, because they no longer pass the colo-
cation criteria following relocation.

Slip-Rate Estimation

When selecting RES for slip-rate estimation, we follow
WS2021 and discard “burst-type” events, which occur too
closely in time, that is, less than 30 days apart, assuming that
they are aftershocks and not actually reflective of the back-
ground creep rate. In addition, we only keep RES start and
end dates, which are before or after a time span of three times
the average recurrence time of the sequence from the begin-
ning and end of the study period, respectively (WS2021).
For these quasi-periodically repeating sequences (RESp) with
three or more events, we calculate slip rates by first obtaining
the slip (S) for each event (Nadeau and Johnson, 1998) with the
modified static correction term from WS2021:
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S = 1072.46M8.17) (2)

in which earthquake moment, M, is calculated from the earth-
quake magnitude (M) by the following equation:

M, = 1012Mi+17, 3)

We then calculate the average slip rate for each sequence
containing N events with the following equation:

SR = (Z%‘ Si)/ ( 1\% ?R) (4)

Results

Machine learning spectral similarity discovers an additional
1067 repeating events during the WS2021 period 1984-2014
(an increase of 107%), including 759 new repeating earthquakes

in 158 new sequences (Table S1, in the supplemental material
available to this article, and example in Fig. 3a). About 79 RES
from the WS2021 study were updated with 308 repeating events
that were missed in the earlier study (example in Fig. 3b).
However, 210 of the 995 repeating earthquakes in WS2021
(41 RES; 21%) were missed via our screening method but were
subsequently appended for our final RES catalog.

Figure 3¢ shows the cumulative number of repeating earth-
quakes detected over time in our study region. The steel blue
dots show the total number of earthquakes in the DD catalog
of Waldhauser and Schaff (2008), while the fuchsia dots are
the repeating earthquakes determined by this study. The repeat-
ing earthquakes of WS2021 are shown in blue dots. Throughout
the study period (1984-2019), we find that ~60% of all seismic-
ity in the region is RES, compared with ~25% in WS2021 for the
period 1984-2014 (Table S1). Map and along-fault depth views
of the updated RES catalog are given in Figure 1a,b (red circles).
Opverall, the spatial distribution of the new RES is similar to
those of WS2021 (blue circles).

A comparison of RESp locations and inferred slip rates
between WS2021 and this study (Fig. 4) shows an increase
in spatial coverage, especially at shallow (<0.5 km) and rela-
tively deep (>7 km) depths. Note also how three seismic gaps
(black ellipses in Fig. 4b) become more clearly demarcated as
the WS2021 catalog is enhanced. The median RESp-derived
slip rate at shallow depths (<0.5 km) is 1.14 + 0.52 cm/yr
(12 observed RESp). The WS2021 catalog with six observed
RESp in that depth range shows slightly higher slip rates
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(1.79 + 0.37 cm/yr). At the deepest extent of our observations
(>7 km, 15 RESp observed), we estimate a slip rate of
1.18 + 0.55 cm/yr, compared with WS2021 with four RESp
and a median slip rate of 2.11 + 0.76 cm/yr. The median slip
rate along the entire fault segment is consistent between the
two studies: 1.42 + 0.66 cm/yr (157 RESp) for this study com-
pared with 1.77 £ 0.83 cm/yr (97 RESp) for WS2021, indicating
the robustness of fault-slip estimates derived from repeating
earthquakes.

Discussion

Earthquake waveforms contain information about the earth-
quake source as well as properties of the geologic medium
through which the waves pass. Our approach harnesses the
similarity of the time-varying spectral content of waveforms
via the SpecUFEx fingerprint, in contrast to most RES detec-
tion studies that only depend on time-domain similarities
evaluated through waveform CC. Overall, similar waveforms
(those with high CC coefficients) tend to result in similar fin-
gerprints (those with low Euclidean distances), as shown in
Figure 5, suggesting that both metrics measure similar attrib-
utes between events. However, this study finds over 100% more
RES with a spectral-based approach, implying that CC and
fingerprint distances have different sensitivities. One reason
for this could be subtle shifts in the phase of the earthquake
coda, possibly caused by changes in the geological medium
over the years during which the RES occurs. Because the
spectrograms’ 1 s STFT windows average over several cycles
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Figure 3. (a) An example of a new sequence found in this study and (b) an
updated sequence showing repeating earthquake (RE) locations, location
errors (gray crosses), cumulative number of RE through time, and
waveforms recorded at station BAV along with median CC coefficient
between all waveforms. The red and blue colors indicate newly identified
repeating earthquakes from this study and from WS2021, respectively.
(c) Plot showing the cumulative numbers of earthquakes and RE over
time. The blue—gray dots are all earthquakes in the study area from 1984
to 2019; and blue dots are RE from the WS2021 catalog, which ends in
2014. The red dots are newly detected RE (not in WS2021) from this
study; fuchsia dots are all actual RE from this study and WS2021 com-
bined; black and green dots are entirely new RE and updated RE from this
study, respectively.

of the wavetrain, the fingerprint will not be sensitive to such
phase shifts within a given window. In addition, noise in the
waveforms, especially for small earthquakes, can lead to low-
waveform CC coefficients, whereas the noise issue is alleviated
through the NMF component of SpecUFEx. Further studies are
required to investigate the degree to which noise influences
fingerprint results.

Other factors contributed to the significant increase in
detected repeating events. For example, the focus in WS2021
was on finding isolated RES with no background seismicity
nearby, which deselected some potential RES during the initial
screening process. They also used a hypocentral separation
threshold to search for potential RES that may have been
too strict to catch all potential repeaters. This is especially
apparent for shallow events where the uncertainty in depths
appears to have been larger than the hypocentral separation
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criteria implemented in WS2021. Some of these missed RES
indeed have high CC coefficients (red circles in Fig. 5b).
These issues highlight the advantage of using fingerprints as
an efficient way of comparing the similarity of seismic signals
independent of the distance between earthquakes. That is espe-
cially beneficial when searching for potential repeating events in
large catalogs with millions of earthquakes and routine network
locations that typically have large errors. Once the potential
RESs are found in such catalogs, then step two in the process
of detecting repeating events, the high-resolution analysis of
each potential RES as outlined in WS2021 and implemented
here, can be restricted to only the catalog of potential RES
and does not have to involve the entire earthquake catalog.
The increase in RES detections helps expand the spatial cover-
age of on-fault slip-rate estimates within the seismogenic fault
zone (Fig. 4). Newly found RESp improve the fine-scale slip dis-
tribution near the surface along the southeastern portion of the
SAF in our study region (south of ~36.46°), whereas the northern
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Figure 4. (a,b) Median slip rates, (c,d) number of earthquakes, and
(e,f) median absolute deviation (MAD) of slip rates as a function of depth
and distance along strike of the SAF for WS2021 in panels (a,c,e) and this
study in panels (b,d,f). The white dots represent quasi-periodically
repeating sequences (RESp) locations, and gray areas indicate no
observations. The numbered black ellipses in panel (b) demarcate the
approximate boundaries of aseismic regions on the fault surface. Data are
interpolated on a 100 x 100 m grid with 400 m search radius and 50%
overlap. (g) Slip rates at depth in 500 m bins for this study (red) and
WS2021 (black). The dots show the median slip rate and error bars are
the median absolute deviation.

portion is devoid of repeaters (Fig. 1b). This abrupt change is
consistent with the transition in surface geology from moderately
consolidated marine sediments in the southeast to unconsoli-
dated sediments in the northwest (Saucedo et al, 2000). Creep
meter measurements in the region (Schulz et al., 1982) are con-
sistent with our slip estimations, with a creep rate near zero
(0.025 cm/yr) in the northwest where no surface RESp are
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Figure 5. Comparison of similarity metrics of waveforms and fingerprints
within repeating sequences that were found in this study but missing in
WS2021 (red dots), sequences that were found in WS2021 but omitted in
this study (blue dots) and sequences that were found in WS2021 and
updated by this study (green dots). Note the general inverse relationship
between waveform CC coefficients and the (normalized) Euclidean
fingerprint distances, demonstrating that similar waveforms tend to result
in similar fingerprints. Panel (b) is a zoomed-in view on the inset boxed
data in panel (a). Data come from station BPI.

observed, and 1.70 cm/yr in the southeast where our median
near-surface slip-rate estimate is 1.14 + 0.52 cm/yr. Alignment
array (AA) measurements report higher slip rates, with
2.19 cm/yr in the northwest and 3.13 cm/yr in the southeast
(Burford and Harsh, 1980). These higher values are likely due
to slip partitioning in the region as AA data capture slip across
multiple, subparallel fault strands. This is supported by repeating
events that have been found on the subparallel Pine Rock and
San Benito faults (WS2021).

Slip-rate variations across the fault interface have a median
average deviation of 0.5 cm/yr (Fig. 4e,f), which we interpret as
an expression of the natural heterogeneity of frictional proper-
ties of the asperities. The updated RESp catalog reveals three
distinct RESp gaps along the fault interface (black ellipses
in Fig. 4b), which also contain little background seismicity
(Fig. 1b). These gaps are visible in the catalog of WS2021,
but their boundaries clarify as RESp are supplemented by this
study. Each gap has an area of ~25 km?, which, if we assume
that they represent frictionally locked fault areas, can generate
a M,, 5 earthquake if ruptured simultaneously.

Conclusion

In this study, we introduce a novel, unsupervised machine
learning method for detecting potential RES based on spectro-
grams. We find more than twice as many repeating
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earthquakes as traditional methods based on comparing wave-
forms on a 10 km creeping segment of the SAF. The perfor-
mance enhancement is in part, because this method does not
rely on initial high-precision earthquake catalogs, although
such catalogs and their associated CC measurements help build
a more complete RES catalog. Slip rates estimated from these
new RES indicate fault heterogeneity from the kilometer scale
down to the size of individual asperities. We plan to apply our
detection technique to more regions in California to gain a bet-
ter understanding of the nature of repeating earthquakes, and
fault behavior along the SAF system and beyond.

Data and Resources

The catalog of repeating earthquakes from this study is archived
at zenodo.org (doi: 10.5281/zenodo.10251244). The Python
implementation of Spectral Unsupervised Feature Extraction
(SpecuFEx) can be found at github.com/specufex. Other codes
used in this study are at github.com/tsawi/Repeating
Earthquakes_SpecUFEx. For hierarchical clustering, we use the
“agglomerative clustering” package from scikit-learn, and we
implement HypoDD for relocations (Waldhauser and Ellsworth,
2000). All seismic data used in this study are available from
ddrt.ldeo.columbia.edu and the Northern California Earthquake
Data Center (NCEDC) at https://ncedc.org/. All the websites
were last accessed in March 2023. The supplemental material

includes a table summarizing results and a catalog of RES.
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