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Abstract
Denote by C−

! the 3-uniform hypergraph obtained by removing one hyperedge from
the tight cycle on ! vertices. It is conjectured that the Turán density of C−

5 is 1/4. In this
paper, we make progress toward this conjecture by proving that the Turán density of
C−

! is 1/4, for every sufficiently large ! not divisible by 3. One of the main ingredients
of our proof is a forbidden-subhypergraph characterization of the hypergraphs, for
which there exists a tournament on the same vertex set such that every hyperedge is a
cyclic triangle in this tournament. A byproduct of our method is a human-checkable
proof for the upper bound on the maximum number of almost similar triangles in
a planar point set, which was recently proved using the method of flag algebras by
Balogh, Clemen, and Lidický.
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1 Introduction

For a collectionF of r -uniform hypergraphs (r -graphs), we say that an r -graphH is
F -free or free of F , if H contains no F ∈ F as a subhypergraph. The Turán num-
ber ex(n,F) is defined to be the maximum number of r -edges an n-vertex F -free
r -graph can have. To determine ex(n,F) is a central problem in Extremal Com-
binatorics, but also notoriously hard when r ≥ 3, where even the Turán density
π(F) := limn→∞ ex(n,F)/

(n
r

)
is only known for a fewF ’s.1 For example, letK4 be

1 When F = {F}, we use ex(n,F) and π(F) for ex(n, {F}) and π({F}), respectively.
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the complete 3-graph on 4 vertices and K−
4 be the 3-graph obtained by removing one

hyperedge from K4. It has been a long-standing open problem to determine π(K4)

and π(K−
4 ).

A related family that has also received extensive attention for Turán density
problems is the tight cycles. For every integer ! ≥ 4, let C! be the tight cycle
of size !, i.e., it has vertex set {0, 1, . . . , ! − 1} and hyperedges {{i, i + 1, i + 2
(mod !)} : 0 ≤ i ≤ ! − 1}, and let C−

! be the tight cycle minus one hyperedge of
size !, i.e., it is obtained from C! by removing the hyperedge {! − 1, 0, 1}. Note that
C4 = K4 and C−

4 = K−
4 . When ! is a multiple of 3, C! is tripartite, so, by a classical

result of Erdős [6], π(C−
! ) = π(C!) = 0. It is conjectured that π(C5) = 2

√
3 − 3 and

π(C−
5 ) = 1/4, see [15]. In this paper, we make progress toward the latter conjecture

by proving the following theorem.

Theorem 1.1 There is a constant L such that π(C−
! ) = 1/4, for every ! > L not

divisible by 3.

Ourkeymethod for provingTheorem1.1 is to reduce this hypergraphTuránproblem
to a counting problem in tournaments, which is in general much easier to deal with
than hypergraphs. We note that a similar framework is used by Kamčev et al. [11] for
the Turán density of C! for sufficiently large ! not divisible by 3. Some of our ideas
and lemmas are partially inspired by them. We also note that Piga et al. [16] recently
proved that the codegree Turán density of C−

! is 0, for every ! ≥ 5.
We now give an outline of the proof for Theorem 1.1. The lower bound in Theo-

rem 1.1 follows from the following construction, which is usually called the iterated
blow-up of a hyperedge. It is also conjectured to be the extremal construction for C−

5 ,
see [15, Sect. 2.5].

Construction 1.2 Define3-graphsEn by induction. Thevertex set ofEn is {1, 2, . . . , n},
which is partitioned into three parts V1, V2, V3 with sizes (n/3), ((n + 1)/3), and
((n + 2)/3), respectively. En contains no hyperedge when n = 1 or 2. For n ≥ 3, En
contains all the hyperedges with exactly one vertex in each Vi , and Vi spans a copy of
E|Vi | for 1 ≤ i ≤ 3.

It is easy to check that C−
! ! En , when ! ≥ 4 and 3 " !. A standard induction shows

that En has at least n3/24 − Cn log n hyperedges for some constant C > 0, see also
Section 1 in [3].

For the upper bound in Theorem 1.1, we will first work on the Turán problem
of pseudo-cycles, which are, roughly speaking, tight cycles with repeated vertices
allowed. See Definition 3.2 for a rigorous definition. The key step is to connect this
problem with counting the number of cyclic triangles in tournaments. We introduce
the following notion.

Definition 1.3 A 3-graphH is orientable if there is a tournament T on the same vertex
set such that every hyperedge inH is a cyclic triangle in T .

For example, it can be checked that C5 is orientable, but K−
4 is not. We remark

that the connection between 3-graphs and tournaments has been noticed decades ago,
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Fig. 1 An example of a bottle of
size 8. It has vertex set
{1, 2, . . . , 6} and hyperedges
{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {5, 6, 2}, {6, 2, 1}.
It can be represented as
12345621

1 2

3 4

56

which can be traced back to the work of Erdős and Hajnal [7] in 1972. For example,
orientable 3-graphs serve as the constructions for the lower bound of the codegree
Turán density of K−

4 , see [9], and the uniform Turán density of K−
4 , see [10, 19]. See

also [18] for a generalization of orientable 3-graphs to r -graphs with r ≥ 4.
Wewill prove that a 3-graphH is orientable if and only if it is free of a certain family

of hypergraphs, which we call bottles, see Proposition 3.3. Using this characterization
of orientable 3-graphs, we prove that a 3-graph is orientable if it is free of all the
pseudo-cycles minus one hyperedge with length not divisible by 3, see Lemma 3.5.
Then, by analyzing tournaments, we are able to prove a stability result for C−

5 -free
orientable hypergraphs, which says that the vertex set of an almost maximum C−

5 -free
orientable 3-graph can be partitioned into three parts with almost equal sizes such that
there are very few bad hyperedges, i.e., the hyperedges with two vertices in a part and
one vertex in another part, see Proposition 4.1. Building on this structure, a cleaning
argument in Sect. 5 shows that the maximum 3-graphs free of the pseudo-cycles minus
one hyperedge with length not divisible by 3 and less than a fixed large constant indeed
contain no bad hyperedge, fromwhich we can easily prove that such hypergraphs have
edge density at most 1/4 + o(1). Finally, a standard technique using blow-ups gives
Theorem 1.1.

As a direct application of Theorem 1.1, we give a human-checkable answer to
the following question about the maximum number of almost similar triangles in a
planar point set. For a triangle * with angles 0 < a1 ≤ a2 ≤ a3 < 180◦, we say
that another triangle *′ with angles 0 < a′

1 ≤ a′
2 ≤ a′

3 < 180◦ is ε-similar to *
if |ai − a′

i | ≤ ε for i = 1, 2, 3. Inspired by the work of Conway et al. [5] about
the distribution of angles determined by a planar set, Bárány and Füredi [3] studied
h(n,*, ε), the maximum number of triangles that are ε-similar to * in a planar set
of n points. They [3] proved that h(*, ε) := limn→∞ h(n,*, ε)/n3 exists and it is
at least 1/24 for every triangle * and ε > 0, see their Fig. 1. They also showed that
h(*, ε) = 1/24, when * is the equilateral triangle and ε ≤ 1◦, and h(*, ε) can be
strictly larger for some *’s, including all the right-angled triangles. In order to give a
general upper bound for h(n,*, ε), they represented the shape of triangles by points
in Stri := {(a1, a2, a3) ∈ R3 : a1, a2, a3 > 0, a1 + a2 + a3 = π} and considered
the Lebesgue measure on Stri . In the same paper, they showed that for almost all
triangles *, there exists ε = ε(*) > 0 such that h(n,*, ε) ≤ 0.25108

(n
3

)
(1+ o(1)),

and with the further aid of the flag algebra method developed by Razborov [17], they
could improve the constant to 0.25072. Their main idea is to reduce this problem to
a hypergraph Turán problem, by noticing that there exists a family F tr i of 3-graphs,
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whose hyperedges cannot be represented by triangles ε-similar to * in any planar
set, for almost all triangles *. See Definition 6.1 for the rigorous definition of F tr i .
Extending this idea, Balogh et al. [2] improved this bound to 0.25, which is best
possible, by verifying that more 3-graphs are members inF tr i and using flag algebra
and the stability method.

Theorem 1.4 ([2, Theorem 1.3])For almost all triangles*, there exists ε = ε(*) > 0
such that h(*, ε) ≤ 1/4.

We will show in Sect. 6 that Theorem 1.1 implies Theorem 1.4, by the observation
that C−

! ∈ F tr i for some large ! not divisible by 3.
The rest of this paper is organized as follows. In Sect. 2, we introduce our nota-

tion and lemmas used in our proof. In Sect. 3, we give our forbidden-subhypergraph
characterization of the orientable 3-graphs and prove several other lemmas about tour-
naments. In Sect. 4, we prove our stability result. In Sect. 5, we prove Theorem 1.1. In
Sect. 6, we give our new proof for Theorem 1.4.

2 Preliminaries

For a positive integer n, we write [n] for the set {1, 2, . . . , n}. For a set X and a

positive integer k, denote by
(
X
k

)
the collection of all subsets of X of size k. For sets

X1, X2, . . . , Xk , let [X1, X2, . . . , Xk] := {{x1, x2, . . . , xk} : xi ∈ Xi for 1 ≤ i ≤ k}.
For an r -graphH, we use V (H) for its vertex set and useH to stand for its r -edges.

In particular, |H| denotes the number of r -edges inH.
Let H be a 3-graph. For a vertex v ∈ V (H) and two (not necessarily disjoint)

sets S1, S2 ⊆ V (H), let NH
S1,S2

(v) := {{x, y} : {v, x, y} ∈ H, x ∈ S1, y ∈ S2} be
the link graph of v between S1 and S2 and dHS1,S2(v) := |NH

S1,S2
(v)| be the degree

of v between S1 and S2. When S1 = S2 = S, we write NH
S (v) for NH

S1,S2
(v) and

dHS (v) for dHS1,S2(v). Let N
H(v) := NH

V (H)(v) and dH(v) := dHV (H)(v). For vertices

u, v ∈ V (H) and a set S ⊆ V (H), let NH
S (u, v) := {w ∈ S : {u, v, w} ∈ H} be the

set of neighbors of u, v in S and dHS (u, v) := |NH
S (u, v)| be the codegree of u, v in

S. Let NH(u, v) := NH
V (H)

(u, v) and dH(u, v) := dHV (H)
(u, v). We often omit the

superscript H when it is clear from the context. For vertex sets S1, S2, S3 ⊆ V (H),
let H[S1, S2, S3] := H ∩ [S1, S2, S3] be the set of hyperedges between S1, S2, S3.
Let H[S1] := H[S1, S1, S1] and H̄[S1, S2, S3] := [S1, S2, S3] \ H[S1, S2, S3]. For
a partition π = (S1, S2, S3) of V (H), we write Hπ := H[S1, S2, S3] and H̄π :=
[S1, S2, S3] \Hπ .

For a tournament T and a vertex v ∈ V (T ), let N+(v) := {u ∈ V (G) : v → u}
and let N−(v) := {u ∈ V (G) : u → v} be the sets of out-neighbors and in-neighbors
of v, respectively. Let d+(v) := |N+(v)| and d−(v) := |N−(v)| be the out-degree
and in-degree of v, respectively. For vertex sets V1, V2 ⊆ V (T ), we write V1 → V2 if
u → v for every u ∈ V1 and v ∈ V2.

We use the following two results about triangle-free graphs.
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Theorem 2.1 (Mantel [14])Every n-vertex triangle-free graph has atmost n2/4 edges.

Theorem 2.2 (Erdős et al. [8, Theorem 1]) Every triangle-free graph G with n vertices
and m edges can be made bipartite by removing at most

min
{
m
2

− 2m(2m2 − n3)
n2(n2 − 2m)

,m − 4m2

n2

}
,

edges.

For a 3-graph H and a positive integer t , the t-blow-up H[t] is the 3-graph on
vertex set V (H) × [t] with hyperedges {{(v1, t1), (v2, t2), (v3, t3)} : {v1, v2, v3} ∈
H, 1 ≤ t1, t2, t3 ≤ t}. For a family of 3-graphs H = {H1, . . . ,Hh}, let H[t] :=
{H1[t], . . . ,Hh[t]}.
Theorem 2.3 (See [12, Sect. 2]) For every family of 3-graphs H and positive integer
t , we have π(H[t]) = π(H).

We use the following version of the removal lemma for tournaments by Choi et al.
[4] (see their Lemma 5; their original theorem is about oriented graphs, and we can,
for example, add the graph consisting of two isolated vertices to the forbidden family
to get the following version), which follows from a general theorem by Aroskar and
Cummings [1].

Theorem 2.4 Let T be a (possibly infinite) set of tournaments. For every ε > 0, there
exist n0 and δ > 0 such that for every tournament T on n ≥ n0 vertices, if T contains
at most δn|V (D)| copies of D for each D in T , then there exists T ′ on the same vertex set
such that T ′ is D-free for every D in T and T ′ can be obtained from T by reorienting
at most εn2 edges.

The following is a technical lemma that will be used in our proof of the stability
result in Sect. 4. We omit its standard proof.

Lemma 2.5 For integers a ≥ b > 0, we have

max

( ∞∑

i=1

xi yi

)

≤
⌊a
b

⌋
· b

2

4
+ 1

4

(
a − b

⌊a
b

⌋)2
,

where the maximum is over non-negative integer sequences (x1, x2, . . .) and
(y1, y2, . . .) such that

∑∞
i=1(xi + yi ) = a and x j + y j ≤ b for every j ≥ 1.

3 Cyclic Triangles in Tournaments

In this section, we provide the first step toward proving Theorem 1.1, by relating it to
the number of cyclic triangles in tournaments.

For 3-graphs H and F , a surjective homomorphism from H to F is a surjective
map from V (H) to V (F) such that { f (v1), f (v2), f (v3)} ∈ F if {v1, v2, v3} ∈ H and
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for every {u1, u2, u3} ∈ F , there is {v1, v2, v3} ∈ H with { f (v1), f (v2), f (v3)} =
{u1, u2, u3}. Following [11], we have the following definitions.

Definition 3.1 For every integer ! ≥ 3, letP! be the path of size !, i.e., it is the 3-graph
on vertex set {1, 2, . . . , !} with hyperedges {{i, i + 1, i + 2} : 1 ≤ i ≤ !− 2}. We call
a 3-graph H a pseudo-path of size ! if there exists a surjective homomorphism from
P! toH.

Hence, pseudo-paths are a generalization of paths, where repeated vertices are
allowed. For tight cycles, we have the following similar notion.

Definition 3.2 For every integer ! ≥ 4, we call a 3-graph H a pseudo-cycle of size !

if there exists a surjective homomorphism from C! to H, and we call a 3-graph H a
pseudo-cycle minus one hyperedge of size ! if there exists a surjective homomorphism
from C−

! toH.

For every integer L ≥ 4, let C−
≤L be the set of all the pseudo-cycles minus one

hyperedge of size !, where 4 ≤ ! ≤ L and 3 " !. Let C− := ⋃
L≥4 C−

≤L . It can be
easily checked that En , the iterated blow-up of a hyperedge defined inConstruction 1.2,
is C−-free.

For a copyH of pseudo-path, pseudo-cycleminus one hyperedge, or a pseudo-cycle
of size !, we often use v0v2 . . . v!−1, a sequence of its vertices (with repetition allowed)
to stand for it; this means thatH consists of hyperedges {vi , vi+1 (mod !), vi+2 (mod !)}
for 0 ≤ i ≤ ! − 3, when H is a pseudo-path, for 0 ≤ i ≤ ! − 2, when H is a
pseudo-cycle minus one hyperedge, and for 0 ≤ i ≤ !−1, whenH is a pseudo-cycle.

For k ≥ 4, we call a pseudo-path v1v2 . . . vkv2v1 a bottle of size k + 2, see Fig. 1.
For L ≥ 6, let B≤L be the set of the bottles of size ! where 6 ≤ ! ≤ L and
B :=⋃L≥6B≤L .

Proposition 3.3 A 3-graph H is orientable if and only if it is free of B.

Proof Assume that there is a bottle v1v2 . . . vkv2v1 in H, where k ≥ 4. If H is ori-
entable, then without loss of generality, assume that in the corresponding tournament
T we have v1 → v2. Then, by the definition of the bottle, we have vi−1 → vi for
1 < i ≤ k and then vk → v2 and v2 → v1, a contradiction.

Assume that H is free of B. We say that two pairs of vertices {a, b} and {c, d} are
tightly connected if there is a pseudo-path u1u2 . . . u!−1u! such that {u1, u2} = {a, b}
and {u!−1, u!} = {c, d}. Note that the three pairs of vertices in every hyperedge are
always tightly connected to each other. Hence, we can partition the hyperedges of H
into equivalence classes H1,H2, . . . ,Hp, where hyperedges {a, b, c} and {x, y, z}
are in the same class if {a, b} and {x, y} are tightly connected. Note that for every
pair of vertices {x, y}, there can be at most one i such that {x, y} is contained in
some hyperedges of Hi , so when trying to orient {x, y}, we only need to consider
hyperedges of Hi and omit all others. Let Pi be the set of pairs of vertices contained
in some hyperedges ofHi .

Construct a tournament T on V (H) as follows. For every i , where 1 ≤ i ≤ p, do
the following algorithm. Choose an arbitrary pair {a, b} in Pi and orient a → b. For
every other pair {c, d} in Pi , there are two cases.
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1. There is a pseudo-path F1 = abw3 . . . wk1cd or a pseudo-path F2 =
bax3 . . . xk2dc.

2. There is a pseudo-pathF3 = aby3 . . . yk3dc or a pseudo-pathF4 = baz3 . . . zk4cd.

We claim that exactly one case happens. It is clear that at least one of the cases
happens, since {a, b} and {c, d} are tightly connected. If both cases happen, then we
have pseudo-paths Fs1 and Fs2 , where 1 ≤ s1 ≤ 2 and 3 ≤ s2 ≤ 4.

• If s1 = 1, s2 = 3, then we have a bottle abw3 . . . wk1cdyk3 . . . y3ba.
• If s1 = 1, s2 = 4, then we have a bottle dcwk1 . . . w3baz3 . . . zk4cd.
• If s1 = 2, s2 = 3, then we have a bottle cdxk2 . . . x3aby3 . . . yk3dc.
• If s1 = 2, s2 = 4, then we have a bottle bax3 . . . xk2dczk4 . . . z3ab.

Therefore, exactly one case happens, as claimed. Now, if the first case happens, we
orient c → d; otherwise we orient d → c. For a hyperedge {x, y, z} ∈ Hi , if we orient
x → y, which means that there is a pseudo-path ab . . . xy or a pseudo-path ba . . . yx ,
then we also have y → z and z → x , since there is a pseudo-path ab . . . xyzx or a
pseudo-path ba . . . yxzy. Therefore, every hyperedge inHi is a cyclic triangle in this
orientation.

Finally, for pairs of vertices not in any Pi , orient them in an arbitrary way. Every
hyperedge inH is a cyclic triangle in T , soH is orientable. 01

For an orientable 3-graphH, let T (H) be a tournament on the same vertex set such
that every hyperedge inH is a cyclic triangle in T (H). For a tournament T , letH(T )
be the 3-graph on the same vertex set whose hyperedges are exactly the cyclic triangles
in T . Note that H ⊆ H(T (H)) by definition, and strict containment can happen.

For a tournament T , let t(T ) be the number of cyclic triangles in T . The following
lemma is a well-known upper bound for t(T ) by Kendall and Smith [13]. We include
its proof.

Lemma 3.4 For every tournament T on n vertices, we have

t(T ) ≤
{ 1

24 (n
3 − n) if n is odd,

1
24 (n

3 − 4n) if n is even.

Proof For every non-cyclic triangle in T , it has exactly one vertex with two out-edges
and exactly one vertex with two in-edges. Hence, we have

t(T ) =
(
n
3

)
− 1

2

∑

v∈V (T )

((
d+(v)
2

)
+
(
d−(v)
2

))

=
(
n
3

)
− 1

4

∑

v∈V (T )

(
(d+(v))2 + (d−(v))2 − (n − 1)

)
(1)

≤
(
n
3

)
− 1

4

∑

v∈V (T )

((⌈
n − 1
2

⌉)2

+
(⌊

n − 1
2

⌋)2

− (n − 1)

)

.

The claim then follows via an easy calculation. 01
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Proposition 3.3 and Lemma 3.4 show that π(B) ≤ 1/4. Nowwe convert this bound
to C−.

Lemma 3.5 If a 3-graphH is free of C−
≤L , thenH is free of B≤(L+2). In particular, if

H is free of C−, then H is orientable.

Proof Assume for contradiction that H contains a bottle v1v2v3 . . . vkv2v1, where
k ≤ L . We have k 2= 4, since otherwise H contains K−

4 = C−
4 ∈ C−

≤L . For every
k > 4,H contains two pseudo-cycles minus one hyperedge whose sizes differ by one:
vkv1v2v3 . . . vk−2vk−1 and v2v3 . . . vk−1vk . The sizes of these two cycles are both at
most k ≤ L , and at least one of them is not divisible by 3. Thus, H cannot be free of
C−

≤L , a contradiction. The second claim then follows from Proposition 3.3. 01
By Lemmas 3.4 and 3.5, we have π(C−) ≤ 1/4. In order to improve this to get

Theorem 1.1, we need to study tournaments more carefully. The following lemmas
about tournaments will be used in Sect. 4 to prove our stability result, Proposition 4.1.

Lemma 3.6 For every ε1, ε2 > 0, there exists δ ≥ ε1ε
2
2/2 such that for every

tournament T on n vertices with t(T ) > (1/24 − δ)n3, for

V ′(T ) :=
{
v ∈ V (T ) : n − 1

2
− ε2n < d+(v), d−(v) <

n − 1
2

+ ε2n
}
,

we have
∣∣V ′(T )

∣∣ > (1 − ε1)n.

Proof Let δ = ε1ε
2
2/2. If the claim is not true, then by (1), we have

t(T ) <
(
n
3

)
− 1

4
(ε1n)

((
n − 1
2

+ ε2n
)2

+
(
n − 1
2

− ε2n
)2

− (n − 1)

)

− 1
4
(1 − ε1)n

(

2 ·
(
n − 1
2

)2

− (n − 1)

)

=
(

1
24

− 1
2
ε1ε

2
2

)
n3 − 1

24
n < t(T ),

a contradiction. 01
Lemma 3.7 For every n-vertex tournament T , where n > 8, we have

∣∣∣
{
u ∈ V (T ) : d+(u) ≥ n

4

}∣∣∣ ≥ n
4

and
∣∣∣
{
u ∈ V (T ) : d−(u) ≥ n

4

}∣∣∣ ≥ n
4
.

Proof If any of these two claims is false, then the number of directed edges in T is at
most

n
4
· n + 3n

4
· n
4
= 7n2

16
<

(
n
2

)
,

a contradiction. 01
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Lemma 3.8 For every ε1, ε2 such that ε1/24 > ε2 > 0, there exist δ > ε21(ε1 −
24ε2)/243 and N such that for every tournament T on n > N vertices with t(T ) ≥
(1/24 − δ)n3, for

BT (ε2) :=
{
{u, v} ∈

(
V (T )
2

)
: {u, v} is in at most ε2n cyclic triangles in T

}
,

we have |BT (ε2)| < ε1n2.

Proof Let δ > ε21(ε1−24ε2)/243 be the one obtained from Lemma 3.6 when applying
it with ε′

1 = ε1/12 and ε′
2 = ε1/24 − ε2/2. Let N be sufficiently large such that

ε1N > 24. Let T be a tournament on n > N vertices with t(T ) ≥ (1/24 − δ)n3.
Assume for contradiction that |BT (ε2)| ≥ ε1n2. For every vertex v ∈ V (T ), let

N ′(v) := {u ∈ N−(v) : {u, v} ∈ BT (ε2)} and S := {v ∈ V (T ) : |N ′(v)| ≥ ε1n/3}. If
|S| ≤ ε1n/3, then we have

|BT (ε2)| ≤ ε1n
3

· n +
(
1 − ε1

3

)
n · ε1n

3
<

2
3
ε1n2 < ε1n2,

a contradiction. Therefore, |S| > ε1n/3 and then by Lemma 3.6, there exists v0 ∈
S ∩ V ′(T ).

Note that for every vertex u ∈ N−(v0) and vertex w ∈ N+(v0), if w → u, then
{u, v0, w} forms a cyclic triangle. Hence, for every u ∈ N ′(v0), we have |N−(u) ∩
N+(v0)| ≤ ε2n, and then,

|N+(u) ∩ N+(v0)| ≥ d+(v0) − ε2n.

Since |N ′(v0)| ≥ ε1n/3, we have, by Lemma 3.7, that there are at least ε1n/12
vertices u ∈ N ′(v0) such that |N+(u) ∩ N ′(v0)| ≥ ε1n/12. However, for every such
vertex u, we have

d+(u) ≥ |N+(u) ∩ N ′(v0)| + 1+ |N+(u) ∩ N+(v0)| >
ε1

12
n + d+(v0) − ε2n

= d+(v0)+ 2ε′
2n,

so d+(u) > (n − 1)/2 + ε′
2n and hence u /∈ V ′(T ). Thus, we have |V ′| ≤ (1 −

ε1/12)n = (1 − ε′
1)n, a contradiction to Lemma 3.6. 01

4 Stability Result

In this section, we prove our stability result. Let D5 be the tournament with vertex set
{1, 2, 3, 4, 5} and directed edges 1 → 2, 1 → 3, 1 ← 4, 1 ← 5, 2 → 3, 2 → 4,
2 → 5, 3 → 4, 3 ← 5, 4 ← 5, see Fig. 2. Let T5 be the set of the tournaments D on
5 vertices such that H(D) contains a copy of C−

5 as a subhypergraph. We will apply
Theorem 2.4 with these tournaments as T , the tournaments to remove, for the proof
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Fig. 2 The tournament D5

1

2 3

4 5

of our stability result. For a 3-graph H and a 3-partition π = (V1, V2, V3) of V (H),
we write Hπ

bad for
⋃

1≤i 2= j≤3H[Vi , Vi , Vj ].

Proposition 4.1 (Stability result) For every ε1, ε2 > 0, there exist δ > 0 and N such
that for every n > N, the following is true. For every n-vertex C−

5 -free orientable
3-graphH, if |H| > (1/24− δ)n3, then there exists a 3-partition π = (V1, V2, V3) of
V (H) such that (1/3 − ε2)n < |V1|, |V2|, |V3| < (1/3+ ε2)n and |Hπ

bad | < ε1n3.

Proof Given ε1, ε2 > 0, let β 4 γ 4 δ > 0 be sufficiently small, and let N be
sufficiently large. Let T = T (H). By assumption, t(T ) ≥ |H| > (1/24 − δ)n3.

Claim 4.2 For every D ∈ T5, the number of induced copies of D in T is at most δn5.

Proof Since H is free of C−
5 , whenever T contains an induced copy of D, this copy

must contain a cyclic triangle that is not a hyperedge in H. By Lemma 3.4, we have
t(T ) < n3/24, so the number of such cyclic triangles is at most δn3 and hence the
number of induced copies of D in T is at most δn5. 01

Claim 4.3 The number of induced copies of D5 in T is at most δ1/4n5.

Proof Assume that the number of induced copies of D5 is greater than δ1/4n5. Define

S := {{v1, v2, v3, v4, v5, u} ∈
(
V (H)

6

)
: v4 → u, u → v5, and

vi → v j in T iff i → j in D5, for 1 ≤ i < j ≤ 5},

and define AT (δ
1/4) to be

{
{v4, v5} :

∣∣{{v1, v2, v3} : vi → v j in T iff i → j in D5, for 1 ≤ i < j ≤ 5
}∣∣ ≥ δ1/4n3

}
.

If |AT (δ
1/4)| < δ1/4n2/4, then the number of induced copies of D5 in T is at most

1
4
δ
1
4 n2 ·

(
n
3

)
+
(
n
2

)
· 1
4
δ
1
4 n3 < δ

1
4 n5,

a contradiction to our assumption, so |AT (δ
1/4)| ≥ δ1/4n2/4. Since t(T ) ≥ |H| >

(1/24 − δ)n3, by Lemma 3.8, we have |BT (δ
1/3)| < 100δ1/3n2, so |AT (δ

1/4) \
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BT (δ
1/3)| ≥ δ1/4n2/5. Note that {4, 5} is not in any cyclic triangle in D5, and

{v4, v5, u} forms a cyclic triangle, for every {v1, v2, v3, v4, v5, u} ∈ S. Hence, every
pair in AT (δ

1/4) \ BT (δ
1/3) is in at least δ1/4n3 · δ1/3n sets in S. Trivially, every set

in S contains at most
(6
2

)
= 15 pairs in AT (δ

1/4) \ BT (δ
1/3). Therefore, we have

|S| ≥ 1
15

· δ 1
4 n3 · δ 1

3 n · |AT (δ
1/4) \ BT (δ

1/3)|

≥ 1
15

· δ 1
4 n3 · δ 1

3 n · 1
5
δ
1
4 n2 = 1

75
δ
5
6 n6. (2)

For every F = {v1, v2, v3, v4, v5, u} ∈ S, consider the orientation of edges between
vi and u, for 1 ≤ i ≤ 3. There are eight possibilities. We claim that F contains a copy
of some D ∈ T5 in every case.

• If u ← v1, then v4uv5v1v2 forms a copy of C−
5 inH(T ).

• If u → v1 and u ← v3, then v4v5uv3v1 forms a copy of C−
5 inH(T ).

• If u → v1, u → v2, and u → v3, then v5v1v2v4u forms a copy of C−
5 inH(T ).

• If u → v1, u ← v2, and u → v3, then uv2v1v4v3 forms a copy of C−
5 inH(T ).

For a fixed D ∈ T5, by Claim 4.2, the number of copies of D in T is at most δn5,
and for every copy of D, it can be in at most n sets in S. Therefore, we have

|S| ≤ |T5| · δn5 · n. (3)

By (2) and (3), we have |T5| ≥ 1
75δ

−1/6 > 2(
5
2) ≥ |T5|, a contradiction. 01

Applying Theorem 2.4 to T with T = {D5} ∪ T5, we get a tournament T ′ free of
D5, where H(T ′) is free of C−

5 and T ′ and T differ by at most γ n2/2 edges. Since
changing the orientation of one edge can remove at most n cyclic triangles, we have
t(T ′) ≥ t(T ) − γ n3/2 > (1/24 − γ )n3. Let H′ := H(T ′).

By Lemma 3.6, there exists V ′ ⊆ V (T ′) = V (H) with |V ′| = m ≥ (1 − β/2)n
such that (1/2 − β/5)n < d+(v), d−(v) < (1/2 + β/5)n in T ′ for every vertex
v ∈ V ′. Let T ′′ be the subtournament of T ′ induced by V ′. Let H′′ := H(T ′′). We
have

t(T ′′) ≥ t(T ′) − β

2
n · n2 >

(
1
24

− γ − β

2

)
n3 >

(
1
24

− β

)
n3 ≥

(
1
24

− β

)
m3,

(4)

and

d+(v), d−(v) >
(
1
2

− β

5

)
n − β

2
n >

(
1
2

− β

)
n ≥

(
1
2

− β

)
m, (5)

d+(v), d−(v) <
(
1
2
+ β

5

)
n ≤

(
1
2 + β

5

1 − β
2

)

m <

(
1
2
+ β

)
m, (6)

in T ′′ for every v ∈ V ′.

123



960 Combinatorica (2024) 44:949–976

Fig. 3 The subsets V ′
1, V

′
2, V

′
3 of

V ′

v0

V3

V2

V1b

V1a

V1
N−(v0)

N+(v0)

Claim 4.4 For every vertex v ∈ V ′, every component of NH′′
V ′ (v) is a complete bipartite

graph.

Proof For every vertex v ∈ V ′, its link graph NH′′
V ′ (v) is a bipartite graph with the two

parts N+(v) and N−(v) in T ′′. We first claim that if there are vertices w, x, y, z such
that w, y ∈ N+(v), x, z ∈ N−(v), and w → x , x ← y, y → z in T ′′, then we also
have w → z in T ′′. Equivalently, this is to say that whenever {w, x}, {x, y}, {y, z} ∈
NH′′
V ′ (v), we also have {w, z} ∈ NH′′

V ′ (v). Assume for contradiction that w ← z. If
w → y, then wxvyz forms a copy of C−

5 in H′′. If x → z, then zyvxw forms a copy
of C−

5 inH′′. Hence, the only possibility isw ← y and x ← z, but then {v, y, w, x, z}
forms a copy of D5 in T ′′, still a contradiction.

Now assume for contradiction that there exist vertices a ∈ N+(v) and b ∈ N−(v)
in the same component of NH′′

V ′ (v) but {a, b} /∈ NH′′
V ′ (v). Let P be the shortest path

between a and b in NH′′
V ′ (v). Since NH′′

V ′ (v) is bipartite and {a, b} /∈ NH′′
V ′ (v), we have

that P contains at least 4 vertices, so we can assume that P starts with a, v1, u2, v3.
However, by the claim in the last paragraph,we have {a, v3} ∈ NH′′

V ′ (v), a contradiction
to that P is shortest. 01

Let v0 ∈ V ′ be a vertex in maximum number of cyclic triangles in T ′′. Since
t(T ′′) ≥ (1/24 − β)m3 by (4), we have that v0 is in at least (1/8 − 3β)m2 cyclic
triangles and hence

dH
′′

V ′ (v0) ≥ (1/8 − 3β)m2. (7)

Assume that V ′
2 ⊆ N+(v0), V ′

3 ⊆ N−(v0) form the largest component in NH′′
V ′ (v0).

Let V ′
1a := N+(v0)\V ′

2, V
′
1b := N−(v0)\V ′

3, and let V
′
1 := {v0}∪V ′

1a ∪V ′
1b. Consider

the partition π ′ := (V ′
1, V

′
2, V

′
3) of V

′. By Claim 4.4, we have V ′
2 → V ′

3, and by the
definition of V ′

2, V
′
3, we have V

′
2 ← V ′

1b and V ′
1a ← V ′

3, see Fig. 3.

Claim 4.5 We have |V ′
2| + |V ′

3| ≥ (1/2 − 8β)m.

Proof ByClaim4.4,we can assume that NH′′
V ′ (v0) is partitioned into complete bipartite

graphs G1, . . . ,Gp and assume that Gi has two parts with sizes xi and yi , for 1 ≤
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i ≤ k. Let a = m−1 and b = |V ′
2|+ |V ′

3|. Then,
∑p

i=1(xi + yi ) = a and x j + y j ≤ b
for 1 ≤ j ≤ k, by the definition of V ′

2, V
′
3. Applying Lemma 2.5, we have

dH
′′

V ′ (v0) =
p∑

i=1

xi yi ≤
⌊a
b

⌋
· b

2

4
+ 1

4

(
a − b

⌊a
b

⌋)2
.

If b ≤ (m − 1)/3, then

dH
′′

V ′ (v0) ≤ 1
4
ab + 1

4
b2 ≤ m − 1

4
· m − 1

3
+ 1

4

(
m − 1

3

)2

= 1
9
(m − 1)2 <

(
1
8

− 3β
)
m2.

If (m − 1)/3 < b < (1/2 − 8β)m, then (a/b) = 2 and

dH
′′

V ′ (v0) ≤ 2 · b
2

4
+ 1

4
(m − 1 − 2b)2 = 3

2
b2 − (m − 1)b + 1

4
(m − 1)2

≤ 3
2

((
1
2

− 8β
)
m
)2

− (m − 1) ·
(
1
2

− 8β
)
m + 1

4
(m − 1)2

=
(
1
8

− 4β + 96β2
)
m2 − 8βm + 1

4
<

(
1
8

− 3β
)
m2.

Both cases contradict (7). Therefore, |V ′
2| + |V ′

3| ≥ (1/2 − 8β)m. 01

Claim 4.6 We have |V ′
1|, |V ′

2|, |V ′
3| ≥ 0.02m.

Proof Assume for contradiction that |V ′
1| < 0.1m and hence |V ′

2| + |V ′
3| > 0.9m. If

|V ′
2| ≥ |V ′

3|, then |V ′
2| ≥ 0.45m. By (6), we have |V ′

3| > 0.9m− (1/2+β)m = (0.4−
β)m. By Lemma 3.7, there exists a vertex v ∈ V ′

3 such that |N−(v) ∩ V ′
3| ≥ |V ′

3|/4.
We have

d−(v) ≥ |V ′
2| + |N−(v) ∩ V ′

3| ≥ |V ′
2| +

|V ′
3|
4

> 0.45m +
(
0.1 − β

4

)
m >

(
1
2
+ β

)
m,

a contradiction to (6). A similar argument holds if |V ′
2| < |V ′

3| by considering the
out-degree of some vertex v ∈ V ′

2. Therefore, |V ′
1| ≥ 0.1m.

Assume for contradiction that |V ′
2| < 0.02m. Then, by (5), we have |V ′

1a | ≥ (0.48−
β)m, and by Claim 4.5, we have |V ′

3| ≥ (0.48 − 8β)m. By Lemma 3.7, there exists
v ∈ V ′

1a such that |N−(v)∩V ′
1a | ≥ (0.12−β/4)m. Then, we d−(v) ≥ (0.6−9β)m, a

contradiction to (6). Therefore, |V ′
2| ≥ 0.02m. Similar arguments give |V ′

3| ≥ 0.02m.
01
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We define

E12 := { {u, v} : u ∈ V ′
1a, v ∈ V ′

2, u ← v in T ′′ },
E13 := { {u, v} : u ∈ V ′

1b, v ∈ V ′
3, u → v in T ′′ }.

Claim 4.7 We have |E12|, |E13| ≤ 100βm2.

Proof Let S1 := {u ∈ V ′
1a : {u} ← V ′

1b}. For every u ∈ S1, if |N−(u) ∩ V ′
2| > 2βm,

then using (5), we have

d−(u) ≥ |N−(u) ∩ V ′
2| + |V ′

3| + |V ′
1b| > 2βm + d−(v0) >

(
1
2
+ β

)
m,

a contradiction to (6). Hence |N−(u) ∩ V ′
2| ≤ 2βm for every u ∈ S1.

Let S2 := {u ∈ V ′
1a \ S1 : there exists x ∈ V ′

2 such that x → u}. We claim |S2| ≤
60βm. Otherwise, by Lemma 3.7, there exists u ∈ S2 with |N−(u) ∩ S2| ≥ 15βm.
By the definition of S2, there exist x ∈ V ′

2 with x → u and z ∈ V ′
1b with u → z.

Let y be an arbitrary vertex in V ′
3, which exists since V

′
3 2= ∅ by Claim 4.6. Now, we

have v0 → {x, u}, v0 ← {y, z}, x → {y, u}, x ← z, u ← y, and u → z. If y → z,
then v0uzxy forms a copy of C−

5 in H′′, a contradiction. Hence, y ← z. For every
x ′ ∈ V ′

2 \ {x}, if x ′ ← u, then v0x ′yuz forms a copy of C−
5 inH′′, a contradiction, so

we have V ′
2 → {u}. Then, using Claim 4.5, we have

d−(u) ≥ |N−(u) ∩ S2| + |V ′
2| + |V ′

3| ≥ 15βm +
(
1
2

− 8β
)
m >

(
1
2
+ β

)
m,

a contradiction to (6). Therefore, |S2| ≤ 60βm. Thus,

|E12| ≤ |S1| · 2βm + |S2| · |V ′
2| ≤ m · 2βm + 60βm · m ≤ 100βm2.

Similar arguments give the upper bound on |E13|. 01
Claim 4.8 We have |H′′π ′

bad | ≤ 200βm3.

Proof Recall that we have V ′
2 → V ′

3. For vertices x ∈ V ′
1, y ∈ V ′

2, we have x → y
unless {x, y} ∈ E12. For vertices x ∈ V ′

1, z ∈ V ′
3, we have x ← z unless {x, z} ∈ E13.

Therefore, every hyperedge inH′′π ′
bad contains a pair in E12∪E13, so |H

′′π ′
bad | ≤ 200βm3

by Claim 4.7. 01
Claim 4.9 We have (1/3 − ε2/2)m < |V ′

1|, |V ′
2|, |V ′

3| < (1/3+ ε2/4)m.

Proof By Claim 4.6, we can assume that 0.02m ≤ |V ′
i | ≤ |V ′

j | ≤ |V ′
k |, where

{i, j, k} = {1, 2, 3}. Assume for contradiction that |V ′
k | ≥ (1/3 + ε2/4)m. Then,

|V ′
i | ≤ (m − |V ′

k |)/2 ≤ (1/3 − ε2/8)m. If j ≡ i + 1 (mod 3), we consider the
in-degree of vertices in V ′

j . Let

d−(V ′
j ) :=

∣∣∣∣{(u, v) : u ∈ V ′, v ∈ V ′
j , u → v}

∣∣∣∣.
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By (5), we have d−(V ′
j ) > |V ′

j |(1/2 − β)m. On the other hand, by the definition
of E12, E13 and Claim 4.7, we have

d−(V ′
j ) ≤ |V ′

i ||V ′
j | +

(|V ′
j |
2

)
+ |E12| + |E13| ≤

(

|V ′
i | +

|V ′
j |
2

)

|V ′
j | + 200βm2

=
(
m − |V ′

k |
2

+ |V ′
i |
2

)
|V ′

j | + 200βm2 ≤ |V ′
j |
(
1
2

− 3ε2
16

)
m

+200βm2 < |V ′
j |
(
1
2

− β

)
m,

a contradiction, where the last inequality is because |V ′
j | ≥ 0.02m and ε2 4 β. If

j ≡ i−1 (mod 3), a similar argument holds by considering the out-degree of vertices
in V ′

j . Thus, we get |V ′
k | < (1/3 + ε2/4)m and hence |V ′

i | ≥ m − |V ′
j | − |V ′

k | >
(1/3 − ε2/2)m. 01

Finally, let V1 := V ′
1∪ {V (H)\V ′}, V2 := V ′

2, and V3 := V ′
3. Consider the partition

π := (V1, V2, V3) of V (H). Recall that |V ′| = m ≥ (1 − β/2)n. By Claim 4.9, we
have

(
1
3

− ε2

)
n < |V1|, |V2|, |V3| <

(
1
3
+ ε2

)
n.

Recall that T ′′ is a subtournament of T ′ induced by V ′ andH′ = H(T ′). For every
hyperedge e inH′π

bad , either e∩ (V (H) \ V ′) 2= ∅ or e ∈ H′′π ′
bad . Hence, by Claim 4.8,

we have

|H′π
bad | ≤ |V (H) \ V ′| · n2 + |H′′π ′

bad | ≤ β

2
n3 + 200βm3 ≤ β

2
n3 + 200βn3 ≤ 300βn3.

Recall that T and T ′ differ by at most γ n2/2 edges, so H(T ) and H′ differ by at
most γ n3/2 hyperedges. Also recall thatH ⊆ H(T ). Thus,

∣∣Hπ
bad

∣∣ ≤ |H(T )πbad | ≤ |H′π
bad | +

γ

2
n3 ≤ 300βn3 + γ

2
n3 < ε1n3.

01

5 Proof of Theorem 1.1

In this section, we provide the proof for Theorem 1.1. Recall that we defined in Sect. 3
that C−

≤L is the set of all the pseudo-cycles minus one hyperedge of size !, where
4 ≤ ! ≤ L and 3 " !, and C− = ⋃L≥4 C−

≤L . We will first prove that π(C−
≤L) = 1/4

for sufficiently large L , see Proposition 5.6, and then convert it to Theorem 1.1 using
Theorem 2.3.
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If we could prove that for some L ≥ 5, the maximum C−
≤L -free 3-graphs can

be made free of C− by removing o(n3) hyperedges, then we get π(C−
≤L) ≤ 1/4

immediately by Lemmas 3.4 and 3.5. We are not able to show this. The following
lemma is what we can achieve. Its proof is parallel to Propositions 6.3 and 6.4 in [11].

Lemma 5.1 If a 3-graph H is free of C−
≤L , where L ≥ 27, then we can delete at most

1
2

√
21

L−26n
3 hyperedges fromH to make it free of C−.

Proof Let δ =
√

21
L−26 .Do the following algorithm forH. Checkwhether there is a pair

of vertices {u, v} with codegree in (0, δn). If so, delete all the hyperedges containing
{u, v} and check again; otherwise end the algorithm. Call the remaining hypergraph
H′. In H′, every pair of vertices has codegree either 0 or at least δn. Note that H′ is
C−

≤L -free and |H′| ≥ |H|−δn3/2, since for every pair of vertices {u, v}, the algorithm
does the removal at most once. We will prove thatH′ is free of C−.

We first show that whenever H′ contains a pseudo-path abu1 . . . utcd, for some
t ≥ 0, then H′ also contains a pseudo-path abv1 . . . vkcd, where k < (L − 8)/3. Let
P = abv1 . . . vkcd be the shortest pseudo-path starting from a, b and ending with
c, d. For vertices v, v′, let M(v, v′) := {(u, u′) : {v, v′, u}, {v′, u, u′} ∈ H′}. For
1 ≤ i < j ≤ k, where both i, j are divisible by 7, we claim that M(vi , vi+1) ∩
M(v j , v j+1) = ∅. Otherwise, let (w,w′) ∈ M(vi , vi+1) ∩ M(v j , v j+1). Then,

abv1 . . . vi−1vivi+1ww′v j+1wv jv j+1v j+2 . . . vkcd,

is a shorter pseudo-path between a, b and c, d thanP , a contradiction. By the codegree
condition ofH′, we have |M(vi , vi+1)| ≥ δ2n2, for every 1 ≤ i < k. Therefore,

n2 >

∣∣∣∣∣∣

⋃

i : 1≤i<k

M(vi , vi+1)

∣∣∣∣∣∣
≥

∑

i : 1≤i<k, 7 | i
|M(vi , vi+1)|

≥
⌊
k
7

⌋
· δ2n2 ≥

(
k
7

− 6
7

)
· δ2n2,

implying k < 7/δ2 + 6 = (L − 8)/3, as desired.
Now, assume for contradiction that u1u2 . . . u!−1u! is the shortest pseudo-cycle

minus one hyperedge in H′ with size ! not divisible by 3. Note that ! > L . Let
s = ((L + 1)/3) + 1. Since there is a pseudo-path u1u2 . . . usus+1 in H′, by the
claim in the last paragraph, there is a pseudo-path P = u1u2v1v2 . . . vkusus+1, where
k < (L − 8)/3. Then, Pus+2 . . . u!−1u! is a pseudo-cycle minus one hyperedge of
size k+4+(!−s−1) < ! inH′, so 3 | k+4+(!−s−1) and hence 3 | k+2s+!. Let
P ′ be the pseudo-path usus+1us−1usus−2us−1 . . . u4u2u3u1u2. Then, v1v2 . . . vkP ′

is a pseudo-cycle of size k + 2 s < L in H′, so 3 | k + 2 s. However, we get 3 | !, a
contradiction. Thus, H′ is free of C−. 01
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Lemma 5.2 For every integer L ≥ 27, we have

ex(n,C−
≤L) ≤

(
1
24

+ 1
2

√
21

L − 26

)

n3.

Proof This follows immediately from Lemmas 3.4, 3.5, and 5.1. 01

We use a standard symmetrization method in the following lemmas to bound the
degrees in amaximumC−

≤L -free 3-graph. For a 3-graphH, a vertex set S ⊆ V (H), and
a vertex v ∈ V (H) \ S, let TS,v = {v1, . . . , v|S|} be a set such that TS,v ∩ V (H) = ∅,
and let HS,v be the 3-graph on vertex set (V (H) \ S) ∪ TS,v with hyperedges

(H \ {e ∈ H : e ∩ S 2= ∅})
⋃



|S|⋃

i=1

{{vi , x, y} : {v, x, y} ∈ H, {x, y} ∩ S = ∅}



 .

We writeHu,v forH{u},v .

Lemma 5.3 If a 3-graph H is C−
≤L-free for some L ≥ 4, then HS,v is also C−

≤L-free,
for every vertex set S ⊆ V (H) and vertex v ∈ V (H) \ S.

Proof Assume for contradiction that HS,v is not C−
≤L -free. Let v1v2 . . . v! be a copy

of some C− ∈ C−
≤L inHS,v . Note that the codegree of v, u′ and the codegree of u′, u′′

are zero in HS,v , for every u′ 2= u′′ ∈ TS,v . Replacing all appearances of the new
vertices in TS,v with v in v1v2 . . . v!, we get a copy of C− ∈ C−

≤L inH, a contradiction
to that H is C−

≤L -free. 01

Lemma 5.4 There exists a constant N > 0 such that the following is true for every
L ≥ 4 and n > N. LetH be a maximum n-vertex C−

≤L-free 3-graph. For every vertex
v ∈ V (H), we have d(v) ≥ n2/8 − 2n.

Proof Assume for contradiction that there exists v ∈ V (H) with d(v) < n2/8 − 2n.
By Construction 1.2, |H| ≥ n3/24−Cn log n for some constant C > 0. Hence, there
is x ∈ V (H) such that d(x) ≥ n2/8−3C log n. By Lemma 5.3,Hv,x is also C−

≤L -free.
However, we have

|Hv,x | > |H| − (n2/8 − 2n)+ (n2/8 − 3C log n) − n > |H|,

a contradiction to the maximality of H. 01

Lemma 5.5 For every ε > 0, there exist δ ≥ ε2/100, L0, and N such that the following
is true for every L > L0 and n > N. Let H be an n-vertex C−

≤L-free 3-graph with
|H| ≥ (1/24 − δ)n3. For every vertex v ∈ V (H), we have d(v) ≤ (1/8+ ε)n2.

Proof Without loss of generality, we can assume ε is sufficiently small. Let δ =
ε2/100, and let L0 > 21 · 502 · (1/ε)4 + 26 and N be sufficiently large. Let L > L0.
Note that for every C−

≤L -free 3-graphF , by Lemma 5.2, we have |F | ≤ (1/24+ δ)n3.
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Let H be an n-vertex C−
≤L -free 3-graph with |H| ≥ (1/24 − δ)n3. Assume for

contradiction that a vertex v ∈ V (H) has d(v) > (1/8+ ε)n2. Let S0 = {u ∈ V (H) :
d(u) ≤ (1/8+ 3

√
δ)n2}. We have

|V (H) \ S0| ·
(
1
8
+ 3

√
δ

)
n2 · 1

3
≤ |H| <

(
1
24

+ δ

)
n3,

so

|S0| >
√

δ − δ
1
24 +

√
δ
n >

√
δn.

Let S be a subset of S0 with size (
√

δn). Note that v /∈ S0 ⊇ S. By Lemma 5.3,
HS,v is C−

≤L -free. However, we have

|HS,v| > |H| − |S| ·
(
1
8
+ 3

√
δ

)
n2 + |S| ·

((
1
8
+ ε

)
n2 − |S| · n

)

≥
(

1
24

− δ

)
n3 + |S|

(
ε − 4

√
δ
)
n2

≥
(

1
24

− δ

)
n3 +

(√
δn − 1

) (
ε − 4

√
δ
)
n2

≥
(

1
24

− δ +
√

δ
(
ε − 4

√
δ
))

n3 − εn2 >
(

1
24

+ δ

)
n3,

a contradiction. Therefore, d(v) ≤ (1/8+ ε)n2 for every vertex v ∈ V (H). 01

Proposition 5.6 For every sufficiently large L, we have π(C−
≤L) = 1/4.

Proof For every integer L ≥ 4, by Construction 1.2, we have ex(n,C−
≤L) ≥ n3/24 −

Cn log n for some absolute constant C > 0.
For the upper bound, fix ε to be 10−10000 and let L,M be sufficiently large integers.

We will prove that for every n ≥ 1, we have

ex(n,C−
≤L) ≤ n3/24+ M2n. (8)

When n ≤ M , (8) is trivial, since M2n >
(n
3

)
. Now assume that n > M and (8) is

true for everypositive integer less thann. Recall that for a 3-graphH and apartitionπ =
(V1, V2, V3) of V (H), we definedHπ := H[V1, V2, V3] and H̄π := [V1, V2, V3] \Hπ

in Sect. 2 and Hπ
bad :=⋃1≤i 2= j≤3H[Vi , Vi , Vj ] in Sect. 4.

Let H be a maximum n-vertex C−
≤L -free 3-graph. By Construction 1.2, |H| ≥

n3/24 − Cn log n. By Lemmas 5.4 and 5.5, we have for every vertex v ∈ V (H),

(1/8 − ε) n2 < d(v) < (1/8+ ε) n2. (9)
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By Lemma 5.1, there exists a C−-free subhypergraph H′ ⊆ H with |H \ H′| ≤
1
2

√
21

L−26n
3, so |H′| ≥

(
1
24 − 1

2

√
21

L−26

)
n3 − Cn log n. By Lemma 3.5, H′ is ori-

entable. Hence, we can apply Proposition 4.1 to H′ and get a 3-partition π =
(V1, V2, V3) of V (H′) = V (H) such that

(1/3 − ε) n < |V1|, |V2|, |V3| < (1/3+ ε) n, (10)

and |H′π
bad | < εn3/2. Then, |Hπ

bad | < εn3/2 + 1
2

√
21

L−26n
3 < εn3. Note that (H \

Hπ
bad) ∪ H̄π is still C−

≤L -free. By the maximality of H, we have

|H̄π | ≤ |Hπ
bad | < εn3. (11)

For {i, j, k} = {1, 2, 3}, we define

Ai := {x ∈ Vi | dVj ,Vk (x) ≥ |Vj ||Vk | − ε1/2n2}, Bi := Vi \ Ai ,

A := A1 ∪ A2 ∪ A3, and B := B1 ∪ B2 ∪ B3.

Claim 5.7 We have |Bi | ≤ ε1/2n for i ∈ [3].
Proof If |Bi | > ε1/2n for some i ∈ [3], then |H̄π | ≥ |Bi | · ε1/2n2 > εn3,
contradicting (11). 01
Claim 5.8 Let {i, j, k} = [3]. For vertices v1, v2 ∈ V (H) with dVj ,Vk (v1) ≥ 2ε1/4n2,
we have

dVi (v1, v2) ≤ 3n
dVj ,Vk (v1)

(
|Vi ||Vk | − dVi ,Vk (v2)

)
+ 2ε1/2n. (12)

Proof Assume for contradiction that (12) is false for some v1, v2 ∈ V (H). We will
prove that H contains a copy of C−

5 . Let Z = {z ∈ Vk : dVj (v1, z) ≥ dVj ,Vk (v1)/n}.
Then, by the upper bounds on |Vj |, |Vk | in (10), we have

dVj ,Vk (v1) ≤ |Z | · |Vj | + |Vk \ Z | ·
dVj ,Vk (v1)

n

≤ |Z | ·
(
1
3
+ ε

)
n +

(
1
3
+ ε

)
dVj ,Vk (v1),

so

|Z | ≥
2
3 − ε

( 1
3 + ε

)
n
· dVj ,Vk (v1) ≥ 3

2n
dVj ,Vk (v1). (13)

Let X = {x ∈ NVi (v1, v2) : dZ (x, v2) ≥ |Z |/2}. If |X | ≤ dVi (v1, v2)/2, then
by (13) and our assumptions that (12) is false and dVj ,Vk (v1) ≥ 2ε1/4n2, we have

|Vi ||Vk | − dVi ,Vk (v2) ≥ |NVi (v1, v2) \ X | ·
(
|Z | − |Z |

2

)
≥ 1

2
dVi (v1, v2) ·

3
4n

dVj ,Vk (v1)
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≥ 3
8n

dVj ,Vk (v1)

(
3n

dVj ,Vk (v1)

(
|Vi ||Vk | − dVi ,Vk (v2)

)
+ 2ε1/2n

)

dVj ,Vk (v1) ≥ 9
8

(
|Vi ||Vk | − dVi ,Vk (v2)

)
+ 3

2
ε3/4n2 > |Vi ||Vk | − dVi ,Vk (v2),

a contradiction, so |X | > dVi (v1, v2)/2 ≥ ε1/2n2.ByClaim 5.7, |Bi | ≤ ε1/2n. Hence,
we are able to choose and fix a vertex x ∈ X \ Bi ⊆ Ai . We have {v1, v2, x} ∈ H.

Let Z ′ = NZ (x, v2). By the definition of X , we have |Z ′| ≥ |Z |/2. Then, by the
definition of Z and (13), we have

dVj ,Z ′(v1) ≥
dVj ,Vk (v1)

n
· |Z ′| ≥

dVj ,Vk (v1)

n
· |Z |

2
≥ 3

4n2
d2Vj ,Vk (v1),

and hence, by the assumption that dVj ,Vk (v1) ≥ 2ε1/4n2, we have

dVj\{v2},Z ′(v1) ≥ 3
4n2

d2Vj ,Vk (v1) − |Z ′| ≥ 3
4n2

· 4ε1/2n4 − n

= 3ε1/2n2 − n > 2ε1/2n2. (14)

We can choose and fix y ∈ Vj \ {v2} and z ∈ Z ′ such that {y, z} ∈ N (v1) ∩ N (x),
since otherwise, by (14), we have

dVj ,Vk (x) ≤ |Vj ||Vk | − dVj\{v2},Z ′(v1) < |Vj ||Vk | − 2ε1/2n2,

a contradiction to that x ∈ Ai . Note that y 2= v2. We have {x, v2, z} ∈ H by the
definition of Z ′. We also have {v1, y, z}, {x, y, z} ∈ H.

Now,we have hyperedges {v1, v2, x}, {x, v2, z}, {x, y, z}, and {v1, y, z}, so v1v2xzy
is a copy of C−

5 inH, a contradiction. Thus, we have (12). 01

Claim 5.9 Let {i, j, k} = [3]. For every vertex v ∈ V (H) with dVj ,Vk (v) ≥ 2ε1/4n2,
we have dVi ,Vj (v) ≤ ε1/4n2.

Proof For every vertex y ∈ A j , by Claim 5.8, we have

dVi (v, y) ≤ 3n
2ε1/4n2

· ε1/2n2 + 2ε1/2n ≤ 2ε1/4n.

Therefore, by (10) and Claim 5.7, we have

dVi ,Vj (v) ≤ |A j | · 2ε1/4n + |Bj | · |Vi | ≤
(
1
3
+ ε

)
n ·
(
2ε1/4n + ε1/2n

)
≤ ε1/4n2.

01

Claim 5.10 We have |H[Vi ]| ≥ (1/24 − 27ε1/4)(n/3)3 for i ∈ [3].
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Proof Let {i, j, k} = [3]. Let v be an arbitrary vertex in Ai . By the definition of Ai
and Claim 5.9, we have dVi ,Vj (v), dVi ,Vk (v) ≤ ε1/4n2. Since K−

4 ∈ C−
≤L , the link

graph of v is triangle-free. By Theorem 2.1 and (10), we have

dVj∪Vk ,Vj∪Vk (v) ≤ 1
4

(
|Vj | + |Vk |

)2 ≤ 1
4

(
2 ·
(
1
3
+ ε

)
n
)2

≤
(
1
9
+ ε

)
n2.

Then, by the bound d(v) ≥ (1/8 − ε)n2 in (9), we have

dVi ,Vi (v) = d(v) − dVi ,Vj (v) − dVi ,Vk (v) − dVj∪Vk ,Vj∪Vk (v) ≥
(

1
72

− 2ε1/4 − 2ε
)
n2.

Thus, by (10) and Claim 5.7, we have

|H[Vi ]| ≥ 1
3

∑

v∈Ai

dVi ,Vi (v) ≥ 1
3
· (|Vi | − |Bi |) ·

(
1
72

− 2ε1/4 − 2ε
)
n2

≥ 1
3
·
(
1
3

− ε − ε1/2
)
n ·
(

1
72

− 3ε1/4
)
n2 ≥

(
1
24

− 27ε1/4
)(n

3

)3
.

01

Claim 5.11 For every vertex v ∈ B, there exists a unique pair { j, k} ⊂ [3] such that
dVj ,Vk (v) ≥ |Vj ||Vk | − 5ε1/9n2.

Proof For every i ∈ [3], by Claim 5.10 and (10), we have

|H[Vi ∪ {v}]| ≥ |H[Vi ]| ≥
(

1
24

− 27ε1/4
)(n

3

)3

≥
(

1
24

− 36ε1/4
)((

1
3
+ ε

)
n + 1

)3

≥
(

1
24

− 36ε1/4
)
|Vi ∪ {v}|3.

Note that, by (10), we have |Vi ∪ {v}| ≥ |Vi | ≥ (1/3 − ε)n, so |Vi ∪ {v}| is
sufficiently large. We can apply Lemma 5.5 toH[Vi ∪ {v}] and get

dVi ,Vi (v) ≤
(
1
8
+ 60ε1/8

)
|Vi ∪ {v}|2 ≤

(
1
8
+ 60ε1/8

)((
1
3
+ ε

)
n + 1

)2

≤
(

1
72

+ 8ε1/8
)
n2. (15)

If dV1,V2(v), dV1,V3(v), dV2,V3(v) < 2ε1/4n, then we have

d(v) ≤
3∑

i=1

dVi ,Vi (v)+
∑

1≤i< j≤3

dVi ,Vj (v) ≤ 3 ·
(

1
72

+ 8ε1/8
)
n2 + 3 · 2ε1/4n2 < n2

23
,
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a contradiction to (9). Hence, we can fix { j, k} ⊂ [3] such that dVj ,Vk (v) ≥ 2ε1/4n2.
Let {i} = [3] \ { j, k}. By Claim 5.9, we have

dVi ,Vj (v), dVi ,Vk (v) ≤ ε1/4n2. (16)

It remains to prove that dVj ,Vk (v) ≥ |Vj ||Vk | − 5ε1/9n2.
Let G = NVj∪Vk ,Vj∪Vk (v). We view G as a graph on vertex set (Vj ∪ Vk) \ {v}.

Note that G is triangle-free, since H is K−
4 -free. By (10), we have

|V (G)| ≤ |Vj | + |Vk | ≤
(
2
3
+ 2ε

)
n. (17)

By (9), (15) and (16), we have

|G| = dVj ,Vj (v)+ dVj ,Vk (v)+ dVk ,Vk (v) = d(v) − dVi ,Vi (x) − dVi ,Vj (x) − dVi ,Vk (x)

≥
(
1
8

− ε

)
n2 −

(
1
72

+ 8ε1/8
)
n2 − 2 · ε1/4n2 ≥

(
1
9

− 9ε1/8
)
n2. (18)

For a bipartition (S1, S2) of Vj ∪Vk , let G[S1, S2] be the set of edges in G between
S1 and S2. Fix (S1, S2) to be the bipartition of Vj ∪Vk whichminimizes |G\G[S1, S2]|.
By (17), (18), and Theorem 2.2, we have

|G \ G[S1, S2]| ≤ |G| − 4|G|2
|V (G)|2 ≤ |G| − 4|G|2

( 4
9 + 8

3ε + 4ε2
)
n2

≤
(
1
9

− 9ε1/8
)
n2 − 4

(( 1
9 − 9ε1/8

)
n2
)2

( 4
9 + 8

3ε + 4ε2
)
n2

≤
(
1
9

− 9ε1/8
)
n2

−
(
1
9

− 20ε1/8
)
n2 = 11ε1/8n2. (19)

By (18) and (19), We have |G[S1, S2]| ≥ (1/9 − 20ε1/8)n2. Then, by (10),

|[S1, S2] \ G[S1, S2]| = |S1||S2| − |G[S1, S2]| ≤
( |Vj | + |Vk |

2

)2

− |G[S1, S2]|

≤
((

1
3
+ ε

)
n
)2

−
(
1
9

− 20ε1/8
)
n2 ≤ 21ε1/8n2. (20)

Note that if {u, w1}, {u, w2} ∈ G, then {u, w1, w2} /∈ H, since otherwise, vw1uw2
forms a copy of K−

4 in H. Hence, every hyperedge in H[S1, S1, S2] ∪ H[S2, S2, S1]
contains at least one pair of vertices in [S1, S2] \ G[S1, S2]. Therefore, by (20),

|H[S1, S1, S2]| + |H[S2, S2, S1]| ≤ 21ε1/8n3. (21)
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Now, assume for contradiction that dVj ,Vk (v) < |Vj ||Vk | − 5ε1/9n2. By (18)
and (10),

dVj ,Vj (v)+ dVk ,Vk (v) ≥
(
1
9

− ε1/8
)
n2 −

(
|Vj ||Vk | − 5ε1/9n2

)
≥ 4ε1/9n2,

so we can assume without loss of generality that dVj ,Vj (v) ≥ 2ε1/9n2. Let Vj1 =
Vj ∩ S1 and Vj2 = Vj ∩ S2. Then, by (19), we have

2ε1/9n2 ≤ dVj ,Vj (v) = dVj1,Vj1(v)+ dVj2,Vj2(v)+ dVj1,Vj2(v)

≤ |G \ G[S1, S2]| + |Vj1||Vj2| ≤ 11ε1/8n2 + |Vj1 ||Vj2 |,

so

|Vj1|, |Vj2| ≥ ε1/9n. (22)

By Lemma 5.2, we have

|H[Vja]| ≤
(

1
24

+ 1
2

√
21

L − 26

)

|Vja |3 ≤
(

1
24

+ ε

)
|Vja |3, for a = 1, 2. (23)

Then, by (23), (21), (10), and (22), we have

|H[Vj ]| ≤ |H[Vj1]| + |H[Vj2]| + |H[S1, S1, S2]| + |H[S2, S2, S1]|

≤
(

1
24

+ ε

)(
|Vj1|3 + |Vj2|3

)
+ 21ε1/8n3

≤
(

1
24

+ ε

)(
|Vj1|3 +

(
|Vj | − |Vj1|

)3)+ 21ε1/8n3

≤
(

1
24

+ ε

)((
ε1/9n

)3
+
((

1
3
+ ε

)
n − ε1/9n

)3
)

+ 21ε1/8n3

≤
(

1
24

− 1
10

ε1/9
)(n

3

)3
,

a contradiction to Claim 5.10, where the second-to-last inequality is due to the fact
that the function fc(x) = x3 + (c − x)3, where c is a positive constant, is decreasing
on [0, c/2] and increasing on [c/2, c]. Thus, we have dVj ,Vk (v) ≥ |Vj ||Vk |−5ε1/9n2.

01
For {i, j, k} = [3], let B ′

i := {v ∈ B : dVj ,Vk (v) ≥ |Vj ||Vk | − 5ε1/9n2} and
V ′
i := Ai ∪ B ′

i . Let π ′ := (V ′
1, V

′
2, V

′
3) be a new partition of V (H). By (10) and

Claim 5.7, we have
(
1
3

− 2ε1/2
)
n < |V ′

1|, |V ′
2|, |V ′

3| <
(
1
3
+ 3ε1/2

)
n. (24)
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Claim 5.12 For {i, j, k} = [3] and vertices x ∈ V ′
i , y ∈ V ′

j , we have dV ′
i
(x, y) ≤

ε1/10n.

Proof By Claim 5.8 and (10), we have

dAi (x, y) ≤ dVi (x, y) ≤ 3n
|Vj ||Vk | − 5ε1/9n2

· 5ε1/9n2 + 2ε1/2n ≤ 1
2
ε1/10n.

By Claim 5.7, we have dB′
i
(x, y) ≤ |B ′

i | ≤ |B| ≤ 3ε1/2n. Therefore, dV ′
i
(x, y) ≤

ε1/10n. 01
Claim 5.13 We have Hπ ′

bad = ∅.

Proof For {i, j, k} = {3}, let

Qi j := { ({x1, x2, y}, z) : {x1, x2, y} ∈ H[V ′
i , V

′
i , V

′
j ], x1, x2 ∈ V ′

i , y ∈ V ′
j , z ∈ V ′

k },

and Q := ⋃
1≤i 2= j≤3 Qi j . Note that for every ({x1, x2, y}, z) ∈ Qi j , we have

{x1, y, z} ∈ H̄π ′ or {x2, y, z} ∈ H̄π ′ , since otherwise x1zyx2 forms a copy ofK−
4 . For

every {x, y, z} ∈ H̄π ′ , by Claim 5.12, there can be at most ε1/10n such x ′ ∈ V ′
i that

{x, x ′, y} ∈ H[V ′
i , V

′
i , V

′
j ], so we have

|Q| =
∑

1≤i 2= j≤3

|Qi j | ≤ 6 · ε1/10n · |H̄π ′ |. (25)

On the other hand, fix i 2= j ∈ [3] which maximize |H[V ′
i , V

′
i , V

′
j ]|. Let k =

[3] \ {i, j}. By (24),

|Q| ≥ |Qi j | = |H[V ′
i , V

′
i , V

′
j ]| · |V ′

k | ≥ |H[V ′
i , V

′
i , V

′
j ]|
(
1
3

− 2ε1/2
)
n. (26)

Combining (25) and (26), we have |H[V ′
i , V

′
i , V

′
j ]| ≤ 0.01|H̄π ′ |, so

|Hπ ′
bad | ≤ 6|H[V ′

i , V
′
i , V

′
j ]| ≤ 1

2

∣∣H̄π ′
∣∣.

If |Hπ ′
bad | > 0, then (H\Hπ ′

bad)∪H̄π ′ is C−
≤L -free and has strictly more hyperedges

than H, which is a contradiction to the maximality of H. Therefore, Hπ ′
bad = ∅. 01

Note that by (24), we have |V ′
i | < n for i ∈ [3]. By induction, we now have

ex(n,C−
≤L ) = |H| = |Hπ ′ | +

3∑

i=1

|H[V ′
i ]| ≤ |V ′

1||V ′
2||V ′

3| +
3∑

i=1

(
1
24

|V ′
i |3 + M2 · |V ′

i |
)

= |V ′
1||V ′

2||V ′
3| +

1
24

3∑

i=1

|V ′
i |3 + M2n ≤ 1

24
n3 + M2n,
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where for the last inequality, we use (24) and the fact that the function g(x1, x2, x3) =
x1x2x3+

∑3
i=1 x

3
i /24 defined on the domain {(x1, x2, x3) ∈ [0.32, 0.34]3 : x1+ x2+

x3 = 1} has maximum value 1/24. This proves (8).
Combining the lower bound and the upper bound, we have π(C−

≤L) = 1/4. 01
Finally, we are able to present the proof of Theorem 1.1.

Proof of Theorem 1.1 For every ! ≥ 4 not divisible by 3, by Construction 1.2, we have
π(C−

! ) ≥ 1/4. For the upper bound, we have the following claims. Recall that for a
3-graph H, we writeH[t] for its t-blow-up.

Claim 5.14 For integers !1, !2 ≥ 4, where !1 ≥ 2!2 − 3 and 3 " !2, there exists a
positive integer t such that C−

!1
⊆ C−

!2
[t].

Proof Let v1v2 . . . v!2 be a copy of C
−
!2
. Let t be sufficiently large, and let {v1i , . . . , vti }

be the copies of vertex vi in C−
!2
[t]. For 1 ≤ k ≤ t − 2, we write (vi1vi2 . . . vi j−1vi j )

k

for the sequence

v3i1v
3
i2 . . . v

3
i j−1

v3i j v
4
i1v

4
i2 . . . v

4
i j−1

v4i j . . . v
k+2
i1

vk+2
i2

. . . vk+2
i j−1

vk+2
i j

.

• If !1 ≡ 0 (mod 3), then (v1v2v3)
!1
3 forms a copy of C!1 ⊇ C−

!1
in C−

!2
[t].

• If !1 ≡ !2 (mod 3), then (v1v2v3)
!1−!2

3 v11v
1
2v

1
3v

1
4 . . . v

1
!2−1v

1
!2
forms a copy of C−

!1

in C−
!2
[t].

• If !1 ≡ 2!2 (mod 3), then

(v1v3v2)
!1−2!2+3

3 v11v
1
3v

1
2v

1
4v

2
3v

1
5 . . . v

1
!2−2v

2
!2−3v

1
!2−1v

2
!2−2v

1
!2
v2!2−1,

forms a copy of C−
!1

in C−
!2
[t].

01

Claim 5.15 For integers !, L ≥ 4, where ! ≥ 2L − 3, there exists a positive integer t
such that C−

! ⊆ F[t] for every F ∈ C−
≤L .

Proof Let t be sufficiently large.Note that for every pseudo-cycleminus one hyperedge
of size !′, its !′-blow-up contains a copy of C−

!′ . Hence, for every pseudo-cycle minus
one hyperedge F ∈ C−

≤L with size !′ ≤ L , by Claim 5.14, we have C−
! ⊆ C−

!′ [t/L] ⊆
F[t]. 01

Let ! and L be sufficiently large integers, where ! ≥ 2L − 3. Let t be sufficiently
large. By Theorem 2.3 and Proposition 5.6, we have π(C−

≤L [t]) = π(C−
≤L) = 1/4.

By Claim 5.15, we have π(C−
! ) ≤ π(C−

≤L [t]) = 1/4.
Thus, we have π(C−

! ) = 1/4, for every sufficiently large ! not divisible by 3. 01
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6 MaximumNumber of Almost Similar Triangles in the Plane

In this section, we provide our new proof for Theorem 1.4.
For a triangle *, a real number ε > 0, and a finite set of points P ∈ R2, let

H(P,*, ε) be the 3-graph on vertex set P , where {a, b, c} is a hyperedge if a, b, c
form a triangle in R2 that is ε-similar to *, and letH(P,*) be the 3-graph on vertex
set P , where {a, b, c} is a hyperedge if a, b, c form a triangle in R2 that is similar to
*.

Definition 6.1 Fix Ctri to be an absolute constant. The forbidden family F tr i is the
collection of 3-graphs F with at most Ctri vertices, where for almost all triangles *,
there exists ε = ε(*) > 0 such thatH(P,*, ε) isF-free, for every point set P ⊆ R2.

The Ctri in Definition 6.1 can be chosen arbitrarily and is to make F tr i a
finite set to avoid some technical problems about infinity. We let Ctri := L + 3,
where L is the constant in Theorem 1.1. By definition, we have h(n,*, ε) =
maxP⊆R2,|P|=n |H(P,*, ε)|. Hence, ex(n,F tr i ) ≥ h(n,*, ε) for almost all triangles
* and small enough ε = ε(*). Bárány and Füredi [3] proved that several 3-graphs,
includingK−

4 and C−
5 , are inF tr i and then gave an upper bound for ex(n,F tr i ) using

flag algebra. Balogh et al. [2] provided more members ofF tr i and then used a combi-
nation of flag algebra and stability method to obtain Theorem 1.4. We will prove that
every tight cycle minus one hyperedge of size 4 ≤ ! ≤ Ctri not divisible by 3 is in
F tr i , and then Theorem 1.4 follows immediately from Theorem 1.1.

Proposition 6.2 For every integer !, where4 ≤ ! ≤ Ctri and3 " !, we haveC−
! ∈ F tr i .

Proof Using the fact that every algebraic set, which is not thewhole space, hasmeasure
0, Bárány and Füredi [3] showed that in order to prove that a 3-graphH is inF tr i , we
only need to prove that there exists one triangle * such that H(P,*) is H-free, for
every point set P ⊆ R2, see their proof of Lemma 9.2. See also the proof of Lemma 2.3
in [2]. Therefore, denoting by *0 the equilateral triangle, we only need to prove that
H(P,*0) is C−

! -free, for every integer !, where 4 ≤ ! ≤ Ctri and ! is not divisible by
3, and point set P ∈ R2. This follows from the following simple coloring argument.

Assume for contradiction that there are a point set P ⊆ R2 and an integer ! ≥ 4 not
divisible by 3 such thatH(P,*0) contains v0v1 . . . v!−1 as a copy of C−

! . Without loss
of generality, we can assume that v0 = (0, 0), v1 = (1, 0), and v2 = (1/2,

√
3/2). Let

P0 be the point set {xv1+ yv2 : x, y ∈ Z}. Color P0 with colors in {0, 1, 2} as follows.
For every point xv1 + yv2 ∈ P0, color it with color c ∈ {0, 1, 2}, where c ≡ x + 2y
(mod 3). Note that every equilateral triangle with side length one formed by points
in P0 is a rainbow, i.e., its vertices have all three colors. Now, v0 = (0, 0) has color 0
and v1 = (1, 0) has color 1. Since {vi , vi+1, vi+2} ∈ H(P,*0) for 0 ≤ i ≤ !− 3, we
have, by induction, vi ∈ P0, vi , vi+1, vi+2 form an equilateral triangle with side length
one, and vi has color c, where c ≡ i (mod 3). Then, v!−2, v!−1, v0 also need to form
an equilateral triangle with side length one, so it is a rainbow. However, since 3 " !, we
have that one of v!−2, v!−1 has color 0, the same color as vertex v0, a contradiction. 01
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7 Concluding Remarks

The constant L in Theorem 1.1 given by the current proof can be large, due to the
following two reasons.

For the stability result in Sect. 4, we use a regularity lemma, Theorem 2.4, which
can make the dependence between ε1, ε2 and δ very poor in Proposition 4.1. We
remark that using the regularity lemma is not really necessary: we can instead use a
similar averaging argument as in the proof of Claim 4.2. This would make the proof
of Proposition 4.1 much longer and more technical, and we still cannot make L close
to 5 (due to the reason in the next paragraph).

As mentioned at the beginning of Sect. 5, the bottleneck in our proof is about the
following problem.

Problem 7.1 For a maximum n-vertex C−
≤L -free 3-graph H, how many hyperedges

do we need to remove to make H free of C−?

In Lemma 5.1, our bound is O(n3/
√
L). Any improvement to this can lead to a

significant improvement for the constant L in Theorem 1.1. We note that Lemma 5.1
is the only place where we need L to be large; for all other proofs, we actually only
use that the forbidden family includes K−

4 and C−
5 . If it can be shown that at most cn3

hyperedges are needed to be removed from every maximum C−
5 -free 3-graph H to

makeH free of C−, where c is small enough, then the same proof gives π(C−
5 ) = 1/4.
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