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Abstract

Denote by C,” the 3-uniform hypergraph obtained by removing one hyperedge from
the tight cycle on £ vertices. Itis conjectured that the Turdn density of C5 is 1/4. In this
paper, we make progress toward this conjecture by proving that the Turdn density of
C, is 1/4, for every sufficiently large £ not divisible by 3. One of the main ingredients
of our proof is a forbidden-subhypergraph characterization of the hypergraphs, for
which there exists a tournament on the same vertex set such that every hyperedge is a
cyclic triangle in this tournament. A byproduct of our method is a human-checkable
proof for the upper bound on the maximum number of almost similar triangles in
a planar point set, which was recently proved using the method of flag algebras by
Balogh, Clemen, and Lidicky.
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1 Introduction

For a collection JF of r-uniform hypergraphs (r-graphs), we say that an r-graph H is
F-free or free of JF, if H contains no F € F as a subhypergraph. The Turdn num-
ber ex(n, F) is defined to be the maximum number of r-edges an n-vertex F-free
r-graph can have. To determine ex(n, F) is a central problem in Extremal Com-
binatorics, but also notoriously hard when » > 3, where even the Turdn density
7 (F) = limy— o ex(n, F) /() is only known for a few F’s.! For example, let K4 be

! When F = {F}, we use ex(n, F) and 7 (F) for ex(n, {F}) and 7 ({F}), respectively.
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the complete 3-graph on 4 vertices and KC; be the 3-graph obtained by removing one
hyperedge from /C4. It has been a long-standing open problem to determine 7 (Ky4)
and 7 ().

A related family that has also received extensive attention for Turdn density
problems is the tight cycles. For every integer £ > 4, let C; be the tight cycle
of size ¢, i.e., it has vertex set {0, 1,...,£ — 1} and hyperedges {{i,i + 1,i + 2
(mod £)} : 0 < i < £ — 1}, and let C, be the tight cycle minus one hyperedge of
size £, i.e., it is obtained from C; by removing the hyperedge {¢ — 1, 0, 1}. Note that
C4 = K4 and C; = K . When £ is a multiple of 3, C; is tripartite, so, by a classical
result of Erdds [6], 7(C, ) = 7 (C¢) = 0. It is conjectured that 7(Cs5) = 24/3 — 3 and
7(Cs5') = 1/4, see [15]. In this paper, we make progress toward the latter conjecture
by proving the following theorem.

Theorem 1.1 There is a constant L such that 7(C,) = 1/4, for every £ > L not
divisible by 3.

Our key method for proving Theorem 1.1 is to reduce this hypergraph Turan problem
to a counting problem in tournaments, which is in general much easier to deal with
than hypergraphs. We note that a similar framework is used by Kamcev et al. [11] for
the Turan density of C, for sufficiently large £ not divisible by 3. Some of our ideas
and lemmas are partially inspired by them. We also note that Piga et al. [16] recently
proved that the codegree Turdn density of C, is 0, for every £ > 5.

We now give an outline of the proof for Theorem 1.1. The lower bound in Theo-
rem 1.1 follows from the following construction, which is usually called the iterated
blow-up of a hyperedge. It is also conjectured to be the extremal construction for Cs ,
see [15, Sect. 2.5].

Construction 1.2 Define 3-graphs &, by induction. The vertex setof £, is {1, 2, .. ., n},
which is partitioned into three parts Vi, V,, V3 with sizes |n/3], [(n + 1)/3], and
L(n + 2)/3], respectively. &, contains no hyperedge whenn = 1 or 2. Forn > 3, &,
contains all the hyperedges with exactly one vertex in each V;, and V; spans a copy of
8|Vi‘ forl <i <3.

It is easy to check that Ce_ g &y, when £ > 4 and 3 ¢ €. A standard induction shows
that &, has at least n° /24 — Cn logn hyperedges for some constant C > 0, see also
Section 1 in [3].

For the upper bound in Theorem 1.1, we will first work on the Turdn problem
of pseudo-cycles, which are, roughly speaking, tight cycles with repeated vertices
allowed. See Definition 3.2 for a rigorous definition. The key step is to connect this
problem with counting the number of cyclic triangles in tournaments. We introduce
the following notion.

Definition 1.3 A 3-graph H is orientable if there is a tournament 7' on the same vertex
set such that every hyperedge in H is a cyclic triangle in 7.

For example, it can be checked that Cs is orientable, but X, is not. We remark
that the connection between 3-graphs and tournaments has been noticed decades ago,
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Fig.1 An example of a bottle of

size 8. It has vertex set

{1,2,..., 6} and hyperedges m
{1,2,3},{2,3,4},{3,4,5},{4,5,6}, {5, 6,2}, {6,2, 1}.

It can be represented as @
12345621

which can be traced back to the work of Erdds and Hajnal [7] in 1972. For example,
orientable 3-graphs serve as the constructions for the lower bound of the codegree
Turan density of KC; , see [9], and the uniform Turdn density of X', , see [10, 19]. See
also [18] for a generalization of orientable 3-graphs to r-graphs with r > 4.

We will prove that a 3-graph H is orientable if and only if it is free of a certain family
of hypergraphs, which we call bottles, see Proposition 3.3. Using this characterization
of orientable 3-graphs, we prove that a 3-graph is orientable if it is free of all the
pseudo-cycles minus one hyperedge with length not divisible by 3, see Lemma 3.5.
Then, by analyzing tournaments, we are able to prove a stability result for C5 -free
orientable hypergraphs, which says that the vertex set of an almost maximum Cy -free
orientable 3-graph can be partitioned into three parts with almost equal sizes such that
there are very few bad hyperedges, i.e., the hyperedges with two vertices in a part and
one vertex in another part, see Proposition 4.1. Building on this structure, a cleaning
argument in Sect. 5 shows that the maximum 3-graphs free of the pseudo-cycles minus
one hyperedge with length not divisible by 3 and less than a fixed large constant indeed
contain no bad hyperedge, from which we can easily prove that such hypergraphs have
edge density at most 1/4 + o(1). Finally, a standard technique using blow-ups gives
Theorem 1.1.

As a direct application of Theorem 1.1, we give a human-checkable answer to
the following question about the maximum number of almost similar triangles in a
planar point set. For a triangle A with angles 0 < a; < a; < a3 < 180°, we say
that another triangle A’ with angles 0 < a} < a) < a} < 180° is e-similar to A
if |a; — alf| < ¢ fori = 1,2, 3. Inspired by the work of Conway et al. [5] about
the distribution of angles determined by a planar set, Barany and Fiiredi [3] studied
h(n, A, €), the maximum number of triangles that are e-similar to A in a planar set
of n points. They [3] proved that h(A, &) = lim, . h(n, A, 5)/n3 exists and it is
at least 1/24 for every triangle A and ¢ > 0, see their Fig. 1. They also showed that
h(A,e) = 1/24, when A is the equilateral triangle and ¢ < 1°, and h(A, ¢) can be
strictly larger for some A’s, including all the right-angled triangles. In order to give a
general upper bound for k(n, A, ¢), they represented the shape of triangles by points
in S = {(a1,az,a3) € R3 . aj,az,a3 > 0, a; + a» + az = mw} and considered
the Lebesgue measure on S;-;. In the same paper, they showed that for almost all
triangles A, there exists ¢ = ¢(A) > O such that h(n, A, ¢) < 0.25108(’;)(1 +o0(1)),
and with the further aid of the flag algebra method developed by Razborov [17], they
could improve the constant to 0.25072. Their main idea is to reduce this problem to
a hypergraph Turdn problem, by noticing that there exists a family F;,; of 3-graphs,
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whose hyperedges cannot be represented by triangles e-similar to A in any planar
set, for almost all triangles A. See Definition 6.1 for the rigorous definition of F,;.
Extending this idea, Balogh et al. [2] improved this bound to 0.25, which is best
possible, by verifying that more 3-graphs are members in F;,; and using flag algebra
and the stability method.

Theorem 1.4 ([2, Theorem 1.3]) For almost all triangles A, there exists ¢ = e(A) > 0
such that h(A, e) < 1/4.

We will show in Sect. 6 that Theorem 1.1 implies Theorem 1.4, by the observation
thatC,” € F,,; for some large £ not divisible by 3.

The rest of this paper is organized as follows. In Sect.2, we introduce our nota-
tion and lemmas used in our proof. In Sect. 3, we give our forbidden-subhypergraph
characterization of the orientable 3-graphs and prove several other lemmas about tour-
naments. In Sect. 4, we prove our stability result. In Sect. 5, we prove Theorem 1.1. In
Sect. 6, we give our new proof for Theorem 1.4.

2 Preliminaries

For a positive integer n, we write [n] for the set {1,2,...,n}. For a set X and a
e X . .
positive integer k, denote by ( 1 ) the collection of all subsets of X of size k. For sets

X1, X0, ..., X, let[ X, Xo, ..., Xi ] ={{x1,x0,...,x¢}:x; € X; forl <i <k}.

For an r-graph H, we use V (H) for its vertex set and use H to stand for its r-edges.
In particular, |H| denotes the number of r-edges in H.

Let ‘H be a 3-graph. For a vertex v € V(H) and two (not necessarily disjoint)
sets S1, S2 € V(H), let N;’l{sz(v) = {{x,y} : {v,x,y} e H, x € S1, ¥y € S2} be
the link graph of v between S7 and S, and dgfy Sz(v) = |N;1{, Sz(v)| be the degree
of v between S; and S;. When §; = S = §, we write N;"(v) for N;']l’sz(v) and
dt(v) for dft ¢ (v). Let N"(v) = N?)‘(H)(v) and d"(v) = dz,'l(H)(v). For vertices
u,v € V(H) and aset S C V(H), let N;“(u, v) = {w e S :{u,v,w} e H} be the
set of neighbors of u, v in S and d;{(u, v) == IN?(u, v)| be the codegree of u, v in
S. Let N (u, v) := NJ¥,, (u, v) and d™(u, v) = d]t,;, (u, v). We often omit the
superscript H when it is clear from the context. For vertex sets Sy, Sz, S3 € V(H),
let H[S1, S2, S3] = H N [S1, S2, S3] be the set of hyperedges between Sy, S2, S3.
Let H[S1] = H[S1, S1, S1] and 7‘_([51, S, S3] = [S1, $2, S3] \ H[S1, S2, S3]. For
a partition 7 = (871, S2, S3) of V(H), we write H, = H[S1, S2, S3] and Hy =
[S1, 82, 831\ Hy.

For a tournament 7 and a vertex v € V(T),let Nt (v) == {u € V(G) : v = u}
andlet N~ (v) = {u € V(G) : u — v} be the sets of out-neighbors and in-neighbors
of v, respectively. Let d*(v) := |[N*(v)| and d~(v) := |N~(v)| be the out-degree
and in-degree of v, respectively. For vertex sets Vi, Vo € V(T'), we write V| — V; if
u — vforeveryu € Vi and v € V5.

We use the following two results about triangle-free graphs.
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Theorem 2.1 (Mantel [14]) Every n-vertex triangle-free graph has at most n* /4 edges.

Theorem 2.2 (ErdGs et al. [8, Theorem 1]) Every triangle-free graph G with n vertices
and m edges can be made bipartite by removing at most

C(m 2m(@m?* —nd) 4m?
mny——-———— " m— —¢,
2 n2(n? —2m) n2

edges.

For a 3-graph H and a positive integer ¢, the ¢t-blow-up H[t] is the 3-graph on
vertex set V (H) x [¢] with hyperedges {{(v1, 1), (v2, 12), (v3, 13)} : {v1, v2, v3} €
H,1 < t1,tp,13 < t}. For a family of 3-graphs H = {H, ..., Hp}, let H[t] =
{H1le], ..., Hale]).

Theorem 2.3 (See [12, Sect. 2]) For every family of 3-graphs H and positive integer
t, we have t(H|[t]) = n(H).

We use the following version of the removal lemma for tournaments by Choi et al.
[4] (see their Lemma 5; their original theorem is about oriented graphs, and we can,
for example, add the graph consisting of two isolated vertices to the forbidden family
to get the following version), which follows from a general theorem by Aroskar and
Cummings [1].

Theorem 2.4 Let T be a (possibly infinite) set of tournaments. For every ¢ > 0, there
exist ng and § > 0 such that for every tournament T onn > ng vertices, if T contains
at most 8n!V Pl copies of D for each D in T, then there exists T' on the same vertex set
such that T is D-free for every D in T and T’ can be obtained from T by reorienting
at most en? edges.

The following is a technical lemma that will be used in our proof of the stability
result in Sect.4. We omit its standard proof.

Lemma 2.5 Forintegers a > b > 0, we have

mas (S ) <25+ 4 (o[ 2))

where the maximum is over non-negative integer sequences (xi,x2,...) and
(1, y2,...) such that Y ;2 (x; + yi) =aand xj + y; < b forevery j > 1.

3 Cyclic Triangles in Tournaments
In this section, we provide the first step toward proving Theorem 1.1, by relating it to
the number of cyclic triangles in tournaments.

For 3-graphs ‘H and F, a surjective homomorphism from H to F is a surjective
map from V (H) to V (F) such that { f (v1), f(v2), f(v3)} € Fif{vy, vz, v3} € Hand
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for every {u1, us, u3} € F, there is {vy, va, v3} € H with {f(v1), f(v2), f(v3)} =
{ur, uz, us}. Following [11], we have the following definitions.

Definition 3.1 For every integer £ > 3, let P, be the path of size ¢, i.e., it is the 3-graph
on vertex set {1, 2, ..., £} with hyperedges {{i,i +1,i +2}: 1 <i <£—2}. Wecall
a 3-graph ‘H a pseudo-path of size ¢ if there exists a surjective homomorphism from

Pe to 'H.

Hence, pseudo-paths are a generalization of paths, where repeated vertices are
allowed. For tight cycles, we have the following similar notion.

Definition 3.2 For every integer £ > 4, we call a 3-graph H a pseudo-cycle of size £
if there exists a surjective homomorphism from C, to H, and we call a 3-graph H a

pseudo-cycle minus one hyperedge of size ¢ if there exists a surjective homomorphism
from C, to H.

For every integer L > 4, let C_; be the set of all the pseudo-cycles minus one
hyperedge of size £, where 4 < £ < Land 3 { £. Let C™ := [J;-,C_,. It can be
easily checked that &, , the iterated blow-up of a hyperedge defined in Construction 1.2,
is C™ -free.

For a copy 'H of pseudo-path, pseudo-cycle minus one hyperedge, or a pseudo-cycle
of size ¢, we often use vgvy . . . v¢_1, a sequence of its vertices (with repetition allowed)
to stand for it; this means that  consists of hyperedges {v;, Vi41 (mod ¢)> Vi+2 (mod £)}
for 0 < i < € — 3, when H is a pseudo-path, for 0 < i < £ — 2, when H is a
pseudo-cycle minus one hyperedge, and for 0 <i < £ — 1, when H is a pseudo-cycle.

For k > 4, we call a pseudo-path vjv; . .. vrvov; a bottle of size k + 2, see Fig. 1.
For L > 6, let B<; be the set of the bottles of size £ where 6 < ¢ < L and

B = ULZ6 BSL-
Proposition 3.3 A 3-graph H is orientable if and only if it is free of B.

Proof Assume that there is a bottle vivy ... vgvov1 in H, where k > 4. If H is ori-
entable, then without loss of generality, assume that in the corresponding tournament
T we have vy — wvy. Then, by the definition of the bottle, we have v;_; — v; for
1 <i <k and then vy — vy and v, — vy, a contradiction.

Assume that H is free of B. We say that two pairs of vertices {a, b} and {c, d} are
tightly connected if there is a pseudo-path uquy . .. ug—qug such that {u1, us} = {a, b}
and {u¢_1, ug} = {c, d}. Note that the three pairs of vertices in every hyperedge are
always tightly connected to each other. Hence, we can partition the hyperedges of H
into equivalence classes Hy, Ha, ..., Hp, where hyperedges {a, b, c} and {x, y, z}
are in the same class if {a, b} and {x, y} are tightly connected. Note that for every
pair of vertices {x, y}, there can be at most one i such that {x, y} is contained in
some hyperedges of H;, so when trying to orient {x, y}, we only need to consider
hyperedges of H; and omit all others. Let P; be the set of pairs of vertices contained
in some hyperedges of H;.

Construct a tournament 7" on V (H) as follows. For every i, where 1 <i < p, do
the following algorithm. Choose an arbitrary pair {a, b} in P; and orient a — b. For
every other pair {c, d} in P;, there are two cases.

@ Springer



Combinatorica (2024) 44:949-976 955

1. There is a pseudo-path F; = abws...wicd or a pseudo-path 7, =
baxsz ...xydc.
2. Thereis apseudo-path F3 = abys ... yr,dcorapseudo-path F4 = bazs ...z cd.

We claim that exactly one case happens. It is clear that at least one of the cases
happens, since {a, b} and {c, d} are tightly connected. If both cases happen, then we
have pseudo-paths Fs, and F,, where 1 <51 <2and3 < sy < 4.

If s1 = 1, 5o = 3, then we have a bottle abws . .. wg,cdyy, ... y3ba.
If sy = 1, so = 4, then we have a bottle dcwy, ... w3bazs ...z, cd.
If sy = 2, 5o = 3, then we have a bottle cdxy, . ..x3aby3 ... yrdc.
If s1 = 2, 5o = 4, then we have a bottle baxs ... xy,dczy, .. .z3ab.

Therefore, exactly one case happens, as claimed. Now, if the first case happens, we
orient c — d; otherwise we orientd — c. For ahyperedge {x, y, z} € H;, if we orient
x — y, which means that there is a pseudo-path ab . . . xy or a pseudo-path ba . . . yx,
then we also have y — z and z — x, since there is a pseudo-path ab...xyzx or a
pseudo-path ba . . . yxzy. Therefore, every hyperedge in H; is a cyclic triangle in this
orientation.

Finally, for pairs of vertices not in any P;, orient them in an arbitrary way. Every
hyperedge in H is a cyclic triangle in 7', so H is orientable. O

For an orientable 3-graph H, let 7' ({) be a tournament on the same vertex set such
that every hyperedge in H is a cyclic triangle in 7' (). For a tournament T, let H(T)
be the 3-graph on the same vertex set whose hyperedges are exactly the cyclic triangles
in T. Note that H € H(T (H)) by definition, and strict containment can happen.

For a tournament 7', let #(7") be the number of cyclic triangles in 7. The following
lemma is a well-known upper bound for #(7") by Kendall and Smith [13]. We include
its proof.

Lemma 3.4 For every tournament T on n vertices, we have

HT) < (> —n) ifnis odd,
- 2—14(n3—4n) if n is even.

Proof For every non-cyclic triangle in 7', it has exactly one vertex with two out-edges
and exactly one vertex with two in-edges. Hence, we have

-0 3 (V)

veV(T)
1
- (;’) -7 X (@ +@e?-n-1) M
veV(T)
1 —17\? —1\?
(5 2 (5D (5 o)
veV(T)
The claim then follows via an easy calculation. O
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Proposition 3.3 and Lemma 3.4 show that 7 (13) < 1/4. Now we convert this bound
toC™.

Lemma3.5 Ifa 3-graph H is free of C_ |, then H is free of B<(L+2). In particular, if
‘H is free of C~, then 'H is orientable.

Proof Assume for contradiction that { contains a bottle vivov3 ... vgvov), Where
k < L. We have k # 4, since otherwise H contains X'y = C; € C_,. For every
k > 4,H contains two pseudo-cycles minus one hyperedge whose sizes differ by one:
VgV V2V3 ... Vk—2Vk—1 and vav3 ... vg—1vg. The sizes of these two cycles are both at
most k < L, and at least one of them is not divisible by 3. Thus, H cannot be free of
C_ 1» a contradiction. The second claim then follows from Proposition 3.3. O

By Lemmas 3.4 and 3.5, we have 7(C™~) < 1/4. In order to improve this to get
Theorem 1.1, we need to study tournaments more carefully. The following lemmas
about tournaments will be used in Sect. 4 to prove our stability result, Proposition 4.1.

Lemma 3.6 For every e1,&p > O, there exists § > 818%/2 such that for every
tournament T on n vertices with t(T) > (1/24 — 8)n3,f0r

’ n—1 + _ n—1
VAT) = {veV(T):T—82n<d ), d (v)<T+82n},

we have !V’(T)| > (1 —¢p)n.

Proof Let$ = 818%/2. If the claim is not true, then by (1), we have

n 1 n—1 2 n—1 2
t(T)<(3>_Z(81n) (T+82n> +<T—82n) —(n—-1)
L 5. (n=1 2 |
—Z(—enn ( . )—(n—)

1 1 1
=|—=- —818% nd— —n< t(T),
24 2 24

a contradiction. O

Lemma 3.7 For every n-vertex tournament T, where n > 8, we have

{u eV(T):d*w) > %” z% and Hu eV(T):d () > ;—IH > %.

Proof 1If any of these two claims is false, then the number of directed edges in T is at
most

n 3n n Tn? n
_n+__:_< s
4 4 4 16 2

a contradiction. O
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Lemma 3.8 For every €1, &y such that €1/24 > ¢, > 0, there exist § > 6%(81 —
246,)/24% and N such that for every tournament T on n > N vertices with t(T) >
(1/24 — 8)n3, for

V(T
Br(gp) = {{u, v} € ( (2 )) : {u, v} is in at most exn cyclic triangles in T} ,

we have | By (2)| < e1n?.

Proof Letd > 812 (€1 —24£) /243 be the one obtained from Lemma 3.6 when applying

it with ¢] = ¢;/12 and &, = &1/24 — /2. Let N be sufficiently large such that

€N > 24.Let T be a tournament on n > N vertices with #(7) > (1/24 — 8)n>.
Assume for contradiction that |Br(g2)| > g1n?. For every vertex v € V(T), let

N'@)={ue N (v):{u,v} € Br(ep)}and S .= {v € V(T) : IN'(v)| > ¢\n/3}. If

|S| < e1n/3, then we have

&1 en 2,

|Br(e2)| = % “n+ (1 — ?)n 3 < FEm < en?,

a contradiction. Therefore, |S| > €1n/3 and then by Lemma 3.6, there exists vy €
SNV(T).

Note that for every vertex u € N~ (vp) and vertex w € N1 (vp), if w — u, then
{u, vo, w} forms a cyclic triangle. Hence, for every u € N'(vp), we have [N~ (u) N
N1 (vp)| < eon, and then,

INT @) NNt (vo)| > d*t(vo) — ean.

Since |N'(vg)| > e1n/3, we have, by Lemma 3.7, that there are at least eyn/12
vertices u € N’(vg) such that [N*(u) N N’'(vp)| > &1n/12. However, for every such
vertex u, we have

At () = [INTw) 0N (0o)| + 1+ INT @) N N (vp)| > %n +d* (o) — ean
= d*(v) + 2¢jn,
so dt(u) > (n — 1)/2 + ¢in and hence u ¢ V'(T). Thus, we have [V'| < (1 —

1/12)n = (1 — &})n, a contradiction to Lemma 3.6. O

4 Stability Result

In this section, we prove our stability result. Let D5 be the tournament with vertex set
{1,2,3,4,5} and directed edges 1 — 2,1 — 3,1 < 4,1 < 5,2 — 3,2 — 4,
2—5,3—>4,3 <« 5,4« 5,seeFig.2. Let T's be the set of the tournaments D on
5 vertices such that H(D) contains a copy of C5 ™ as a subhypergraph. We will apply
Theorem 2.4 with these tournaments as 7', the tournaments to remove, for the proof
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Fig.2 The tournament Ds5 @ @

) 6)

of our stability result. For a 3-graph H and a 3-partition & = (Vy, Va, V3) of V(H),
we write 17, for U ;<3 HIVi, Vi, Vj1.

Proposition 4.1 (Stability result) For every €1, &2 > 0, there exist § > 0 and N such
that for every n > N, the following is true. For every n-vertex Cs -free orientable
3-graph 'H, if |[H| > (1/24 — 8)n>, then there exists a 3-partition m = (Vy, V2, V3) of
V(H) such that (1/3 — ex)n < |1, [Va|, |V3| < (1/3 + &2)n and |H},,| < en’.

Proof Given €1,&7 > 0,1let 8 > y > § > 0 be sufficiently small, and let N be
sufficiently large. Let T = T (H). By assumption, t(T) > |H| > (1/24 — 8)n’.

Claim 4.2 For every D € Ts, the number of induced copies of D in T is at most §n.

Proof Since H is free of C5, whenever T contains an induced copy of D, this copy
must contain a cyclic triangle that is not a hyperedge in . By Lemma 3.4, we have
t(T) < n3/24, so the number of such cyclic triangles is at most 8n> and hence the
number of induced copies of D in T is at most 8n°. O

Claim 4.3 The number of induced copies of Ds in T is at most §'/*n’.

Proof Assume that the number of induced copies of Ds is greater than 8!/#n3. Define
V(H)
6

vi > v;inTiffi — jin Ds,for1 <i < j <5},

S = {{v1, vp, v3, V4, V5, u} € ( ) Tv4 — u,u —> v, and

and define A7 (8Y/*) to be

{{va, vs} : [{{v1, v2, v3} s v; —> vy in Tiffi — jin Ds, for 1 <i < j <5} = 8"*n’}.

If |[A7(8'/%)| < 8'/#n? /4, then the number of induced copies of Ds in T is at most

lﬁnz- " + " -18%n3<8%n5,
4 3 2) 4

a contradiction to our assumption, so |A7(8'/%)| > 8'/*n?/4. Since t(T) > |H| >
(1/24 — 8)n?, by Lemma 3.8, we have |B7(8'/3)| < 1008312, so |A7(8Y/%) \
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Br(8'3)] = 8/4n2/5. Note that {4, 5} is not in any cyclic triangle in Ds, and
{v4, vs, u} forms a cyclic triangle, for every {vy, v2, v3, v4, v5, u} € S. Hence, every
pair in A7 (81/%) \ B (8'/3) is in at least 81/%n> - §1/3n sets in S. Trivially, every set
in S contains at most (g) = 15 pairs in Ar(8Y/*% \ Br (8'/3). Therefore, we have

1
NESE -8in3 830 - |Ar (84 \ Br(8'3)
SIS NE JPS S S SULIPT ) )
15 5 75

Forevery F = {vy, v2, v3, v4, v5, u} € S, consider the orientation of edges between
v; and u, for 1 <i < 3. There are eight possibilities. We claim that F' contains a copy
of some D € T'5 in every case.

If u < vy, then v4uvsvyv, forms a copy of C; in H(T).

If u — vy and u < v3, then v4vsuvsv; forms a copy of CS_ in H(T).

If u — vy, u — vz, and u — v3, then vsvvav4u forms a copy of C5 in H(T).
If u — vy, u < vz, and u — v3, then uvyv1v4v3 forms a copy of C5 in H(T).

For a fixed D € T's, by Claim 4.2, the number of copies of D in T is at most ond,
and for every copy of D, it can be in at most n sets in S. Therefore, we have

S| < |Ts]|-én° - n. A3)

By (2) and (3), we have |T's| > £871/0 > 2G) > |T5|, a contradiction. o

Applying Theorem 2.4 to T with T = {Ds} U T's, we get a tournament T’ free of
Ds, where H(T') is free of C5 and T’ and T differ by at most yn?/2 edges. Since
changing the orientation of one edge can remove at most n cyclic triangles, we have
t(T") > t(T) —yn3/2 > (1/24 — y)nd. Let H' = H(T").

By Lemma 3.6, there exists V' C V(T') = V(H) with |V'| =m > (1 — B/2)n
such that (1/2 — 8/5n < d*(v),d~(v) < (1/2+ B/5)n in T’ for every vertex
v € V’'. Let T” be the subtournament of 7’ induced by V'. Let H” = H(T"). We
have

(T = 1T = > (2—14”—?)”3 g (%—ﬁ)’” = (%—@mi
“4)

and

vy, d~ s
d"(v),d (v) > (2 5)

n—
n

dT(),d"(v) < (% + g) <

in T” for every v € V'.
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Fig.3 The subsets Vl’, V2’, V3’ of
4 /
Vl

1 Vs N~ (vo)

‘/lla, V2/ N* (UO)

Claim 4.4 Foreveryvertexv € V', every component of N ‘7,1,” (v) is a complete bipartite
graph.

Proof For every vertex v € V', its link graph N ‘7,1,// (v) is a bipartite graph with the two
parts N (v) and N~ (v) in T”. We first claim that if there are vertices w, x, y, z such
that w,y € Nt (v), x,z € N"(v),and w — x,x < y,y — zin T”, then we also
have w — z in T”. Equivalently, this is to say that whenever {w, x}, {x, y}, {y, z} €
N@”(v), we also have {w, z} € N@”(v). Assume for contradiction that w <« z. If
w — y, then wxvyz forms a copy of C5 in H". If x — z, then zyvxw forms a copy
of C5 in H". Hence, the only possibility is w < y and x <— z, butthen {v, y, w, x, z}
forms a copy of Ds in T”, still a contradiction.

Now assume for contradiction that there exist verticesa € N*(v) and b € N~ (v)
in the same component of Nz,{,”(v) but {a, b} ¢ N?,Lf”(v). Let P be the shortest path
between a and b in Nz,i,”(v). Since Nz,i,”(v) is bipartite and {a, b} ¢ N?},”(v), we have
that P contains at least 4 vertices, so we can assume that P starts with a, vy, us, vs.
However, by the claim in the last paragraph, we have {a, v3} € N ‘7,{,” (v), acontradiction
to that P is shortest. O

Let vp € V' be a vertex in maximum number of cyclic triangles in T”. Since
t(T") > (1/24 — B)ym> by (4), we have that vg is in at least (1/8 — 38)m? cyclic
triangles and hence

df' (o) = (1/8 = 3p)m>. (7)

Assume that Vz/ C Nt (vp), V3/ C N7 (vg) form the largest component in Nz,'é//(vo).
Let V/, == N*(vo)\ V3, V{, == N~ (vo) \ V4, and let V| := {vo}U V] UV/,. Consider
the partition 7" := (V|, V;, V3) of V'. By Claim 4.4, we have V; — V3, and by the
definition of V;, V5, we have V; < V|, and V| < Vj, see Fig.3.

Claim4.5 We have |V;| + |V;| = (1/2 — 8B)m.

Proof By Claim 4.4, we can assume that N ‘7}// (vp) is partitioned into complete bipartite
graphs G1, ..., G, and assume that G; has two parts with sizes x; and y;, for 1 <
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i <k.Leta=m—1landb = |Vj|+|Vj|. Then, >V (xi+y;) =aandx; +y; <b
for 1 < j <k, by the definition of V;, V5. Applying Lemma 2.5, we have

o =Yz 5]+ (e [5))
i=1

Ifb < (m — 1)/3, then

, 1 1 m—1 m—1 1/m—1)\>
dlt <-ab+-PP<—— . 4 (——
v (W) = gab+ b7 < =7 3 +4< 3 )
1 1
= 50m — 1)? < <§ — 3;3) m?.

Ifm—-1/3 <b< (1/2—-288)m,then |la/b] =2 and

’ » o1 3 1
H 2 2 2
dit (v0)§2~z+z(m—1—2b) =§b —(m—l)b+Z(m—1)

<§<<1—8ﬂ)m>2—(m—1)- 1—8,8 m+l(m—l)2
—2\\2 2 4

= <%—4,3—|—96,82)m2—8,3m+% < <é—3,3>m2.

Both cases contradict (7). Therefore, |V,| 4 |V5] > (1/2 — 88)m. O
Claim 4.6 We have |V/|, |V;|, V5| = 0.02m.

Proof Assume for contradiction that |V|| < 0.1m and hence |V;| + |V3| > 0.9m. If
|V5] = |V5], then |V;| > 0.45m. By (6), we have | V3| > 0.9m — (1/2+ B)m = (0.4 —
B)m. By Lemma 3.7, there exists a vertex v € V3 such that [N~ (v) N V3| > |Vj]/4.
We have

_ _ V4
d= () = V3] + IN" () N Vj| > |Vs| + 43

> 0.45m + (0.1—§>m > (%+ﬂ)m,

a contradiction to (6). A similar argument holds if [V;| < |V;| by considering the
out-degree of some vertex v € V,. Therefore, |V{| > 0.1m.

Assume for contradiction that | V;| < 0.02m. Then, by (5), we have | V], | > (0.48—
B)m, and by Claim 4.5, we have |V;| > (0.48 — 88)m. By Lemma 3.7, there exists
v e V|, suchthat [N~ (v)N V|, | > (0.12— B/4)m. Then, we d~ (v) = (0.6—98)m, a
contradiction to (6). Therefore, |V;| > 0.02m. Similar arguments give | V| > 0.02m.

O
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We define

Ep={{u,v}:ueV,,veV,,u<vinT"},
Eiz={{u,v}:ueV,veVi,u—>vinT"}.

Claim 4.7 We have |E1»|, |E13| < 100Bm?>.

Proof Let Sy := {u € V|, : {u} < V|,}. Forevery u € S,if [N~ (u) N V;| > 2Bm,
then using (5), we have

1
d™(u) = I[N~ (u) N V3| + V5| + |V > 2Bm +d~ (vo) > (5 +,3) m,

a contradiction to (6). Hence [N~ (u) N V;| < 2Bm for every u € Si.

Let S := {u € V|, \ S| : there exists x € V, such that x — u}. We claim |$;| <
608m. Otherwise, by Lemma 3.7, there exists u € Sy with [N~ (1) N S| > 158m.
By the definition of S, there exist x € V, with x — u and z € V|, withu — z.
Let y be an arbitrary vertex in V;, which exists since V3 # @ by Claim 4.6. Now, we
have vg — {x,u}, vo < {y,z},x => {y,ul,x < z,u < y,andu —» z.If y — z,
then vouzxy forms a copy of C; in H”, a contradiction. Hence, y < z. For every
x" € Vi \ {x},if x" < u, then vox"yuz forms a copy of C5 in H”, a contradiction, so
we have Vz/ — {u}. Then, using Claim 4.5, we have

4™ () = N~ (W) N S| + Vi) + V3] = 15Bm + (% - 8ﬂ>m - (% +ﬂ> m,

a contradiction to (6). Therefore, |S>| < 608m. Thus,
|E12| < IS1]-2Bm + 182 - [V3] < m - 2Bm + 60Bm - m < 100Bm>.

Similar arguments give the upper bound on | E3]. O
Claim 4.8 We have [H,",| < 2008m?>.
Proof Recall that we have V; — Vj. For vertices x € V|, y € V;, we have x — y
unless {x, y} € E1;. For vertices x € Vl’, z € V_,f, we have x < z unless {x, z} € E3.
Therefore, every hyperedge in H;Z;l contains a pairin Ejp U E13, s0 IH;Z L;,I < 2008m3
by Claim 4.7. O

Claim 4.9 We have (1/3 — e2/2)m < |V{, [V}1, IV} < (1/3 + e2/4)m.

{i, j, k} = {1,2,3}. Assume for contradiction that IVk/| > (1/3 + ¢3/4)m. Then,
IV/| < (m — |V[)/2 < (1/3 —&/8)m. If j = i + 1 (mod 3), we consider the
in-degree of vertices in VJ{ . Let

Proof By Claim 4.6, we can assume that 0.02m < |V/| < |V]f| < |V/|, where

df(V]{) = {w,v):ueV,ve V]{,u — vl
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By (5), we have d’(VJf) > |ij|(1/2 — B)m. On the other hand, by the definition
of Eq», E13 and Claim 4.7, we have

/

o \A |
d <v,->s|v,~’||v;|+(2f +|En| +Enl < |1V +

_ (vl |V| V]| +2008m? < V| _3de
- 2 16

i
)|v | +2008m2

+2008m> < V] (— - ,3)

a contradiction, where the last inequality is because |V/| > 0.02m and & > B. If
j =i—1 (mod 3), asimilar argument holds by considering the out-degree of vertices
in V]f. Thus, we get |V/| < (1/3 + &2/4)m and hence |V/| > m — |ij| -V >
(1/3 — &2/2)m. O

Finally, let V| := V] U{V(H)\ V'}, V5 := V,,and V3 := V;. Consider the partition
7w = (Vy, Va, V3) of V(H). Recall that |V'| = m > (1 — 8/2)n. By Claim 4.9, we

have
1 1
5_‘92 l’l<|V]|,|V2|,|V3|< §+82 n

Recall that T" is a subtournament of 7’ induced by V' and H' = H(T’). For every
hyperedge e in H,} ;. either e N (V(H) \ V') # D ore € H, ;. Hence, by Claim 4.8,
we have
B n3

IHE | < [VAH)\ V|- n? 4+ [H,T| < +2008m> < §n3 +2008n> < 3008n°.

Recall that T and T’ differ by at most yn?/2 edges, so H(T) and H’ differ by at
most yn3 /2 hyperedges. Also recall that H € H(T'). Thus,

[Haal < T gl < 1H )+ 2 < 300pn° + L < e

5 Proof of Theorem 1.1

In this section, we provide the proof for Theorem 1.1. Recall that we defined in Sect. 3
that C_; is the set of all the pseudo-cycles minus one hyperedge of size £, where
4<t¢<Land3t¢ andC™ =J;-,C_,. We will first prove that 7(C_,) = 1/4
for sufficiently large L, see Proposition 5.6, and then convert it to Theorem 1.1 using
Theorem 2.3.
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If we could prove that for some L > 5, the maximum C_, -free 3-graphs can
be made free of C~ by removing o(n®) hyperedges, then we get 7 (C_ L) < 1/4
immediately by Lemmas 3.4 and 3.5. We are not able to show this. The following
lemma is what we can achieve. Its proof is parallel to Propositions 6.3 and 6.4 in [11].

Lemma 5.1 Ifa 3-graph H is free of C_;, where L > 27, then we can delete at most
%, / L3—126n3 hyperedges from 'H to make it free of C™.

Proof Leté = %.Do the following algorithm for H. Check whether there is a pair
of vertices {u, v} with codegree in (0, én). If so, delete all the hyperedges containing
{u, v} and check again; otherwise end the algorithm. Call the remaining hypergraph
H'. In H’, every pair of vertices has codegree either O or at least 8n. Note that H' is
C_,-freeand |H'| > |H|— 8n3 /2, since for every pair of vertices {u, v}, the algorithm
does the removal at most once. We will prove that H' is free of C™.

We first show that whenever H’ contains a pseudo-path abu; ...u;cd, for some
t > 0, then H’ also contains a pseudo-path abvy ... vicd, where k < (L — 8)/3. Let
P = abvy ...vircd be the shortest pseudo-path starting from a, b and ending with
¢, d. For vertices v, v, let M(v,v") = {(u,u’) : {v,v,u}, {v,u,u’} € H'}. For
1 <i < j <k, where both i, j are divisible by 7, we claim that M (v;, vi+1) N
M(vj,vjy1) = @. Otherwise, let (w, w') € M(v;, vix1) N M(vj, vj+1). Then,

/
abvy .. V10V T WW VWYV V42 .. Vked,

is a shorter pseudo-path between a, b and c, d than P, a contradiction. By the codegree
condition of H’, we have |M (v;, vi+1)| > 82n2, for every 1 <i < k. Therefore,

> MeLvi| = YD M@ vig)l

iil<i<k i1<i<k,7|i
s (K6 s
7 7 7

implying k < 7/8% + 6 = (L — 8)/3, as desired.

Now, assume for contradiction that ujus...ue—1u, is the shortest pseudo-cycle
minus one hyperedge in H’ with size £ not divisible by 3. Note that £ > L. Let
s = (L + 1)/3] + 1. Since there is a pseudo-path ujus...usust in H', by the
claim in the last paragraph, there is a pseudo-path P = uuzvjv2 . .. vgususy1, where
k < (L —8)/3. Then, Pusyy...ug—1us is a pseudo-cycle minus one hyperedge of
sizek+44+{—s—1) < €inH',s03 | k+4+ (€ —s—1)andhence3 | k+2s+£. Let
P’ be the pseudo-path ugugus_jusits_otts_1 ... uqupusuiuy. Then, vivy ... v P’
is a pseudo-cycle of size k +2s < Lin H',s03 | k + 2s. However, we get 3 | £, a
contradiction. Thus, H’ is free of C™. O
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Lemma 5.2 For every integer L > 27, we have

meop <=+ /2w
R E =\ TV 26 )"

Proof This follows immediately from Lemmas 3.4, 3.5, and 5.1. O

We use a standard symmetrization method in the following lemmas to bound the
degrees in amaximum C_, -free 3-graph. For a 3-graph H, a vertex set S € V (H), and
avertexv € V(H)\ S,let Ts , = {v1, ..., v5} be aset such that Ts , NV (H) = &,
and let Hs , be the 3-graph on vertex set (V(H) \ S) U Ts ,, with hyperedges

N
H\{eeH:ensS#a) || Jtvix. 3} v.x. v} e H. x y) NS = @)

i=1
We write H,, , for Hy,),v.

Lemma 5.3 Ifa 3-graph H is C_ -free for some L > 4, then Hs,y is also C_ -free,
for every vertex set S € V(H) and vertexv € V(H) \ S.

Proof Assume for contradiction that Hy ,, is not C_, -free. Let vjv; ... v, be a copy

of some C~ € C_, in Hg,,. Note that the codegree of v, u’ and the codegree of u’, u”
are zero in Mg, for every u’ # u” € Ts,,. Replacing all appearances of the new
vertices in T , with vin vjvz ... vg, we getacopy of C~ € C_; inH, a contradiction

to that H is C_, -free. O

Lemma 5.4 There exists a constant N > 0 such that the following is true for every
L >4andn > N. Let H be a maximum n-vertex C_, -free 3-graph. For every vertex

v € V(H), we have d(v) > n2/8 —2n.

Proof Assume for contradiction that there exists v € V (H) with d(v) < n? /8 — 2n.
By Construction 1.2, |H| > n3/24 — Cnlogn for some constant C > 0. Hence, there
isx € V(H) suchthatd(x) > n?/8—3C logn. By Lemma 5.3, Hy,x is also C_, -free.
However, we have B

[Hyx| > [H| — (n*/8 — 2n) + (n*/8 — 3Clogn) —n > [H,

a contradiction to the maximality of H. O

Lemma 5.5 Foreverye > 0, there exist§ > £2/100, Lo, and N such that the following
is true for every L > Lo and n > N. Let 'H be an n-vertex C;L—free 3-graph with

|H| > (1/24 — 8)n>. For every vertex v € V(H), we have d(v) < (1/8 + &)n®.

Proof Without loss of generality, we can assume ¢ is sufficiently small. Let § =
€2/100, and let Ly > 21 - 50% - (1/e)* 4+ 26 and N be sufficiently large. Let L > L.
Note that for every C;L-free 3-graph F, by Lemma 5.2, we have | F| < (1/24+8)n’.
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Let H be an n-vertex C;L-free 3-graph with |H| > (1/24 — 8)n3. Assume for

contradiction that a vertex v € V(H) has d(v) > (1/8 +eon? Let Sy = {ue V(H) :
d(u) < (1/8 4 3+/8)n?}. We have

V) Sol - (% +3J3) o E < < (i +a> ",

1
3 24

SO

)
|S0|>T/_—n>\/§n.
ﬂ'l’\/g

Let S be a subset of Sy with size |+v/3n]. Note that v ¢ Sp 2 S. By Lemma 5.3,
Hs.y is C; -free. However, we have

(Hs ol > [H] — IS] (% +3¢E) 15| ((% +g) T n)
Z(%_5>n3+|s|(8—4«/3)n2
> <i—3>n3+<\/§n_1> (8_4\/5),12

24
> i—8+\/§(8—4\/5> n® —en® > i~|—8 n’
—\24 24 ’
a contradiction. Therefore, d(v) < (1/8 4 &)n? for every vertex v € V (H). O

Proposition 5.6 For every sufficiently large L, we have JT(C;L) =1/4.

Proof For every integer L > 4, by Construction 1.2, we have ex(n,C_; ) > n3 /24 —
Cnlogn for some absolute constant C > 0.

For the upper bound, fix & to be 10710900 and let L, M be sufficiently large integers.
We will prove that for every n > 1, we have

ex(n,CZ;) <n’/24 4+ M?n. (8)

When n < M, (8) is trivial, since M?n > (g) Now assume that n > M and (8) is
true for every positive integer less than n. Recall that for a 3-graph H and a partitionw =
(V], V2, V3) of V(H), we defined Hn = H[Vl, V2, V3] and 7:(71 = [Vl, V2, V3] \Hn
in Sect. 2 and Hy , = Ulfi?éj53 H[V;, Vi, V;]in Sect. 4.

Let H be a maximum n-vertex C_; -free 3-graph. By Construction 1.2, |H| >
n3/24 — Cnlogn. By Lemmas 5.4 and 5.5, we have for every vertex v € V(H),

(1/8 —e)n? < d(v) < (1/8 + &) n’. )
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By Lemma 5.1, there exists a C™-free subhypergraph H' € H with |[H \ H'| <

1 /21 3 / 1 1/ 21 ) 3 e
3y T=3""» SO [H'| = (ﬂ_i =% )n — Cnlogn. By Lemma 3.5, H’ is ori-

entable. Hence, we can apply Proposition 4.1 to H' and get a 3-partition 7 =
(V1, Va, V3) of V(H') = V(H) such that

(A3 —e)n < V1|, [Val, V3] < (1/3 +¢)n, (10)

and |H;j;d| < en3/2. Then, [Hy ! < en3/2 + %,/L3—126n3 < en?. Note that (H \
Hyua) Y H,, is still C; | -free. By the maximality of H, we have

[Ho| < [Hpuql < en’. (11)
For {i, j, k} = {1, 2, 3}, we define

Aj = (x € Vi Idy, v, (1) = [Vi|IVil —¢'2n?), Bi = Vi \ A,
A=A UAUA3, and B = B;UBrUBs;.

Claim 5.7 We have |B;| < £'/?n fori € [3].

Proof If |B;| > ¢'/2n for some i € [3], then |H,| > |Bi| - €/2n® > en?,
contradicting (11). O

Claim 5.8 Let {i, j, k} = [3]. For vertices vi, vz € V(H) with dy; v, (v1) > 2e1/452,
we have

dy;(v1, v2) < (IVill Vil = dy; v, (v2)) + 2¢'/*n. (12)

~ dy;, v (v1)

Proof Assume for contradiction that (12) is false for some vy, vy € V(H). We will
prove that H contains a copy of C;. LetZ={z€V: dvj(vl, z7) > dvj,vk (v1)/n}.
Then, by the upper bounds on |V;], |Vi| in (10), we have

dv;,v, (v1)
dv, v (v1) < |Z| - |Vj] + Vi \ Z] - —2—

1 1
=1Z]- <§ +e> n+ <§ +e> dy; v, (v1),
SO
2 _
_3 -
(3+2)n

Let X = {x € Ny, (v1,v2) : dz(x,v2) > |Z]/2}. If |X| < dy,(v1, v2)/2, then
by (13) and our assumptions that (12) is false and dy; v, (vi) > 261432, we have

3
|Z] = ~dy;, v (v1) = ﬂdvj,vk(vl)- (13)

|Z] 1 3
[VillVk| = dv; v, (v2) = [Ny, (v, v2) \ X| - (IZI - 7) > EdV[(Ul, v2) - Edvj,vk(m)
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3 3n
—d ——— (IVillVk| — dv, 26172
> 8n v; Vk(v1)<dvj,vk(v1) (IVill Vil = dv, v, (v2)) +2¢'%n

=}

3
dv,.vi 1) = ¢ (VillVel = dv, v (v2) + &% = VillVel = dv, v (v2),

acontradiction, so | X| > dy, (v, v2)/2 > ¢!/?n?. By Claim 5.7, | B;| < &'/?n. Hence,
we are able to choose and fix a vertex x € X \ B; € A;. We have {vy, v2, x} € H.

Let Z' = Nz(x, vp). By the definition of X, we have |Z’| > |Z|/2. Then, by the
definition of Z and (13), we have

dy. v, (v1) dy. v, (v1) |Z| 3
dy, z/(v1) > + 1z = + 3z T3dv, v, (),
and hence, by the assumption that dv,-,vk (v1) > 2¢'/*n?, we have

3 3
dy\(p).z’ (V1) = md‘zf,-,vk(vl) A 4e'2n* —n
=3e!'2n? —n > 261202, (14)

We can choose and fix y € V; \ {vz2} and z € Z' such that {y, z} € N(v;) N N(x),
since otherwise, by (14), we have

dv, v, () < [ViIVil = dy\juy.z(01) < [Vj]I Vil = 2¢'/2n?,
a contradiction to that x € A;. Note that y # v,. We have {x, vy, z} € H by the
definition of Z’. We also have {vy, y, z}, {x, y, z} € H.
Now, we have hyperedges {vy, v2, x}, {x, v2, 2}, {x, y, z},and {v1, y, 2}, so v v2xZy

is a copy of C5_ in H, a contradiction. Thus, we have (12). O

Claim 5.9 Let {i, j, k} = [3]. For every vertex v € V (H) with dv;, v, (v) = 261402,

we have dy, v;(v) < el/4n2,

Proof For every vertex y € A j» by Claim 5.8, we have
dy.( )<3_” 122 4 96112 < 261/,
Vill, ¥) = 5 174,2 n
Therefore, by (10) and Claim 5.7, we have
1
dv, v;(v) < |Aj]- 26" n 4 |By| - [Vi] < (5 +8)n : (zg‘/4n —i—s]/zn) <e'/n?,

m}

Claim 5.10 We have [H[V;]| > (1/24 — 27&Y/*)(n/3)3 fori € [3].
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Proof Let {i, j, k} = [3]. Let v be an arbitrary vertex in A;. By the definition of A;
and Claim 5.9, we have dy; v, (v), dv, v, (v) < &'/*n?. Since K € C_,, the link
graph of v is triangle-free. By Theorem 2.1 and (10), we have

1 1 2 s
dvuvkvuvk(v)<—(|V|+|Vk|) 1 2. §+8 n) < §+8 n-.

Then, by the bound d(v) > (1/8 — &)n? in (9), we have

1
dy; v, (v) = d(v) = dvy, v; (V) = dy, v, (v) = dv;uv. V01 (V) = <ﬁ —2e!/4 — 28) n’

Thus, by (10) and Claim 5.7, we have

1 1
HIV;]] Zdvv(v 3 Vil = 1BiD) - (2 26/ — 2e)n2
veA
3
Zl. 1—8—81/2 n- ! —3el/4 ) n? > i—2781/4 <E>
3 \3 72 24 3

O

Claim 5.11 For every vertex v € B, there exists a unique pair {j, k} C [3] such that
dv, v, (v) = V[Vl = 5¢!/°n.

Proof For every i € [3], by Claim 5.10 and (10), we have

. 1> (L _o7e14) (1Y
IH[VlU{v}]Ile[Vl]Iz(M 27e )(3)

1 1 3 1
> <ﬁ — 365‘/4> ((5 +e> n+ 1) > (ﬁ — 3681/4) |V U {v}].

Note that, by (10), we have |V; U {v}| > |V;| = (1/3 — &)n, so |V; U {v}] is
sufficiently large. We can apply Lemma 5.5 to H[V; U {v}] and get

1 1 1 2
dy, v (v) < (g + 6081/8> Vi U v} < (g + 6081/8> ((5 + s> n+ 1)
1 1
2 /8) 2 1
< (72 + 8¢ )n . (15)

If dy, v,(v), dv, v;(v), dy,,vs (V) < 2¢!/%n, then we have

1 2
d(v)<ZdV v; (v) + Z dy,,v;(v) <3- ( +8£1/8)n +3-2:V42 < g,

2
i=1 1<i<j<3
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a contradiction to (9). Hence, we can fix {j, k} C [3] such that dv,-,vk (v) > 2e1/4n2.

Let {i} =[3]\ {Jj, k}. By Claim 5.9, we have
dy,.v;(v), dv, v, (v) < &'*n’. (16)
It remains to prove that dv; v, (v) > |V;|[Vi| — 51902,

Let G = ijuvk,vjuvk(v)- We view G as a graph on vertex set (V; U Vi) \ {v}.
Note that G is triangle-free, since H is IC;—free. By (10), we have

IV(G)ISIV/I+|V1<IS<§+28>n. a7

By (9), (15) and (16), we have

|G| = dy;,v;(v) + dv; v, (V) + dy, v, (v) = d(v) = dy, v, (x) — dv, v;(x) — dy, v, (x)
1 1 1
> (g - e> n* — (i + 851/8> n?—2.e/4?% > <§ - 981/8> n’. (18)

For a bipartition (S, $2) of V; U Vi, let G[S1, S2] be the set of edges in G between
Sy and $7. Fix (S, $2) to be the bipartition of V; UV} which minimizes |G\ G[S1, S2]|.
By (17), (18), and Theorem 2.2, we have

4G/ 4GP
e =101 —
V(G (2+3c+4e2)n

1 1/8) .22
- <$_981/8)n2_4((§—95 /%) n?) < <l_981/8>n2

(% + %8 + 4¢2) n? 9

|G\ GIS1, 21l = 1G] —

1
— (5 - 2081/8> n? =11e3,2. (19)

By (18) and (19), We have |G[S], S2]| = (1/9 — 20£!/8)n?. Then, by (10),

Vil + [Vl
2

1 2N
< ((5 +e) n> - (5 — 2081/8) n? <2132 (20)

Note that if {u, w1}, {u, w2} € G, then {u, wy, wy} ¢ H, since otherwise, vwiuw,
forms a copy of K; in H. Hence, every hyperedge in H[S1, S1, S2] U H[S2, S2, S1]
contains at least one pair of vertices in [S1, S2] \ G[S1, S2]. Therefore, by (20),

2
I[S1. $21\ G[S1, S2ll = [S1]IS2] = |G[S1, S2]l = < ) —|G[S1, $2]|

IHIS1, S1, Sall + [HIS2, Sa, Si1| < 21'/3n. 21)
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Now, assume for contradiction that dy; v, (v) < [V;||Vk| — 561942, By (18)
and (10),

1
dv;.v; (V) +dy, v, (v) = (5 - 81/8) n® — <|Vj||Vk| - 581/9112) > 4g'/%n2,

so we can assume without loss of generality that dvj,v_, (v) > 2132 Let Vit =
V; NSy and Vi = V; N S,. Then, by (19), we have

281/9712 < dVJ"Vj (U) = del,le (U) + dez,ij (U) + del,ij (U)
<IG\GIS, S0l + [VjillVjal < 11650 + [V, 1V, ],

SO
IVitl, V2l > &'n. (22)

By Lemma 5.2, we have

IHIVall < i+l/ 21 Vial® < i+g IVjal®, fora=1,2.(23)
—\24 2V L-26 —\24

Then, by (23), (21), (10), and (22), we have

IHIV;1I < [HIV] + [HIV 2]l + [HIS1, S1, Sall + [HIS2, S2, il
1
< (ﬁ +e> (|V,-1|3 + |ij|3) +21'/%n?

1 3
< (ﬂ +e> (Vi + (Vi1 = Vi) + 21602

1 3 1 3
< (ﬁ + s) ((81/9n> + <<§ + 8) n— 81/911) ) + 211353
(L _ Lo <E>3
—\24 10 3/
a contradiction to Claim 5.10, where the second-to-last inequality is due to the fact
that the function f.(x) = x3 4+ (¢ — x)3, where cis a positive constant, is decreasing

on [0, ¢/2] and increasing on [c¢/2, c]. Thus, we have dvj,vk () > |Vl V| — 561952,
O

For {i, j.k} = [3]. let B} := {v € B : dy,y,(v) > |Vj|[Vk| — 5¢'/°n?} and
V! = A; UB]. Let n’ == (V{, V;, V3) be a new partition of V(H). By (10) and
Claim 5.7, we have

1 1
(3 - 281/2) n < |V{l, V5], V4] < <§ + 381/2> n. (24)
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Claim 5.12 For {i, j, k} = [3] and vertices x € V/, y € V we have dv (x,y) <
e1/10,

Proof By Claim 5.8 and (10), we have

3n
| VjlIVk| — 5¢1/%n2

1
da,(x,y) <dy,(x,y) < 56192 4 261/2, < 581/1()n.

By Claim 5.7, we have dp/(x, y) < |B/| < |B| < 3¢'/?n. Therefore, dy/(x, y) <

el/10n, o

Claim 5.13 We have HZ(;d =g.

Proof For {i, j, k} = {3}, let
Qij = {({x1, x2, ¥}, 2) s fxi, x2, vy € HIV/, VL Vil xi,x0 € V], y € V), z € Vi),

and Q = Ulﬁhﬁj53 Q;j. Note that for every ({x1,x2,y},z) € Q;j, we have
{x1,y,2} € Hy or {x2, y, 2} € Hy, since otherwise x{zyx; forms a copy of KC; . For
every {x,y,z} € ﬂn/, by Claim 5.12, there can be at most e/10, such x’ € Vl/ that
{x,x', y} e H[V/, V], V}], so we have

101= ) 10l <6-&"% [yl (25)

I<i#j<3

On the other hand, fix i # j € [3] which maximize |H[V/, V/, V/f]l. Let k =
31\ {i, j}. By (24),

1
101 = 1Qij| = [HIV{, V., V]I - IV{| = [HIV{, V{, V]]| (5 — 28‘/2) n. (26)
Combining (25) and (26), we have |H[V/, V!, V]f]| < 0.01|H,/], so
HL,l < 6/HIV/, Vi, V]| < lm |
| bad'— | i* Vi ]|_2 |

If |Hbad| > 0, then (H \Hbad) UHy is C_, -free and has strictly more hyperedges
than H, which is a contradiction to the maximality of . Therefore, HZ[; J=9. O
Note that by (24), we have |V/| < n for i € [3]. By induction, we now have

ex(n, CZ;) = [H| = |Hn|+Z|H[VJ|<|v1||v2||v3|+Z<—|V|3+M2 |V|)
i=l1

1 1
_ / / / /3 2 3 2
—|V1||V2||V3|+*24 E]'Vl| + M n§724n + M*n,
i=
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where for the last inequality, we use (24) and the fact that the function g(x1, x2, x3) =
X1x2%3+ 5, X7 /24 defined on the domain {(x1, x2, x3) € [0.32, 0.34] : x| +x2 +
x3 = 1} has maximum value 1/24. This proves (8).
Combining the lower bound and the upper bound, we have 7 (C_,) = 1/4. O
Finally, we are able to present the proof of Theorem 1.1.

Proof of Theorem 1.1 For every £ > 4 not divisible by 3, by Construction 1.2, we have
7(C,) = 1/4. For the upper bound, we have the following claims. Recall that for a
3-graph H, we write H[¢] for its #-blow-up.

Claim 5.14 For integers €1,y > 4, where £ > 20y — 3 and 3 { €, there exists a
positive integer t such that C[l c Ce_2 [7].

Proof Letvjv, ... v, beacopy of C;z. Let ¢ be sufficiently large, and let {vil, vl
be the copies of vertex v; in C[z [t]. For 1 <k <t — 2, we write (v;,v;, ... Vi vij)k
for the sequence

U3 3 U3 3.4 4 4 4 k+2. k+2 v{(+2v1§+2.

14
o If /; =0 (mod 3), then (vlvzvg)T1 forms a copy of C¢, 2 C€_1 in CK_2 [£].
L=t
o If¢; = ¢p (mod 3), then (vivyv3) 2 v}v;vév}‘ ... v}z_lvl}z forms a copy ofC[1
in C[z[t].
o If ¢; =2¢> (mod 3), then

Q=20 4111020 o2 1 2 12
(U1U3U2) 3 Ul U3 v2v4v3 US PP v5272U€273U(271U(272UZ2U(271 N

forms a copy of C; in C,_[z].
]

Claim 5.15 For integers £, L > 4, where £ > 2L — 3, there exists a positive integer t
such that C, € Flt] for every F € C_;.

Proof Lett be sufficiently large. Note that for every pseudo-cycle minus one hyperedge
of size £, its £'-blow-up contains a copy of C, - Hence, for every pseudo-cycle minus
one hyperedge 7 € C_; withsize ¢’ < L, by Claim 5.14, we have C, € C,[t/L] €
Flt]. - O

Let ¢ and L be sufficiently large integers, where £ > 2L — 3. Let ¢ be sufficiently
large. By Theorem 2.3 and Proposition 5.6, we have 7 (C_, [t]) = n(C_,) = 1/4.
By Claim 5.15, we have 7(C;) < w(CZ, [1]) = 1/4. -

Thus, we have 7 (C, ) = 1/4, for eve_ry sufficiently large £ not divisible by 3. O
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6 Maximum Number of Almost Similar Triangles in the Plane

In this section, we provide our new proof for Theorem 1.4.

For a triangle A, a real number ¢ > 0, and a finite set of points P € R2, let
H(P, A, €) be the 3-graph on vertex set P, where {a, b, c} is a hyperedge if a, b, ¢
form a triangle in R? that is -similar to A, and let H(P, A) be the 3-graph on vertex
set P, where {a, b, c} is a hyperedge if a, b, ¢ form a triangle in R? that is similar to
A.

Definition 6.1 Fix C;,; to be an absolute constant. The forbidden family F,,; is the
collection of 3-graphs F with at most C;,; vertices, where for almost all triangles A,
there exists ¢ = ¢(A) > Osuch that H(P, A, ¢) is F-free, for every point set P < R2.

The C;;; in Definition 6.1 can be chosen arbitrarily and is to make F;; a
finite set to avoid some technical problems about infinity. We let C;,; = L + 3,
where L is the constant in Theorem 1.1. By definition, we have h(n, A,¢) =
maX pcR2 | pl=n |H(P, A, €)|.Hence,ex(n, F;ri) = h(n, A, ¢) for almost all triangles
A and small enough ¢ = ¢(A). Bardny and Fiiredi [3] proved that several 3-graphs,
including ; and C5, are in F,; and then gave an upper bound for ex(n, F ;) using
flag algebra. Balogh et al. [2] provided more members of ,; and then used a combi-
nation of flag algebra and stability method to obtain Theorem 1.4. We will prove that
every tight cycle minus one hyperedge of size 4 < ¢ < C;; not divisible by 3 is in
F+ri, and then Theorem 1.4 follows immediately from Theorem 1.1.

Proposition 6.2 Foreveryinteger {, where4d < £ < Cy; and3 t £, we have C, € Fui.

Proof Using the fact that every algebraic set, which is not the whole space, has measure
0, Barany and Fiiredi [3] showed that in order to prove that a 3-graph H is in F;, we
only need to prove that there exists one triangle A such that H(P, A) is H-free, for
every pointset P C R?, see their proof of Lemma 9.2. See also the proof of Lemma 2.3
in [2]. Therefore, denoting by A the equilateral triangle, we only need to prove that
H(P, Ag) is C[-free, for every integer £, where 4 < ¢ < Cy,; and ¢ is not divisible by
3, and point set P € R2. This follows from the following simple coloring argument.
Assume for contradiction that there are a point set P C R? and an integer £ > 4 not
divisible by 3 such that H (P, Ag) contains vovy ... ve—1 asacopy of C, . Without loss
of generality, we can assume that vg = (0, 0), v; = (1, 0),and v, = (1/2, «/§/2). Let
Py be the point set {xv; + yvo : x, y € Z}. Color Py with colors in {0, 1, 2} as follows.
For every point xv| + yvs € Py, color it with color ¢ € {0, 1, 2}, where c = x + 2y
(mod 3). Note that every equilateral triangle with side length one formed by points
in Py is a rainbow, i.e., its vertices have all three colors. Now, vy = (0, 0) has color O
and v; = (1, 0) has color 1. Since {v;, vi+1, viy2} € H(P, Ag) for0 <i <€ —3,we
have, by induction, v; € Py, v;, V11, vi+2 form an equilateral triangle with side length
one, and v; has color ¢, where ¢ =i (mod 3). Then, v,_7, v¢_1, vg also need to form
an equilateral triangle with side length one, so it is a rainbow. However, since 3 1 £, we
have that one of vy_», vy_; has color 0, the same color as vertex vp, a contradiction. 00
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7 Concluding Remarks

The constant L in Theorem 1.1 given by the current proof can be large, due to the
following two reasons.

For the stability result in Sect.4, we use a regularity lemma, Theorem 2.4, which
can make the dependence between €1, &, and § very poor in Proposition 4.1. We
remark that using the regularity lemma is not really necessary: we can instead use a
similar averaging argument as in the proof of Claim 4.2. This would make the proof
of Proposition 4.1 much longer and more technical, and we still cannot make L close
to 5 (due to the reason in the next paragraph).

As mentioned at the beginning of Sect.5, the bottleneck in our proof is about the
following problem.

Problem 7.1 For a maximum n-vertex C_, -free 3-graph H, how many hyperedges
do we need to remove to make H free of C™?

In Lemma 5.1, our bound is O (n3/+/L). Any improvement to this can lead to a
significant improvement for the constant L in Theorem 1.1. We note that Lemma 5.1
is the only place where we need L to be large; for all other proofs, we actually only
use that the forbidden family includes KC;” and Cy . If it can be shown that at most cn’
hyperedges are needed to be removed from every maximum Cy -free 3-graph H to
make H free of C~, where c is small enough, then the same proof gives 7 (C5) = 1/4.
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