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Abstract. A result of Balogh et al. yields the minimum degree threshold that ensures a 2-
colored graph contains a perfect matching of significant color-bias (i.e., a perfect matching that
contains significantly more than half of its edges in one color). In this note we prove an analogous
result for perfect matchings in k-uniform hypergraphs. More precisely, for each 2 </ <k and r > 2
we determine the minimum #¢-degree threshold for forcing a perfect matching of significant color-bias
in an r-colored k-uniform hypergraph.
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1. Introduction. A perfect matchingin a hypergraph H is a collection of vertex-
disjoint edges of H which covers the vertex set V(H) of H. In recent decades there
has been significant interest in the problem of establishing minimum degree conditions
that force a perfect matching in a k-uniform hypergraph. More precisely, given a k-
uniform hypergraph H and an ¢-element vertex set S CV(H) (where £ € [k — 1]), we
define dg(S) to be the number of edges containing S. The minimum £-degree d,(H)
of H is the minimum of dg(S) over all f-element sets of vertices in H. We refer to
01(H) as the minimum vertex degree of H and to d;_1(H) as the minimum codegree
of H.

Suppose that £, k,n € N such that £ <k — 1 and k divides n. Let my(k,n) denote
the smallest integer m such that every k-uniform hypergraph H on n vertices with
0¢(H) > m contains a perfect matching.

A simple consequence of Dirac’s theorem is that m4(2,n) =n/2 for all even n € N.
Improving earlier asymptotically exact bounds given in [13, 19], Roédl, Rucinski, and
Szemerédi [20] determined the minimum codegree threshold for perfect matchings in
k-uniform hypergraphs. That is, they showed that if n € N is sufficiently large, then
my—1(k,n) = n/2 — k+ C, where C € {3/2,2,5/2,3} depends on the values of n
and k.

The value of my(k,n) is known for various pairs (k,£) when n is sufficiently large.
For example, after an earlier asymptotic result of Pikhurko [17], Treglown and Zhao
[21] determined the value of m¢(k,n) for £ > k/2 and n sufficiently large. However,
the minimum vertex degree case of the problem is wide open in general, and the only
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case where the asymptotic or exact value of my(k,n) is known is when k = 2,3,4,5.
See, e.g., [18, 23] for discussions on further results in the area.
Given any 1 </ <k, it is known that

1) mo(k,n) > max{; —o(1),1— (kkl)u - 0(1)} <k’1€)

See, e.g., the introduction of [22] for the two families of hypergraphs that demonstrate
(1). It is widely believed that the inequality in (1) is asymptotically sharp for all
choices of k,?; see [12, 14]. Moreover, Treglown and Zhao [22] gave a conjecture on
the exact value of my(k,n) for sufficiently large n € kN.

The aim of this paper is to study the color-bias version of this problem. The topic
of color-bias structures in graphs was first raised by Erdés in the 1960s (see [5, 6]).
Sparked by work of Balogh et al. [1], there has been renewed interest in the topic,
particularly in establishing minimum degree conditions that force a color-bias copy of
a graph F. More precisely, if a graph G contains a copy of F', then, however, the edges
of G are 2-colored, one can clearly ensure that G contains a copy of F' with at least
e(F)/2 edges of the same color. The question then is how large the minimum degree
0(G) of G needs to be to guarantee that G contains a copy of F with significantly
more than e(F')/2 edges of the same color, no matter how one 2-colors the edges of
G. The following result resolves this problem in the case when F' is a Hamilton cycle.

THEOREM 1.1 (Balogh et al. [1]). Let 0 <c<1/4 and n €N be sufficiently large.
If G is an n-vertex graph with

0(G) > (3/4+ ¢)n,

then given any 2-coloring of E(G), there is a Hamilton cycle in G with at least n/2+
cn/32 edges of the same color. Moreover, if n € 4N, there is an n-vertex graph G’
with 6(G') = 3n/4 and a 2-coloring of E(G') for which every Hamilton cycle in G’
has precisely n/2 edges in each color.

Note that Theorem 1.1 shows that the minimum degree threshold for forcing a
color-bias Hamilton cycle in a graph is significantly higher than the threshold for
forcing only a Hamilton cycle. Indeed, Dirac’s theorem tells us that any n-vertex
graph G with 6(G) > n/2 contains a Hamilton cycle.

Since a Hamilton cycle on an even number of vertices is the union of two perfect
matchings, Theorem 1.1 implies the following result.

THEOREM 1.2 (Balogh et al. [1]). Let 0 <c < 1/4 and n € 2N be sufficiently large.
If G is an n-vertex graph with

5(G) > (3/4+ ¢)n,

then given any 2-coloring of E(G), there is a perfect matching in G with at least
n/4+ cn/64 edges of the same color. Moreover, if n € 4N, there is an n-vertex graph
G’ with 6(G') =3n/4 and a 2-coloring of E(G') for which every perfect matching in
G’ has precisely n/4 edges in each color.

Let n € 4N. We define the graph G’ in Theorem 1.2 as follows: V(G’) consists of
the disjoint union of two vertex classes A and B of sizes n/4 and 3n/4, respectively;
E(G’) contains all possible red edges whose endpoints are both in B and all possible
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blue edges with one endpoint in A and one endpoint in B. Thus, §(G’) = 3n/4, and
every perfect matching in G’ has precisely n/4 edges in each color.

Since [1] appeared, a number of analogues of Theorem 1.1 have been established
for other types of spanning structures. Given graphs G and F, an F-factor in G is
a collection of vertex-disjoint copies of F' in G that together cover V(G). In [2], the
minimum degree threshold for forcing a color-bias K,-factor was determined.! More
recently, this result was extended to F-factors for every fixed graph F’; see [4]. For
k > 2, the minimum degree threshold for forcing a color-bias kth power of a Hamilton
cycle in a graph was established in [3].

Other variants of the problem have also been studied. In [7, 10] an r-color ver-
sion of Theorem 1.1 was proven: in this setting, now one r-colors F(G) and seeks a
Hamilton cycle with significantly more than n/r edges of the same color. Color-bias
problems have also been considered for random graphs [9]. Recently, Mansilla Brito
[16] gave a minimum codegree result for forcing a color-bias copy of a tight Hamilton
cycle in a 3-uniform hypergraph. We remark that all of these color-bias results can
be phrased in the equivalent language of discrepancy; see, e.g., [1, 2, 3, 4, 10].

Our main result determines the minimum ¢-degree threshold for forcing a color-
bias perfect matching in a k-uniform hypergraph for all £ > 2 and k& > 3. To state our
result, we need the following definitions: Given integers 1 </ <k, let Ci ¢ be the set
of all ¢> 0 such that m,(k,n) < c(kf_‘g) for all sufficiently large n € kN. Set ¢y ¢ to be
the infimum of Cy, . In particular, note that the general conjecture on the asymptotic
value of my(k,n) equivalently states that

_ 11 k—1\""
Ck,¢ = INax 2, L .

THEOREM 1.3. Let k,¢,r € N where 2 <{¢ <k and r > 2. Given any n >0 where
cke+n <1, there exists an ng € N such that the following holds: Let H be a k-uniform
hypergraph on n > ng vertices, where n € kN. If

st = i+, ).

then given any r-coloring of E(H), there is a perfect matching in H with at least
o+ m edges of the same color.

We remark that Theorem 1.3 holds even in the cases in which we do not know the
value of cj . By definition of ¢ ¢, the minimum /-degree condition in Theorem 1.3
is essentially best possible. Indeed, for ¢ < ¢ ¢, a minimum ¢-degree condition of
00(H) > c( o e) does not even guarantee a perfect matching, let alone one of significant
color-bias. So in this sense the color-bias and “standard” versions of the problem are
aligned when ¢ > 2.

In contrast, the same phenomenon does not occur for the minimum vertex degree
version of the problem. Indeed, Theorem 1.2 tells us that the minimum degree thresh-
old for a color-bias perfect matching in a graph is different from the minimum degree
threshold for a perfect matching in a graph. Furthermore, in section 4 we describe a
similar phenomenon in the 3-uniform hypergraph setting.

Remark. While finalizing a manuscript that gave the proof of Theorem 1.3 in
the case when £ =k — 1 and r = 2, we learnt of simultaneous and independent work

1Recall K, denotes the complete graph on r vertices.
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of Gishboliner, Glock, and Sgueglia [8]. They determined the minimum codegree
threshold for forcing a tight Hamilton cycle of significant color-bias in an r-colored
k-uniform hypergraph (where r > 2 and k > 3). As an immediate consequence of
their result, they also established the corresponding minimum codegree threshold for
perfect matchings. ]

We therefore decided to seek a generalization of our minimum codegree result to
other degree conditions, i.e., Theorem 1.3. In doing so, we found an argument much
cleaner than our original approach.

Notation. Let H be a hypergraph. The neighborhood Ny (X) of a set X CV(H)
is the family of sets S C V(H) \ X such that SUX € E(H). If X = {z}, we define
Ny (z) := Ny (X). Given a vertex z € V(H) and set Y C V(H), we sometimes write
Y or Yz to denote {2} UY. Given a coloring ¢ of E(H), we call an edge e € E(H) a
C-edge if e is colored C in ¢. Given a set X C V(H), we write H[X] for the induced
subhypergraph of H with vertex set X. We define H\ X :=H[V(H) \ X].

Given a hypergraph F' with an r-coloring ¢: E(F) — {C1,...,C,}, its color profile
is (z1,...,2,), where z; is the number of C;-edges in F' for each i € [r]. Two color
profiles (z1,...,2.), (y1,...,yr) are said to be different with respect to the color C; if

T # Yi-
2. Preliminaries and useful results.

2.1. Proof overview and key definitions. Throughout this section, we will
suppose that H is a k-uniform hypergraph on n vertices with an r-coloring ¢: F(H) —
{C1,...,C}}.

Our general strategy for the proof of Theorem 1.3 is as follows. Our aim is to find
certain gadgets inside of H. A gadget is just a subhypergraph of H with some given
structure. A gadget G is good if G contains two perfect matchings that have different
color profiles with respect to the r-coloring c.

For a certain well-chosen t € N, we will prove that there are ¢ vertex-disjoint good
gadgets G1,...,G¢ in H and a j € [r] so that, for each good gadget G;, the two perfect
matchings M; and M/ in G; have color profiles that are different with respect to the

color Cj.
We will then be able to easily find a perfect matching in H of significant color-
bias. Indeed, removing the vertices of G1,...,G; from H will result in a k-uniform

hypergraph H' that contains a perfect matching M. The flexibility of the good gadgets
then allows us to extend M into a perfect matching in H with significant color-bias,
whatever the colour profile of M may be.

We next state the definitions required to formally introduce the notion of a good
gadget.

DEFINITION 2.1. Let u,v € V(H) be distinct and T € Ny (u) N Ng(v). We say
o uTv is S if (T U{u})=c(TU{v}),
o uTv is C;Cj if c(T U{u})=C; and (T U{v})=Cj.
Let C;Cj(uv) denote the collection of sets T € Ny (u) N Ng(v) for which uTv is C;C;.
Define S(uv) analogously.

Note that C;C;(uv) = C;C;(vu) for all distinet u,v € V(H).

DEFINITION 2.2. Let D >0, and let u,v € V(H) be distinct. We say that Ng(u)N
Ny (v) is
o type S(D) if |S(uv)| > Dn*~2,
e type C;C;(D) ifi#j and |C;Cj(uv)| > Dnk=2.

We remark that it may be the case that Ny (u) N Ny (v) has more than one type.
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F1Gc. 1. On the left, a (12,¢, f)-gadget. On the right, a (9,e, f)-gadget.

DEFINITION 2.3. Let e={e1,...,ex} and f={f1,..., fx} be two edges in H. A
(k% + k, e, f)-gadget G is a subhypergraph of H on k? + k vertices so that
e V(QG) is the disjoint union of e, f, and Ty, ..., Ty, where T; € Ny (e;) NNy (f;)
for each i€ [k];
e e, f€E(G);
o ¢;T;, 1iT; € E(G) for all i € [K].
A (K + k,e, f)-gadget in which every e;T;f; is S will be called an S-(k2 + k,e, f)-
gadget.
A (8k, e, f)-gadget G is a subhypergraph of H on 3k wvertices so that
o ¢;=f;, forallie{3,...,k};
e V(QG) is the disjoint union of e, f1, fa, T1, and Tz, where T; € Ny (e;) NNy (f;)
for each i € [2];
e ¢, f€E(G);
e 17, f1T1, esTh, ngg S E(G)
Given t € {3k, k*+k}, we say that a (t,e, f)-gadget G is good if it contains two perfect
matchings with different color profiles (with respect to the r-coloring of G induced by
the r-coloring ¢ of H).

Note that e and f are vertex-disjoint in a (k? + k,e, f)-gadget but intersect in
k — 2 vertices in a (3k,e, f)-gadget; see Figure 1.

2.2. Tools for the proof of Theorem 1.3. The following well-known result
allows one to deduce a lower bound on d,(H) given a lower bound on . (H) for any
<.

PROPOSITION 2.4. Let 1< (<t <k, and let H be a k-uniform hypergraph on n
vertices. If 0p(H) > m(z:f,) for some 0 <x <1, then §,(H) > x(z:g).

The next result gives a sufficient condition for finding a good (3k,e, f)-gadget in
a k-uniform hypergraph of large minimum 2-degree.

LEMMA 2.5. Let k > 3 and D := 3k. Let H be a k-uniform hypergraph on n
vertices with an r-coloring ¢: E(H) — {C4,...,C}. Suppose there exists i # j € [r]
and distinct v1,v2,v3,v4 € V(H) such that Ng(v1) N Ny (v2) and Ng(vs) N Ny (vs)

are both type C;C;(D). If
1 n
%2(H) >3 (k— 2)’

then there exists a good (3k,e, f)-gadget in H for some e, f € E(H).
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Proof. By the minimum 2-degree condition, there exists a set X C V(H) of size
k — 2 such that A =X U {v;,v3} and B =X U {vg,vs4} are both in E(H). We show
that we can construct a (3k, A, B)-gadget, and then we prove that it is good.

Given that Ny (v1) NNy (v2) is type C;C;(D), there are at least 3knk~2 sets Ty 5 €
Np(v1) NN (v2) such that ¢(v1Th 2) = C; and ¢(veTh 2) = Cj. As |AUB|=k+2 < 3k,
we may choose such a set T3 2 so that it is also vertex-disjoint from AU B. Similarly,
there is a set T34 € Ny (vs) N Ny (vy) such that c(vsTs4) = C;, c(vaTs4) = C; and
T3 4 is vertex-disjoint from A, B, and T .

Then, define a gadget G as follows:

e V(G) is the union of A, B, T} 2, and T3 4;
o A, B, 7)1T1’27 ’UQTLQ, U3T3’4, and U4T3’4 are in E(G)
By definition, G is a (3k, A, B)-gadget.

To prove that G is good, we need to find two perfect matchings in G with different
color proﬁles. Define MA = {A,UQTl,Q,Il}4T374} and MB = {B,U1T1727U3T374}. Both
M, and Mp are perfect matchings in G. While M4 has at least two Cj-edges (v2Th 2
and v4T34), Mp has at least two Cj-edges (v1T4,2 and v3T54). Thus, M4 and Mp
have different color profiles, as desired. 0

The next lemma ensures that a hypergraph H as in Theorem 1.3 contains a good
gadget or a perfect matching of huge color-bias.

LEMMA 2.6. Let 2 < ¢ < k and n > 0. There exists an ng € N such that the
following holds for all n > ng with n € kN: Let H be a k-uniform hypergraph on n
vertices with an r-coloring c¢: E(H) — {C4,...,C.} and

st 2 e+ (" ).

Suppose that H does not have a perfect matching containing at least n/k — (g) edges
of the same color. Then

e there exists a good (3k,e, f)-gadget in H for some e, f € E(H); or

e there exists a good (k* + k,e, f)-gadget in H for some e, f € E(H).

Proof. Let H and c¢ be as in the lemma, and suppose n is sufficiently large. Let
D :=k? + k> 3k. Note that, given our minimum ¢-degree condition, Proposition 2.4
implies that

@) = (71 ) > (543) (1)
()= ety 5) > 5(," )

Here the inequalities follow as ¢, ¢ >1/2 by (1).

As n is sufficiently large, and by definition of ¢ ¢, the minimum ¢-degree condition
ensures a perfect matching M in H.

Let L:= (1) + 1. By the hypothesis of the lemma, M does not contain n/k — (3)
edges of the same color; so, there exist distinct edges eq,...,er, f1,...,fr € M such
that c(e;) # c(f;) for each i € [L].

Given any distinct @,y € V/(H), (2) implies that [Ng(z) N Nu(y)| = n(,",). In
particular, this means that Ny (z) N Ny (y) is of type S(D) or of type C;C;(D) for
some distinct 4, j € [r].

Suppose there exists 7 # j € [r] and distinct z,y, z,w € V(H) such that Ng(x) N
Ny (y) and Ng(2) NNy (w) are both type C;C;(D). Then by Lemma 2.5, there exists
a good (3k, e, f)-gadget in H for some e, f € E(H).
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So, we may assume no such i # j € [r] and z,y,z,w € V(H) exist. In particular,
for each of the (5) = L —1 choices for i # j € [r], there is at most one pair (es, f5) such
that there exist u € e; and v € f; so that either Ny (u) N Ny (v) or Ny (v) N Ny (u)
is type C;C;(D). Thus, the following claim holds.

CLAIM 2.7. There is a pair (es, fs) such that for each u € es and v € fq, we have
that Ng(u) N Ng(v) is type S(D).

Let e = {uq,...,ur} and fs ={v1,...,vr}. For each i € [k], we choose a set T; so
that

(i) T, € S(Uﬂjﬁ,

(ii) T1,..., Tk, es, fs are all vertex-disjoint.

Note that we can guarantee (ii) since |S(u;v;)| > Dn*=2 = (k? + k)n*~2 for each
i€ [k].
We construct a (k? + k, es, f)-gadget G as follows:

e V(@) is the union of ey, fs, Th,...,Tk;

e ¢, and f, are edges in G;

o u;T;, v;T; are edges in G for all i € [k].
By definition, G is an S-(k? + k, es, fs)-gadget with c(es) # c¢(fs). This implies that
G is a good (k? + k,es, fs)-gadget. Indeed, M. := {es,v1Th,...,vT}} and My =
{fssu1Ty,...,upTy} are perfect matchings in G with different color profiles.

3. Proof of Theorem 1.3. Let H be a sufficiently large n-vertex k-uniform
hypergraph as in the statement of the theorem. Let ¢: E(H) — {C4,...,C.} be an
r-coloring of E(H). If H contains a perfect matching with at least n/k — (}) edges of
the same color, then we are done.

So, suppose no perfect matching in H contains at least n/k — (g) edges of the
same color. By Lemma 2.6, we can find either a good (3k,e, f)-gadget or a good
(k? + ke, f)-gadget in H. Call this gadget G;.

Next, consider Hy := H \ V(G1). Clearly 6,(H1) > (ck,e +1/2) (kié)' Suppose H;
contains a perfect matching M; with at least |[Hy|/k — (5) edges of the same color.
Thus, by taking any perfect matching in G; and adding it to M7, we obtain a perfect
matching in H containing at least |H;|/k— (5) > n/k—|G1|/k— () >n/k—k—1—(})
edges of the same color, as desired.

Hence, we may assume H; does not contain such a perfect matching M;. By
Lemma 2.6, we can find either a good (3k, e, f)-gadget or a good (k? +k, e, f)-gadget
in H;. Call this gadget Ga, and set Hy := H; \ V(G3).

Repeating this argument, we obtain either a perfect matching in H of significant
color-bias, or a collection of ¢ := m vertex-disjoint gadgets G1,...,G; where,
given any i € [t], G; is either a good (3k, e, f)-gadget or a good (k? +k, e, f)-gadget in
H. In particular, note that each gadget we select has size at most k2 + k, and if we
remove t(k? + k) vertices from H, we still have that 6,(H) > (1/2+n)(,",) — t(k* +
kyn*==1 > (1/2+n/2)(,",). Thus, we can indeed repeatedly apply Lemma 2.6 to
obtain these gadgets G1,...,G;.

Set G:={G1,...,Gt}. For each color C;, consider the set G; of all the gadgets in
G that contain two perfect matchings with different color profiles with respect to the
color C;. Clearly, there exists some j € [r] such that G; contains at least t/r gadgets.

For each gadget G; in G;, consider the perfect matching M; in G; with the largest
possible number of edges colored Cj; let M/ be the perfect matching in G; with the
fewest possible edges colored C;. So, M; has at least one more Cj-edge than M.
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Let M™* denote the union of all these M;, and let M~ denote the union of all
these M. So, M contains at least t/r = m more Cj-edges than M.

Let V(G;) denote the set of vertices in H that lie in one of the gadgets in G;.
Note that d¢(H \ V(G;)) > (c,e +1/2)(,",), so there exists a perfect matching M in
H\V(Gj). Thus, M UM* and M UM~ are both perfect matchings in H.

If MUM™ contains at least -+ W edges of the same color, then the
theorem holds. Thus, we may assume this is not the case. This immediately implies
the following claim.

CLAIM 3.1. For every i € [r], the number of C;-edges in M U M~ is at least
% - Srk:k?I?erk)'

In particular, M U M~ contains at least -7 — W Cj-edges. Since there
m more Cj-edges in M than in M ™, we obtain that M U M™*
contains at least 1 + grfizrgy Cj-edges, as desired.

are at least

4. Concluding remarks. In this paper we have determined the minimum /-
degree threshold for forcing a color-bias perfect matching in a k-uniform hypergraph
for all 2 </ < k. The only remaining open case of the problem is the minimum vertex
degree version.

A result of Han, Person, and Schacht [12] yields that m1(3,n) = (5/9+0(1)) ("51).

The following example shows that the corresponding color-bias problem has a signif-
icantly higher minimum vertex degree threshold.

Ezample 4.1. Given any n € 6N, there exists an n-vertex 3-uniform hypergraph

H with
3/n—1
H)> -
91 ( )_4< 9 )

and with a 2-coloring of E(H) so that every perfect matching in H has precisely n/6
edges in each color.

Proof. Define H so that (i) V/(H) is the disjoint union of two vertex classes A and
B, both of size n/2; and (ii) E(H) consists of all those 3-uniform edges containing at
least one vertex from each of A and B. Thus,

n/2 n/n 3/n-1
H) = 2 (7 - 1) . .
o1(H) (2>+22 —4<2>
Color each edge containing two vertices from A red and each edge containing two

vertices from B blue. It is easy to see that every perfect matching in H uses the same
number of red and blue edges. ]

We suspect that this example is extremal for the minimum vertex degree problem
in 3-uniform hypergraphs.

QUESTION 4.2. Given any n > 0, does there exist a v > 0 so that the following
holds for all sufficiently large n € 3N? Suppose that H is an n-vertex 3-uniform

hypergraph with
3 n—1
> - .
= (20) ()

Then given any 2-coloring of E(H), there is a perfect matching in H with at least
n/6 +yn edges of the same color.
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Remark. Since this paper has been accepted, Question 4.2 has been answered
in the affirmative; see [11, 15]. In fact, this new work resolves the minimum vertex
degree problem fully (i.e., for all choices of the uniformity k& > 3 and number of colors
r>2). d

By tweaking the proof of Theorem 1.3, one can show that given any k£ > 3 and
r > 2, there is a constant C' such that every sufficiently large r-colored n-vertex
k-uniform hypergraph H with dx_1(H) > n/2 + C contains a perfect matching with
at least (n/rk) + 1 edges of the same color. Moreover, the lower bound on the color-
bias grows linearly as one increases the minimum codegree further. The Ph.D. thesis
of the third author will contain a rigorous proof of this.
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