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A NOTE ON COLOR-BIAS PERFECT MATCHINGS
IN HYPERGRAPHS⇤

JÓZSEF BALOGH†, ANDREW TREGLOWN‡, AND CAMILA ZÁRATE-GUERÉN‡

Abstract. A result of Balogh et al. yields the minimum degree threshold that ensures a 2-
colored graph contains a perfect matching of significant color-bias (i.e., a perfect matching that
contains significantly more than half of its edges in one color). In this note we prove an analogous
result for perfect matchings in k-uniform hypergraphs. More precisely, for each 2 `< k and r � 2
we determine the minimum `-degree threshold for forcing a perfect matching of significant color-bias
in an r-colored k-uniform hypergraph.
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1. Introduction. A perfect matching in a hypergraphH is a collection of vertex-
disjoint edges of H which covers the vertex set V (H) of H. In recent decades there
has been significant interest in the problem of establishing minimum degree conditions
that force a perfect matching in a k-uniform hypergraph. More precisely, given a k-
uniform hypergraph H and an `-element vertex set S ✓ V (H) (where `2 [k� 1]), we
define dH(S) to be the number of edges containing S. The minimum `-degree �`(H)
of H is the minimum of dH(S) over all `-element sets of vertices in H. We refer to
�1(H) as the minimum vertex degree of H and to �k�1(H) as the minimum codegree

of H.
Suppose that `, k,n2N such that ` k� 1 and k divides n. Let m`(k,n) denote

the smallest integer m such that every k-uniform hypergraph H on n vertices with
�`(H)�m contains a perfect matching.

A simple consequence of Dirac’s theorem is that m1(2, n) = n/2 for all even n2N.
Improving earlier asymptotically exact bounds given in [13, 19], Rödl, Ruciński, and
Szemerédi [20] determined the minimum codegree threshold for perfect matchings in
k-uniform hypergraphs. That is, they showed that if n 2 N is su�ciently large, then
mk�1(k,n) = n/2 � k + C, where C 2 {3/2,2,5/2,3} depends on the values of n

and k.
The value of m`(k,n) is known for various pairs (k, `) when n is su�ciently large.

For example, after an earlier asymptotic result of Pikhurko [17], Treglown and Zhao
[21] determined the value of m`(k,n) for ` � k/2 and n su�ciently large. However,
the minimum vertex degree case of the problem is wide open in general, and the only
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2544 J. BALOGH, A. TREGLOWN, AND C. ZÁRATE-GUERÉN

case where the asymptotic or exact value of m1(k,n) is known is when k = 2,3,4,5.
See, e.g., [18, 23] for discussions on further results in the area.

Given any 1 `< k, it is known that

m`(k,n)�max

(
1

2
� o(1),1�

✓
k� 1

k

◆k�`

� o(1)

)✓
n

k� `

◆
.(1)

See, e.g., the introduction of [22] for the two families of hypergraphs that demonstrate
(1). It is widely believed that the inequality in (1) is asymptotically sharp for all
choices of k, `; see [12, 14]. Moreover, Treglown and Zhao [22] gave a conjecture on
the exact value of m`(k,n) for su�ciently large n2 kN.

The aim of this paper is to study the color-bias version of this problem. The topic
of color-bias structures in graphs was first raised by Erdős in the 1960s (see [5, 6]).
Sparked by work of Balogh et al. [1], there has been renewed interest in the topic,
particularly in establishing minimum degree conditions that force a color-bias copy of
a graph F . More precisely, if a graph G contains a copy of F , then, however, the edges
of G are 2-colored, one can clearly ensure that G contains a copy of F with at least
e(F )/2 edges of the same color. The question then is how large the minimum degree
�(G) of G needs to be to guarantee that G contains a copy of F with significantly
more than e(F )/2 edges of the same color, no matter how one 2-colors the edges of
G. The following result resolves this problem in the case when F is a Hamilton cycle.

Theorem 1.1 (Balogh et al. [1]). Let 0< c< 1/4 and n2N be su�ciently large.

If G is an n-vertex graph with

�(G)� (3/4 + c)n,

then given any 2-coloring of E(G), there is a Hamilton cycle in G with at least n/2+
cn/32 edges of the same color. Moreover, if n 2 4N, there is an n-vertex graph G

0

with �(G0) = 3n/4 and a 2-coloring of E(G0) for which every Hamilton cycle in G
0

has precisely n/2 edges in each color.

Note that Theorem 1.1 shows that the minimum degree threshold for forcing a
color-bias Hamilton cycle in a graph is significantly higher than the threshold for
forcing only a Hamilton cycle. Indeed, Dirac’s theorem tells us that any n-vertex
graph G with �(G)� n/2 contains a Hamilton cycle.

Since a Hamilton cycle on an even number of vertices is the union of two perfect
matchings, Theorem 1.1 implies the following result.

Theorem 1.2 (Balogh et al. [1]). Let 0< c< 1/4 and n2 2N be su�ciently large.

If G is an n-vertex graph with

�(G)� (3/4 + c)n,

then given any 2-coloring of E(G), there is a perfect matching in G with at least

n/4 + cn/64 edges of the same color. Moreover, if n2 4N, there is an n-vertex graph

G
0
with �(G0) = 3n/4 and a 2-coloring of E(G0) for which every perfect matching in

G
0
has precisely n/4 edges in each color.

Let n2 4N. We define the graph G
0 in Theorem 1.2 as follows: V (G0) consists of

the disjoint union of two vertex classes A and B of sizes n/4 and 3n/4, respectively;
E(G0) contains all possible red edges whose endpoints are both in B and all possible
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COLOR-BIAS PERFECT MATCHINGS IN HYPERGRAPHS 2545

blue edges with one endpoint in A and one endpoint in B. Thus, �(G0) = 3n/4, and
every perfect matching in G

0 has precisely n/4 edges in each color.
Since [1] appeared, a number of analogues of Theorem 1.1 have been established

for other types of spanning structures. Given graphs G and F , an F -factor in G is
a collection of vertex-disjoint copies of F in G that together cover V (G). In [2], the
minimum degree threshold for forcing a color-bias Kr-factor was determined.1 More
recently, this result was extended to F -factors for every fixed graph F ; see [4]. For
k� 2, the minimum degree threshold for forcing a color-bias kth power of a Hamilton
cycle in a graph was established in [3].

Other variants of the problem have also been studied. In [7, 10] an r-color ver-
sion of Theorem 1.1 was proven: in this setting, now one r-colors E(G) and seeks a
Hamilton cycle with significantly more than n/r edges of the same color. Color-bias
problems have also been considered for random graphs [9]. Recently, Mansilla Brito
[16] gave a minimum codegree result for forcing a color-bias copy of a tight Hamilton
cycle in a 3-uniform hypergraph. We remark that all of these color-bias results can
be phrased in the equivalent language of discrepancy; see, e.g., [1, 2, 3, 4, 10].

Our main result determines the minimum `-degree threshold for forcing a color-
bias perfect matching in a k-uniform hypergraph for all `� 2 and k� 3. To state our
result, we need the following definitions: Given integers 1 `< k, let Ck,` be the set
of all c > 0 such that m`(k,n) c

�
n

k�`

�
for all su�ciently large n2 kN. Set ck,` to be

the infimum of Ck,`. In particular, note that the general conjecture on the asymptotic
value of m`(k,n) equivalently states that

ck,` =max

(
1

2
,1�

✓
k� 1

k

◆k�`
)
.

Theorem 1.3. Let k, `, r 2 N where 2 `< k and r � 2. Given any ⌘ > 0 where

ck,`+⌘< 1, there exists an n0 2N such that the following holds: Let H be a k-uniform

hypergraph on n� n0 vertices, where n2 kN. If

�`(H)� (ck,` + ⌘)

✓
n

k� `

◆
,

then given any r-coloring of E(H), there is a perfect matching in H with at least
n

rk
+ ⌘n

8r(r�1)kk(k2+k) edges of the same color.

We remark that Theorem 1.3 holds even in the cases in which we do not know the
value of ck,`. By definition of ck,`, the minimum `-degree condition in Theorem 1.3
is essentially best possible. Indeed, for c < ck,`, a minimum `-degree condition of
�`(H)� c

�
n

k�`

�
does not even guarantee a perfect matching, let alone one of significant

color-bias. So in this sense the color-bias and “standard” versions of the problem are
aligned when `� 2.

In contrast, the same phenomenon does not occur for the minimum vertex degree
version of the problem. Indeed, Theorem 1.2 tells us that the minimum degree thresh-
old for a color-bias perfect matching in a graph is di↵erent from the minimum degree
threshold for a perfect matching in a graph. Furthermore, in section 4 we describe a
similar phenomenon in the 3-uniform hypergraph setting.

Remark. While finalizing a manuscript that gave the proof of Theorem 1.3 in
the case when ` = k � 1 and r = 2, we learnt of simultaneous and independent work

1Recall Kr denotes the complete graph on r vertices.
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2546 J. BALOGH, A. TREGLOWN, AND C. ZÁRATE-GUERÉN

of Gishboliner, Glock, and Sgueglia [8]. They determined the minimum codegree

threshold for forcing a tight Hamilton cycle of significant color-bias in an r-colored
k-uniform hypergraph (where r � 2 and k � 3). As an immediate consequence of
their result, they also established the corresponding minimum codegree threshold for
perfect matchings.

We therefore decided to seek a generalization of our minimum codegree result to
other degree conditions, i.e., Theorem 1.3. In doing so, we found an argument much
cleaner than our original approach.

Notation. Let H be a hypergraph. The neighborhood NH(X) of a set X ✓ V (H)
is the family of sets S ✓ V (H) \X such that S [X 2 E(H). If X = {x}, we define
NH(x) :=NH(X). Given a vertex x 2 V (H) and set Y ✓ V (H), we sometimes write
xY or Y x to denote {x}[Y . Given a coloring c of E(H), we call an edge e2E(H) a
C-edge if e is colored C in c. Given a set X ✓ V (H), we write H[X] for the induced

subhypergraph of H with vertex set X. We define H \X :=H[V (H) \X].
Given a hypergraph F with an r-coloring c :E(F )! {C1, . . . ,Cr}, its color profile

is (x1, . . . , xr), where xi is the number of Ci-edges in F for each i 2 [r]. Two color
profiles (x1, . . . , xr), (y1, . . . , yr) are said to be di↵erent with respect to the color Ci if
xi 6= yi.

2. Preliminaries and useful results.

2.1. Proof overview and key definitions. Throughout this section, we will
suppose that H is a k-uniform hypergraph on n vertices with an r-coloring c :E(H)!
{C1, . . . ,Cr}.

Our general strategy for the proof of Theorem 1.3 is as follows. Our aim is to find
certain gadgets inside of H. A gadget is just a subhypergraph of H with some given
structure. A gadget G is good if G contains two perfect matchings that have di↵erent
color profiles with respect to the r-coloring c.

For a certain well-chosen t2N, we will prove that there are t vertex-disjoint good
gadgets G1, . . . ,Gt in H and a j 2 [r] so that, for each good gadget Gi, the two perfect
matchings Mi and M

0
i
in Gi have color profiles that are di↵erent with respect to the

color Cj .
We will then be able to easily find a perfect matching in H of significant color-

bias. Indeed, removing the vertices of G1, . . . ,Gt from H will result in a k-uniform
hypergraphH

0 that contains a perfect matchingM . The flexibility of the good gadgets
then allows us to extend M into a perfect matching in H with significant color-bias,
whatever the colour profile of M may be.

We next state the definitions required to formally introduce the notion of a good
gadget.

Definition 2.1. Let u, v 2 V (H) be distinct and T 2NH(u)\NH(v). We say

• uTv is S if c(T [ {u}) = c(T [ {v}),
• uTv is CiCj if c(T [ {u}) =Ci and c(T [ {v}) =Cj.

Let CiCj(uv) denote the collection of sets T 2NH(u)\NH(v) for which uTv is CiCj.

Define S(uv) analogously.

Note that CiCj(uv) =CjCi(vu) for all distinct u, v 2 V (H).

Definition 2.2. Let D> 0, and let u, v 2 V (H) be distinct. We say that NH(u)\
NH(v) is

• type S(D) if |S(uv)|�Dn
k�2

,

• type CiCj(D) if i 6= j and |CiCj(uv)|�Dn
k�2

.

We remark that it may be the case that NH(u)\NH(v) has more than one type.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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COLOR-BIAS PERFECT MATCHINGS IN HYPERGRAPHS 2547

e f e f

Figure 1. On the left, a (12, e, f)-gadget. On the right, a (9, e, f)-gadget.

2.2. Tools for the proof of Theorem 1.3. The following well-known result allows one to deduce
a lower bound on �`(H) given a lower bound on �`0(H), for any `  `

0.

Proposition 2.4. Let 1  `  `
0
< k and H be a k-uniform hypergraph on n vertices. If �`0(H) �

x
�
n�`

0

k�`0
�
for some 0  x  1, then �`(H) � x

�
n�`

k�`

�
. ⇤

The next result gives a su�cient condition for finding a good (3k, e, f)-gadget in a k-uniform
hypergraph of large minimum 2-degree.

Lemma 2.5. Let k � 3 and D := 3k. Let H be a k-uniform hypergraph on n vertices with an

r-colouring c : E(H) ! {C1, . . . , Cr}. Suppose there exists i 6= j 2 [r] and distinct v1, v2, v3, v4 2
V (H) such that NH(v1) \NH(v2) and NH(v3) \NH(v4) are both type CiCj(D). If

�2(H) >
1

2

✓
n

k � 2

◆
,

then there exists a good (3k, e, f)-gadget in H, for some e, f 2 E(H).

Proof. By the minimum 2-degree condition, there exists a set X ✓ V (H) of size k � 2 such
that A = X [ {v1, v3} and B = X [ {v2, v4} are both in E(H). We show that we can construct a
(3k,A,B)-gadget and afterwards we prove that it is good.

Given that NH(v1) \ NH(v2) is type CiCj(D), there are at least 3knk�2 sets T1,2 2 NH(v1) \
NH(v2) such that c(v1T1,2) = Ci and c(v2T1,2) = Cj . As |A[B| = k+2 < 3k, we may choose such a
set T1,2 so that it is also vertex-disjoint from A[B. Similarly, there is a set T3,4 2 NH(v3)\NH(v4)
such that c(v3T3,4) = Ci, c(v4T3,4) = Cj and T3,4 is vertex-disjoint from A, B and T1,2.

Then, define a gadget G as follows:

• V (G) is the union of A, B, T1,2 and T3,4;
• A, B, v1T1,2, v2T1,2, v3T3,4 and v4T3,4 are in E(G).

By definition, G is a (3k,A,B)-gadget.
To prove that G is good, we need to find two perfect matchings in G with di↵erent colour

profiles. Define MA := {A, v2T1,2, v4T3,4} and MB := {B, v1T1,2, v3T3,4}. Both MA and MB are
perfect matchings in G. While MA has at least two Cj-edges (v2T1,2 and v4T3,4), MB has at least
two Ci-edges (v1T1,2 and v3T3,4). Thus, MA and MB have di↵erent colour profiles, as desired. ⇤

The next lemma ensures a hypergraph H as in Theorem 1.3 contains a good gadget or a perfect
matching of huge colour-bias.

Lemma 2.6. Let 2  ` < k and ⌘ > 0. There exists an n0 2 N such that the following holds

for all n � n0 with n 2 kN. Let H be a k-uniform hypergraph on n vertices with an r-colouring

c : E(H) ! {C1, . . . , Cr} and

�`(H) � (ck,` + ⌘)

✓
n

k � `

◆
.

5

Fig. 1. On the left, a (12, e, f)-gadget. On the right, a (9, e, f)-gadget.

Definition 2.3. Let e= {e1, . . . , ek} and f = {f1, . . . , fk} be two edges in H. A

(k2 + k, e, f)-gadget G is a subhypergraph of H on k
2 + k vertices so that

• V (G) is the disjoint union of e, f , and T1, . . . , Tk, where Ti 2NH(ei)\NH(fi)
for each i2 [k];

• e, f 2E(G);
• eiTi, fiTi 2E(G) for all i2 [k].

A (k2 + k, e, f)-gadget in which every eiTifi is S will be called an S-(k2 + k, e, f)-
gadget.

A (3k, e, f)-gadget G is a subhypergraph of H on 3k vertices so that

• ei = fi, for all i2 {3, . . . , k};
• V (G) is the disjoint union of e, f1, f2, T1, and T2, where Ti 2NH(ei)\NH(fi)
for each i2 [2];

• e, f 2E(G);
• e1T1, f1T1, e2T2, f2T2 2E(G).

Given t2 {3k, k2+k}, we say that a (t, e, f)-gadget G is good if it contains two perfect

matchings with di↵erent color profiles (with respect to the r-coloring of G induced by

the r-coloring c of H).

Note that e and f are vertex-disjoint in a (k2 + k, e, f)-gadget but intersect in
k� 2 vertices in a (3k, e, f)-gadget; see Figure 1.

2.2. Tools for the proof of Theorem 1.3. The following well-known result
allows one to deduce a lower bound on �`(H) given a lower bound on �`0(H) for any
` `

0.

Proposition 2.4. Let 1 ` `
0
< k, and let H be a k-uniform hypergraph on n

vertices. If �`0(H)� x
�
n�`

0

k�`0

�
for some 0 x 1, then �`(H)� x

�
n�`

k�`

�
.

The next result gives a su�cient condition for finding a good (3k, e, f)-gadget in
a k-uniform hypergraph of large minimum 2-degree.

Lemma 2.5. Let k � 3 and D := 3k. Let H be a k-uniform hypergraph on n

vertices with an r-coloring c : E(H) ! {C1, . . . ,Cr}. Suppose there exists i 6= j 2 [r]
and distinct v1, v2, v3, v4 2 V (H) such that NH(v1) \NH(v2) and NH(v3) \NH(v4)
are both type CiCj(D). If

�2(H)>
1

2

✓
n

k� 2

◆
,

then there exists a good (3k, e, f)-gadget in H for some e, f 2E(H).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2548 J. BALOGH, A. TREGLOWN, AND C. ZÁRATE-GUERÉN

Proof. By the minimum 2-degree condition, there exists a set X ✓ V (H) of size
k � 2 such that A = X [ {v1, v3} and B = X [ {v2, v4} are both in E(H). We show
that we can construct a (3k,A,B)-gadget, and then we prove that it is good.

Given that NH(v1)\NH(v2) is type CiCj(D), there are at least 3knk�2 sets T1,2 2
NH(v1)\NH(v2) such that c(v1T1,2) =Ci and c(v2T1,2) =Cj . As |A[B|= k+2< 3k,
we may choose such a set T1,2 so that it is also vertex-disjoint from A[B. Similarly,
there is a set T3,4 2 NH(v3) \NH(v4) such that c(v3T3,4) = Ci, c(v4T3,4) = Cj and
T3,4 is vertex-disjoint from A, B, and T1,2.

Then, define a gadget G as follows:
• V (G) is the union of A, B, T1,2, and T3,4;
• A, B, v1T1,2, v2T1,2, v3T3,4, and v4T3,4 are in E(G).

By definition, G is a (3k,A,B)-gadget.
To prove that G is good, we need to find two perfect matchings in G with di↵erent

color profiles. Define MA := {A,v2T1,2, v4T3,4} and MB := {B,v1T1,2, v3T3,4}. Both
MA and MB are perfect matchings in G. While MA has at least two Cj-edges (v2T1,2

and v4T3,4), MB has at least two Ci-edges (v1T1,2 and v3T3,4). Thus, MA and MB

have di↵erent color profiles, as desired.

The next lemma ensures that a hypergraph H as in Theorem 1.3 contains a good
gadget or a perfect matching of huge color-bias.

Lemma 2.6. Let 2  ` < k and ⌘ > 0. There exists an n0 2 N such that the

following holds for all n � n0 with n 2 kN: Let H be a k-uniform hypergraph on n

vertices with an r-coloring c :E(H)! {C1, . . . ,Cr} and

�`(H)� (ck,` + ⌘)

✓
n

k� `

◆
.

Suppose that H does not have a perfect matching containing at least n/k �
�
r

2

�
edges

of the same color. Then

• there exists a good (3k, e, f)-gadget in H for some e, f 2E(H); or
• there exists a good (k2 + k, e, f)-gadget in H for some e, f 2E(H).

Proof. Let H and c be as in the lemma, and suppose n is su�ciently large. Let
D := k

2 + k � 3k. Note that, given our minimum `-degree condition, Proposition 2.4
implies that

�1(H)� (ck,` + ⌘)

✓
n� 1

k� 1

◆
>

✓
1

2
+

⌘

2

◆✓
n

k� 1

◆
and(2)

�2(H)� (ck,` + ⌘)

✓
n� 2

k� 2

◆
>

1

2

✓
n

k� 2

◆
.

Here the inequalities follow as ck,` � 1/2 by (1).
As n is su�ciently large, and by definition of ck,`, the minimum `-degree condition

ensures a perfect matching M in H.
Let L :=

�
r

2

�
+1. By the hypothesis of the lemma, M does not contain n/k�

�
r

2

�

edges of the same color; so, there exist distinct edges e1, . . . , eL, f1, . . . , fL 2 M such
that c(ei) 6= c(fi) for each i2 [L].

Given any distinct x, y 2 V (H), (2) implies that |NH(x) \NH(y)| � ⌘
�

n

k�1

�
. In

particular, this means that NH(x) \NH(y) is of type S(D) or of type CiCj(D) for
some distinct i, j 2 [r].

Suppose there exists i 6= j 2 [r] and distinct x, y, z,w 2 V (H) such that NH(x) \
NH(y) and NH(z)\NH(w) are both type CiCj(D). Then by Lemma 2.5, there exists
a good (3k, e, f)-gadget in H for some e, f 2E(H).
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COLOR-BIAS PERFECT MATCHINGS IN HYPERGRAPHS 2549

So, we may assume no such i 6= j 2 [r] and x, y, z,w 2 V (H) exist. In particular,
for each of the

�
r

2

�
=L�1 choices for i 6= j 2 [r], there is at most one pair (es, fs) such

that there exist u 2 es and v 2 fs so that either NH(u) \NH(v) or NH(v) \NH(u)
is type CiCj(D). Thus, the following claim holds.

Claim 2.7. There is a pair (es, fs) such that for each u2 es and v 2 fs, we have

that NH(u)\NH(v) is type S(D).

Let es = {u1, . . . , uk} and fs = {v1, . . . , vk}. For each i2 [k], we choose a set Ti so
that

(i) Ti 2 S(uivi);
(ii) T1, . . . , Tk, es, fs are all vertex-disjoint.

Note that we can guarantee (ii) since |S(uivi)| � Dn
k�2 = (k2 + k)nk�2 for each

i2 [k].
We construct a (k2 + k, es, fs)-gadget G as follows:
• V (G) is the union of es, fs, T1, . . . , Tk;
• es and fs are edges in G;
• uiTi, viTi are edges in G for all i2 [k].

By definition, G is an S-(k2 + k, es, fs)-gadget with c(es) 6= c(fs). This implies that
G is a good (k2 + k, es, fs)-gadget. Indeed, Me := {es, v1T1, . . . , vkTk} and Mf :=
{fs, u1T1, . . . , ukTk} are perfect matchings in G with di↵erent color profiles.

3. Proof of Theorem 1.3. Let H be a su�ciently large n-vertex k-uniform
hypergraph as in the statement of the theorem. Let c : E(H) ! {C1, . . . ,Cr} be an
r-coloring of E(H). If H contains a perfect matching with at least n/k�

�
r

2

�
edges of

the same color, then we are done.
So, suppose no perfect matching in H contains at least n/k �

�
r

2

�
edges of the

same color. By Lemma 2.6, we can find either a good (3k, e, f)-gadget or a good
(k2 + k, e, f)-gadget in H. Call this gadget G1.

Next, consider H1 :=H \V (G1). Clearly �`(H1)� (ck,` + ⌘/2)
�

n

k�`

�
. Suppose H1

contains a perfect matching M1 with at least |H1|/k �
�
r

2

�
edges of the same color.

Thus, by taking any perfect matching in G1 and adding it to M1, we obtain a perfect
matching in H containing at least |H1|/k�

�
r

2

�
� n/k� |G1|/k�

�
r

2

�
� n/k�k�1�

�
r

2

�

edges of the same color, as desired.
Hence, we may assume H1 does not contain such a perfect matching M1. By

Lemma 2.6, we can find either a good (3k, e, f)-gadget or a good (k2 + k, e, f)-gadget
in H1. Call this gadget G2, and set H2 :=H1 \ V (G2).

Repeating this argument, we obtain either a perfect matching in H of significant
color-bias, or a collection of t := ⌘n

4kk(k2+k) vertex-disjoint gadgets G1, . . . ,Gt where,

given any i2 [t], Gi is either a good (3k, e, f)-gadget or a good (k2+k, e, f)-gadget in
H. In particular, note that each gadget we select has size at most k2 + k, and if we
remove t(k2 + k) vertices from H, we still have that �`(H)� (1/2 + ⌘)

�
n

k�`

�
� t(k2 +

k)nk�`�1 � (1/2 + ⌘/2)
�

n

k�`

�
. Thus, we can indeed repeatedly apply Lemma 2.6 to

obtain these gadgets G1, . . . ,Gt.
Set G := {G1, . . . ,Gt}. For each color Ci, consider the set Gi of all the gadgets in

G that contain two perfect matchings with di↵erent color profiles with respect to the
color Ci. Clearly, there exists some j 2 [r] such that Gj contains at least t/r gadgets.

For each gadget Gi in Gj , consider the perfect matching Mi in Gi with the largest
possible number of edges colored Cj ; let M 0

i
be the perfect matching in Gi with the

fewest possible edges colored Cj . So, Mi has at least one more Cj-edge than M
0
i
.
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2550 J. BALOGH, A. TREGLOWN, AND C. ZÁRATE-GUERÉN

Let M
+ denote the union of all these Mi, and let M

� denote the union of all
these M

0
i
. So, M+ contains at least t/r= ⌘n

4rkk(k2+k) more Cj-edges than M
�.

Let V (Gj) denote the set of vertices in H that lie in one of the gadgets in Gj .
Note that �`(H \ V (Gj))� (ck,` + ⌘/2)

�
n

k�`

�
, so there exists a perfect matching M in

H \ V (Gj). Thus, M [M
+ and M [M

� are both perfect matchings in H.
If M [M

� contains at least n

rk
+ ⌘n

8r(r�1)kk(k2+k) edges of the same color, then the
theorem holds. Thus, we may assume this is not the case. This immediately implies
the following claim.

Claim 3.1. For every i 2 [r], the number of Ci-edges in M [ M
�

is at least
n

rk
� ⌘n

8rkk(k2+k) .

In particular, M [M
� contains at least n

rk
� ⌘n

8rkk(k2+k) Cj-edges. Since there

are at least ⌘n

4rkk(k2+k) more Cj-edges in M
+ than in M

�, we obtain that M [M
+

contains at least n

rk
+ ⌘n

8rkk(k2+k) Cj-edges, as desired.

4. Concluding remarks. In this paper we have determined the minimum `-
degree threshold for forcing a color-bias perfect matching in a k-uniform hypergraph
for all 2 `< k. The only remaining open case of the problem is the minimum vertex

degree version.
A result of Hàn, Person, and Schacht [12] yields that m1(3, n) = (5/9+o(1))

�
n�1
2

�
.

The following example shows that the corresponding color-bias problem has a signif-
icantly higher minimum vertex degree threshold.

Example 4.1. Given any n 2 6N, there exists an n-vertex 3-uniform hypergraph
H with

�1(H)� 3

4

✓
n� 1

2

◆

and with a 2-coloring of E(H) so that every perfect matching in H has precisely n/6
edges in each color.

Proof. Define H so that (i) V (H) is the disjoint union of two vertex classes A and
B, both of size n/2; and (ii) E(H) consists of all those 3-uniform edges containing at
least one vertex from each of A and B. Thus,

�1(H) =

✓
n/2

2

◆
+

n

2

⇣
n

2
� 1

⌘
� 3

4

✓
n� 1

2

◆
.

Color each edge containing two vertices from A red and each edge containing two
vertices from B blue. It is easy to see that every perfect matching in H uses the same
number of red and blue edges.

We suspect that this example is extremal for the minimum vertex degree problem
in 3-uniform hypergraphs.

Question 4.2. Given any ⌘ > 0, does there exist a � > 0 so that the following

holds for all su�ciently large n 2 3N? Suppose that H is an n-vertex 3-uniform
hypergraph with

�1(H)�
✓
3

4
+ ⌘

◆✓
n� 1

2

◆
.

Then given any 2-coloring of E(H), there is a perfect matching in H with at least

n/6 + �n edges of the same color.
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Remark. Since this paper has been accepted, Question 4.2 has been answered
in the a�rmative; see [11, 15]. In fact, this new work resolves the minimum vertex
degree problem fully (i.e., for all choices of the uniformity k� 3 and number of colors
r� 2).

By tweaking the proof of Theorem 1.3, one can show that given any k � 3 and
r � 2, there is a constant C such that every su�ciently large r-colored n-vertex
k-uniform hypergraph H with �k�1(H) � n/2 + C contains a perfect matching with
at least (n/rk) + 1 edges of the same color. Moreover, the lower bound on the color-
bias grows linearly as one increases the minimum codegree further. The Ph.D. thesis
of the third author will contain a rigorous proof of this.
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[4] D. Bradač, M. Christoph, and L. Gishboliner, Minimum degree threshold for H-factors
with high discrepancy , Electron. J. Combin., 31 (2024), 333.
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