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Abstract. We address a problem which is a generalization of Turan-type problems recently
introduced by Imolay, Karl, Nagy, and Vali. Let F' be a fixed graph and let G be the union of k
edge-disjoint copies of F', namely G = UleFi, where each Fj is isomorphic to a fixed graph F' and
E(F;) N E(F;) =0 for all 4 # j. We call a subgraph H C G multicolored if H and F; share at most
one edge for all i. Define exp(H,n) to be the maximum value k such that there exists G = UleFi
on n vertices without a multicolored copy of H. We show that exc, (C3,n) <n2/25+ 3n/25 + o(n)
and that all extremal graphs are close to a blow-up of the 5-cycle. This bound is tight up to the
linear error term.
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1. Introduction. For a graph G, let ex(n,G) denote the maximum number of
edges in a graph on n vertices that does not contain G as a subgraph. The classical
Turdn theorem [8] from 1941 states that ex(n,K;+1) = e(Ty), where K; denotes
the complete graph on t vertices and T}, ; denotes the complete ¢-partite graph on n
vertices whose part sizes are as equal as possible. Several multicolored generalizations
of Turdn-type problems have been studied since then. Keevash, Mubayi, Sudakov,
and Verstaéte [5] introduced the concept of the rainbow Turdn numbers. For a non-
bipartite graph H, they asymptotically determined the maximum number of edges in
a graph on n vertices that has a proper edge-coloring with no rainbow H. Another
variant was introduced by Conlon and Tyomkyn [2]. For a graph F', they obtained
bounds on the minimum number of colors in a proper edge-coloring of K, that does
not contain k vertex-disjoint color isomorphic copies of F.

This paper focuses on a related Turan-type problem recently introduced by Imo-
lay, Karl, Nagy, and Vali [4]. Let F be a fixed graph and let G be the union of k
edge-disjoint copies of F. That is, G = W¥_| F;, where each F; is isomorphic to a fixed
graph F' and E(F;) N E(F;) =0 for all i # j. We call a subgraph H C G multicolored
if H and F; share at most one edge for every i. Define exp(H,n) to be the maximum
k such that there exists G = W¥_| F; on n vertices with no multicolored copy of H.
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Determining exp(H,n) in general can be a very hard problem. For example,
exc, (C3,n) is related to the famous (6,3)-problem, introduced by Ruzsa and Sze-
merédi [7] in 1978. A variant of the (6,3)-problem asks for the maximum number
of edges in a graph in which each edge belongs to a unique triangle, i.e., asks to
determine exc, (Cs,n). The exact asymptotics of exc, (Cs,n) are still unknown.

For pairs of graphs (F,H) for which there is no homomorphism from H to F,
Imolay, Karl, Nagy, and Vali [4] showed that the extremal number exp(H,n) is at
least n?/v(F)? — o(n?). The construction is based on packing copies of F into a
blow-up of F' on n vertices, whose parts have sizes as equal as possible. Imolay,
Karl, Nagy, and V4li [4] also proposed the problem of determining the set of pairs
(F,H) for which exp(n, H) = n?/v(F)? 4+ o(n?) and suggested that this should be
the case for FF = C5 and H = C3. Recently, Kovdcs and Nagy [6] showed that
this is indeed true for exc, (Cs,n). Moreover, from their methods it follows that
exc, (C3,n) <n?/25+ 3n/10.

It is natural to conjecture that exc, (Cs,n) is precisely equal to the maximum
number of edge-disjoint copies of C5 in a balanced blow-up of Cs on n vertices.
Therefore, depending on the residue of n modulo 5, we expect a linear order term
to be present in the bounds on exc, (Cs,n). For more details, see the discussion in
section 2.

At the same time that Kovécs and Nagy [6] announced their result, we obtained
a similar upper bound for exc, (Cs,n). By combining our methods with theirs, we
were able to improve the linear order term.

THEOREM 1.1. For every § > 0 there exists ng € N such that for every n > ng, we

have
o < n?  3n 5
exc, (Cs,n) < o + b + on.

Say that a graph G is an extremal multicolored triangle-free graph if the edge set
of G can be partitioned into exc, (C3,n) edge-disjoint copies of Cs5 and G does not
contain a multicolored copy of C5. Our second result captures the structure of all
extremal multicolored triangle-free graphs. For i € [5], we denote by G(A;, A;+1) the
bipartite subgraph of G on vertex set A; U A;11 and edges uv € E(G) where u € A;
and v € Ai+1-

THEOREM 1.2. For every 6 > 0 there exists ng € N such that the following holds
for every n>mng. Let G be an extremal multicolored triangle-free graph on n vertices.
Then there exists a partition V(G) = A1 ---U Ay such that all but 2n/5 + én edges
of G belong to | J; G(A;, Aitr1). Moreover, for every i € [5] we have

n/5—2" <|A;| <n/5+2°.

Our bound on the number of edges that do not belong to |, Eq(Ai, Ait1) is
best possible. One may create a small perturbation of a blow-up of C5 to generate
another extremal graph with 2n/5 edges across different parts; we provide the details
in section 2.

The paper is organized as follows. In section 2, we deduce an approximate version
of Theorem 1.1, but with a worse linear error term. This approximate estimate is
used in section 3, where we show that all extremal examples are close to a blow-up
of Cs, up to a small quadratic error term. We also deduce some other properties of
extremal graphs. In section 4, we prove Theorem 1.2. Finally, in section 5 we prove
Theorem 1.1.
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2. An approximate asymptotic result. In this section, we prove a version
of Theorem 1.1 with a slightly worse linear error term; see Theorem 2.2. From now
on we let G be a graph with vertex set [n] whose edge set is written as a union of
exc;, (C3,n) edge-disjoint copies of C5. We denote this decomposition by G = UleFj,
where each F} is a copy of C5 and k = exc,(Cs,n). Moreover, we identify each F; with
the color j and denote the function associated with this coloring by ¢: E(G) — N.

2.1. A discussion on lower bounds. By Theorem 3.1 in [4], we have that
exc, (C3,n) >n?/25 — o(n?). Here, we need a more precise estimate. We say that a
graph H is a blow-up of Cj5 if there exists a partition of V(H) = A;U ---UJ A5 such
that

E(H)= U {ab:a€ A; and be A;;1},
i€[5]

where [n] :={1,...,n}. Whenever we are dealing with parts Aq,..., A5, indices are
always interpreted modulo 5. For each a = (a1,...,a5) € N°, define b(a) = min; a;a;41.
Observe that if we have a blow-up of Cs with parts of sizes ay,...,as, then b(a) is the
minimum number of edges between two consecutive parts.

It is not hard to show that if G is a subgraph of the blow-up of C5 with parts
of size (ai,...,as5), then k <b(a) and equality can be attained. Moreover, under the
restriction a; + -+ + a5 = n, b(a) is maximized by a balanced blow-up, that is when
the parts have as equal size as possible. Define

t(n) !Zmax{b(a) caeN® a; +"'+a5=n}.

By writing n = 5¢+7, where r € {0,...,4}, one can check that t(n) = ¢* if r € {0,1,2}
and t(n) =q(q+1) if r € {3,4}. In particular, we have

n2

(1) % - 23” §q2+q17~€{3,4} :t(n) SGXC5(C3,’I’L).

We now show that the term 2n/5 in Theorem 1.2 is tight by providing graphs
on n vertices whose edge sets are decomposed into ¢(n) monochromatic copies of Cs
without a multicolored triangle (they do contain 2n/5 (nonmulticolored) triangles).
We do so by perturbing a balanced blow-up of C5. To describe the construction,
say that xixoxsxaxs is a copy F of Cs if x1,...,x5 are the vertices of F', and edges
are x;x;41, for all i =1,...,5. For simplicity, assume that n is a multiple of five, let
g=mn/5, and let Ay,..., A5 be disjoint sets, each of size q. Let (v;)je[q] be a labeling

1,,2,,3,4,5

of the vertices of A;, for each i € [5]. For each i,j € [q], let F;; = v;vivivjvy,;

be a copy of Cs. Clearly, this is a collection of ¢? edge-disjoint 5-cycles forming a
balanced blow-up of C5. Now, for every i € [g], remove the cycle v}viviviv],;, and
replace it by vivivZvtvd,. That is, we remove the edges viv? and viv} and replace
them by viv? and vZv?. Let us call these new edges crossing edges. This switch of
edges will not create a multicolored triangle. Indeed, observe that the crossing edges
form a matching of size 2¢ = 2n/5. The only triangles that are created are those with
vertices in Ay, Ao, and Az or with vertices in As, Az, and A4. Moreover, the triangles
are of the form U2-1+kv]2-+kvf’+k, for some i, j, k, which means that the edges vl-l+kv]2-+k
and vjz+kv§’+k have the same color. Therefore, the constructed graph does not contain
a multicolored triangle.

2.2. Upper bounds. If a graph G is the union of edge-disjoint copies of Cs,
each receiving a distinct color, then it is clear that every vertex v € V(G) has even
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degree, and that in each color, v is incident to exactly zero or two edges. If G
is an extremal multicolored triangle-free graph, then G does not have multicolored
triangles. In general, however, G may have many triangles formed by two color classes,
as exemplified at the end of the previous subsection. Our next lemma states that for
every v € V(G), the number of edges inside the neighborhood of v is at most 3d(v)/2;
hence G does not have many triangles.

LEMMA 2.1. For each v € V(G), there are at most 3d(v)/2 edges inside Ng(v).
Consequently, there are at most e(G) <n?/2 triangles in G.

Proof. Let v € V(G) and uy,...,uq,) be the neighbors of v. Without loss of
generality, suppose that c(vu;) = c(vVu;qq(py2) = @ for all i € [d(v)/2]. Let M =
{{ui, Witay 2} = @ € [d(v)/2]}} be the collection of pairs of vertices which form a
monochromatic cherry with v. Note that these pairs could be edges in G, as an edge
of the form w;u;4(v)/2 does not create a multicolored triangle with v. Let zy be an
edge of G inside Ng(v) which does not belong to M. Then, c(vx) # c(vy) and hence
we must have c¢(xy) = e(vz) or ¢(zy) = c(vy). Therefore, every edge e inside Ng(v)
which is not in M must have an endpoint z such that c(e) = ¢(2v).

Now, fix some color j € [d(v)/2] (i-e., a color incident to v). We claim that
there are at most two edges in color j inside Ng(v) that are not in M. Indeed,
suppose that there are three such edges. These must form a path u;z122uj44(v)/2
inside Ng(v) contained in the color-j copy of Cj for some vertices z1,z2 € Ng(v).
Then ¢(vz1) = ¢(vzg), as otherwise there would be a multicolored triangle in G. But
this means that {2122} € M.

As every edge inside Ng(v) not in M must have a color in [d(v)/2] and as every
such color appears at most two times outside M, we conclude that the number of
edges inside Ng(v) is at most |[M| + 2d(v)/2 =3d(v)/2. 0

Let us briefly argue that Lemma 2.1 is best possible. Consider a 2-coloring of
the edges of K5 in which each color class forms a copy of C5. In this coloring, every
vertex v has 3d(v)/2 = 6 edges inside its neighborhood. This construction can be
extended to larger graphs as follows. Let G be a graph that consists of n copies of
K3, all sharing exactly one vertex. Color each of these copies of K5 with two colors
each, all distinct, in such a way that each monochromatic component is a copy of Cs.
The degree of the common vertex is 4n and the number of edges in its neighborhood
is 6n = 3d(v)/2.

For a graph G and v € V(G), define

(2) Sy :=d(v) —

The function s, is the difference between the degree of the vertex v and the average
degree of G in particular, ), s, =0. Our next theorem, which is the main result in
this section, is a version of Theorem 1.1 with a slightly worse linear error term. The
upper bound on )", s2 shall be used later to bound the number of vertices of small
degree in extremal graphs, which is crucial in the proof of Theorem 1.2.

THEOREM 2.2. Let €N, r€{0,...,4} and set n=5q+r. If n> 26, then

8r 1
(3) €Ty (03,71) < q2 +q (6 + E -3 1r€{3,4} + 0(1)) — g z[:] 812)
ven
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Furthermore,

(4) S st< (6 ¥y o<1>) an.

v€E([n]

Proof. Let G be an extremal multicolored triangle-free graph on n vertices. We
find a large bipartite graph B C G and use the fact that G \ B still needs to contain
an edge from every F;, as Cj is not bipartite. For each v € [n], define B, to be the
bipartite graph induced by the edges between N(v) and [n] \ N(v). For every v € [n]
we have

> d(u)—2e(N(v)> > d(u)

u€EN (v) ueN(v)
by Lemma 2.1. Taking the average over every vertex v, we obtain

(5) %Ze >7Z > d(u G)
v€E[n] vE

[n] u€N (v)

Note that for each u € [n] the degree d(u) appears exactly d(u) times in the double
sum. Thus,

(6)
Iy Y aw=L Y awr=1 % <2€ff) m) -
veEn]

vE[n]uEN (v) v€E([n]

2+1282
n v

vE[n]

where we used that > s, =0. From (5) and (6), it follows that there exists a vertex
€ [n] for which

e(By )z

iy

ve[n]
That is, there exists a bipartite graph B such that

2 1 5
SN

v€E[n]

(@) o(G) — e(B) < e(G) — 29

The function f:R = R given by f(z) = = — 2% o+ 6—”3 is decreasmg in the
interval [ + 22 (2)]. As n = 5¢+r, recall from (1 ) that t( ) = ¢ + qlegza-
As e(G) > 5t(n) > % + 3% when n > 26, the right-hand side of (7) is at most
f(5t(n)) — %Zve n] 5 2 for n suﬁimently large. Now, note that

®) 5t(n) _ 5¢° +5¢lreqzy 1+ el
n o 5q+r N 1+ & 57

Asl—o <(1+4; ) <1 - 15, for every ¢ sufficiently large, it follows from (8) that
r r\ Lreqsq) 5t(n)

9 1—— 1—— : < < .

(9) q( 5q+< 5q> ; < — = <q+olq)
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By plugging (9) into f(5t(n)), we obtain

o 2.1,
f(5t(n)) <5¢° +5q1,eq3,4) — 447 <1 - 5—; + 6{34}) +6¢ + o(q)
9 8r
(10) <q¢ +gq 6+g =3 Legzay | tol(q).
Therefore, it follows from (7) and (10) that
(11) (@) —e(B) <@ +q 6+ 3.1 +0(Q)—1252
- 5 re{3,4} n v*

vE[n]

As B is bipartite but none of the F; are bipartite, it follows that G \ B contains an
edge of every Fj;, and hence

(12) exc; (C3,n) < e(G) — e(B).

The upper bound on ex¢,(Cs,n) follows by combining (11) and (12). The upper
bound on ), s2 follows from the fact that exc,(Cs,n) > t(n) = ¢* + ql,eqs.43,
by (1). |

3. The structure of extremal graphs. In this section, we show that G must
be close to a blow-up of C5. Moreover, the vertex partition given by the blow-up
structure is approximately balanced. At the end of the section, we refine this structure
when restricting our graph to the subgraph spanned by vertices with degree close to
the average.

3.1. The approximate structure. To deduce the approximate structure of
the extremal graphs, we shall need the triangle removal lemma due to Ruzsa and
Szemerédi [7].

LEMMA 3.1 (triangle removal lemma). For every 6 > 0, there exist ns € N and
f(8) > 0 such that the following holds for every n > ns. If H has at most f(6)n>
triangles, then we can make H triangle-free by deleting at most 6n? edges.

Another tool that we need is the following stability theorem of Erdés, Gyori, and
Simonovits [3].

THEOREM 3.2 (Erdds—Gydri-Simonovits). For every 3> 0 there exist v =~(8) >
0 and ng such that if H is an n-vertex triangle-free graph with n > ng and e(H) >
n?/5 —n?, then H can be turned into a subgraph of a blow-up of Cs by deleting at
most Bn? edges.

Now we deduce our first structural property on extremal multicolored triangle-free
graphs, which states that they are close to being a blow-up of Cs.

LEMMA 3.3. For every € > 0 there exists ne € N such that for every n >n. and an
extremal multicolored n-vertex triangle-free graph H, H can be turned into a subgraph
of a blow-up of Cs by deleting at most en? edges.

Proof. In the proof we assume that n is sufficiently large in order that all previous
lemmas are applicable. For a given € > 0 set §:=¢/2 and let v =~(8) > 0 be given
by Theorem 3.2. Set ¢ := min{3,7}. By Lemma 2.1, there are at most n?/2 =
o(n?) triangles in H; hence we can use the triangle removal lemma (Lemma 3.1). As
exc, (C3,n) > t(n) > n?/25 — 2n/5 by (1), we have e(H) > n?/5 — 2n. Lemma 3.1
applied with §/2 implies that there exists a triangle-free subgraph H' C H such that
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e(HY>n?/5—2n—6én*/2>n?/5—yn?

for n large enough and by the choice of §. Thus, H’ can be turned into a subgraph
of a blow-up of Cs by deleting at most fn? edges, by Theorem 3.2. Together, these
imply that there exists H"” C G which is a subgraph of a blow-up of C5 and such that
e(H")>e(H) — (B+6)n? > e(H) —en?. 0

From now on, we denote by Ai,...,As the disjoint sets corresponding to the
partition of V(G) given by a subgraph of a blow-up of C5 as in Lemma 3.3. We
denote by C5(A41,...,As) the graph which is a blow-up of Cy, with parts Ay, ..., As.
Moreover, we assume that the intersection of G with the blow-up C5(A41,..., As)
gives a subgraph of a blow-up of C5 in G with the maximum number of edges. Recall
that for i € [5], we denote by G(A;, A;4+1) the bipartite subgraph of G on vertex set
A;UA; 41 and edges uv € E(G) where u € A; and v € A; 4.

Our next lemma states that Ay, ..., A5 is close to being an equipartition and that
each G(A;, A;y1) is close to being a complete bipartite graph.

LEMMA 3.4. For every € > 0 there exists ng € N such that if n > ng, then the
following holds. For every i € [5] we have
eq(Ai, A1) >n?/25 — en? and  n/b—en<|A;| <n/5+en.

Proof. For a given € >0 let § =¢/2!! and assume without loss of generality that
n is large enough such that H C C5(A44,...,As) is a subgraph of G with at least
e(G) —6n? edges (the existence of such H follows from Lemma 3.3). This implies that
there are at least e(G)/5 — dn? > n?/25 — 56n? monochromatic copies of C5 in H, and
hence

(13) |Al||Al+1| > 6g(Ai, Ai+1) > n2/25 — 5(5’[7,2

for every i € [5].
Now, suppose that |A;| =n/5— an for some a € (2°5,571). From (13), we obtain

n?/25 — 56n> - n?/25 — 56n>
n/5—an ~ n/5
2
=%+(a—255—1255a)nz§+%.

|Aal, 45| =

(14 5a)

Thus, we have
|Az| 4 [Ag] =n — [A1] — |Az| — |A5| <2n/5 — an/3.
This implies
|A3||A4| < (n/5 — an/6)? =n?/25 — an? /15 + a*n? /36 < n?/25 — an? /30,

which contradicts (13), as a/30 > 66, proving | A;| > n/5—2%n for every i € [5]. From
this we conclude that |A;| <n —4(n/5 — 2%n) < n/5+ 21 én for every i € [5]. The
lemma follows by choice of 6. ]

Define N;(v) to be the set of neighbors of v in G which are contained in A; and let
d;(v) = |N;(v)|. We refer to the edges not in |J; Eq(A;, Ai11) as unstructured edges.
Observe that, as G N C5(Ay,...,As) gives a subgraph of a blow-up of Cs in G with
the maximum number of edges, the number of unstructured edges is minimum over
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all subgraphs of a blow-up of C5 in G. Our ultimate goal is to show that the number
of unstructured edges is at most linear.

Our next lemma gives an upper bound on the degree and the number of unstruc-
tured edges incident to each vertex of G.

LEMMA 3.5. For every § > 0 there exists ng € N such that if n > ng, then the
following holds. For every i€ [5], ve A;, and j ¢ {i —1,i+ 1}, we have

(14) d(v) <2n/5+ on and dj(v) <on.

Moreover, forte {i—1,i+ 1} we have

(15) dy(v) > d(v) — g —on.

Proof. Let v < §/4 be a small enough constant and set e = v/18. First, apply
Lemma 3.4 with parameter £2/2 to obtain

(16) eq(Ai, A1) >n?/25 —2n?/2 and |A;| <n/54e?n/2 for all i € [5].
Let us now argue that for every i € [5] and v € V(G), we have
(17) min {d;(v),d;41(v)} <en

for n sufficiently large. Suppose for contradiction that (17) does not hold. Since
e(G[N(v)]) < 3n/2 by Lemma 2.1, there are at most 3n/2 edges uw with u € N;(v)
and w € N;y1(v). This implies that the number of edges between A; and A;y; is at
most

|Al||A1+1| — di(v)diﬂ(v) + 3n/2 S |Az||Az+1‘ — 527’L2 + 3”/2

Thus, using (16) twice, we obtain

n?  e2n? n o e2n\’ 3n

— - <eg(Ai, A1) < | = —e2n? 4+ =

o 5 <eq(Ai, +1)_(5+ > en’+ 5
n2

n2 €2n2 64 9 2 2,2

S SCH i IV
25 5 4 2 725 2

for n sufficiently large, a contradiction. Thus, we conclude that (17) holds.

Now, fix a vertex v € V(G). If dg(v) < yn, then the condition d;(v) < dn is
trivially satisfied. Thus, let us assume that dg(v) > yn. From (17) it follows that the
set

S:={je[5]:d;(v) <en}

has size at least three; in particular there exists i € [5] such that {i,i+ 2, + 3} C S.
Therefore, v can have a large neighborhood only inside the union 4;_; U A;4+1. Note
that this implies in particular that

2
d(v) <|A;—1] 4+ |Ait1] +3en < gn +e%n +3en < 2n/5 + on,
by (16), choice of €, and for n large enough. That is, the first part of (14) is proved.

We claim that if d;_1(v) > 3en and d;y1(v) > 3en, then v € A;. Indeed, as
d;(v) + diy2(v) + dixrs(v) < 3en, if we had v ¢ A;, then we could move v to A; and
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obtain a subgraph of a blow-up of C5 with more edges, a contradiction. In particular,
this implies the second part of (14) in this case.

Now assume that either d;_;(v) <3en or d;41(v) <3en. As {i,i+2,i+3}C S, in
both cases we have that there exists an index k for which di(v) > d(v) — 6en > 12¢en,
using our assumption that dg(v) > yn = 18en, and d;(v) < 3en for every j # k. As the
set A contains most of the neighbors of v, we must have either v € Ay_1 or v € Agyq;
otherwise we could move v to one of these sets and obtain a subgraph of a blow-up of
C5 with more edges. In both cases, we have that if v € A;, then d;(v) < dn for every
jé{i—1,i+1}, ie., (14) holds.

Finally, assuming v € A;, for some i € [5], we have for t € {i — 1,i+ 1} that

di(v) >d(v) —max|A;| — 3en > d(v) —n/5 — on,
J

where we used the fact that |S| > 3, (16), and the choice of €. This completes our
proof. 0

3.2. Cleaning the graph. In this section, we obtain a refinement of Lemma 3.5
for “good” vertices in G. Define the set of good vertices to be

Vy:={v€n]:dg(v) >Tn/20}.

Observe that in a balanced blow-up of C5, each vertex has degree approximately 2n/5,
i.e., every vertex is good. Recall that an unstructured edge is an edge of G which is
not contained in | J; Eq(A;, Ai11). Let L be the set of unstructured edges with both
endpoints are in V. Our next lemma states that L is a matching. Moreover, V, N A;
is an independent set for every i € [5].

LEMMA 3.6. For every € > 0 there exists n. € N such that for every n > n. we
have G[Vy N A;] =0 for every i € [5] and L is a matching.

Proof. We may assume that n is large enough so that the assertions of Lemmas 3.4
and 3.5 apply. In particular, we assume for all i € [5], j &€ {i — 1,i + 1}, and v € A;
that

(18) |A;| <n/5+en, d;j(v)<en, and d(v)<2n/5+en.

Without loss of generality we may assume that ¢ =1. Let u,v € A; NV, and sup-
pose for contradiction that uv € E(G). For j € {2,5}, let A% be the common neighbor-
hood of u and v in A; which avoids the vertices of the C5 of color ¢(uv). Observe that
for each a € A5 U Af we have c(au) = c¢(av); otherwise auv is a multicolored triangle.
Moreover, if a,a’ € A5 U Af are distinct vertices, then c(au) = c(av) # c¢(a’u) = ¢(a'v);
otherwise aua’v is a monochromatic copy of Cy, which cannot exist in G. From this,
it follows that there are |A%|+|Az| different colors incident to both u and v, and hence

(19) min{d(u),d(v)} > 2(|A3] + | 45]),

where the factor of 2 accounts for the fact that every color contributes twice to a

degree of a vertex. By the inclusion—exclusion principle (applied separately to each
of A5 and Af), we have

(20) [AS| + [A5] = da(u) + ds(u) + d2(v) + ds(v) — [Az| — [As] — 3,

where the term —3 accounts for neighbors in the copy of Cj of color c(uv). Now,
da(v) +ds(v) > d(v) — 3en, da(u) + ds(u) > d(u) — 3en, and |As| + |As| < 2n/5 + 2en,
all by (18). Absorbing the constant term and using that u,v € V,, we thus obtain
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|A5| + |AZ| 22-%—2?”—96712%—9871.
This, together with (19), implies that d(u) > 3n/5 — 18en, which contradicts d(u) <
2n/5+en in (18).

To prove that L is a matching, we split the proof into two cases. For the first
case, suppose for contradiction that there exist good vertices v € A; and a,b € As
such that va,vb € E(G). The common neighborhood of a,b, and v inside Az has size
at least da(v) + da(a) + da(b) — 2|Az|. Let B be the common neighborhood of a,b,
and v inside Ay excluding the vertices of the copies of C5 with colors ¢(av) and ¢(bv),
so that

| B3| > d2(v) + d2(a) + d2(b) — 2| Az| — 6.

Now, v has at least 7n/20 — 3en — | A5| neighbors in As, by (18) and since v is a good
vertex. Similarly, each of a and b have at least 7n/20 — 3en — | A4| neighbors in As.
Since |A;| <n/5+en for all i, by (18), we obtain that

In particular, B3 is nonempty. Let w € B5. The edges uv, ua, and ub have colors
different from c(av) and c¢(bv), by definition of Bj. This implies that c(uv) = c(ua) =
c(ub), as otherwise there was a multicolored triangle in G. But this is a contradiction
since each color class is a copy of a Cs.

For the second case, suppose for contradiction that there exist good vertices v €
A1, a € Ay, and b € Az such that va,vb € E(G). Let Df be the common neighborhood
of v and @ in As, which avoids the vertices of the Cs of color c(av); and let D3 be
the common neighborhood of v and b in Ay, which avoids the vertices of the C5 with
color ¢(bv). Similarly to the first case, we first show that D} and Dj are nonempty.
Again, we have

|D5| = ds(v) +ds(a) — |As| = 6

(21) > (d(v) — | Ag| — 36n) + (d(a) — | As| - 35n) —|As| —6
™ 3n
>9. "0 9ep—
> 20 3 9en — 6
n
>
(22) > 15— L0en,

where we used (18) in the second inequality, and the upper bound on |4;| from
(18), and the fact that a and v are good vertices in the third inequality. Similarly,
| D3| >n/10 — 10en.

Now let w € Df and v’ € D} be arbitrary vertices. Then we must have c(vu) =
c(au) and c(vu’) = c(bu') since G does not have a multicolored triangle. Moreover,

H{e(vu) :uwe D} N {c(vu): v’ € D3} <1,

as otherwise G contained two monochromatic paths of length four, both with end-
points @ and b. But this cannot happen since each color class is a copy of a C5. It
follows that v is incident to at least |DZ|+ | D3| — 1 distinct colors, and hence

(23) d(v) > 2(|Di| + |D3|) —2>2n/5 — 21en,
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using (22) and the corresponding bound on |D3|. Using this new bound on the degree
of v, it follows from (18) that

ds(v) > d(v) — |Az| — 3en > d(v) — n/5 — den > n/5 — 25en.

Feeding this new lower bound on ds(v) into (21), leaving all other bounds in (21)—(22)
unchanged, we obtain that

7 3
D] > (g —25en) + (23 YN —36n> — 45| 6> 35 — 30en.

Analogously, one obtains that | D3| > 3n/20 — 30en. With (23) this implies now that
d(v) is at least 3n/5 — 121en, which contradicts the upper bound on d(v) in (18). 0O

4. Proof of Theorem 1.2. Throughout this section, let € € (0,272%) be a fixed
small constant and n be sufficiently large (and in particular, large enough such that
the conclusions of Lemmas 3.4 and 3.5 hold for €). Recall that we set A1,..., A5 to
be the disjoint sets given by the subgraph of a blow-up of C5 in Lemma 3.3 such that
the intersection of G with the blow-up C5(A41,...,A5) has the maximum number of
edges among all subgraphs of G that are also subgraphs of a blow-up of Cj.

We start by bounding the size of the set of vertices whose degree is far from 2n/5.
For v € (¢1/4,2712), define

Vy={veV(G):|d(v) —2n/5| <yn}.
Observe that V, C V,. In particular, Lemma 3.6 holds with V replaced by V.
Our first claim bounds the size of V.¢:=V(G)\ V,.
CLamv 4.1. [V <8/~

Proof. Let n=>5¢q+r, where ¢ ¢ N and r € {0,...,4}. It follows from (1) and (3)
that

2 2
%—2n§e(G)§%+12n.

Thus, the average degree of G is 2n/5+ O(1). Recall that for each vertex v € V(G),
we defined s, = d(v) — 2e(G)/n. If v €V, then

[su] = [d(v) = 2¢(G)/n| = yn/2.
Therefore, by (4) (and observing (6 + 4r/5)q < 2n) we have

’Y27’l2

< 2n?
L =

VY-

which implies
8
Vi< —- 0
=2
We say that a 5-cycle C in G is great if all of its edges have the same color and
all of its vertices are in V,. For each pair of vertices a and b, let g, be the number of
great 5-cycles containing a and b.

LEMMA 4.2. Leti€ [5] and ab€ E(G), witha€ A;NV, andbe A;1oNV,. Then,
we have gap >n/5 —4yn.
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Proof. Without loss of generality, suppose that ¢ =1 and let a € A; NV, and
be A3NV,. By Lemma 3.5, we have

(24) min{dz(a),dz2(b)} > 2?” —yn— g —den= g —yn — 4en.
Thus, the vertices a and b are incident to most vertices in As.

Recall that ¢: E(G) — N is the coloring associated to the partition of E(G) into
copies of Cs. Define R, = {c(av) :av € E(G),v€ A;UA3UA,} and Ry = {c(bv) : bu €
E(G),ve Ay UA3UAs}. These sets correspond to the set of colors incident to a and
b, respectively, which appear at an edge which is not contained in GNC5(Aq,...,45).
By Lemma 3.5, both R, and R}, have size at most 3en. In particular, |R, U Ry| < 6en.
Let A% be the common neighborhood of a and b inside Ay excluding the vertices
incident to some color in R, U Ry,. Then

(25)  |A3| > do(a) + da(b) — | As| — 5|Rq U Ry| > g — 2y — 9en — 30en > g — 3yn,

where we use (24), |Az2| <n/5+¢en (cf. Lemma 3.4) and |R, U Rp| < 6en in the second
inequality, and v > 39¢ by choice of v in the last inequality.

As c(ab) € R, U Ry, for every v € A5 we have c(av) # c(ab) and c(bv) # c(ab).
This implies that c(av) = c(bv) for every v € A5. In particular, the number of
monochromatic 5-cycles containing a and b is at least n/5 — 3yn. At most 8/72 of
these cycles contain a vertex in V7, by Claim 4.1. Therefore, it follows that there are
at least n/5 — 3yn — 8/~% great cycles containing a and b. d

Recall that a vertex v is good if d(v) > 7n/20. Recall that an edge e € E(G) is
unstructured if e ¢ |J; Eq(A;, Aiy1). Let M be the set of unstructured edges. By
Lemma 3.6, we know that M is a matching when restricted to good vertices, and
in particular when restricted to V,. With this in mind, one would hope to prove
that |[M| <n/2+ o(n). It turns out that we can prove a much better bound, which
is even close to optimal (as discussed in section 2). Recall that € € (0,2720%) and
ve (81/4,2_12).

LEMMA 4.3. Let g€ N and r € {0,...,4} be such that n=>5q +r. Then, we have
|M| < 2q+2%q.

Proof. First note that the number of unstructured edges with at least one of its
endpoints in VJ is at most

(26) 8/’72 -3en < 244°n < ~q,

by Lemma 3.5 and Claim 4.1. It remains to bound the number of unstructured edges
with both endpoints in V.

Let M., € M be the set of such unstructured edges ab with a,b € V,, and let P be
the set of ordered pairs (e,C) such that C' is a great 5-cycle and e is an unstructured
edge with both endpoints in V(C). Observe that if (e,C') € P, then e € M,. In
particular, M, Jab < |P|, where we recall that g, denotes the number of great
5-cycles containing a and b. For ab& M, we must have a € A; and b€ A; 15 for some
i € [5] (or vice versa), by definition of an unstructured edge and since G[A; N V] is
empty, by Lemma 3.6. Using Lemma 4.2, we thus obtain

(27) |P| > [M,]|- (g—élfyn).
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Now, let s¢ be the number of unstructured edges with both endpoints in V(C),
for each great 5-cycle C'. The set of unstructured edges spanned by V, is a matching,
by Lemma 3.6, so we must have s¢ <2 for all C. It follows that

Combining this bound with (27), we thus obtain

(28)
n 2e(G 8r
|M,,| - <g — 4'yn) < é ) <2exc, (C3,n) <2¢° +2¢ (6 + T 31lreq3,4y + o(l))

by Theorem 2.2, where we recall that ¢ is defined by n = 5¢+r and r € {0,...,4}.
Now,
1 1 1

29 < <Z(1424v+2-(24)%242) <
(29) n/5_4qu_4m,q(+ v+2-(24)*9%) <

(1+257),

SE R

where we use n < 6q, (1 —x)~! <1+x+22? for every x € (0,1/2), and that ~ is small
enough. Combining this last estimate with (28), we obtain

|M.,| < 2q + 50vq + O(1).

This, together with the bound in (26), proves our lemma. d

From the constructions given in section 2.1, note that we can have 2n/5 unstruc-
tured edges, and hence our bound of 2n/5+0(n) on the number of unstructured edges
given by Lemma 4.3 is tight. Our next lemma improves the bounds on the size of
each A; from an additive linear error term as in Lemma 3.4 to an additive error of
constant size.

LEMMA 4.4. Let ¢ € N and r € {0,...,4} be such that n = 5q + r. For every
Jj €[5], we have

q—15<]A;|<q+64.

Proof. The proof is similar to the proof of Lemma 3.4. Without loss of generality,
suppose that Aj is the part of smallest size. Suppose for contradiction that |A;| = ¢—i,
for some i > 15.

Let Cq,...,Ck be the colored 5-cycles given by the edge-partition of G. Note
that k > ¢? since we assume that G is extremal, by (1). At most 8/92 of these cycles
contain a vertex in V¢, by Claim 4.1, and at most 2q + 26~¢ contain an unstructured
edge by Lemma 4.3. Observe that a C; with all vertices in V,, that does not contain
an unstructured edge is a great cycle vivavsvgvs such that v; € A; for each i € [5].
Therefore, for each i € [5],

(30) (A, Ais1) > ¢* —2q — 28vq — 8/4%.

Similarly to the proof of Lemma 3.4, this implies that

2_92g—26vg—8/42 ¢ —3
q = 2"7g /v S ksl S

1 Asl, |As| >
(31) [ Aal, | 45] 2 . =
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since 7 is small and n is large. Thus, we have
| As| + [As] =n — |A1] = |Ag| = [A5] <2¢ —i+r+6 <2¢ — i+ 10.
Using this for the upper bound and (30) for the lower bound, we obtain
(¢—1/2+5)* > |A3]|As| > ¢* — 29 — 2%9¢ — 8/,
which is a contradiction, as i > 15. As every set Ai,..., A5 has size at least ¢ — 15,

we conclude that |A;| < ¢+ 64 for any j € [5]. This proves the lemma. O
Finally, note that Lemmas 4.4 and 4.3 imply Theorem 1.2.

5. Proof of Theorem 1.1. Let £ € (0,272%0), v € (¢'/4,2712) and set § = 2%.
We start by bounding the number of triangles in G.

LEMMA 5.1. The number of triangles in G is at most 2n? /25 + 26n2.

Proof. Let A, be the number of triangles where all three vertices belong to V.
By Lemma 3.6, if a,b,c € V, and they form a triangle, then we must have a € A,
be Ait1, and ¢ € A; 45 for some i € [5]. Let M be the set of unstructured edges
between pairs of good vertices. By Lemma 4.3 we have |M| < 2n/5 + dn and by
Lemma 3.4 we have max; |A;| <n/5+dn. As every triangle contains an unstructured
edge,

A, <|M|-max|A,| §2n2/25+5n2.

Let A be the number of triangles containing at least one vertex outside V.. By
Lemma 2.1 and Claim 4.1, we have

3d(v) _3n 12n 9
A< ) s TIIs S <ant q

IN

veVy

Below, we denote by C7,Cs,...,Cy the set of monochromatic 5-cycles in G. The
next lemma is due to Kovécs and Nagy [6]. For completeness, we provide their proof
here.

LEMMA 5.2 (Kovdcs—Nagy). Let i € [k] and denote by A} and A? the number of
triangles with exactly one and two edges colored i, respectively. Then,

D dv) <2n+2A7 + A
veC;

Proof. Note that e(G[V(C;)]) =5+ A2. Observe that each vertex in [n]\ C; sends
at most two colors to C;; otherwise a multicolored triangle is created. For the same
reason, each vertex in [n]\ C; sends at most three edges to C;, and if exactly three are
sent, then two of them with the same color must go to adjacent vertices in C;. Thus,
we have

D d(v) <2e(GIV(Ci)]) + Al +2(n — 5) < 2n+ 2A7 + A].

veC; D

Proof of Theorem 1.1. Following Kovdcs and Nagy [6], we estimate the double
sum
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k
S = Z Z d(v).

i=1veC;

Every vertex v is contained in d(v)/2 monochromatic cycles; hence d(v) is counted
d(v)/2 times in the double sum above. Therefore,

dw)? _n (2> 22
32 S = 2 S22 =22
(32) 2 T2 n n
vE[n]

On the other hand, by Lemma 5.2, we have

k 6n?
33 S < 2nk 2A% + A}) < 2nk + —— + 6602
(33) _n-i-;( Z+Z)_n+25+ n-,

using that each triangle is counted three times and Lemma 5.1. As e(G) = 5k, from
(32) and (33), it follows that

k2 2
SOK” — oen + 3 1 Gon2;
n 25

hence
k< an + ﬁ + LnB
— 25 625k k
As k>n?/25— 2n, it follows that k <n?/25+ (3/25+ 508)n. As € (and hence §) can
be chosen to be arbitrarily small, the theorem follows. 0
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