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Abstract. We address a problem which is a generalization of Turán-type problems recently
introduced by Imolay, Karl, Nagy, and Váli. Let F be a fixed graph and let G be the union of k
edge-disjoint copies of F , namely G = [· ki=1Fi, where each Fi is isomorphic to a fixed graph F and
E(Fi) \E(Fj) = ; for all i 6= j. We call a subgraph H ✓ G multicolored if H and Fi share at most
one edge for all i. Define exF (H,n) to be the maximum value k such that there exists G= [· ki=1Fi

on n vertices without a multicolored copy of H. We show that exC5
(C3, n) n

2
/25 + 3n/25 + o(n)

and that all extremal graphs are close to a blow-up of the 5-cycle. This bound is tight up to the
linear error term.
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1. Introduction. For a graph G, let ex(n,G) denote the maximum number of
edges in a graph on n vertices that does not contain G as a subgraph. The classical
Turán theorem [8] from 1941 states that ex(n,Kt+1) = e(Tn,t), where Kt denotes
the complete graph on t vertices and Tn,t denotes the complete t-partite graph on n
vertices whose part sizes are as equal as possible. Several multicolored generalizations
of Turán-type problems have been studied since then. Keevash, Mubayi, Sudakov,
and Verstaëte [5] introduced the concept of the rainbow Turán numbers. For a non-
bipartite graph H, they asymptotically determined the maximum number of edges in
a graph on n vertices that has a proper edge-coloring with no rainbow H. Another
variant was introduced by Conlon and Tyomkyn [2]. For a graph F , they obtained
bounds on the minimum number of colors in a proper edge-coloring of Kn that does
not contain k vertex-disjoint color isomorphic copies of F .

This paper focuses on a related Turán-type problem recently introduced by Imo-
lay, Karl, Nagy, and Váli [4]. Let F be a fixed graph and let G be the union of k
edge-disjoint copies of F . That is, G=[· ki=1Fi, where each Fi is isomorphic to a fixed
graph F and E(Fi)\E(Fj) = ; for all i 6= j. We call a subgraph H ✓G multicolored
if H and Fi share at most one edge for every i. Define exF (H,n) to be the maximum
k such that there exists G=[· ki=1Fi on n vertices with no multicolored copy of H.
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Determining exF (H,n) in general can be a very hard problem. For example,
exC3

(C3, n) is related to the famous (6,3)-problem, introduced by Ruzsa and Sze-
merédi [7] in 1978. A variant of the (6,3)-problem asks for the maximum number
of edges in a graph in which each edge belongs to a unique triangle, i.e., asks to
determine exC3

(C3, n). The exact asymptotics of exC3
(C3, n) are still unknown.

For pairs of graphs (F,H) for which there is no homomorphism from H to F ,
Imolay, Karl, Nagy, and Váli [4] showed that the extremal number exF (H,n) is at
least n2/v(F )2 � o(n2). The construction is based on packing copies of F into a
blow-up of F on n vertices, whose parts have sizes as equal as possible. Imolay,
Karl, Nagy, and Váli [4] also proposed the problem of determining the set of pairs
(F,H) for which exF (n,H) = n2/v(F )2 + o(n2) and suggested that this should be
the case for F = C5 and H = C3. Recently, Kovács and Nagy [6] showed that
this is indeed true for exC5

(C3, n). Moreover, from their methods it follows that
exC5

(C3, n) n2/25 + 3n/10.
It is natural to conjecture that exC5

(C3, n) is precisely equal to the maximum
number of edge-disjoint copies of C5 in a balanced blow-up of C5 on n vertices.
Therefore, depending on the residue of n modulo 5, we expect a linear order term
to be present in the bounds on exC5

(C3, n). For more details, see the discussion in
section 2.

At the same time that Kovács and Nagy [6] announced their result, we obtained
a similar upper bound for exC5

(C3, n). By combining our methods with theirs, we
were able to improve the linear order term.

Theorem 1.1. For every �> 0 there exists n� 2N such that for every n� n�, we
have

exC5
(C3, n)

n2

25
+

3n

25
+ �n.

Say that a graph G is an extremal multicolored triangle-free graph if the edge set
of G can be partitioned into exC5

(C3, n) edge-disjoint copies of C5 and G does not
contain a multicolored copy of C3. Our second result captures the structure of all
extremal multicolored triangle-free graphs. For i 2 [5], we denote by G(Ai,Ai+1) the
bipartite subgraph of G on vertex set Ai [Ai+1 and edges uv 2 E(G) where u 2 Ai

and v 2Ai+1.

Theorem 1.2. For every � > 0 there exists n� 2 N such that the following holds
for every n� n�. Let G be an extremal multicolored triangle-free graph on n vertices.
Then there exists a partition V (G) = A1[· · · ·[· A5 such that all but 2n/5 + �n edges
of G belong to

S
iG(Ai,Ai+1). Moreover, for every i2 [5] we have

n/5� 24  |Ai| n/5 + 26.

Our bound on the number of edges that do not belong to
S

iEG(Ai,Ai+1) is
best possible. One may create a small perturbation of a blow-up of C5 to generate
another extremal graph with 2n/5 edges across di↵erent parts; we provide the details
in section 2.

The paper is organized as follows. In section 2, we deduce an approximate version
of Theorem 1.1, but with a worse linear error term. This approximate estimate is
used in section 3, where we show that all extremal examples are close to a blow-up
of C5, up to a small quadratic error term. We also deduce some other properties of
extremal graphs. In section 4, we prove Theorem 1.2. Finally, in section 5 we prove
Theorem 1.1.
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2. An approximate asymptotic result. In this section, we prove a version
of Theorem 1.1 with a slightly worse linear error term; see Theorem 2.2. From now
on we let G be a graph with vertex set [n] whose edge set is written as a union of
exC5

(C3, n) edge-disjoint copies of C5. We denote this decomposition by G=[· kj=1Fj ,
where each Fj is a copy of C5 and k= exC5

(C3, n). Moreover, we identify each Fj with
the color j and denote the function associated with this coloring by c :E(G)!N.

2.1. A discussion on lower bounds. By Theorem 3.1 in [4], we have that
exC5

(C3, n) � n2/25� o(n2). Here, we need a more precise estimate. We say that a
graph H is a blow-up of C5 if there exists a partition of V (H) = A1[· · · ·[· A5 such
that

E(H) =
[

i2[5]

{ab : a2Ai and b2Ai+1},

where [n] := {1, . . . , n}. Whenever we are dealing with parts A1, . . . ,A5, indices are
always interpreted modulo 5. For each a= (a1, . . . , a5)2N5, define b(a) =mini aiai+1.
Observe that if we have a blow-up of C5 with parts of sizes a1, . . . , a5, then b(a) is the
minimum number of edges between two consecutive parts.

It is not hard to show that if G is a subgraph of the blow-up of C5 with parts
of size (a1, . . . , a5), then k  b(a) and equality can be attained. Moreover, under the
restriction a1 + · · ·+ a5 = n, b(a) is maximized by a balanced blow-up, that is when
the parts have as equal size as possible. Define

t(n) :=max
n
b(a) : a2N5, a1 + · · ·+ a5 = n

o
.

By writing n= 5q+r, where r 2 {0, . . . ,4}, one can check that t(n) = q2 if r 2 {0,1,2}
and t(n) = q(q+ 1) if r 2 {3,4}. In particular, we have

n2

25
� 2n

5
 q2 + q1r2{3,4} = t(n) exC5

(C3, n).(1)

We now show that the term 2n/5 in Theorem 1.2 is tight by providing graphs
on n vertices whose edge sets are decomposed into t(n) monochromatic copies of C5

without a multicolored triangle (they do contain 2n/5 (nonmulticolored) triangles).
We do so by perturbing a balanced blow-up of C5. To describe the construction,
say that x1x2x3x4x5 is a copy F of C5 if x1, . . . , x5 are the vertices of F , and edges
are xixi+1, for all i = 1, . . . ,5. For simplicity, assume that n is a multiple of five, let
q = n/5, and let A1, . . . ,A5 be disjoint sets, each of size q. Let (vij)j2[q] be a labeling
of the vertices of Ai, for each i 2 [5]. For each i, j 2 [q], let Fi,j = v1i v

2
j v

3
i v

4
j v

5
i+j

be a copy of C5. Clearly, this is a collection of q2 edge-disjoint 5-cycles forming a
balanced blow-up of C5. Now, for every i 2 [q], remove the cycle v1i v

2
i v

3
i v

4
i v

5
2i, and

replace it by v1i v
3
i v

2
i v

4
i v

5
2i. That is, we remove the edges v1i v

2
i and v3i v

4
i and replace

them by v1i v
3
i and v2i v

4
i . Let us call these new edges crossing edges. This switch of

edges will not create a multicolored triangle. Indeed, observe that the crossing edges
form a matching of size 2q= 2n/5. The only triangles that are created are those with
vertices in A1, A2, and A3 or with vertices in A2, A3, and A4. Moreover, the triangles
are of the form v1+k

i v2+k
j v3+k

i , for some i, j, k, which means that the edges v1+k
i v2+k

j

and v2+k
j v3+k

i have the same color. Therefore, the constructed graph does not contain
a multicolored triangle.

2.2. Upper bounds. If a graph G is the union of edge-disjoint copies of C5,
each receiving a distinct color, then it is clear that every vertex v 2 V (G) has even

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2300 J. BALOGH, A. LIEBENAU, L. MATTOS, AND N. MORRISON

degree, and that in each color, v is incident to exactly zero or two edges. If G
is an extremal multicolored triangle-free graph, then G does not have multicolored
triangles. In general, however, Gmay have many triangles formed by two color classes,
as exemplified at the end of the previous subsection. Our next lemma states that for
every v 2 V (G), the number of edges inside the neighborhood of v is at most 3d(v)/2;
hence G does not have many triangles.

Lemma 2.1. For each v 2 V (G), there are at most 3d(v)/2 edges inside NG(v).
Consequently, there are at most e(G) n2/2 triangles in G.

Proof. Let v 2 V (G) and u1, . . . , ud(v) be the neighbors of v. Without loss of
generality, suppose that c(vui) = c(vui+d(v)/2) = i for all i 2 [d(v)/2]. Let M =
{{ui, ui+d(v)/2} : i 2 [d(v)/2]}} be the collection of pairs of vertices which form a
monochromatic cherry with v. Note that these pairs could be edges in G, as an edge
of the form uiui+d(v)/2 does not create a multicolored triangle with v. Let xy be an
edge of G inside NG(v) which does not belong to M. Then, c(vx) 6= c(vy) and hence
we must have c(xy) = c(vx) or c(xy) = c(vy). Therefore, every edge e inside NG(v)
which is not in M must have an endpoint z such that c(e) = c(zv).

Now, fix some color j 2 [d(v)/2] (i.e., a color incident to v). We claim that
there are at most two edges in color j inside NG(v) that are not in M. Indeed,
suppose that there are three such edges. These must form a path ujz1z2uj+d(v)/2

inside NG(v) contained in the color-j copy of C5 for some vertices z1, z2 2 NG(v).
Then c(vz1) = c(vz2), as otherwise there would be a multicolored triangle in G. But
this means that {z1z2}2M.

As every edge inside NG(v) not in M must have a color in [d(v)/2] and as every
such color appears at most two times outside M, we conclude that the number of
edges inside NG(v) is at most |M|+ 2d(v)/2 = 3d(v)/2.

Let us briefly argue that Lemma 2.1 is best possible. Consider a 2-coloring of
the edges of K5 in which each color class forms a copy of C5. In this coloring, every
vertex v has 3d(v)/2 = 6 edges inside its neighborhood. This construction can be
extended to larger graphs as follows. Let G be a graph that consists of n copies of
K5, all sharing exactly one vertex. Color each of these copies of K5 with two colors
each, all distinct, in such a way that each monochromatic component is a copy of C5.
The degree of the common vertex is 4n and the number of edges in its neighborhood
is 6n= 3d(v)/2.

For a graph G and v 2 V (G), define

sv := d(v)� 2e(G)

n
.(2)

The function sv is the di↵erence between the degree of the vertex v and the average
degree of G; in particular,

P
v sv = 0. Our next theorem, which is the main result in

this section, is a version of Theorem 1.1 with a slightly worse linear error term. The
upper bound on

P
v s

2
v shall be used later to bound the number of vertices of small

degree in extremal graphs, which is crucial in the proof of Theorem 1.2.

Theorem 2.2. Let q 2N, r 2 {0, . . . ,4} and set n= 5q+ r. If n� 26, then

exC5
(C3, n) q2 + q

✓
6 +

8r

5
� 3 · 1r2{3,4} + o(1)

◆
� 1

n

X

v2[n]

s2v.(3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ON MULTICOLOR TURÁN NUMBERS 2301

Furthermore,

X

v2[n]

s2v 
✓
6 +

8r

5
+ o(1)

◆
qn.(4)

Proof. Let G be an extremal multicolored triangle-free graph on n vertices. We
find a large bipartite graph B ✓G and use the fact that G \B still needs to contain
an edge from every Fi, as C5 is not bipartite. For each v 2 [n], define Bv to be the
bipartite graph induced by the edges between N(v) and [n] \N(v). For every v 2 [n]
we have

e(Bv) =
X

u2N(v)

d(u)� 2e(N(v))�
X

u2N(v)

d(u)� 3d(v),

by Lemma 2.1. Taking the average over every vertex v, we obtain

1

n

X

v2[n]

e(Bv)�
1

n

X

v2[n]

X

u2N(v)

d(u)� 6e(G)

n
.(5)

Note that for each u 2 [n] the degree d(u) appears exactly d(u) times in the double
sum. Thus,

1

n

X

v2[n]

X

u2N(v)

d(u) =
1

n

X

v2[n]

d(v)2 =
1

n

X

v2[n]

✓
2e(G)

n
+ sv

◆2

=
4e(G)2

n2
+

1

n

X

v2[n]

s2v,

(6)

where we used that
P

v sv = 0. From (5) and (6), it follows that there exists a vertex
v 2 [n] for which

e(Bv)�
4e(G)2

n2
+

1

n

X

v2[n]

s2v �
6e(G)

n
.

That is, there exists a bipartite graph B such that

e(G)� e(B) e(G)� 4e(G)2

n2
� 1

n

X

v2[n]

s2v +
6e(G)

n
.(7)

The function f : R ! R given by f(x) = x � 4x2

n2 + 6x
n is decreasing in the

interval [n
2

8 + 3n
4 ,

�n
2

�
]. As n = 5q + r, recall from (1) that t(n) = q2 + q1r2{3,4}.

As e(G) � 5t(n) � n2

8 + 3n
4 when n � 26, the right-hand side of (7) is at most

f(5t(n))� 1
n

P
v2[n] s

2
v for n su�ciently large. Now, note that

5t(n)

n
=

5q2 + 5q1r2{3,4}

5q+ r
= q ·

1 +
1r2{3,4}

q

1 + r
5q

.(8)

As 1� r
5q  (1+ r

5q )
�1  1� r

10q for every q su�ciently large, it follows from (8) that

q

✓
1� r

5q
+

✓
1� r

5q

◆
1r2{3,4}

q

◆
 5t(n)

n
 q+ o(q).(9)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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By plugging (9) into f(5t(n)), we obtain

f(5t(n)) 5q2 + 5q1r2{3,4} � 4q2
✓
1� 2r

5q
+

2 · 1r2{3,4}

q

◆
+ 6q+ o(q)

 q2 + q

✓
6 +

8r

5
� 3 · 1r2{3,4}

◆
+ o(q).(10)

Therefore, it follows from (7) and (10) that

e(G)� e(B) q2 + q

✓
6 +

8r

5
� 3 · 1r2{3,4}

◆
+ o(q)� 1

n

X

v2[n]

s2v.(11)

As B is bipartite but none of the Fi are bipartite, it follows that G \B contains an
edge of every Fi, and hence

exC5
(C3, n) e(G)� e(B).(12)

The upper bound on exC5
(C3, n) follows by combining (11) and (12). The upper

bound on
P

v s
2
v follows from the fact that exC5

(C3, n) � t(n) = q2 + q1r2{3,4},
by (1).

3. The structure of extremal graphs. In this section, we show that G must
be close to a blow-up of C5. Moreover, the vertex partition given by the blow-up
structure is approximately balanced. At the end of the section, we refine this structure
when restricting our graph to the subgraph spanned by vertices with degree close to
the average.

3.1. The approximate structure. To deduce the approximate structure of
the extremal graphs, we shall need the triangle removal lemma due to Ruzsa and
Szemerédi [7].

Lemma 3.1 (triangle removal lemma). For every � > 0, there exist n� 2 N and
f(�) > 0 such that the following holds for every n > n�. If H has at most f(�)n3

triangles, then we can make H triangle-free by deleting at most �n2 edges.

Another tool that we need is the following stability theorem of Erdős, Győri, and
Simonovits [3].

Theorem 3.2 (Erdős–Győri–Simonovits). For every � > 0 there exist � = �(�)>
0 and n� such that if H is an n-vertex triangle-free graph with n > n� and e(H) �
n2/5� �n2, then H can be turned into a subgraph of a blow-up of C5 by deleting at
most �n2 edges.

Now we deduce our first structural property on extremal multicolored triangle-free
graphs, which states that they are close to being a blow-up of C5.

Lemma 3.3. For every "> 0 there exists n" 2N such that for every n> n" and an
extremal multicolored n-vertex triangle-free graph H, H can be turned into a subgraph
of a blow-up of C5 by deleting at most "n2 edges.

Proof. In the proof we assume that n is su�ciently large in order that all previous
lemmas are applicable. For a given " > 0 set � := "/2 and let � = �(�) > 0 be given
by Theorem 3.2. Set � := min{�,�}. By Lemma 2.1, there are at most n2/2 =
o(n3) triangles in H; hence we can use the triangle removal lemma (Lemma 3.1). As
exC5

(C3, n) � t(n) � n2/25 � 2n/5 by (1), we have e(H) � n2/5 � 2n. Lemma 3.1
applied with �/2 implies that there exists a triangle-free subgraph H 0 ✓H such that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ON MULTICOLOR TURÁN NUMBERS 2303

e(H 0)� n2/5� 2n� �n2/2� n2/5� �n2

for n large enough and by the choice of �. Thus, H 0 can be turned into a subgraph
of a blow-up of C5 by deleting at most �n2 edges, by Theorem 3.2. Together, these
imply that there exists H 00 ✓G which is a subgraph of a blow-up of C5 and such that
e(H 00)� e(H)� (� + �)n2 � e(H)� "n2.

From now on, we denote by A1, . . . ,A5 the disjoint sets corresponding to the
partition of V (G) given by a subgraph of a blow-up of C5 as in Lemma 3.3. We
denote by C5(A1, . . . ,A5) the graph which is a blow-up of C5, with parts A1, . . . ,A5.
Moreover, we assume that the intersection of G with the blow-up C5(A1, . . . ,A5)
gives a subgraph of a blow-up of C5 in G with the maximum number of edges. Recall
that for i 2 [5], we denote by G(Ai,Ai+1) the bipartite subgraph of G on vertex set
Ai [Ai+1 and edges uv 2E(G) where u2Ai and v 2Ai+1.

Our next lemma states that A1, . . . ,A5 is close to being an equipartition and that
each G(Ai,Ai+1) is close to being a complete bipartite graph.

Lemma 3.4. For every " > 0 there exists n0 2 N such that if n > n0, then the
following holds. For every i2 [5] we have

eG(Ai,Ai+1)� n2/25� "n2 and n/5� "n |Ai| n/5 + "n.

Proof. For a given "> 0 let � = "/211 and assume without loss of generality that
n is large enough such that H ✓ C5(A1, . . . ,A5) is a subgraph of G with at least
e(G)��n2 edges (the existence of such H follows from Lemma 3.3). This implies that
there are at least e(G)/5��n2 � n2/25�5�n2 monochromatic copies of C5 in H, and
hence

|Ai||Ai+1|� eG(Ai,Ai+1)� n2/25� 5�n2(13)

for every i2 [5].
Now, suppose that |A1|= n/5�↵n for some ↵2 (29�,5�1). From (13), we obtain

|A2|, |A5|�
n2/25� 5�n2

n/5� ↵n
� n2/25� 5�n2

n/5
· (1 + 5↵)

=
n

5
+ (↵� 25�� 125�↵)n� n

5
+

2↵n

3
.

Thus, we have

|A3|+ |A4|= n� |A1|� |A2|� |A5| 2n/5� ↵n/3.

This implies

|A3||A4| (n/5� ↵n/6)2 = n2/25� ↵n2/15 + ↵2n2/36 n2/25� ↵n2/30,

which contradicts (13), as ↵/30> 6�, proving |Ai|� n/5�29�n for every i2 [5]. From
this we conclude that |Ai|  n� 4(n/5� 29�n)  n/5 + 211�n for every i 2 [5]. The
lemma follows by choice of �.

Define Ni(v) to be the set of neighbors of v in G which are contained in Ai and let
di(v) = |Ni(v)|. We refer to the edges not in

S
iEG(Ai,Ai+1) as unstructured edges.

Observe that, as G \ C5(A1, . . . ,A5) gives a subgraph of a blow-up of C5 in G with
the maximum number of edges, the number of unstructured edges is minimum over
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2304 J. BALOGH, A. LIEBENAU, L. MATTOS, AND N. MORRISON

all subgraphs of a blow-up of C5 in G. Our ultimate goal is to show that the number
of unstructured edges is at most linear.

Our next lemma gives an upper bound on the degree and the number of unstruc-
tured edges incident to each vertex of G.

Lemma 3.5. For every � > 0 there exists n� 2 N such that if n > n�, then the
following holds. For every i2 [5], v 2Ai, and j /2 {i� 1, i+ 1}, we have

d(v) 2n/5 + �n and dj(v) �n.(14)

Moreover, for t2 {i� 1, i+ 1} we have

dt(v)� d(v)� n

5
� �n.(15)

Proof. Let � < �/4 be a small enough constant and set " = �/18. First, apply
Lemma 3.4 with parameter "2/2 to obtain

eG(Ai,Ai+1)� n2/25� "2n2/2 and |Ai| n/5 + "2n/2 for all i2 [5].(16)

Let us now argue that for every i2 [5] and v 2 V (G), we have

min
�
di(v), di+1(v)

 
 "n(17)

for n su�ciently large. Suppose for contradiction that (17) does not hold. Since
e(G[N(v)])  3n/2 by Lemma 2.1, there are at most 3n/2 edges uw with u 2 Ni(v)
and w 2 Ni+1(v). This implies that the number of edges between Ai and Ai+1 is at
most

|Ai||Ai+1|� di(v)di+1(v) + 3n/2 |Ai||Ai+1|� "2n2 + 3n/2.

Thus, using (16) twice, we obtain

n2

25
� "2n2

2
 eG(Ai,Ai+1)

✓
n

5
+

"2n

2

◆2

� "2n2 +
3n

2

=
n2

25
+

"2n2

5
+

"4n2

4
� "2n2 +

3n

2
<

n2

25
� "2n2

2

for n su�ciently large, a contradiction. Thus, we conclude that (17) holds.
Now, fix a vertex v 2 V (G). If dG(v)  �n, then the condition dj(v)  �n is

trivially satisfied. Thus, let us assume that dG(v)> �n. From (17) it follows that the
set

S :=
�
j 2 [5] : dj(v) "n

 

has size at least three; in particular there exists i 2 [5] such that {i, i+ 2, i+ 3}✓ S.
Therefore, v can have a large neighborhood only inside the union Ai�1 [Ai+1. Note
that this implies in particular that

d(v) |Ai�1|+ |Ai+1|+ 3"n 2n

5
+ "2n+ 3"n 2n/5 + �n,

by (16), choice of ", and for n large enough. That is, the first part of (14) is proved.
We claim that if di�1(v) > 3"n and di+1(v) > 3"n, then v 2 Ai. Indeed, as

di(v) + di+2(v) + di+3(v)  3"n, if we had v /2 Ai, then we could move v to Ai and
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ON MULTICOLOR TURÁN NUMBERS 2305

obtain a subgraph of a blow-up of C5 with more edges, a contradiction. In particular,
this implies the second part of (14) in this case.

Now assume that either di�1(v) 3"n or di+1(v) 3"n. As {i, i+2, i+3}✓ S, in
both cases we have that there exists an index k for which dk(v)� d(v)� 6"n> 12"n,
using our assumption that dG(v)> �n= 18"n, and dj(v) 3"n for every j 6= k. As the
set Ak contains most of the neighbors of v, we must have either v 2Ak�1 or v 2Ak+1;
otherwise we could move v to one of these sets and obtain a subgraph of a blow-up of
C5 with more edges. In both cases, we have that if v 2Ai, then dj(v) �n for every
j /2 {i� 1, i+ 1}, i.e., (14) holds.

Finally, assuming v 2Ai, for some i2 [5], we have for t2 {i� 1, i+ 1} that

dt(v)� d(v)�max
j

|Aj |� 3"n� d(v)� n/5� �n,

where we used the fact that |S| � 3, (16), and the choice of ". This completes our
proof.

3.2. Cleaning the graph. In this section, we obtain a refinement of Lemma 3.5
for “good” vertices in G. Define the set of good vertices to be

Vg :=
�
v 2 [n] : dG(v)� 7n/20

 
.

Observe that in a balanced blow-up of C5, each vertex has degree approximately 2n/5,
i.e., every vertex is good. Recall that an unstructured edge is an edge of G which is
not contained in

S
iEG(Ai,Ai+1). Let L be the set of unstructured edges with both

endpoints are in Vg. Our next lemma states that L is a matching. Moreover, Vg \Ai

is an independent set for every i2 [5].

Lemma 3.6. For every " > 0 there exists n" 2 N such that for every n > n" we
have G[Vg \Ai] = ; for every i2 [5] and L is a matching.

Proof. We may assume that n is large enough so that the assertions of Lemmas 3.4
and 3.5 apply. In particular, we assume for all i 2 [5], j 62 {i� 1, i+ 1}, and v 2 Ai

that

|Ai| n/5 + "n, dj(v) "n, and d(v) 2n/5 + "n.(18)

Without loss of generality we may assume that i= 1. Let u, v 2A1 \Vg and sup-
pose for contradiction that uv 2E(G). For j 2 {2,5}, let A⇤

j be the common neighbor-
hood of u and v in Aj which avoids the vertices of the C5 of color c(uv). Observe that
for each a 2A⇤

2 [A⇤
5 we have c(au) = c(av); otherwise auv is a multicolored triangle.

Moreover, if a, a0 2A⇤
2 [A⇤

5 are distinct vertices, then c(au) = c(av) 6= c(a0u) = c(a0v);
otherwise aua0v is a monochromatic copy of C4, which cannot exist in G. From this,
it follows that there are |A⇤

2|+|A⇤
5| di↵erent colors incident to both u and v, and hence

min{d(u), d(v)}� 2
�
|A⇤

2|+ |A⇤
5|
�
,(19)

where the factor of 2 accounts for the fact that every color contributes twice to a
degree of a vertex. By the inclusion–exclusion principle (applied separately to each
of A⇤

2 and A⇤
5), we have

|A⇤
2|+ |A⇤

5|� d2(u) + d5(u) + d2(v) + d5(v)� |A2|� |A5|� 3,(20)

where the term �3 accounts for neighbors in the copy of C5 of color c(uv). Now,
d2(v) + d5(v)� d(v)� 3"n, d2(u) + d5(u)� d(u)� 3"n, and |A2|+ |A5| 2n/5+ 2"n,
all by (18). Absorbing the constant term and using that u, v 2 Vg, we thus obtain
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2306 J. BALOGH, A. LIEBENAU, L. MATTOS, AND N. MORRISON

|A⇤
2|+ |A⇤

5|� 2 · 7n
20

� 2n

5
� 9"n=

3n

10
� 9"n.

This, together with (19), implies that d(u) � 3n/5� 18"n, which contradicts d(u) 
2n/5 + "n in (18).

To prove that L is a matching, we split the proof into two cases. For the first
case, suppose for contradiction that there exist good vertices v 2 A1 and a, b 2 A3

such that va, vb 2E(G). The common neighborhood of a, b, and v inside A2 has size
at least d2(v) + d2(a) + d2(b) � 2|A2|. Let B⇤

2 be the common neighborhood of a, b,
and v inside A2 excluding the vertices of the copies of C5 with colors c(av) and c(bv),
so that

|B⇤
2 |� d2(v) + d2(a) + d2(b)� 2|A2|� 6.

Now, v has at least 7n/20� 3"n� |A5| neighbors in A2, by (18) and since v is a good
vertex. Similarly, each of a and b have at least 7n/20� 3"n� |A4| neighbors in A2.
Since |Ai| n/5 + "n for all i, by (18), we obtain that

|B⇤
2 |� 3

✓
7n

20
� n

5
� 4"n

◆
� 2n

5
� 2"n� 6� n

40
.

In particular, B⇤
2 is nonempty. Let u 2 B⇤

2 . The edges uv, ua, and ub have colors
di↵erent from c(av) and c(bv), by definition of B⇤

2 . This implies that c(uv) = c(ua) =
c(ub), as otherwise there was a multicolored triangle in G. But this is a contradiction
since each color class is a copy of a C5.

For the second case, suppose for contradiction that there exist good vertices v 2
A1, a2A4, and b2A3 such that va, vb2E(G). Let D⇤

5 be the common neighborhood
of v and a in A5, which avoids the vertices of the C5 of color c(av); and let D⇤

2 be
the common neighborhood of v and b in A2, which avoids the vertices of the C5 with
color c(bv). Similarly to the first case, we first show that D⇤

5 and D⇤
2 are nonempty.

Again, we have

|D⇤
5 |� d5(v) + d5(a)� |A5|� 6

�
⇣
d(v)� |A2|� 3"n

⌘
+
⇣
d(a)� |A3|� 3"n

⌘
� |A5|� 6(21)

� 2 · 7n
20

� 3n

5
� 9"n� 6

� n

10
� 10"n,(22)

where we used (18) in the second inequality, and the upper bound on |Ai| from
(18), and the fact that a and v are good vertices in the third inequality. Similarly,
|D⇤

2 |� n/10� 10"n.
Now let u 2 D⇤

5 and u0 2 D⇤
2 be arbitrary vertices. Then we must have c(vu) =

c(au) and c(vu0) = c(bu0) since G does not have a multicolored triangle. Moreover,

|{c(vu) : u2D⇤
5}\ {c(vu0) : u0 2D⇤

2}| 1,

as otherwise G contained two monochromatic paths of length four, both with end-
points a and b. But this cannot happen since each color class is a copy of a C5. It
follows that v is incident to at least |D⇤

5 |+ |D⇤
2 |� 1 distinct colors, and hence

d(v)� 2
�
|D⇤

5 |+ |D⇤
2 |
�
� 2� 2n/5� 21"n,(23)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/2

8/
24

 to
 1

30
.1

26
.1

62
.1

26
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



ON MULTICOLOR TURÁN NUMBERS 2307

using (22) and the corresponding bound on |D⇤
2 |. Using this new bound on the degree

of v, it follows from (18) that

d5(v)� d(v)� |A2|� 3"n� d(v)� n/5� 4"n� n/5� 25"n.

Feeding this new lower bound on d5(v) into (21), leaving all other bounds in (21)–(22)
unchanged, we obtain that

|D⇤
5 |�

⇣n
5
� 25"n

⌘
+

✓
7n

20
� |A3|� 3"n

◆
� |A5|� 6� 3n

20
� 30"n.

Analogously, one obtains that |D⇤
2 |� 3n/20� 30"n. With (23) this implies now that

d(v) is at least 3n/5� 121"n, which contradicts the upper bound on d(v) in (18).

4. Proof of Theorem 1.2. Throughout this section, let "2 (0,2�200) be a fixed
small constant and n be su�ciently large (and in particular, large enough such that
the conclusions of Lemmas 3.4 and 3.5 hold for "). Recall that we set A1, . . . ,A5 to
be the disjoint sets given by the subgraph of a blow-up of C5 in Lemma 3.3 such that
the intersection of G with the blow-up C5(A1, . . . ,A5) has the maximum number of
edges among all subgraphs of G that are also subgraphs of a blow-up of C5.

We start by bounding the size of the set of vertices whose degree is far from 2n/5.
For � 2 ("1/4,2�12), define

V� =
�
v 2 V (G) : |d(v)� 2n/5| �n

 
.

Observe that V� ✓ Vg. In particular, Lemma 3.6 holds with Vg replaced by V� .
Our first claim bounds the size of V c

� := V (G) \ V� .

Claim 4.1. |V c
� | 8/�2.

Proof. Let n= 5q+ r, where q 2N and r 2 {0, . . . ,4}. It follows from (1) and (3)
that

n2

5
� 2n e(G) n2

5
+ 12n.

Thus, the average degree of G is 2n/5 +O(1). Recall that for each vertex v 2 V (G),
we defined sv = d(v)� 2e(G)/n. If v 2 V c

� , then

|sv|= |d(v)� 2e(G)/n|� �n/2.

Therefore, by (4) (and observing (6 + 4r/5)q 2n) we have

|V c
� | ·

�2n2

4
 2n2,

which implies

|V c
� |

8

�2
.

We say that a 5-cycle C in G is great if all of its edges have the same color and
all of its vertices are in V� . For each pair of vertices a and b, let gab be the number of
great 5-cycles containing a and b.

Lemma 4.2. Let i2 [5] and ab2E(G), with a2Ai\V� and b2Ai+2\V� . Then,
we have gab � n/5� 4�n.
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2308 J. BALOGH, A. LIEBENAU, L. MATTOS, AND N. MORRISON

Proof. Without loss of generality, suppose that i = 1 and let a 2 A1 \ V� and
b2A3 \ V� . By Lemma 3.5, we have

min{d2(a), d2(b)}�
2n

5
� �n� n

5
� 4"n=

n

5
� �n� 4"n.(24)

Thus, the vertices a and b are incident to most vertices in A2.
Recall that c :E(G)!N is the coloring associated to the partition of E(G) into

copies of C5. Define Ra = {c(av) : av 2E(G), v 2A1[A3[A4} and Rb = {c(bv) : bv 2
E(G), v 2A1 [A3 [A5}. These sets correspond to the set of colors incident to a and
b, respectively, which appear at an edge which is not contained in G\C5(A1, . . . ,A5).
By Lemma 3.5, both Ra and Rb have size at most 3"n. In particular, |Ra[Rb| 6"n.
Let A⇤

2 be the common neighborhood of a and b inside A2 excluding the vertices
incident to some color in Ra [Rb. Then

|A⇤
2|� d2(a) + d2(b)� |A2|� 5|Ra [Rb|�

n

5
� 2�n� 9"n� 30"n� n

5
� 3�n,(25)

where we use (24), |A2| n/5+"n (cf. Lemma 3.4) and |Ra[Rb| 6"n in the second
inequality, and � > 39" by choice of � in the last inequality.

As c(ab) 2 Ra [ Rb, for every v 2 A⇤
2 we have c(av) 6= c(ab) and c(bv) 6= c(ab).

This implies that c(av) = c(bv) for every v 2 A⇤
2. In particular, the number of

monochromatic 5-cycles containing a and b is at least n/5 � 3�n. At most 8/�2 of
these cycles contain a vertex in V c

� , by Claim 4.1. Therefore, it follows that there are
at least n/5� 3�n� 8/�2 great cycles containing a and b.

Recall that a vertex v is good if d(v) � 7n/20. Recall that an edge e 2 E(G) is
unstructured if e /2

S
iEG(Ai,Ai+1). Let M be the set of unstructured edges. By

Lemma 3.6, we know that M is a matching when restricted to good vertices, and
in particular when restricted to V� . With this in mind, one would hope to prove
that |M |  n/2 + o(n). It turns out that we can prove a much better bound, which
is even close to optimal (as discussed in section 2). Recall that " 2 (0,2�200) and
� 2 ("1/4,2�12).

Lemma 4.3. Let q 2N and r 2 {0, . . . ,4} be such that n= 5q+ r. Then, we have

|M | 2q+ 26�q.

Proof. First note that the number of unstructured edges with at least one of its
endpoints in V c

� is at most

8/�2 · 3"n 24�2n �q,(26)

by Lemma 3.5 and Claim 4.1. It remains to bound the number of unstructured edges
with both endpoints in V� .

Let M� ✓M be the set of such unstructured edges ab with a, b2 V� , and let P be
the set of ordered pairs (e,C) such that C is a great 5-cycle and e is an unstructured
edge with both endpoints in V (C). Observe that if (e,C) 2 P , then e 2 M� . In
particular,

P
ab2M�

gab  |P |, where we recall that gab denotes the number of great
5-cycles containing a and b. For ab2M� we must have a 2Ai and b2Ai+2 for some
i 2 [5] (or vice versa), by definition of an unstructured edge and since G[Ai \ V� ] is
empty, by Lemma 3.6. Using Lemma 4.2, we thus obtain

|P |� |M� | ·
⇣n
5
� 4�n

⌘
.(27)
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ON MULTICOLOR TURÁN NUMBERS 2309

Now, let sC be the number of unstructured edges with both endpoints in V (C),
for each great 5-cycle C. The set of unstructured edges spanned by V� is a matching,
by Lemma 3.6, so we must have sC  2 for all C. It follows that

|P |=
X

C great

sC  2e(G)

5
.

Combining this bound with (27), we thus obtain

|M� | ·
⇣n
5
� 4�n

⌘
 2e(G)

5
 2exC5

(C3, n) 2q2 + 2q

✓
6 +

8r

5
� 31r2{3,4} + o(1)

◆(28)

by Theorem 2.2, where we recall that q is defined by n = 5q + r and r 2 {0, . . . ,4}.
Now,

1

n/5� 4�n
 1

q� 4�n
 1

q

�
1 + 24� + 2 · (24)2�2

�
 1

q
(1 + 25�),(29)

where we use n 6q, (1�x)�1  1+x+2x2 for every x2 (0,1/2), and that � is small
enough. Combining this last estimate with (28), we obtain

|M� | 2q+ 50�q+O(1).

This, together with the bound in (26), proves our lemma.

From the constructions given in section 2.1, note that we can have 2n/5 unstruc-
tured edges, and hence our bound of 2n/5+o(n) on the number of unstructured edges
given by Lemma 4.3 is tight. Our next lemma improves the bounds on the size of
each Ai from an additive linear error term as in Lemma 3.4 to an additive error of
constant size.

Lemma 4.4. Let q 2 N and r 2 {0, . . . ,4} be such that n = 5q + r. For every
j 2 [5], we have

q� 15< |Aj | q+ 64.

Proof. The proof is similar to the proof of Lemma 3.4. Without loss of generality,
suppose that A1 is the part of smallest size. Suppose for contradiction that |A1|= q�i,
for some i� 15.

Let C1, . . . ,Ck be the colored 5-cycles given by the edge-partition of G. Note
that k� q2 since we assume that G is extremal, by (1). At most 8/�2 of these cycles
contain a vertex in V c

� , by Claim 4.1, and at most 2q+26�q contain an unstructured
edge by Lemma 4.3. Observe that a Cj with all vertices in V� that does not contain
an unstructured edge is a great cycle v1v2v3v4v5 such that vi 2 Ai for each i 2 [5].
Therefore, for each i2 [5],

e(Ai,Ai+1)� q2 � 2q� 26�q� 8/�2.(30)

Similarly to the proof of Lemma 3.4, this implies that

|A2|, |A5|�
q2 � 2q� 26�q� 8/�2

q� i
� q2 � 3q

q� i
� q+ i� 3(31)
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since � is small and n is large. Thus, we have

|A3|+ |A4|= n� |A1|� |A2|� |A5| 2q� i+ r+ 6 2q� i+ 10.

Using this for the upper bound and (30) for the lower bound, we obtain

(q� i/2 + 5)2 � |A3||A4|� q2 � 2q� 26�q� 8/�2,

which is a contradiction, as i � 15. As every set A1, . . . ,A5 has size at least q � 15,
we conclude that |Aj | q+ 64 for any j 2 [5]. This proves the lemma.

Finally, note that Lemmas 4.4 and 4.3 imply Theorem 1.2.

5. Proof of Theorem 1.1. Let " 2 (0,2�200), � 2 ("1/4,2�12) and set � = 28�.
We start by bounding the number of triangles in G.

Lemma 5.1. The number of triangles in G is at most 2n2/25 + 2�n2.

Proof. Let �� be the number of triangles where all three vertices belong to V� .
By Lemma 3.6, if a, b, c 2 V� and they form a triangle, then we must have a 2 Ai,
b 2 Ai+1, and c 2 Ai+2 for some i 2 [5]. Let M be the set of unstructured edges
between pairs of good vertices. By Lemma 4.3 we have |M |  2n/5 + �n and by
Lemma 3.4 we have maxi |Ai| n/5+ �n. As every triangle contains an unstructured
edge,

��  |M | ·max
i

|Ai| 2n2/25 + �n2.

Let �c
� be the number of triangles containing at least one vertex outside V� . By

Lemma 2.1 and Claim 4.1, we have

�c
� 

X

v2V c
�

3d(v)

2
 3n

2
|V c

� |
12n

�2
 �n2.

Below, we denote by C1,C2, . . . ,Ck the set of monochromatic 5-cycles in G. The
next lemma is due to Kovács and Nagy [6]. For completeness, we provide their proof
here.

Lemma 5.2 (Kovács–Nagy). Let i2 [k] and denote by �1
i and �2

i the number of
triangles with exactly one and two edges colored i, respectively. Then,

X

v2Ci

d(v) 2n+ 2�2
i +�1

i .

Proof. Note that e(G[V (Ci)]) = 5+�2
i . Observe that each vertex in [n]\Ci sends

at most two colors to Ci; otherwise a multicolored triangle is created. For the same
reason, each vertex in [n]\Ci sends at most three edges to Ci, and if exactly three are
sent, then two of them with the same color must go to adjacent vertices in Ci. Thus,
we have

X

v2Ci

d(v) 2e(G[V (Ci)]) +�1
i + 2(n� 5) 2n+ 2�2

i +�1
i .

Proof of Theorem 1.1. Following Kovács and Nagy [6], we estimate the double
sum

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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S :=
kX

i=1

X

v2Ci

d(v).

Every vertex v is contained in d(v)/2 monochromatic cycles; hence d(v) is counted
d(v)/2 times in the double sum above. Therefore,

S =
X

v2[n]

d(v)2

2
� n

2
·
✓
2e

n

◆2

=
2e2

n
.(32)

On the other hand, by Lemma 5.2, we have

S  2nk+
kX

i=1

�
2�2

i +�1
i

�
 2nk+

6n2

25
+ 6�n2,(33)

using that each triangle is counted three times and Lemma 5.1. As e(G) = 5k, from
(32) and (33), it follows that

50k2

n
 2kn+

6n2

25
+ 6�n2;

hence

k n2

25
+

3n3

625k
+

�n3

k
.

As k� n2/25� 2n, it follows that k n2/25+ (3/25+ 50�)n. As ✏ (and hence �) can
be chosen to be arbitrarily small, the theorem follows.
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[6] B. Kovács and Z. L. Nagy, Multicolor Turán numbers II—a generalization of the Ruzsa–
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