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Abstract

A Sidon set is a subset of the integers with the property that
the sums of every two elements are distinct. In 1998, I.Ruzsa gave
a probabilistic construction of an infinite Sidon set whose counting
function is given by zV2=1+o() | In this work, we explain the details
of the simplification of Ruzsa’s construction suggested in [3].

1 Introduction

arX1v:1103.5732v3 [math.NT] 31 Mar 2011

A set of integers S is called a Sidon set or Sidon sequence if the sums of every
two elements of S are distinct. Observe that writing differences instead of
sums gives an equivalent definition. For example, the set {1,2,4,8,16,...}
is an infinite Sidon set. Those sets arose in the 30’s in the context of Fourier
analysis. The hungarian analyst Simon Sidon asked Paul Erdés about the
size of those sets and since then they become of particular interest to number
theorists.
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An interesting problem is to construct large Sidon sets. One can ask for
either the larger Sidon set contained in the set {1,2,...,n} or the asymptotic
behaviour of an infinite Sidon set. For the finite case, a Sidon set may be
constructed by the greedy algorithm. For the infinite case, it was proven
by Erdés that the number of elements in a Sidon set up to x is ~ y/x. The
current record holder is the hungarian mathematician Imre Ruzsa, who built
a Sidon set of size zV2-1() in [2]. Ruzsa’s proof is based on the fact that
the prime numbers are a multiplicative Sidon set, so the set {logp : p prime}
is an additive Sidon set. However, this set is unbounded, which created some
trouble. Following Ruzsa’s construction, we obtain a Sidon set with the same
asymptotic behaviour on a slightly different way, by considering the set of
arguments of the Gaussian primes instead of the logarithms of the primes.
Whenever possible, we have kept Ruzsa’s notation, so that the reader familiar
with Ruzsa’s paper can easily appreciate differences and similarities. It is,
however, not required to read Ruzsa’s paper in advance.

On the following section, we discuss the finite case and then in the fol-
lowing two sections we explain the construction on the infinite case. The
construction is probabilistic, so we will first go through the combinatorial
and number theoretical details and in the last section we will go through
the probabilistic argument. It is worth mentioning that the analog for three-
sums, that is, a large infinite set with the property that every sum of three
elements is different (by large meaning larger than the obtained from the
greedy algorithm), has not yet been constructed.

2 Finite Sidon sets

We will first show how can we obtain finite Sidon sets. The first natural
approach is the greedy algorithm. Let a; = 1 and for k£ > 1 take a; such that
ar, ¢ {a;i+a;—a|l <4,7,1 < k—1}. We immediately see that ay < (k—1)3+1
since we have at most (k — 1)3 forbidden choices for {i, 7,1} and so with
this construction we can get a Sidon set of size ~ n3 contained in the set
{1,2,...,n}.

The well known fact that integers can be written in an essentially unique
way as product of prime numbers is remarkably useful in the construction of
a large Sidon set. We have to translate this multiplicative property into an
additive one, the natural way being through the logarithm function.

As usual, denote with [y] the largest integer less or equal than y and
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Theorem 2.1. The set
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s a Sidon set of cardinality ~ for large enough n.

Proof. Our first claim is that this set is in fact a Sidon set. To see this,
suppose that we have p, q,r, s with {p, ¢} # {r, s} such that

Ty + 2Ty = Tr + Ts.

Without loss of generality, assume that pg > rs. Observe that since we have
that z, + 4 — 2, — 25 =0,
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by using the fact that, for z,y, z, w real numbers, the inequality

oy +{y} = {2} —{w}[ <2 (1)

holds, we have
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where the first inequality follows by unique factorization, the second inequal-
ity from the inequality (1 + z)? > €® for # < 2 and by taking logarithms on
both sides, and the third inequality follows from the definition of r and s. O

Ruzsa, in a very clever way, took advantage of the previous theorem to
create an infinite Sidon set by considering the sequence of the logarithms of
the primes. However, some difficulties arose from the fact that this sequence
is unbounded. We now introduce another way of constructing a finite Sidon
set, which will help us to motivate an analog construction for the infinite
case.

Let P be the set of prime numbers congruent to 1 modulo 4. For p € P,
take a Gaussian prime p, such that p = p,p,, with p, such that Rep, >
Imp, > 0, where Rez, Imz denote the real and imaginary parts of the complex
number z. Write % = e¥™% with ¢, a number in [0,1). We write |z| for the
absolute value of the real number x and ||z| for the norm of the complex
number z. Note that the sequence of numbers (¢,),cp is a Sidon set, for
if we have ¢, + ¢, = ¢, + ¢,, that would imply that p,p,0rps = PpPePrPs
which is impossible, since Gaussian integers also have the unique factorization
property. So if the ¢, were integers, we would have a Sidon set; since they
are not, we would have to work them out to build a Sidon set, as we did in
the previous theorem. We now state this precisely.

Theorem 2.2. The set
C:= {cpeN:cp:[nqbp],peIP’, p§4},
NG

1 elements.
ogn

is a Sidon set contained in the set {1,2...n} with

Proof. Suppose that we have four elements in this set, such that

Cp+Cq=Cr+Cs

with {p, ¢} # {r, s} and pg > rs. Consider

n(op + &g — &r — ¢s) = {ngp} + {ndy} — {ndr} — {ngs}
Observe that
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the first inequality being easily obtained by geometric interpretation and the
second inequality follows from (IJ). On the other hand we get

’ PpPq  PrPs _ ’ PpPqaPrPs — PrPsPpPq
PoPg  PrPs PpPalPrPs
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which can not hold for positive n. By the prime number theorem, we have
that the cardinality of C is as claimed. O

3 The construction

Keeping the notation from the previous section, we will now construct an
infinite Sidon set. As Ruzsa did with the logarithms of the primes, we will
use the ¢,’s; we will take their binary expansion and, since this expansion
might be infinite, we will have to cut it somewhere and then use the digits to
construct a Sidon sequence. Before we start to play with the digits, we will
add a parameter o € [1,2) and consider the set {ap, € R : p € P}. The
values of « such that the resulting set A, (after truncating and rearranging
digits) is a Sidon set will be shown to be a set of positive measure. From now
on, we will forget the rest of the prime numbers and we will just care about
those prime numbers that belong to the set P = {p = 1 mod 4 : p prime}.

b}



Let 8 be a fixed positive real number and consider the integer K, > 2
such that

2(Kp_2)2 < pﬁ < Q(KP_1)2

we also consider

Px={peP:K,=K}.

that is, those primes whose 5 power is more or less of the same size.
For p € Pk and « € [1,2) take the number

my = 2K2a¢p Z 5p2K2_i

with d;, € {0,1}. These numbers, while p runs over [P, are the main ingre-
dient for our Sidon sequence. We have just cut the binary expansion of the
numbers @, in a certain place that depends on p. We cut this number into
Ay, Agp, ..., Ak, pieces such that

,l'2

Aip = Z 5jp2i2_j
j=(i—1)2+1

and so we have that

32

Ap< Y 20T =2 (2)

j=(i—1)2+1

Now we will rearrange these blocks. Informally, we put the blocks 1 to K,
the first block corresponding to the first digit; the second block, to the next
four digits; the third block, to the the next nine, and so on up to the last
K? from right to left and leave three spaces between consecutive blocks. We
also write 1 on the second space from right to left from the K —th block.
This 1, who is the first non-zero digit of our new number, is used to have
precise information on the size of our new number. For example, if we had
the sequence 0.10101010111010 after cutting in consecutive blocks we get

Ay =1,A5 =0101,A3 = 010111010



and after the three zeros and the 1 we get

1001011101000001010001

where the numbers in bold letters correspond to the digits we insert between
the consecutive blocks. More precisely, we have the number

KP
a, = E:Aip2(i—1)2+3i + 2K§+3Kp+2.
i=1

. . 2 2
From the choice of K, since 25»T35r %2 < ¢, < 255735043 we see that a, =

PP+ We also introduce the notation t, := 2K +3Kp+2  Two questions may
arise: what is the ¢, for? what about those zeros?

Consider the identity in binary numbers

1000011 + 100010 = 111011 + 101010

observe that all these four numbers have a block of three zeros in the same
position. When you add these numbers, observe that the block of zeros
prevents you from ’carrying’ ones to the other blocks, so that in some sense
the blocks 1000, 100,111,101 corresponding to the last four digits of each
number (from right to left) contribute to the sum on each side of the equation
in complete independence of the numbers living on the other side of the zeros
block. So we must have that 1000 + 100 = 111 + 101, and 114+ 10 =11+ 10
which is true.

How will this simple observation help us to construct our Sidon set?
Consider the set A,, for a fixed choice of a. Let a,,a,,a,,as € A, with
p,q,r,s € P. If we have that

ap + ag = a, + as (3)
under the additional hyphotesis (which holds up to renaming of variables)

a, > a, > as > aq. (4)

we call the 4-tuple (p,q,r,s) € P* a bad 4-tuple. Whenever we have a bad
4-tuple we can remove the a; corresponding to the largest element of the
4-tuple, and the remaining elements in A, (after removing all the largest
elements from every bad 4-tuples) now form a Sidon set. We are interested



in an estimate of the number of such bad 4-tuples. The least we have to
remove, the larger our Sidon set will be.

The very particular way of constructing the elements of the set A, is
what gives the key for counting the number of bad 4-tuples. The extra
zeros inserted between two consecutive blocks ensure that, as in the previous
example, the sums are blockwise independent. We make this statement precise
in the following lemma.

Lemma 3.1. (p,q,r,s) is a bad 4-tuple iff N;, + Nig = Dy + Ais for all i
and t, +t, = t, + 1.
Proof. We assume that (3) and () hold (the converse is immediate from the
definition of the a,’s. So suppose that

ap + ag = Gy + g

now observe that since

Kp
2 1)24.3;
2Kp+3Kp+2 > § Ain(Z 1)°+3i

i=1

and similarly for ¢,r, s, the contribution of the main parts ¢,,%,,%,,ts is in-
dependent of the remaining digits of a,, a,, a,, as respectively, gives

ty+t, =1t +t,

and from (4]) and the uniqueness of the representation of integers in base 2
follows that there exist K" and L such that K, = K, = K and K, = K, = L
with K > L. We still have to say something about

K L K L
ZAip2(i—1)2+3i + ZAiqz(i—l)Q—l—iﬁ _ ZAiT2(i_l)2+3i + ZAis2(i—1)2+3i
i=1 i=1 i=1 i=1

but since '
912 43(i+1) - EZ: Aip2(j_1)2+3j
j=1
and similarly for ¢, 7, s, we see that, for i < L,

Z(AJ'P + qu)Q(j_1)2+3j - Z(AJT’ + AjS)Q(j_1)2+3j

j=1 7j=1
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and since the terms in parenthesis do not affect the other summands because
their total sum is < 22! — 2 by (2), we must have that

Aip + Aiq = Air + Ais

since, for i > L we have that A;,, A;; = 0, the conclussion follows.
O

The relevant difference between Ruzsa’s approach and ours is the fact
that Ruzsa had to solve the extra problem of inserting two more spaces and
use one of those spaces to store the digits corresponding to [log p].

While proving the above lemma, we showed an useful criterion in terms
of the t,’s. This will help us to count the number of solutions of (B]), i.e. the

bad 4-tuples. For the following lemma, recall that m, = [QK 2a¢p]

Lemma 3.2. If [B) and () hold, there exist K, L such that p,r € Pk,
q,s € P, K> L and

My + Mg = My + My

Proof. The first assertion follows from the previous lemma. The second as-
sertion is immediate from the corresponding identity for the blocks which
was also proved in the previous lemma. O

We will find necessary conditions on the bad 4—tuples (p,q,7,s). The
following lemma essentially follows from the fact that ¢, + ¢4 = ¢pq-

Lemma 3.3. If (p,q,r,s) is a bad 4-tuple, with K and L as above, then

|¢pq —¢ps] < 4- 91 (5)
(K—-12+(L—-1?* > B(L—-1) (6)

Proof. Let p,, pq, pr, ps the Gaussian primes with norms /p, /g, /7, /s re-
spectively. Since e?™%i = Z—;, we have

ﬁqﬁqpr Ps — ﬁrﬁspppq
PpPaPrPs

PoPa PuPs
PpPq  PrPs

1
\/Pqrs
9

v



the inequality follows from the unique factorization property of Gaussian
integers.
Since

Poly  PrPs
PpPq PrPs

2mi(pp+dq) _ 627"i(¢r +s)

_ ‘ ¢
Hl _ 62771'(‘1)?+¢q_¢r—¢8)

S 27T‘¢p + (bq - ¢r - (bs‘
< 8|¢p + ¢q - ‘br - ¢S|

From the definition of the m, and the triangle inequality follows that

a|pp+dg—br—bs| < |ady,—my|+|ad,—my|+|ad,—m.|+|ads—ms| < 4.9717,
(7)

Since a > 1, by combining the above inequalities we get

1
\/pqrs

<32.9°L

which implies

12 5 (K-1)?+(L-1)?
2 < 4/pgrs < 2 B

and the desired inequality follows for large enough L from comparing the

exponents. O

Observe that

|¢p + ¢q — ¢r — (bs‘ = |(¢p - (bT) - (¢s - ¢q)| = ‘¢p7" - ¢S¢7|

where ¢, denotes the argument of the complex number p,p, and as; is de-
fined in an analogous way. For a given choice of p,ps we will count the
corresponding points pairs (p, r) such that (7)) holds

Lemma 3.4. Let zp = psp,. Consider a circle C with center zy and radius
R. The number n of lattice points {w1,ws,...w,} on a circular sector of C
with angle 0 such that fori =1,...n, w; = pp,py, for some p;,r; € Pk is at
most OR? + 1

10



Proof. Consider the line segment joining z; and a point w;. Observe that
this segment does not contain a third point w;, for if it did, we would have
that the argument of w; equals the argument of w; and so

¢pi — Or, = (bpj - ¢7‘j

which can not hold if {¢,,, ¢, } # {¢p;, ¢r;} from our previous remark that
the set of arguments of Gaussian primes is a Sidon set. So we can ennumerate
our points in trigonometric sense. Now we consider the triangles with vertices
zo, w; and w; 1 for i = 1,...n — 1. This is a set of disjoint triangles and the
total area covered by them is less than the area of the circular sector, which
is given by ng. Since all the triangles have lattice points as vertices, we have
that the area of each triangle is at most % and since we have n — 1 triangles
we get

n—1 6

< —R?
2 T2
and thus the desired inequality for n follows.
O
Consider the set
AKL = {p,’f’ € PK)Q>S € PLaP?’é r,.q 7& S (p,q,T,S) is bad}
and let |Agy| :== Akr. On the following lemma, we obtain an estimate for

the number of bad 4-tuples.
Lemma 3.5. The number of bad 4-tuples is

App < 2%((K—1)2+(L—1)2)—L2

Proof. For a fixed choice of ¢, s we need to count the number of pairs (p, )

with p,r as above such that the inequality from the previous lemma occurs.
2(K—1)2

Since pr < 27 7  then we have that the norm of the lattice points we are

) .. (x-1)? (K-1)? 2
interested in is less than 2= # . Take R=2 # and let § = 27", So we

have, from the previous lemma, that for given ¢, s, that the number of pairs

(K—1)2-L 2(K—1)2-L?

(p,r) we are interested in is at most 2% Tr1< 28 since

(K—=1">(B-1)(L—1)

11



and so

2 2
S(K-12-L*>Z(B-1)(L-12-L*>0

g g

whenever %(5 —1)—1>0ie [ >2and L is large enough. Since we have
95 (L1 possibilities for pairs (¢, s) we get that

Agp < 2%((K—1)2+(L—1)2)—L2 +2%(L—1)2

and from the previous remark the inequality

App < 2%((K—1)2+(L—1)2)—L2

follows. O

4 The probabilistic argument

All the way up to here, the parameter a has not been relevant in the sense
that all we have proved holds independently from the choice of a. Up to now,
we have been able to find a bound for the number of bad 4-tuples, which will
be useful. However, our approach does not suggest a way to refine this bound
for particular values of . The bound for the bad 4-tuples we have showed
in the previous section is not useful for small L. In order to obtain a better
bound, we will first try to gather some information from the parameter a.

Lemma 4.1. Let (p,q,r,s) a bad 4-tuple. Then we have

m, =m, mod 25"~ (8)

Proof. We know that A, + A;y = Ay + Ay, For L < @ < K we have that
A, = Ajs =0, hence, A;, = A;,. Recalling the construction of the blocks A;,
and A, from the digits of m, and m, we get that the corresponding digits
on the binary expansion of these two numbers from the L? + 1-th position
on (from right to left) should be equal. O

Let i be the Lebesgue measure of R. We now prove that we can avoid
bad 4-tuples by changing the parameter a.

12



Lemma 4.2. Let K > L be given and p,r € Px such that there exists at
least one pair q,s € Py and an « such that 3] holds. Then

p{a € [1,2) : ®) holds} < 22757,

Proof. Recall that [z] — [y] =[x —y] + 0 or 1. Then we have that
Pwa@¢—@)EOJ mod 257,

On a given interval of length M := 25K°~L* the set of o such that the previous
congruence holds is an interval of length 2. Let N := [2K2(¢p — gb,,)}. If we
consider intervals of length %, the values of a such that (§) holds lie on
intervals of length %, one in each interval of length % The number of such
intervals intersecting the interval [1,2] is at most 1 + &, hence

2 N
pla€(1,2): @ holds} < —(1+ 7).
We have from (7)) that

¢p_¢r = ¢s_¢q +O(2_L2).

Since

%
PsPq
%
PaPs
p_qps - p_qu
PaPs

I I

1
> —wl—
- 2r

1

2T

_L?

> 28

which follows from the fact that ¢?, s < 2= and the inequality
le* — 1]} < 2]z]]
for ||z|| < 1. So we have that
212
N> 2K7%

13



and thus

1

N> o5 =5 5 .

Hence, % (1 + %) < %% = % which concludes the proof of the lemma.

O

Observe that this new bound is good in the sense that not many a’s
contribute to complete bad 4-tuples from a given pair p,r whenever L is
small. In contrast, our previous bound for the number of bad 4-tuples is not
so good when L is small, but it is good when L is not far from K. This
suggest that we may combine them somehow so that in average they tend to
compensate and thus we can obtain a reasonable bound. Let

TKL(a) :#{paQ>raS:parepKarasaepLap#raQ%Sap+a'q:a'r+a's}~

Lemma 4.3. For K > L we have
2
/ TKL(Oé)da < 2%((K—1)2+(L—1)2)_K2.
1

Proof. Write m = p{a € [1,2) : (@) holds}. Since m = 0 whenever (5) does
not hold and < 22°~%” otherwise, summing for all possible values of p, ¢, 7, s
we obtain

2
/ TKL(CY)dOé <K 2L2_K2AKL
1

from which the desired inequality follows by substituting the estimate for
Ak given above. O

Define Tk («) := #{p,q,r,s : p,r € Pk, @) and ) hold}. From the defini-
tion follows that Ti (a) = > ;- i Trr(a).

Lemma 4.4. The estimate

2
/ Tk(a)da < 9p (K-1)—2K
1

holds.

14



Proof. Since Ty (a) # 0 is possible only if (K —1)? + (L —1)? > 3(L — 1),
if we define £ to be the set of such L we have that

/12TK(a)da = Z/12TKL(a)da

L<K
2
= Z/ TKL(OZ)CZO(
Lec”!
2 2 2 2(1-1)?
S
LeL
< 2027
where
2(K —1)3 2(K —1)2
oo AR AR 1P
B BB —1)
2
= ——(K-1)?-K?
=)
so we get that the main coefficient of the above expression is
2
— — 1
-1

We would like this coefficient to be equal to % In other words, we look for
solutions of the equation

B2—28—-1=0

The positive value of 5 that satisfies this last equation, for given 9, is given
by

B=1+2

This also implies that § < 3, from which the inequality for the linear term
in the exponent of 2 also follows. ad

With all the machinery from the previous lemmas, we are ready to do the
final step, which we resume in the following theorem.

15



Theorem 4.5. (Ruzsa, 1998) There exists an infinite Sidon set S such that
the counting function S(x) (i.e. the cardinality of S N [1,x) satisfies

S(ZL’) _ x%—l—o(l)

for B as above,i.e. % =v2-1.

Proof. From the previous estimate, we get

2
ZQ‘(};(K—l)Z_K)/ TK(a)da<< ZQ—K
K 1 K

it follows that

/ZTK 2((K1 Bda < +o0o

and hence for almost every o, Tk(a) < 9p (K-1°-K 0, large enough K,
(depending on «). From now on we focus on one of these a. Denote with
m1(z) the prime numbers smaller than z that are congruent to 1 modulo 4.
The cardinality of Py is given by Dirichlet’s theorem on primes in arithmetic
progressions

(x-1)2
(K-1)2

‘PK|:7T1(2 B )-71'1(2

(K -2)2

)~ 2(K — 1)2Blog 2

then, for large enough K, Tk (a) < |TK This means that the bad 4-tuples

(i.e. the ones such that (3]) holds) are not so many; if we omit the a, from

such 4-tuples, the set of remaining elements has cardinality larger than [Pl

If we denote with Yk the set of remaining elements and take S to be the
union of such Qx then § will be a Sidon set.
Let S(x) be the counting function of S. Since a, < 25K +3K+2 < 9(K+2)”

for K = [\ /log, x — 2} the set Qi consists of integers less than x, from which
follows that S(x) > W(Q%KQ) = 25%°M Since we also have that

a, > 2K2+3K+1 = 2(K+1)2
taking K = [\/log2 xr — 1] the set Qi has elements larger than x and then

S(r) < 7T1(2%K2) = 25D From the previous estimates the theorem fol-
lows.
a

16



It is worth emphasyzing that our construction is entirely based on Ruzsa’s

ideas. However, the technical simplifications help to a better understanding
of Ruzsa’s clever construction. The unique factorization of Z[7] is also a very
important part of our work, as well as the geometrical insight one gets for
free when working on Z[i].
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