Combinatorics, Probability and Computing (2024), 33, pp. 157-178

= ,
AMBRIDGE
doi:10.1017/50963548323000391 C G

UNIVERSITY PRESS

ARTICLE

On oriented cycles in randomly perturbed digraphs

Igor Araujo!, Jézsef Balogh!, Robert A. Krueger!, Simén Piga?(® and Andrew Treglown?

IDepartment of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL, USA and ?University of
Birmingham, Birmingham, UK
Corresponding author: Andrew Treglown; Email: a.c.treglown@bham.ac.uk

(Received 8 March 2023; revised 10 October 2023; accepted 12 October 2023; first published online 8 November 2023)

Abstract

In 2003, Bohman, Frieze, and Martin initiated the study of randomly perturbed graphs and digraphs. For
digraphs, they showed that for every o > 0, there exists a constant C such that for every n-vertex digraph
of minimum semi-degree at least an, if one adds Cn random edges then asymptotically almost surely
the resulting digraph contains a consistently oriented Hamilton cycle. We generalize their result, showing
that the hypothesis of this theorem actually asymptotically almost surely ensures the existence of every
orientation of a cycle of every possible length, simultaneously. Moreover, we prove that we can relax the
minimum semi-degree condition to a minimum total degree condition when considering orientations of
a cycle that do not contain a large number of vertices of indegree 1. Our proofs make use of a variant of an
absorbing method of Montgomery.

Keywords: directed graphs; cycles; absorbing method
2020 MSC Codes: Primary: 05C20, 05C45, 05C80

1. Introduction

Hamilton cycles are one of the most studied objects in graph theory, and several classical results
measure how ‘dense’ a graph needs to be to force a Hamilton cycle. In particular, in 1952 Dirac [9]
proved that every n-vertex graph with minimum degree §(G) > #n/2 contains a Hamilton cycle;
the minimum degree condition here is best possible.

The Hamiltonicity of directed graphs has also been extensively investigated since the 1960s. A
directed graph, or digraph, is a set of vertices together with a set of ordered pairs of distinct vertices.
We think of a digraph as a loop-free multigraph, where every edge is given an orientation from one
endpoint to another, and there is at most one edge oriented in each of the two directions between
a pair of vertices. An oriented graph is a digraph with at most one directed edge between every pair
of vertices. An edge from vertex u to vertex v is represented as uv or vu. In the digraph setting,
there is more than one natural analogue of the minimum degree of a graph. The minimum semi-
degree 8°(D) of a digraph D is the minimum of all the in- and outdegrees of the vertices in D; the
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minimum total degree §(D) is the minimum number of edges incident to a vertex in D. Ghouila-
Houri [13] proved that every strongly connected n-vertex digraph D with minimum total degree
8(D) > n contains a consistently oriented Hamilton cycle, that is, a cycle (vi, v2, . . ., Vi, Vaoy1 = V1)
with edges m for all i € [n]. Note that there are n-vertex digraphs D with §(D) =3n/2 —2
that do not contain a consistently oriented Hamilton cycle, so the strongly connected condition
in Ghouila-Houri’s theorem is necessary.

An immediate consequence of Ghouila-Houri’s theorem is that having minimum semi-degree
8%(D) > n/2 forces a consistently oriented Hamilton cycle, and this is best possible. After earlier
partial results [14, 15], DeBiasio, Kiihn, Molla, Osthus, and Taylor [7] proved that this minimum
semi-degree condition in fact forces all possible orientations of a Hamilton cycle, except for the
anti-directed Hamilton cycle, that is, a cycle (vi,va,. .., vy, Vo1 = v1) with edges m for all
oddie [n] and m for all even i € [n], where n is even. Earlier, DeBiasio and Molla [8] showed
that the minimum semi-degree threshold for forcing the anti-directed Hamilton cycle is in fact
8%D)>n/2+1.

There has also been interest in Hamilton cycles in random digraphs: the binomial random
digraph D(n, p) is the digraph with vertex set [n], where each of the n(n — 1) possible directed
edges is present with probability p, independently of all other edges. Recently, Montgomery [25]
determined the sharp threshold for the appearance of any fixed orientation of a Hamilton cycle H
in D(n, p), thereby answering a conjecture of Ferber and Long [12] in a strong form. Depending
on the orientation of H, the threshold here can vary from p =log n/2n to p =log n/n.

In this paper, we find arbitrary orientations of Hamilton cycles in the randomly perturbed
digraph model. Introduced in both the undirected and directed setting by Bohman, Frieze, and
Martin [3], this model starts with a dense (di)graph and then adds m random edges to it. The
overarching question now is how many random edges are required to ensure that the resulting
(di)graph asymptotically almost surely (a.a.s.) satisfies a given property, that is, with probabil-
ity tending to 1 as the number of vertices n tends to infinity. For example, Bohman, Frieze, and
Martin [3] proved that for every « > 0, there is a C = C(«) such that if we start with an arbitrary
n-vertex graph G of minimum degree §(G) > an and add Cn random edges to it, then a.a.s. the
resulting graph is Hamiltonian. Furthermore, given a constant 0 < « < 1/2, in a complete bipar-
tite graph with part sizes «n and (1 — a)n, a linear number of random edges are needed to ensure
Hamiltonicity. Thus their result is best possible up to the dependence of C on «. Subsequently,
there has been a significant effort to improve our understanding of randomly perturbed graphs.
See, e.g., [17, Section 1.3] and the references within for a snapshot of some of the results in the
area.

Bohman, Frieze, and Martin [3] also proved the analogous result for consistently oriented
Hamilton cycles in the randomly perturbed digraph model. Their result is also best possible up
to the dependence of C on «, for similar reasons as the undirected setting.

Theorem 1.1 (Bohman, Frieze, and Martin [3]). For every o > 0, there isa C = C(«) such that if Dy
is an n-vertex digraph of minimum semi-degree 8%(Dy) = an, then Dy U D(n, C/n) a.a.s. contains a
consistently oriented Hamilton cycle.

A notion closely related to Hamiltonicity is pancyclicity, which is when a (di)graph contains
cycles of every possible length. Bondy [4] generalised Dirac’s theorem, showing that if (G) > n/2
then G is pancyclic or Kj2,,/2. Shortly after, Bondy [5] proposed his famous meta-conjecture
that any ‘non-trivial sufficient condition for Hamiltonicity should be a sufficient condition for
pancyclicity, up to a small number of exceptional graphs. Krivelevich, Kwan, and Sudakov [20]
generalised Theorem 1.1 in this way, showing that the same conditions as in Theorem 1.1 imply
that the randomly perturbed digraph contains consistently oriented cycles of every length.

Theorem 1.2 (Krivelevich, Kwan, and Sudakov [20]). For every a > 0, there is a C = C(x) such
that if Dy is an n-vertex digraph of minimum semi-degree 8°(Dg) > an, then Dy U D(n, C/n) a.a.s.
contains a consistently oriented cycle of every length between 2 and n.
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The original rotation-extension-type proofs of Theorems 1.1 and 1.2 only guarantee con-
sistently oriented cycles. Our main result is a generalisation of Theorem 1.2 to allow for all
orientations of a cycle of every possible length. Moreover, we find all these cycles simultaneously,
i.e., Do UD(n, C/n) a.a.s. contains all of them. This last property is an example of universality,
a notion both well-studied in the random graph (e.g., [10, 25]) and randomly perturbed (e.g.,
(6, 27]) settings.

Theorem 1.3. For every o > 0, there is a C = C(a) such that if Dy is an n-vertex digraph of min-
imum semi-degree 8%(Dg) > an, then Dy U D(n, C/n) a.a.s. contains every orientation of a cycle of
every length between 2 and n.

Theorem 1.3 is best possible in the sense that one really needs to add a linear number of random
edges to Dy. Indeed, similarly as before, let D be the complete bipartite digraph with part sizes an
and (1 — o)n (where 0 < o < 1/2). Then one needs to add a linear number of edges to D to ensure
a Hamilton cycle of any orientation.

It is also natural to try and generalise Theorem 1.1 in another direction, by relaxing the mini-
mum semi-degree condition to a total degree. Unfortunately, this cannot be true for a Hamilton
cycle H in which all but o(n) vertices have in- and outdegree 1. Indeed, given 0 <« < 1/2, let
D be the n-vertex digraph which consists of vertex classes S and T of sizes an and (1 —o)n
respectively, and whose edge set consists of all possible edges with their startpoint in S and their
endpoint in T. Then whilst (D) = an, given any constant C, with probability bounded away from
0, DU D(n, C/n) contains a linear number of vertices with outdegree 0 and a linear number of
vertices with indegree 0, so it will not contain H.

On the other hand, we show that this type of orientation of a Hamilton cycle is the only one
we cannot guarantee. That is, our desired relaxation is possible for all orientations of a Hamilton
cycle that contain a linear number of vertices of in- or outdegree 2.

Theorem 1.4. For every o, 1 > 0, there is a C = C(w, n7) such that if Dy is an n-vertex digraph of
minimum total degree 6(Dy) > 2an, then Dy U D(n, C/n) a.a.s. contains every orientation of a cycle
of every length between 2 and n that contains at most (1 — n)n vertices of indegree 1.

The proof of Theorem 1.4 has the same core ideas as the proof of Theorem 1.3, but there are
additional complications and technicalities that come with the weakened degree condition.

Notation. Throughout this paper, we omit floors and ceilings whenever this does not affect the
argument. Given a digraph D we write V(D) and E(D) for its vertex and edge sets respectively.
Given some X C V(D), we write D[X] for the induced subdigraph of D with vertex set X. Given
some x € V(D), Nf; (x) denotes the out-neighborhood of x in D, which is the set of vertices y €
V(D) for which ?))/ € E(D); the outdegree of x in D is denoted by dg(x) = |NE)r (x)]. We define
Np (x) and d[,(x) analogously, and often omit the subscript when the digraph D considered is
clear from the context.

We write v if uv and itv are edges and call &v a bidirected edge. A bidirected path is a digraph
obtained from an undirected path by replacing each edge uv with a bidirected edge %v . An ori-
ented path is a dlgraph obtalned from an undirected path by replacing each edge uv with a single
directed edge; either uv or &v. Given an oriented or bidirected path P = (uy, . .., uy) we call u; its
startpoint and uy, its endpoint, distinguishing it from the path (ug, . .., u3).

Given an oriented path P = (uy, . .., ux), we define o (u;u;it+1) to be + if wu iuit1 € E(P) and —
otherwise. Given any i < j, when clear from the context, we write (u;, . . ., u]) to mean the oriented
subpath of P on vertices u;, . . ., uj; so crucially, the edges in (u;, . . ., u;) are oriented precisely as
in P.

Given two oriented paths P=(uy,...,u) and P’ = (uj, ..., u}) with up =u{ and V(P)N
V(P') = {u}, the concatenation of P and P', denoted P o P/, is the path (uy, . . ., ug, uh, 5, . . ., ujr).
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The paper is organised as follows. In the next section, we give an outline of the proof of
Theorem 1.3. In Section 3 we collect together various properties of random and pseudorandom
digraphs. The main work of the paper is the proof of our absorbing lemmas, one for each of our
two theorems, which are given in Section 4 for Theorem 1.3 and Section 6 for Theorem 1.4. We
prove Theorems 1.3 and 1.4 in Sections 5 and 7, respectively. In Section 8 we give some concluding
remarks.

2. Overview of the proof of Theorem 1.3

Our goal is to show that for a given orientation C of a cycle, Dy U D(n, C/n) contains C with
probability at least 1 — e™". Theorem 1.3 follows from a union bound over all choices of C, of
which there are trivially at most #n2". For the rest of this section, we consider only spanning C, as
the non-spanning cycle case follows easily from the machinery we set up to deal with arbitrary
orientations of a Hamilton cycle.

Let D*(n, p) denote the random digraph with vertex set [#] where each possible pair of edges
uv and @ are included together, independently of other edges, with probability p. In this way
D*(n, p) is the same as the binomial random graph G(n, p) where we replace every undirected
edge with a bidirected edge. Via a coupling argument from [22, 25], to prove that Dy U D(n, C/n)
contains C with probability at least 1 — e™", it suffices to show that Dy U D*(n, C/n) contains
C with probability at least 1 —e™"; see Lemma 3.1 for the precise statement. This latter goal
will be achievable as we only need to access the randomness in D*(n, C/n) through a sim-
ple pseudorandom property that is easily shown to hold with probability at least 1 — e™"; see
Definition 3.2.

Our argument applies the absorbing method, a technique that was introduced systematically
by Rédl, Rucinski, and Szemerédi [28], but that has roots in earlier work (see, e.g., [19]).

2.1. Aproblem with absorbing

To highlight a key challenge we face with absorbing, we first describe a natural approach to absorb-
ing in the case of a consistently oriented Hamilton cycle. We note though that absorbing was not
the approach used in [3] to prove Theorem 1.1.

In this case, a ‘global absorber’ in Dy U D*(n, C/n) is a structure A on a small (but linear size)
vertex set with the property that for every sufficiently small set of vertices R, A U R contains the
consistently oriented path on |V(A) U R| vertices with prescribed startpoint and endpoint in R. If
we can obtain such a structure A, then we can proceed as follows: by applying the pseudorandom
property of D*(n, C/n) we find a bidirected path Q in D*(n, C/n) disjoint from A that covers
almost all of the vertices not in A. Let R be the set of vertices consisting of the startpoint x and
endpoint y of Q, together with all those vertices not in Q or A. Using the absorbing property of A
we ensure that there is a consistently oriented path Qg on V(A) U R with startpoint y and endpoint
x. Joining the startpoints and endpoints of Q and Qg, we obtain a consistently oriented Hamilton
cycle.

In this setting of consistently oriented Hamilton cycles, one can build the global absorber A
from a consistently oriented path Q4 with the following property. Given any very small (but linear
size) collection of vertices R, we can find an ordering of the vertices wy, . .., w; in R, and disjoint
edges m along Q4 for each i € [t] where (i) if i < jthen JHZ comes before 3@; on Qu; (ii) X;w; and
w_iy)i are edges in Dy for all i € [¢]. In this case, we can ‘sandwich’ in w; between x; and y; on Qa,
for all i € [t], to obtain a consistently oriented path on V(Q4) U R. One can show such an oriented
path Qq exists, and this forms the heart of the global absorbing set A.!

Further details are required to ensure the ‘prescribed startpoint and endpoint’ property of the global absorbing set.
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For an arbitrary orientation of a Hamilton cycle H, one may try to modify this argument.
Indeed, fix some linear size oriented path Py which is a segment of H. We would like to find an ori-
ented path Q4 in Dy U D*(n, C/n) that has the property that after adding any very small arbitrary
set R of vertices to V(Qa), there is a copy of Py precisely covering the vertices in V(Q4) U R.

To illustrate the difficulty for arbitrary orientations, choose two very small sets of vertices R and
R/, both of which contain some fixed vertex w. Suppose we have constructed a path Q4 that does
absorb both R and R’ analogously to the consistently oriented case. Then depending on how we
have ordered R and R’, w might have to play the role of a different vertex along Py. More precisely,
suppose w is the jth vertex in the ordering of R and the kth vertex in the ordering of R’ where j < k.
Then for R’ we will be sandwiching in more vertices before w along P4 than compared to R. This
means that the vertex in Py that w plays the role of will be different in the R and R’ cases. In
particular, perhaps in the R case, w will need to play the role of a vertex in Py with outdegree 2,
whilst in the R' case, w will need to play the role of a vertex with indegree 2. Furthermore, this
cascading effect also means a vertex along Q4 may have to play the role of a different vertex in Py
depending on the choice of R.

Of course, this would not be an issue if all the edges considered were bidirected. In that case,
no matter where we sandwich in the vertices of R or R’ in Q4, we have all the necessary edges to
find a copy of Py, no matter how Py is oriented. Note that D*(n, C/n) by itself is too sparse to
guarantee such a structure. For example, a.a.s. D*(n, C/n) does not contain a triangle containing
a fixed vertex w, and if we were to sandwich w between two consecutive vertices x; and y; along
Qa, then x;, y;, w must form a triangle. Moreover, Dy may not contain any bidirected edges at all.
However, it turns out that we can guarantee that almost all the edges along Q4 are from D*(n, C/n)
and so are bidirected. The problem is that we will have to take the edges between R and Q4 to be
deterministic, that is, from Dy.

If there are many pairs of consecutive vertices x;, y; along Q4 which we can sandwich w
between, then this gives us some choice about how many other vertices we absorb before w along
the path Qq, potentially giving us the freedom to restrict which vertices of Py we require w to play
the role of. However, in our situation, Dy may not be very dense, so in general it is not the case that
there is a choice of Q4 so that for every vertex w outside of Qyu, there are enough edges between w
and Q4 in Dy for this strategy to work.

As explained shortly, we will get around this problem by constructing Q4 in a more sophis-
ticated way so that () Q4 is only used to absorb certain vertices, and (8) Q4 has some in-built
structure so that if we absorb a vertex w, it must always play the role of one of only a constant
number of vertices along the path Py in H, no matter what the set of vertices R actually is. In
particular, (f) ensures that we do not need bidirected edges between R and Qg ; rather, for a con-
stant number of pairs of consecutive vertices x;, y; along Q4, we need single edges of the correct
orientation between {x;, y;} and w so we can sandwich w in between the two.

2.2. Montgomery’s absorbing method

Montgomery [23, 24] introduced an approach to absorbing that has already found a number of
applications, for example, to spanning trees in random graphs [23], decompositions of Steiner
triple systems [11], and tilings in randomly perturbed graphs [17]. The basic idea of the method
is to build a global absorber using a special graph H,, as a framework. The bipartite graph H,,
has a bounded maximum degree with vertex classes X U Y and Z, and has the property that if
one deletes any set of vertices of a given size from X, then the resulting graph contains a perfect
matching; see Lemma 4.6.

Roughly speaking, a global absorber is usually built from H,, as follows: every edge xy in H,, is
‘replaced’ with a ‘local absorber’ Ay, in such a way that all such absorbers Ay, are vertex-disjoint.
Here a local absorber Ay, is some small gadget that can absorb a certain (constant size) set of
vertices Syy.
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A reason why this approach has found many applications is that, in some sense, it allows one
to construct a global absorber in the case when one can only find ‘few’ local absorbers, where what
is meant by ‘few’ here depends on the precise setting.

In the proofs of Theorems 1.3 and 1.4, we will use H,, again as a framework to build a global
absorber. The reason we use H,,, however, is different from most applications of the method
(although morally the reason is similar to why Montgomery used this method in [23]). In partic-
ular, the key idea is that one can use this framework as a way of guaranteeing property (8) above.
More precisely, in our case, we will replace every edge in Hy, incident to z € Z with the same local
absorbing gadget A,. Here A, is not designed to absorb a fixed set of vertices like before; rather,
it has some local flexibility about what vertices it will absorb; see Definition 4.2. The idea is that
constructing the global absorber in this way gives us the flexibility to know in advance precisely
which (constant size) set of vertices on Py an absorbed vertex w can play the role of.

We emphasise that this version of Montgomery’s method should be useful when trying to
apply absorption to embed any spanning structure in a digraph that does not have some ‘nice’
orientation.

3. Random digraph ingredients

Recall that D(n, p) is the digraph with vertex set [n] where each of the n(n — 1) possible directed
edges is present with probability p, independently of all other edges; D*(n, p) is the digraph with
vertex set [n] where each possible pair of edges uv and itv are included together, independently of
other edges, with probability p.

We will use the following result, observed by Montgomery [25, Theorem 3.1] as a consequence
of McDiarmid’s coupling argument [22]. Recall that an oriented graph is a digraph in which there
is at most one edge between any pair of vertices.

Lemma 3.1 ([22, 25]). Let p € [0, 1] and n € N. Let H be a set of oriented graphs with vertex set [n]
and let Dy be a digraph with vertex set [n]. Then

PEHeH:HCDyUD(n,p)) >PEH € H:H C Dy UD*(n, p)) .

Note the direction of the inequality in the conclusion of Lemma 3.1. The obvious coupling
between these two models gives

P(3H € H:H C Dy UD(n,p)) <P(AH € H : H C Dy U D*(n, 2p — p*)),

where the inequality is in the opposite direction but the edge-probabilities for the two models are
different.

For our purposes, H will consist of all possible copies of a single specific orientation of a cycle
C.Lemma 3.1 says that it is at least as difficult to find C in Dy U D*(n, p) as it is in Dy U D(n, p). By
showing that Dy U D*(n, p) contains C with probability at least 1 — e™", we can use a union bound
to show that a.a.s. Dy U D(n, p) contains all our desired orientations of a cycle of every length.

As is often the case with random (di)graph arguments, we only access the randomness through
a particular sparse pseudorandom property.

Definition 3.2 (Pseudorandom). For 1 <t <n/2, an n-vertex digraph D is t-pseudorandom if for
every U, W C V(D) with |U| = |W| =t and UN W =0, there is an edge W directed from U to W.
Moreover, if D contains both ww and ivw for every such U and W, then we call it t-bipseudorandom.

Ben-Eliezer, Krivelevich, and Sudakov [2, Claim 4.3 and Lemma 4.4] proved versions of the fol-
lowing two lemmas for ¢-pseudorandom digraphs. The proofs for the t-bipseudorandom versions
are identical, so we omit them.
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Lemma 3.3 (Connecting Lemma). Suppose that D is a t-bipseudorandom digraph and
Bi, ..., B¢ C V(D) are pairwise disjoint sets with |B;| > 2t for every i € [£]. Then there is a bidirected
path (vi,...,ve) in D with v; € B; for every i € [{].

Lemma 3.4. If D is an n-vertex t-bipseudorandom digraph, then D has a bidirected path on at least
n — 2t vertices.

In order to use the previous lemmas, we observe that D*(n, C/n) is en-bipseudorandom with
very high probability. We typically assume that en is an integer and ignore inconsequential
rounding.

Lemma 3.5. Let 0 <& <1/2 and let C> ;—llog ¢. Then, with probability at least 1 — exp(—
Ce?n/2), the random digraph D*(n, C/n) is en-bipseudorandom.

Proof. Let B, and B, be disjoint subsets of vertices of size en. In D*(n, C/n), the probability that

there is no edge between B, and B, is (1 — C/ n)(”‘)z. Taking a union bound over all possible sets
B; and B; of size exactly en, we get that the probability that there is some disjoint B; and B, with
no edge between B; and B; is at most

n\? c\”’ e ) Ce’n
1—— §exp<28nlog——C8 n) <exp| — .
en n 3 2

4. The semi-degree absorbing lemma

Following the framework sketched in Section 2, in this section, we define and construct our global
and local absorbers, Definitions 4.1 and 4.2, respectively. Moreover, we prove the existence of
many local absorbers which will then be used to construct a global absorber. For the latter, we use
Montgomery’s technique [23, 24] based on the existence of a sparse auxiliary bipartite graph Hy,
with ‘robust’ matching properties; see Lemma 4.6.

In this section, we do not work in the random model; instead, our results are stated for en-
bipseudorandom digraphs with minimum semi-degree at least an. In Section 5, we apply the
main absorbing lemma, Lemma 4.7, to the randomly perturbed model to prove Theorem 1.3.

Definition 4.1 (Global absorber). Let P be an oriented path and let D be a digraph. A subset
A C V(D) is called a P-global absorber if for every R C V(D) \ A such that |R| 4+ |A| = |V(P)], and
for every pair of distinct vertices v, v’ € R, there is a copy of P in D[A U R] with startpoint v and
endpoint V.

Definition 4.2 (Local absorber). Let P be an oriented path, D be a digraph, S € V(D), and z €
V(D) \ S. A pair (4, v) is a P-absorber for (S, z) if

e ACV(D)\ (SU{z})isasetof |[V(P)| — 2 vertices,
e VEA,
« foreveryse S, D[A U {s,z}] contains a copy of P with startpoint v and endpoint z.

We call v the startpoint of the P-absorber (4, v).

The next lemma guarantees the existence of local absorbers with prescribed startpoint avoiding
any small set of vertices — this ensures that all the local absorbers we find will be vertex-disjoint.
Before this, we prove a simple consequence of the pseudorandom property that will be useful later.
Recall that for an oriented path P = (uy, . . ., ux), o (ujuir1) = + if ujuiy1 € E(P) and o (ujuiy1) =
— otherwise.
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Proposition 4.3. Let n,t € N where 1 <t < n/2. Suppose that D is an n-vertex t-bipseudorandom
digraph with §°(D) > 2t + 1. For every oriented path P on 3 edges and every distinct v,v' € V(D),
there is a copy of P in D with startpoint v and endpoint v'.

Proof. Let P = (uy, up, u3, uy). Let By := N*(v) for * =0o(ujuy), and let B:= N*(v') for
x = o (uqu3). Since |By|,|By| > 2t + 1, there exists disjoint subsets B € B; and Bj C B, with
|Bi|, |B5| > t which do not contain v or v'. Since D is t-bipseudorandom, there exists a bidirected
edge $1v, in D with v; € B} and v, € B. Then (v, vy, v5, V') contains a copy of P with startpoint v
and endpoint v'. O
Lemma 4.4. Let n,ke N and a, & > 0, so that an > 4k + 4 and a > 8(2k + 2)e. Let D be an n-
vertex en-bipseudorandom digraph with 8%(D) > an. Let U C V(D) so that |U| <an/2, and let
ve V(D) \ U. For every oriented path P on 2k + 5 vertices, every vertex set S C V(D) \ {v} of size k,
and every vertex z € V(D) \ (SU {v}), there exists a P-absorber (A, v) for (S, z) disjoint from U.

Proof. Fix P= (uy, ..., tskss5) and an ordering sy, . . ., s, of S. We will find a P-absorber for (S, z)
by applying Lemma 3.3 to various neighbourhoods of the s;, v and z. For each i € [k], define

e Bi:= N*(v), where x = o (ujuy),

 Byi:= N*(s;), where * = o (u2i4212i+1),

+ Byit1:= N*(si), where * = o (uzi12U2i43),
o Btz := N*(2), where * = o (Uzk5Uokra)-

Because of the minimum degree condition, |B;| > an, and therefore, we may take pairwise
disjoint subsets B; C B; \ (U U SU {z}) such that

, (om—%n—k—l) an
|Bi| > > > 2en.
2k+2 402k +2)
Hence, an application of Lemma 3.3 yields a bidirected path (vy,. .., v514,) such that v; € B} for
every i€ [2k + 2].
Let A:= {v,v1,...,v2k42}. To see that (A, v) is a P-absorber for (S, z), observe that for every

si € S, the pairs (uiy1, Uziy2) and (uaiy2, Uiy3) in P have the same directions of the underlying
edges as the edges from the pairs (vy;, s;) and (s;, v2i+1), allowing s; to play the role of uy;1, in P;
see Figure 1. More precisely,

(V) Vis...5>V2i5 85 V2i+13 cee V2k+2) Z)

is a copy of P in D[A U {s;, z}] with startpoint v and endpoint z. O

Our global absorber works in the following two-step approach: given a set R of vertices we
wish to absorb, we first absorb R using some vertices from a specific vertex set X within our global
absorber; then the rest of the global absorber essentially absorbs what is left of X in order to create
a copy of the desired oriented path P. The following lemma will be used to undertake the first step
of this approach; it follows easily from Lemma 3.4 and Proposition 4.3.

Lemma 4.5. Let 5/n < ¢ < B < 1, and let m and Bm be integers such that Bm > 5en. Let D be an
n-vertex en-bipseudorandom digraph, and suppose there is a set X C V(D) of size (1 + B)m such
that for every v € V(D) and for every x € {+, —}, IN*(v) N X| > 28m. Let R C V(D) \ X be such
that |R| > 2, and let v,v' € R be distinct. Then, for every oriented path P on |R| + Bm vertices, there
exists a copy of P in D[R U X] with startpoint v and endpoint v’ that covers R.

Proof. Let X, R, v, and v/ be as in the statement of the lemma. Fix an arbitrary orientation of a
path P=(uy,...,ux) on k:= |R| + Bm vertices. Let f:= 2en, and X’ C X be an arbitrary set of
size fm — 2t —4>en—4>0.LetRp:= RUX'\ {v,v}and Xy := X\ X'.
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U U u3 Uy Uus Ug u7 ug Uy u1g un

AUSU{z}:

U1 U2 U3 U4 s V6 vr 8

Copy of P in AU {s9, 2} :

1 25 V3 V4 vs Vg vy vg

Figure 1. An example of a P-absorber (4, v) for (S, z) from Lemma 4.4 with k = |S| = 3. The double edges indicate that both
orientations are present. For every i € {1, 2,3}, AU {sj, z} contains a copy of P in which vertex v plays the role of uj, vertex z
plays the role of uy;, vertex s; plays the role of u;i12, and v; plays the role of uj;; forj < 2i and uj, forj > 2i.

Observe that D[R] is en-bipseudorandom, so an application of Lemma 3.4 yields a bidirected
path Q. on exactly

IRo| — 2en=|R| — 2+ |X'| —t=|R| + Bm — 3t — 6 (4.1)

vertices. Denote by w and ' the startpoint and endpoint of Q.;, respectively.

Label (Rp \ V(Qs)) U{v,w}as{vo=v,v1,..., Vs, vs41 = w}. For each 0 < i <, we find a copy
(vi, xi» %1, viy1) of the subpath (u3iy1, Usiya, U3it3, Usira) of P, and we also find a copy (W, x, x, V)
of the subpath (uy_3, ug_», ug_1, ux) of P, with x;, xf, x, X' € Xy all distinct. This is possible by
applying Proposition 4.3, observing that in total we will use 2(¢ 4 2) vertices of Xy, and for any
U C X with |U| <2(t 4+ 2) and any z, 2z’ € V(D) \ Xy, we have

8°DI(Xo \ V) Uz, 2}]) = 28m — |X'| — [U| = Bm > 2en + 1.

Recall that o denotes concatenation. Thus (vg, X0, X> V1> X1> X]5 V25 . . . » Ver1) © Qs ©
(W', x, x’,v') contains a copy of P with startpoint v and endpoint v/, since 3t + 3 + |V(Q )| + 3 =
|R| + Bm = k by (4.1); see Figure 2. O

The next lemma provides the sparse auxiliary bipartite graph H,, with robust matching
properties that we use as a framework to build our global absorber.

Lemma 4.6 ([24]). For every 0 < 8 <1 and for sufficiently large m € N with Bm € N, there exists a
bipartite graph H,, with parts XUY and Z, such that |X| = (1 + B)m, |Y| =2m, |Z| = 3m, Hy, has
maximum degree at most 40, and for every X' C X of size m, there exists a perfect matching between
X'UY and Z in Hy,.

We are now ready to prove the absorbing lemma for Theorem 1.3.

Lemma 4.7 (Absorbing lemma). For every 0 < «, n < 1, there exists an 0 < & < an/1000 such that
the following holds for sufficiently large n. Given an oriented path P of size [an/4], every en-
bipseudorandom n-vertex digraph D with §°(D) > an contains a P-global absorber A of size at most
n|V(P)I.

Proof. Given « and 7, define p:= nw/2024. Set B:= «/10 and ¢ := pB/6. Let P=(uy, ..., uy)
with k:= [an/4].

By applying the Chernoff bound for the hypergeometric distribution, we obtain a set X C V(D)
such that
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Figure 2. A copy of Pin D[R U X] with startpoint v and endpoint v’ that covers all the vertices in R, as found in Lemma 4.5.

Y X
Gl /] K AN

Z%&vvvv,},}))

Z R

Ay Ay ASm

Figure 3. The global absorber. The blue path with startpoint v and endpoint v’ is a copy of P covering R, X, ¥, and Z. The red
edges are the matching in the auxiliary graph Hp,, dictating which local absorber A; to use for each vertexin X U Y.

(X1) |X| =1+ B)mwith pn < m < |X| < 2pnand fm > 5en + 2, where we assume that m and
PBm are integers and ignore inconsequential rounding issues;

(X2) for every vertex ve V(D) and for every x¢€{+,—}, IN*(v)NX|> 2IN*(v)| > 1% >
28m+2.

Note that X satisfies the hypothesis of Lemma 4.5, which will be used later. Arbitrarily choose
two disjoint sets Y, Z C V(D) \ X of sizes 2m and 3m, respectively. We form an auxiliary graph
H,, isomorphic to the graph from Lemma 4.6 on XU Y U Z. We label Z as {z1, . . ., z3,n}, and let
N; C X UY be a set of size exactly 40 containing Ny, (z;).

We are now ready to construct the global absorber. We will identify a particular segment of
P for each i € [3m], and use Lemma 4.4 to obtain a local absorber for (Nj, z;) for such a segment.
These local absorbers combined will act as a global absorber since we can apply Lemma 4.5 to form
the rest of P with any appropriate set R of vertices we wish to absorb, using exactly Bm vertices
of X in the process; the remaining part of X along with Y is matched to Z via the property of Hy,
given in Lemma 4.6, and this matching will tell us how to use each local absorber; see Figure 3.

Let zg € V(D) \ (XU Y U Z) be arbitrary. For each i € [3m], we find a (ug4i—s0, - - - » Ug4i+4)-
absorber (A4, zi—1) for (Nj, z;) such that z;_; € A;, the sets A; for i € [3m] are pairwise disjoint and
disjoint from X U Y U {z3,,}.? This is possible by applying Lemma 4.4 (with 40 playing the role of
k) since we require the absorbers to be disjoint from at most

3m
Al=IXUY|+1+ ) Al =1+ G+ p)m+3m-83=(252+ B)m+ 1 < y|V(P)| < an/2
i=1
(4.2)

2Note that, for each i € [3m], z; ¢ A; and z;_1 € A;. Then the A;’s cannot be disjoint from Z. Hence, we only ask them to be
disjoint from {z3,}.
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vertices, where we define

A= XUYU{zzn} U U A

i€[3m]

We claim that A is a P-global absorber, which by (4.2) has size at most n|V(P)|.

Let RC V(D) \ A be such that |R| + |A| = |V(P)| =k, and let v, v € R be distinct. By (X1) and
(X2), we have that 8°(D[X U {v, z9}]) > 28m > 10en > 2en + 1, so we may apply Proposition 4.3
to obtain a copy (v, x1, x2, z0) of (u1, Uz, u3, us), where x1, x2 € X.

LetX:= X\ {x, x2},let B:= B — %,andletR:: (RU {z3m}) \ {v}. By (X1), |X| = (1 + B)m=>
m + 5¢n, and by (X2), for every v € V(D) and for every * € {+, —}, we have [N*(v) N X| > 2Bm.
Therefore we may apply Lemma 4.5 to obtain a copy Q of (4252445 - - - » Ug) in D[XUR] covering
R and exactly Bm vertices of X with startpoint z3,, and endpoint v'.

Now we activate the local absorbers. Let X':= X\ V(Q), and note that |X'| =m. By
Lemma 4.6, there exists a matching between Z and X’ U Y in Hy,. Fixing such a matching, let 2/ €
N; be the vertex matched to z; for each i € [3m]. Since (A;, zj—1) is a (4g4i—80> - - - » Ug4i+4)-absorber
for (N}, z;), there exists a copy Q; of (ugai—sg0 - - - » Ugai+4) in D[A; U {z;, z/}] with startpoint z;_;
and endpoint z;. Concatenating as

(V,XI,xZ,Z())OQlO‘"OQ3mOQ,

we obtain a copy of P in D[A U R] with startpoint v and endpoint v'. 0

5. Proof of Theorem 1.3

Proof of Theorem 1.3. Given « > 0, let ¢ > 0 be as in Lemma 4.7 on input « and n:= 1/2. Set
C:= 4e/g%. Let Dy be an n-vertex digraph with 8%Dy) > an.

Given any orientation of a cycle C of length between 3 and n, our first aim is to prove
that D:= Dy U D*(n, C/n) contains a copy of C with probability at least 1 — e™". Note that
Lemma 3.5 implies that D*(n, C/n) is en-bipseudorandom with probability at least 1 — e™"; thus,
we may assume that D is en-bipseudorandom.

If |C| = 3, we use a proof similar to that of Proposition 4.3. Fix a vertex v € V(D), and consider
Ng(v) and N, (v), which both have size at least an > 2en. Between these sets there is a bidirected
edge, giving both possible orientations of C.

If 4 <|C| <an/2, then we apply Lemma 3.4 to find a bidirected path Q.. in D on |C| —2
vertices. Let v and v/ be the startpoint and endpoint of Q.,, respectively, and let P be a subpath
of C on 3 edges. Observe that SOD(V(D)\ V(Qs)) U {v,v'}]) = an/2 > 2en + 1, and hence we
may apply Proposition 4.3 to find a copy Q of P in D with startpoint v and endpoint v. Joining Q
and Q. at both ends, we obtain a copy of C in D.

If |C| = an/2, then let P be a subpath of C on [an/4] vertices. We apply Lemma 4.7 to find a
P-global absorber A of size at most [n/8]. Since D[V(D) \ A] is en-bipseudorandom, Lemma 3.4
yields a bidirected path on at least n — |A| — 2en > n — |P| 4 2 vertices disjoint from A. Ignoring
some vertices, let Q., be a bidirected path on |C| — |P| 4 2 vertices in D[V(D) \ A], and let vand v/
be the startpoint and endpoint of Q.,, respectively. Let R C (V(D) \ (V(Qs) U A)) U {v, "'} with
v, € Rand |R| = |P| — |A|. By Definition 4.1, there is a copy Q of P in D with startpoint v and
endpoint v covering exactly the vertices of R U A. Joining Q and Q. at both ends, we obtain a
copy of C in D.

Thus, for every orientation of a cycle C of length between 3 and n we have that Dy U D*(n, C/n)
contains a copy of C with probability at least 1 — e™". By Lemma 3.1, Dy U D(n, C/n) contains a
copy of C with probability at least 1 — e~". Taking a union bound over all n — 2 possible lengths
and all at most 2" possible orientations of each length, we have that Dy U D(n, C/n) contains every
orientation of a cycle of length between 3 and n a.a.s.
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Finally, to see that Dy U D(n, C/n) contains a cycle of length 2 a.a.s., simply observe that Dy
has at least an? directed edges, and so the probability no edge of D(n, C/n) is in the opposite
orientation of an edge of Dy is at most

(1 _ C/n)anz < efCom‘

6. The total degree absorbing lemma

While following the same general outline as the proof of Theorem 1.3, the proof of Theorem 1.4
requires several more details in order to deal with complications arising from two sources. First,
since the statement of Theorem 1.4 would be false if we relaxed it to a statement about arbitrary
orientations of cycles, our proof needs to exploit the property that the cycles we wish to embed
do not have (1 — o(1))n vertices of indegree 1. Second, the condition §(D) > 2an is only enough
to give that d* (v) > an or d~(v) > an, but not necessarily both, for each vertex v € V(D). After
introducing some convenient notation, we redefine the global and local absorbers from Section 4
to fit our needs here. The statements of the absorbing lemma and helper lemmas are very similar
to those in Section 4, of course with additional technicalities.

Let P=(uy, ..., ux) be an oriented path. Recall that we call u; the startpoint of P and uy the
endpoint of P, and recall that o (u;ui+1) =+ if wju;11 € E(P) and o (u;jui41) = — otherwise. For

i€ [k—1]\ {1}, we call u; a swap vertex of P if the indegree of u; in P is 0 or 2. At swap vertices,
the directions of the edges of an oriented path change from forwards to backwards, or vice versa.
Note that the ‘type” of swap vertices alternate along the path between indegree 0 and 2. Recall
that when the endpoint of P is the startpoint of P’ and the oriented paths P and P’ are otherwise
vertex-disjoint, P o P’ denotes the concatenation of the two paths.

We cannot hope to find a copy of a given oriented path with prescribed startpoint and endpoint
in a digraph D unless those vertices have suitably high in- or outdegree in D. This motivates the
following two definitions.

Definition 6.1 (x-compatible). Let P = (uj,. .., u;) be an oriented path, let D be an n-vertex
digraph, and let o > 0. For v;, v; € V(D), we say that (vy, v¢) is a-compatible with P if d*(v1) > an
for x = o (uyuy) and d*(vi) > an for * = o (ugug_q).

Definition 6.2 (Global absorber). Let P be an oriented path, let D be a digraph, and let @ > 0. A
subset A C V(D) is a (P, a)-global absorber if for every R C V(D) \ A such that |R| + |A| = |V(P)],
and for every pair of distinct v, v € R such that (v, V) is a-compatible with P, there is a copy of P
in D[A U R] with startpoint v and endpoint v'.

As in Section 4, the global absorber will be constructed out of smaller units called local
absorbers, defined in Definition 6.3. We use a slightly expanded definition of local absorber as
compared to Definition 4.2 so that we have the added flexibility of specifying the endpoint of the
local absorber.

Definition 6.3 (Local absorber). Let P be an oriented path, D be a digraph, S C V(D), and z €
V(D) \ S. A triple (A, v, V') is a P-absorber for (S, z) if

e ACV(D)\ (SU{z})isasetof |V(P)| — 2 vertices,
e v,V €A, withv#£7V,
o foreveryse S, D[A U {s, z}] contains a copy of P with startpoint v and endpoint v'.

We call v the startpoint and v’ the endpoint of the P-absorber (4, v, V).

The next lemma guarantees the existence of local absorbers avoiding some small set of vertices
— this ensures that all the local absorbers we find will be vertex-disjoint.
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Lemma 6.4. Let n,k, £ € N and ¢,a > 0 so that % <eg< % and k> 30 +9. Let D be an n-vertex
en-bipseudorandom digraph with (D) > 2an. Let U C V(D) so that |U| <an/2, and let v,V €
V(D) \ U be distinct. Let P be an arbitrary oriented path P on k vertices with at least 3¢ + 7 swap
vertices such that (v,V') is a-compatible with P. For every S C V(D) \ {v,V'} of size £, and every
vertex z € V(D) \ (SU {v,V'}), there exists a P-absorber (A, v, V') for (S, z) disjoint from U.

Proof. Let P = (uy,...,u). Label SU{z} as zj,...,z¢4+1, where z;41 := z. We will find a P-
absorber for (S,z) by applying Lemma 3.3 to various neighbourhoods of the z;, v and v. Let
*i:= +if d"(z;) > an, and let *; := — otherwise. Choose £ + 1 swap vertices of P, u;,, . . ., Uip,1s
such that

o Qi1 —ij>2for0<j<f€+1,whereip:= 2andipyy:= k—1,
o dpy1 —ig =3,
. d;j(uij) =2foreveryje [£+1].

This is possible because P has at least 3¢ 4 7 swap vertices, and they alternate having in- or
outdegree 2. Define

e Bj:= N*(v), where * = o (ujuy),

. Bij—Z = Bij—l = N*](Z]) fOI'j € [E],

o Bi,-3:= Bi,,—2:= N**(z¢41),

o Bj_4:= N*(v'), where * = o (upuy_1),

e B;:= V(D) for all remaining i € [k — 4].

Since (v, V') is @-compatible with P, and by the definition of the *j, we have that |B;| > an for

every i € [k — 4]. Since |U| < an/2, there exists pairwise disjoint subsets B; C B; \ (U U SU {z})
such that for all i € [k — 4],
(an—an/2—£—1) __on

Bz 0 “ak—a -

2en.

Lemma 3.3 gives a bidirected path (v, ..., vx_4) in D with v; € B; for every i € [k — 4]. Let A:=
{v,v1,...,vk_4, v}, and note that A is disjoint from U and SU {z}.
To see that A is a P-absorber for (S, z), note that for every z; € S, the path

/
(V, Viseoos Vij_z,Zj, Vij—l’ cees Vl‘“_l_?,,Z, Vil+1—2’ R V)

is a copy of P in D[A U {z;, z}] with startpoint v and endpoint v'; see Figure 4. U

Our global absorber is structured and operates similarly to the global absorber in Section 4:
given a set R of vertices we wish to absorb, we first absorb R using some vertices from a specific set
X of vertices, whose properties are given in Definition 6.6; the rest of the global absorber absorbs
what is left of X using carefully constructed local absorbers. The existence of an appropriate X is
given by Lemma 6.7. Lemma 6.8 helps Lemma 6.9 to absorb R using X, and Lemma 6.11 is where
we actually construct the global absorber.

First, we need the following simple observation.

Fact 6.5. Let n € N and a > 0 such that 2an+ 1 <n. Let D be an n-vertex digraph with §(D) >
2an. Then there exists a partition V't U V™ of V(D) such that for each * € {+, —} we have that
|V*| > an/2 and d*(v) > an/2 for every v € V*.
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P . > < < > < > < < > <

Uy u2 u3 Ug us Ug u7 us Uy U0 U1 U2 U3

v z v’

v 7 Ug vy

So z v
vy 5 UG v7 Vg Vg

Figure 4. An example of a P-absorber (A, v, V') for (S = {s1, 52}, z) from Lemma 6.4. The double edges indicate that both ori-
entations are present. Notice that ug, u7, U1 are swap vertices of P, and for each fixed i € {1, 2}, AU {s;, z} contains a copy of
P with startpoint vertex v and endpoint v’ in which vertex z plays the role of ujg, and either s; plays the role of us or s, plays
the role of u7.

v

Copy of P in AU {sg,z} : \ <

vy v v3

Proof. Let U*:= {ve V(D):d*(v) > an/2} for each % € {+, —}. Since §(D) > 2an, we have
that

n
"‘7(” — |U*)) + n|U*| > |E(D)| > an,

which yields |U*| > an/2 for each * € {+, —}. Since §(D) > 2an, Ut U U~ = V(D).

If [lUT\U"|>an/2, then V' := UT\ U™ and V™ := U~ is a desired partition of V(D).
Similarly, we get the desired partition if |[U~ \ UT| > an/2.

Otherwise, we must have that [UT N U~ | > n — an > an + 1. In this case, we partition U™ N
U~ into AUBwith ||A| — |B||<landset VT := (Ut\ U )UAand V" := (U \UT)UB. U

Definition 6.6. Let n€ N and o, f > 0. Let D be an n-vertex digraph. We call X C V(D) an
(a, B, m)-reservoir if

o |X| =1+ B)m, where m and Bm are both integers;

o for every v e V(D) and for every x € {+, —}, if d*(v) = an/2, then [IN*(v) N X| > 28m;

o there is a partition X, X~ of X such that |X*|,|X"| > 2Bm, and for each * € {+, —} we
have that d*(v) > an/2 for every v € X*.

Lemma 6.7. Let o, B > 0 such that 28 <«/3 <1/9, and let m,n € N such that fm € N, n is suf-
ficiently large, and logn < m < 0.9n. Let D be an n-vertex digraph with §(D) > 2an. Then there
exists an («, B, m)-reservoir in D.

Proof. By Fact 6.5, there exists a partition V+, V™ of V(D) such that for each * € {4+, —} we have
that |V*| > an/2 and d*(v) > an/2 for every v € V*.

Let X be a randomly selected subset of V(D) of size (1 + B)m. Set XT:= VtNX and X~ :=
V= N X. Then by the Chernoff bound for the hypergeometric distribution, with positive prob-
ability the following hold: for every ve V(D) and for each * € {4+, —}, d*(v) > an/2 implies
IN*(v) N X| > am/3 > 28m; | XT|,|X~| > 2Bm. Thus, X is an («, 8, m)-reservoir, as desired. [J
Lemma 6.8. Let o, 8,& > 0 and k, m,n € N so that Bm/6>2en and 4 <k < %,Bm. Let P be an
oriented path on k vertices. Let D be an n-vertex en-bipseudorandom digraph with §(D) > 2an such
that D has an («, 8, m)-reservoir X. For every distinct v,v' € V(D) \ X such that (v,V') is (a/2)-
compatible with P, and for every U C X with |U| +k < %,Bm, there exists a copy of P in D[(X \
U) U {v, v'}] with startpoint v and endpoint v'.
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Proof. Let X*, X~ be the partition of X as given in Definition 6.6. Let P = (uy, . . ., u}). Fix an
arbitrary U € X with |U|+k < %,Bm, and let vy, vy € V(D) \ X be such that (v, ) is («/2)-
compatible with P. We will construct a copy Q= (vy,...,vx) of P in D[(X\ U) U {vy, v}] in
stages, in all but the final step adding two vertices at a time.

For some i < (k — 2)/2, assume that there is a copy Q=21 =(y;, ..., v_1)of (uy, ..., 1u2_1)
in D[(X \ U) U {»}] such that d*(v5;_1) > an/2, where % = o (uz;_1u;). Note that Q<! := (vy)
satisfies this for i=1. Let B;:= N*(v3i_1)NX for * =0(upi_1uy;) and B, := X* for x=
o (uziy1uziy2). Since |Byl, |Ba| =>2Bm and |[UU V(Q=*"1)| <|U|+k< %ﬁm, there exist dis-
joint subsets B/ C B; of size at least fm/4 > en disjoint from U and V(Q=*7!). Since D
is en-bipseudorandom, there exists v,; € B{ and v;i41 € By such that (vyi—1, v2i, v2it1) is a
copy of (upi—1, thzjs tair1). We thus obtain Q=*+!:= Q=2=1 0o (v5;_1, v2;, v2i4+1) as a copy of
(U1, ..., uzip1) in D[(X\ U) U {v1}] with d*(v2i41) > an/2 for * = o (uzit112i12).

If k is even, then we slightly modify the last step, after constructing Q=F—3. Similarly as before,
we can find a bidirected edge V_,vr_; between N* (vi_3) N X with s = o (ux_31_,) and N*(v) N
X with * =0 (upug_,) disjoint from U U V(Q=F=3). Thus Q:= Q=73 0 (vk_3, Vk—2> Vk—1»> V&)
contains a copy of P with startpoint v;, endpoint v, and all internal vertices in X \ U.

If k is odd, then we construct Q=K% and use Lemma 3.3 in place of the pseudorandom
property. Let By := N*(vk_4) NX for * =0 (ug_qux_3), B2:= X, and B3 := N*(v,) N X with
% = o (ugug_1). Since |Bi|, |Ba|, | B3| = 2Bmand |[U U V(Q=k—4)| < %,Bm, there exists disjoint sub-
sets Bf C B; of size at least 8m/6 > 2¢n disjoint from U and V(Qsk—4). By Lemma 3.3, there
exists a bidirected path (vx_3, vx_p, vVi_1) with vx_3 € By, vx_» € B, and v;_; € B3. Thus Q:=
Q=% o (vk_4, Vk—3» Vk—2> Vk_1, V) cOntains a copy of P with startpoint v;, endpoint v, and all
internal vertices in X \ U. 0

Lemma 6.9. Let «,8,6>0 and m,neN so that Bm/6>2en. Let D be an n-vertex en-
bipseudorandom digraph with §(D) > 2an, and suppose that D has an («, B, m)-reservoir X. Let
RC V(D) \ X so that |R| > 2, and let v,v' € R be distinct. Let P be an oriented path on |R| + fm
vertices containing at least 4|R| — 6 swap vertices. If (v, V') is (&/2)-compatible with P, then there
exists a copy of P in D[R U X with startpoint v and endpoint v’ that covers R.

Note that if P has |R| 4+ Bm vertices and at least 4|R| — 6 swap vertices, then |R| < %(ﬂm +4).
This implies that P has less than % Bm vertices, which allows us to use Lemma 6.8.

Proof. Label R as {vi,...,v}, with v =:v; and v =:v,. Set k:= Bm+ £ and write P=
(u1,...,ug). So P contains at least 4¢ — 6 swap vertices and (vy, v¢) is («¢/2)-compatible with P.
Choose ¢ — 2 swap vertices of P, uj,, . . ., uj,_,, such that

o djt1 —ij>3forje [¢ — 1], wherei; := 1andi;:= k,
o d*(vj)) > an with x :a(u,}uijﬂ), forevery2 <j<{—1.

This is possible because P has at least 4¢ — 6 swap vertices, and they alternate having in- or
outdegree 2. Let P; := (u,-j, e uijﬂ) forj € [¢ — 1], and observe that (v}, vj+1) is (/2)-compatible
with P;. Since the number of vertices used in total is at most | P| < % pm, by Lemma 6.8, we can find
pairwise internally disjoint copies Q; of P; in D[X U {v}, vj1.1}] with startpoint v; and endpoint v, 1.
Concatenating the Qj as Q:= Qj o - - - 0 Q¢—1, we obtain a copy of P in D[R U X] with startpoint
v1 and endpoint v, covering R; see Figure 5. U

Before proving the main absorbing lemma, we need a lemma which allows us to construct long
paths with endpoints that are compatible with a given short path. This is useful in the construction
of the global absorber and in the application of the global absorber in Section 7.
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Figure 5. A copy of Pin D[R U X] with startpoint v; and endpoint v, that covers all the vertices in R, as found in Lemma 6.9.
The path between v; and v;; is found by Lemma 6.8. The double edges indicate that both orientations are present, as found
by applying the bipseudorandom property.

Lemma 6.10. Let n€ N and 0 <&, < 1/3 such that 1/n <e <«/32. Let D be an n-vertex en-
bipseudorandom digraph with §(D) > 2an, and let U C V(D) with |U| < an/4. For every 2 <k <
(1 — 8&)n — |U| and for every (x1, *2) € {+, —)2, there exists a bidirected path on k verticesin D\ U
with startpoint v and endpoint v satisfying dy} (v), d3 (V') > an/2.

Proof. Fix k < (1 —8&)n — |U|, %, and *,. By Fact 6.5, and as |U| <an/4, we can partition
V(D) \ U as VT U V™, where for each * € {4+, —} we have that |V*| > an/4, and dp(v) > an/2
for every v € V*. Lemma 3.4 gives a bidirected path Q" in D[V*] on at least |V*| — 2¢n vertices
for each % € {+, —}.

Case 1: x1 # *,. We take the last en vertices of Q~ and the first en vertices of QT and find a
bidirected edge between them, which exists since D is en-bipseudorandom. This gives a bidirected
path Qonatleast [V(Q7)| + |V(QT)| — 2en > n — |U| — 6gn vertices. Truncating Q at both ends,
we obtain a bidirected path on k vertices with startpoint in V*! and endpoint in V*2.

Case 2: x; = *,. Without loss of generality, assume *; = %, = +. If k < |V(Q")|, simply trun-
cate QT to k vertices to obtain the desired path. If k> |[V(Q")], then truncate Q™ to Q; on
k—|V(QT)| + 4en > 2¢en vertices, which is possible because

k—|V(QY)| +4en<(1—8e)n—|Ul— (V| —2¢en)+4en=|V | —2en < |V(Q)|.

Between the first en vertices of Q;” and the first en vertices of Q" we find a bidirected edge, as well
as between the last en vertices of Q| and the ‘second’ en vertices of Q™. This yields a bidirected
path Q on at least k vertices and at most k + 4&n vertices with startpoint and endpoint in V7.
Since

IV(QT)| > |VT| —2en>an/4 — 2en > 6en,
we may truncate Q to k vertices and still have the startpoint and endpoint in V. U
We are now ready to prove the absorbing lemma for Theorem 1.4.

Lemma 6.11 (Absorbing lemma). For every 0 < o, < 1, and every 0 < & < a®*n*/108, there exists
an ng € N such that for all n > ny the following holds. Let D be an n-vertex en-bipseudorandom
digraph with §(D) > 2an. Let P be an oriented path on [an/4] vertices with at least n(|V(P)| — 2)
swap vertices. Then D contains a (P, a/2)-global absorber of size at most [an/4] — 9¢en.

Proof. Let n be chosen sufficiently large so that all our calculations will hold. Let D and P be as in
the statement of the lemma. We first construct the global absorber and then prove that it is indeed

3 3
a (P, a/2)-global absorber. Define 8, m > 0 such that «/7 < 8 < /6 and =5isn < m < 5ges1s
and so that m and Bm are integers. Without loss of generality, we may assume that 516/7 is an
integer.
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Figure 6. The pieces P’ which compose the path P as in the proof of Lemma 6.11. P! has at least 6192m/n? vertices and at
least an 1/2-proportion of those vertices are swap vertices, while P? has at least 4r — 6 swap vertices. We further divide P
into disjoint P[l of equal length which house the local absorbers.

Let X be an (o, 8, m)-reservoir, whose existence is guaranteed by Lemma 6.7. Let Y, Z C V(D) \
X be disjoint sets of 2m and 3m vertices, respectively. Fix an auxiliary graph H,, isomorphic to the
graph from Lemma 4.6 on X U Y U Z. For each z € Z, we set N, := Np, ().

We split P into several pieces as follows. Let P = (uy, . . ., uy), with k:= [an/4]. Set r:= 9¢n
and £ := Bm + r — 4. Define

o PYi= (uy, uz, u3, us),

o Pli= (ug ..., uj1),

. DP2.= (Ujr1s - - o> Ujte)s

« P3:= (uj+(, s UR—3),

o PYi= (up_3, Ug_2> Ug_1, Ug),

where 4 <j<k—4—{ is chosen so that P2 has at least 4r — 6 swap vertices. This is possible
because otherwise there are at most

k—10 an
{ 7 J (4r—5)+(—-1)+8< 12ﬁ—8n+,3m+98n<n(k—2)n (6.1)

m
swap vertices of P, a contradiction. To see where (6.1) comes from, one should consider a partition
of V(P)\ {u1,...,us, Ug_4, ..., U} into L%J sets of £ consecutive vertices along P, and one

‘leftover’ set of size at most £ — 1. One should also note that it is only the internal vertices along a
path that can be swap vertices; this is why (6.1) has a 4r — 5 term rather than a 4r — 7 term.

We claim that for some i = 1,3 we have that P’ has at least 6192m/n? vertices, and at least
n|V(P")]/2 of those vertices are swap vertices of P’. This is because if P! has fewer than 6192m/n?
vertices, then P> must have at least

n(k —2) — 10 — £ — 6192m/n* > max {gk 6192m/172}

swap vertices; if P! has less than an 1/2-proportion of its vertices being swap vertices, then P3
must have at least

nk—2)—10—€— gj > max {g|V(P3)I, 6192m/172}

swap vertices. Assume that our claim held for i = 1; the i = 3 case follows by an essentially identical
argument with P? in place of P.

Our local absorbers will be ‘housed’ in P!; the segment P2 will be used to absorb R from
Definition 6.2; P° and P* are used to ensure the copy of P we find has the correct startpoint and
endpoint; P3 is simply used to fill up the remaining part of P.

Let p:= 516/n (recalling that p is an integer) and s:= LFTSJ — 1. For 0 <i<s, define P} :=
(Uip+5, - - - > U(i+1)p+4); see Figure 6. We call Pi1 good if it contains at least 3 - 40 + 7 = 127 swap
vertices of Pil; this will be enough to apply Lemma 6.4 later to find a local absorber for (N, z).
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Note that there must be at least 31 good Pil, since otherwise P! has at most
(s4+1)-1284 Gm—1)-p+(i—2— (s+1)p) < 129(s + 1) + 3mp < glV(P1)| (6.2)

swap vertices, a contradiction. Note that the first term in (6.2) is (s + 1) - 128 as, including the
startpoint and endpoint of P}, V(P}) may contain at most 128 swap vertices of P!, and yet only
contain at most 126 swap vertices of P}. The second term in (6.2) corresponds to the P!'s in which
every vertex may be a swap vertex of P1. The third term in (6.2) counts all those vertices on P! that
do not live in one of the P;. The final inequality in (6.2) follows as 4|V (P')| > 3mp (as |V(P")| >

6192m/n* and p = 516/n), and as 129(s + 1) < 129]‘_72 = %|V(P1)| (by the definition of s and p).

As | XU Y UZ| <an/6, Fact 6.5 ensures a partition V*, V= of V(D) \ (XU Y U Z) such that
|V*| > an/3 and d},(v) > an/2 for every v € V* and * € {4, —}. Since D is en-bipseudorandom,
<>

we can find pairwise disjoint bidirected edges w;w} for 0 <i <s+ 1, where w; € V* with * =
o (uipyatiipy3) and w;’ € V* with * = o (uipysuipt6). In this way, (w/', wit1) is (a/2)-compatible
with Pi1 for0<i<s.

As there are at least 3m good P!, we can assign to each z € Z a distinct i, such that P}Z is good.

We construct pairwise disjoint P}Z-absorbers (Ai,, wi,, wi,11) for (N3, z), disjoint from XU Y U Z,

via repeated applications of Lemma 6.4; this is possible as ¢ < 8%, and because in the process of

constructing these local absorbers we use at most 3mp < an/4 vertices in total.

Let I:= {i:0<i<s,fze Zwithi=1,}. For each i€, we find a copy Qll of Pi1 with start-
point w; and endpoint wjy; such that they are pairwise disjoint and disjoint from XU Y UZ
and A;, for all z € Z. This is achieved by applying Lemma 3.3 as follows. Let B, := N}, (w;’) for x =
o (uip+suip+6) and By—1 := Np(wit1) for * = o (u(it1)p+ati(i+1)p+3)> and note that |By|, [Bp—1] >
an/2. Let By € By and By | € B, be disjoint from each other and all the vertices in XU Y U Z,
\U,ez Ai,» and the other Q}, of which there are at most k = [an/4], so that |B5|, [By—1| > an/10 >
2en. Let By, ..., B,_,' be arbitrary pairwise disjoint subsets of V(D) of size at least 2en, disjoint
from everything from before. By Lemma 3.3 there is a bidirected path through the Bj; adding w;’
and wi; on either end gives the desired Qil.

«—

Finally for P!, we find a bidirected edge wsiowits disjoint from X U Y U Z, the Qi1 foriel,
and the local absorbers A;,, with the property that wg;, € V* with x = o' (4juj—1) and Wipp € V*
with % = o (4j111j+2). In a similar fashion as before, since (Wst1', Wsy2) is (@/2)-compatible with

(U(s+1)p+5> - - - » 4j), we find a copy Qs1+1 of (t(s1)p+5, - - - » 4j) with startpoint ws+1’ and endpoint
Ws42.
Let
A= {wob U J AL U VIQH U V(QL,) U (wisa),
zeZ iel
then
|AY | =143m(p—2)+(s+1-3mp+(G—(s+Dp—4)+1=j—6m—2=|V(P")| - 6m.

(6.3)

Claim 6.12. Given any matching in Hy, covering Z, let Z' C X U'Y denote the set of vertices matched
to Z. Then there exists a copy of P* in D[A' U Z U Z'] with startpoint wo and endpoint wi,.

Proof. For each z € Z, we activate the local absorber A;, for z and its matched vertex Z in Z/,
yielding a copy Qilz of Pilz containing z and z’. We concatenate the Q} to obtain a copy of P! as

1 1 1
(wo, wh) 0 Qg o (w1, W) 0o Qo+ -0Qu o(Wsy2, Wey2)

with startpoint wy and endpoint wiy; see Figure 7.
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Figure 7. A copy of P in D[A' UZ U Z'] as found in Claim 6.12. The w;w} edges are double edges, as found by applying the
bipseudorandom property to V* and V—.

]

To complete the construction of the global absorber, we use Lemma 6.10 to obtain a copy Q? of
P? disjoint from A' UX U Y U Z with startpoint w € V* where * = o (uj4¢ujy¢—1), and endpoint
w' € V* where * = o (uy_3uj_,). Let

A:=XUYUZUA' UV(Q.
By (6.3), £ = Bm +r —4,r =9¢n, and k = [an/4], we have that
[Al=(6+Bm+(G—6m—2)+(k—2—j—L)=k—r=[an/4] —en.

Now we prove that A is indeed a (P, «/2)-global absorber. Let R C V(D) \ A with |R| + |A| =
|V(P)| be given, as well as v,v' € R which are «/2-compatible with P. Let R := (R\ {v,v}) U
{Wii2, w}. By Lemma 6.9, there exists a copy Q? of P? in D[R U X] covering R’ with startpoint
wi12 and endpoint w. By Lemma 6.8, there exists a copy Q° of P’ in D[X U {v, wy}] disjoint from
V(Q?) with startpoint v and endpoint wp; similarly, there exists a copy Q* of P*in D[X U {w,v'}]
disjoint from V(Q°) and V(Q?) with startpoint ' and endpoint v'.

Let X’ be the set of vertices in X not used in Q°, Q2, or Q*. Thus,

X=X —Q+|V(P)| = |R|+2)=Q+B)m—L+r—4=m.

By Lemma 4.6, there exists a perfect matching between Z and X’ U Y. By Claim 6.12, there exists
a copy Q' of P! with startpoint wy and endpoint w/, , covering X’ UY U ZU Al. Concatenate the
Q' as

Q= Q" 0Q'0Q0Q%0Q"
Then Q is a copy of P in D[R U A] with startpoint v and endpoint v'. O

7. Proof of Theorem 1.4

Proof. To prove Theorem 1.4 it clearly suffices to prove the case when n =« and 0 < o < 1. Set
£:= a®/10° and C:= 4e/e?, and let n € N be sufficiently large. Let Dy be an n-vertex digraph
with §(Dy) > 2an.

Call an oriented cycle good if it has length between 3 and n with at most (1 — «)n vertices of
indegree 1, and it is not a consistently oriented cycle of length 3.

Given any good cycle C, we first prove that D:= Dy U D*(n, C/n) contains a copy of C with
probability at least 1 — e™". Note that Lemma 3.5 implies that D*(n, C/n) is en-bipseudorandom
with probability at least 1 — e™"; thus, we may assume that D is an en-bipseudorandom digraph.

When |C| = 3, then choose an arbitrary v € V(D). Either dB'(v) > an or dp,(v) > an. In either
case, since ¢ < /2, we can find an edge in the in- or out-neighbourhood of v using that D is
en-bipseudorandom, yielding a non-consistently oriented cycle of length 3.

When 4 < |C| < (1 — 13¢/a — 8¢)n, we first fix an («/2, /12, 1ft—gn)—reservoir X, as given by
Lemma 6.7. In particular, |X| < %n <an/4, and for every v € V(D) and * € {+, —}, if d},(v) >
an/4 then [N} (v) N X| > 2en. Let (u1, u, u3, ug) be a subpath of C. Since |C| —2 < (1 — 8&)n —
|X|, Lemma 6.10 gives us a bidirected path Q. disjoint from X on |C| — 2 vertices with startpoint
v and endpoint v/ satisfying d}';1 ), dl*)2 (v') > an/4 with ¥ = o (u1u;) and %, = o (ugus). We close
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Q. into a copy of C by applying the bipseudorandom property to disjoint subsets of Nj)} (v) N X
and N2 (v) N X.

When |C| > (1 — 13¢ /o — 8¢)n, we have at least an — 13¢ /an — 8en > 2an/3 swap vertices in
C. By a standard averaging argument, there is a subpath P of C on [an/4] vertices with at least
2T‘)‘(|V(P)| — 2) swap vertices. By Lemma 6.11, there exists a (P, «/2)-global absorber A of size
at most [an/4] — 9en. Let P = (uy, ..., u;) with k:= [an/4], and let *; := o (ujuy) and %, :=
o (ugug—1). By Lemma 6.10, there exists a bidirected path Q., inD\ Aon |C| —k+2 <n — |A| —
8en vertices with startpoint v and endpoint v satisfying dzl (v), d}k)z (V') > an/2. Let RC V(D) \
(AU V(Qs)) be arbitrary with |A| + |R| 4 2 = k, which exists because

0=<k—=2—]Al=[C] = [V(Q:)I = [Al = V(D) \ (AU V(Q:))I.

Let R":= RU {v,v}. Since (v, V') is («/2)-compatible with P, A is a (P, «/2)-global absorber, and
|A| 4+ |R'| = |V(P)|, we have that D[A U R'] contains a copy Q of P with startpoint v and endpoint
V. Joining Q and Q.. at both ends, we have a copy of C as desired.

Thus for every good cycle C, we have that Dy U D*(n, C/n) contains a copy of C with proba-
bility at least 1 — e™". Hence Lemma 3.1 implies that Dy U D(n, C/n) contains a copy of C with
probability at least 1 — e™". Taking a union bound over all the at most #n2" possible lengths and
orientations, we have that Dy U D(n, C/n) contains every good oriented cycle a.a.s.

Finally, we deal with consistently oriented cycles of length 2 and 3. To see that Dy U D(n, C/n)
contains a cycle of length 2 a.a.s., we proceed as in the proof of Theorem 1.3: observe that Dy has at
least an? directed edges, and so the probability no edge of D(n, C/n) is in the opposite orientation
of an edge of Dy is at most

(1 _ C/n)omz < 67Com‘

To see that Dy U D(n, C/n) contains a consistently oriented cycle of length 3, we use the second-
moment method to show that a.a.s. there exists an edge uv of Dy and a vertex w # u, v such that
VW, wii are edges of D(n, C/n). The expected number of such triangles is u := e(Dg)(n — 2)(C/n)?,
while the variance is at most

w(1+2-2(n—3)(C/n)) <5Cu,

since such a triangle intersects 2 - 2(n — 3) other such triangles in their random edges — 2 choices
for which edge (v_v)v or 1/74) to intersect, n — 3 choices for the other vertex x, and 2 choices for
whether xw is the deterministic edge of the other triangle. Since e(Dg) > an?, u is of order n,
so by Chebyshev’s inequality, Dy U D(n, C/n) contains a consistently oriented cycle of length 3
a.a.s. U

8. Concluding remarks

In this paper, we have determined how many random edges one must add to a digraph with lin-
ear minimum semi-degree to a.a.s. force all orientations of a Hamilton cycle. There has also been
interest in obtaining results in the perturbed setting where the initial (di)graph is sparse. In par-
ticular, Hahn-Klimroth, Maesaka, Mogge, Mohr, and Parczyk [16] proved a generalisation of the
graph version of Theorem 1.1, where now « can be a function of » that tends towards 0 as # tends
to infinity. Let G(n, p) be the binomial random graph on the vertex set [n] where every possible
edge is present with probability p, independently of all other edges.

Theorem 8.1 (Hahn-Klimroth, Maesaka, Mogge, Mohr, and Parczyk [16]). Let o« = a(n) : N —
(0,1) and C=C(a) = (6 + o(1)) log é If Go is an n-vertex graph of minimum degree §(Gp) > an,
then Go U G(n, C/n) a.a.s. contains an (undirected) Hamilton cycle.

Note that one cannot take C = o( log é) in Theorem 8.1 (see [16, Section 1.1]), so in this sense
the theorem is best possible. We can also take o to be non-constant in Theorems 1.3 and 1.4;
indeed (taking & = 1 in Theorem 1.4), our proofs give C = ®(a~*) and C = O (a~!?) respectively.
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For Theorem 1.3 at least, similarly to Theorem 8.1, we would expect that this could be improved
to C= B(log é). It would be interesting to determine the optimal dependence of C on «.

In Theorem 1.4 we studied randomly perturbed digraphs with linear minimum total degree.
It is also natural to seek other such total degree results. For example, given any o > 0, ke N,
n € kN and any n-vertex digraph Dy with §(Dgy) > an, how many random edges must one add to
Dy to ensure that, a.a.s., the resulting digraph contains a Ty-factor? Here by Ty-factor we mean a
collection of vertex-disjoint transitive tournaments of size k that together cover V(D).

Another natural problem is to determine the number of random edges one must add to a
digraph with linear minimum semi-degree to a.a.s. force a given oriented spanning tree. The
corresponding problem in the graph setting has been studied in [16, 18, 21].

Remark: Since a version of this paper first appeared on arXiv, Morawski and Petrova [26] have
resolved this problem for fixed-oriented spanning trees of bounded degree.
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