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Abstract
In 2003, Bohman, Frieze, and Martin initiated the study of randomly perturbed graphs and digraphs. For
digraphs, they showed that for every α > 0, there exists a constant C such that for every n-vertex digraph
of minimum semi-degree at least αn, if one adds Cn random edges then asymptotically almost surely
the resulting digraph contains a consistently oriented Hamilton cycle. We generalize their result, showing
that the hypothesis of this theorem actually asymptotically almost surely ensures the existence of every
orientation of a cycle of every possible length, simultaneously. Moreover, we prove that we can relax the
minimum semi-degree condition to a minimum total degree condition when considering orientations of
a cycle that do not contain a large number of vertices of indegree 1. Our proofs make use of a variant of an
absorbing method of Montgomery.
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1. Introduction
Hamilton cycles are one of the most studied objects in graph theory, and several classical results
measure how ‘dense’ a graph needs to be to force a Hamilton cycle. In particular, in 1952 Dirac [9]
proved that every n-vertex graph with minimum degree δ(G)≥ n/2 contains a Hamilton cycle;
the minimum degree condition here is best possible.

The Hamiltonicity of directed graphs has also been extensively investigated since the 1960s. A
directed graph, or digraph, is a set of vertices together with a set of ordered pairs of distinct vertices.
We think of a digraph as a loop-freemultigraph, where every edge is given an orientation from one
endpoint to another, and there is at most one edge oriented in each of the two directions between
a pair of vertices. An oriented graph is a digraph with at most one directed edge between every pair
of vertices. An edge from vertex u to vertex v is represented as −→uv or←−vu. In the digraph setting,
there is more than one natural analogue of the minimum degree of a graph. The minimum semi-
degree δ0(D) of a digraph D is the minimum of all the in- and outdegrees of the vertices in D; the
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minimum total degree δ(D) is the minimum number of edges incident to a vertex in D. Ghouila-
Houri [13] proved that every strongly connected n-vertex digraph D with minimum total degree
δ(D)≥ n contains a consistently orientedHamilton cycle, that is, a cycle (v1, v2, . . . , vn, vn+1 = v1)
with edges −−−→vivi+1 for all i ∈ [n]. Note that there are n-vertex digraphs D with δ(D)= 3n/2− 2
that do not contain a consistently oriented Hamilton cycle, so the strongly connected condition
in Ghouila-Houri’s theorem is necessary.

An immediate consequence of Ghouila-Houri’s theorem is that having minimum semi-degree
δ0(D)≥ n/2 forces a consistently oriented Hamilton cycle, and this is best possible. After earlier
partial results [14, 15], DeBiasio, Kühn, Molla, Osthus, and Taylor [7] proved that this minimum
semi-degree condition in fact forces all possible orientations of a Hamilton cycle, except for the
anti-directed Hamilton cycle, that is, a cycle (v1, v2, . . . , vn, vn+1 = v1) with edges −−−→vivi+1 for all
odd i ∈ [n] and←−−−vivi+1 for all even i ∈ [n], where n is even. Earlier, DeBiasio and Molla [8] showed
that the minimum semi-degree threshold for forcing the anti-directed Hamilton cycle is in fact
δ0(D)≥ n/2+ 1.

There has also been interest in Hamilton cycles in random digraphs: the binomial random
digraph D(n, p) is the digraph with vertex set [n], where each of the n(n− 1) possible directed
edges is present with probability p, independently of all other edges. Recently, Montgomery [25]
determined the sharp threshold for the appearance of any fixed orientation of a Hamilton cycleH
in D(n, p), thereby answering a conjecture of Ferber and Long [12] in a strong form. Depending
on the orientation of H, the threshold here can vary from p= log n/2n to p= log n/n.

In this paper, we find arbitrary orientations of Hamilton cycles in the randomly perturbed
digraph model. Introduced in both the undirected and directed setting by Bohman, Frieze, and
Martin [3], this model starts with a dense (di)graph and then adds m random edges to it. The
overarching question now is how many random edges are required to ensure that the resulting
(di)graph asymptotically almost surely (a.a.s.) satisfies a given property, that is, with probabil-
ity tending to 1 as the number of vertices n tends to infinity. For example, Bohman, Frieze, and
Martin [3] proved that for every α > 0, there is a C = C(α) such that if we start with an arbitrary
n-vertex graph G of minimum degree δ(G)≥ αn and add Cn random edges to it, then a.a.s. the
resulting graph is Hamiltonian. Furthermore, given a constant 0< α < 1/2, in a complete bipar-
tite graph with part sizes αn and (1− α)n, a linear number of random edges are needed to ensure
Hamiltonicity. Thus their result is best possible up to the dependence of C on α. Subsequently,
there has been a significant effort to improve our understanding of randomly perturbed graphs.
See, e.g., [17, Section 1.3] and the references within for a snapshot of some of the results in the
area.

Bohman, Frieze, and Martin [3] also proved the analogous result for consistently oriented
Hamilton cycles in the randomly perturbed digraph model. Their result is also best possible up
to the dependence of C on α, for similar reasons as the undirected setting.
Theorem1.1 (Bohman, Frieze, andMartin [3]). For every α > 0, there is a C = C(α) such that if D0
is an n-vertex digraph of minimum semi-degree δ0(D0)≥ αn, then D0 ∪D(n, C/n) a.a.s. contains a
consistently oriented Hamilton cycle.

A notion closely related to Hamiltonicity is pancyclicity, which is when a (di)graph contains
cycles of every possible length. Bondy [4] generalised Dirac’s theorem, showing that if δ(G)≥ n/2
then G is pancyclic or Kn/2,n/2. Shortly after, Bondy [5] proposed his famous meta-conjecture
that any ‘non-trivial’ sufficient condition for Hamiltonicity should be a sufficient condition for
pancyclicity, up to a small number of exceptional graphs. Krivelevich, Kwan, and Sudakov [20]
generalised Theorem 1.1 in this way, showing that the same conditions as in Theorem 1.1 imply
that the randomly perturbed digraph contains consistently oriented cycles of every length.
Theorem 1.2 (Krivelevich, Kwan, and Sudakov [20]). For every α > 0, there is a C = C(α) such
that if D0 is an n-vertex digraph of minimum semi-degree δ0(D0)≥ αn, then D0 ∪D(n, C/n) a.a.s.
contains a consistently oriented cycle of every length between 2 and n.
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The original rotation-extension-type proofs of Theorems 1.1 and 1.2 only guarantee con-
sistently oriented cycles. Our main result is a generalisation of Theorem 1.2 to allow for all
orientations of a cycle of every possible length. Moreover, we find all these cycles simultaneously,
i.e., D0 ∪D(n, C/n) a.a.s. contains all of them. This last property is an example of universality,
a notion both well-studied in the random graph (e.g., [10, 25]) and randomly perturbed (e.g.,
[6, 27]) settings.
Theorem 1.3. For every α > 0, there is a C = C(α) such that if D0 is an n-vertex digraph of min-
imum semi-degree δ0(D0)≥ αn, then D0 ∪D(n, C/n) a.a.s. contains every orientation of a cycle of
every length between 2 and n.
Theorem 1.3 is best possible in the sense that one really needs to add a linear number of random
edges to D0. Indeed, similarly as before, let D be the complete bipartite digraph with part sizes αn
and (1− α)n (where 0< α < 1/2). Then one needs to add a linear number of edges toD to ensure
a Hamilton cycle of any orientation.

It is also natural to try and generalise Theorem 1.1 in another direction, by relaxing the mini-
mum semi-degree condition to a total degree. Unfortunately, this cannot be true for a Hamilton
cycle H in which all but o(n) vertices have in- and outdegree 1. Indeed, given 0< α < 1/2, let
D be the n-vertex digraph which consists of vertex classes S and T of sizes αn and (1− α)n
respectively, and whose edge set consists of all possible edges with their startpoint in S and their
endpoint in T. Then whilst δ(D)= αn, given any constant C, with probability bounded away from
0, D∪D(n, C/n) contains a linear number of vertices with outdegree 0 and a linear number of
vertices with indegree 0, so it will not contain H.

On the other hand, we show that this type of orientation of a Hamilton cycle is the only one
we cannot guarantee. That is, our desired relaxation is possible for all orientations of a Hamilton
cycle that contain a linear number of vertices of in- or outdegree 2.
Theorem 1.4. For every α, η > 0, there is a C = C(α, η) such that if D0 is an n-vertex digraph of
minimum total degree δ(D0)≥ 2αn, then D0 ∪D(n, C/n) a.a.s. contains every orientation of a cycle
of every length between 2 and n that contains at most (1− η)n vertices of indegree 1.

The proof of Theorem 1.4 has the same core ideas as the proof of Theorem 1.3, but there are
additional complications and technicalities that come with the weakened degree condition.
Notation. Throughout this paper, we omit floors and ceilings whenever this does not affect the
argument. Given a digraph D we write V(D) and E(D) for its vertex and edge sets respectively.
Given some X⊆V(D), we write D[X] for the induced subdigraph of D with vertex set X. Given
some x ∈V(D), N+

D (x) denotes the out-neighborhood of x in D, which is the set of vertices y ∈
V(D) for which −→xy ∈ E(D); the outdegree of x in D is denoted by d+

D (x) := |N+
D (x)|. We define

N−D (x) and d−D (x) analogously, and often omit the subscript when the digraph D considered is
clear from the context.

We write←→uv if−→uv and←−uv are edges and call←→uv a bidirected edge. A bidirected path is a digraph
obtained from an undirected path by replacing each edge uv with a bidirected edge←→uv . An ori-
ented path is a digraph obtained from an undirected path by replacing each edge uv with a single
directed edge; either−→uv or←−uv. Given an oriented or bidirected path P = (u1, . . . , uk) we call u1 its
startpoint and uk its endpoint, distinguishing it from the path (uk, . . . , u1).

Given an oriented path P = (u1, . . . , uk), we define σ (uiui+1) to be + if −−−→uiui+1 ∈ E(P) and −
otherwise. Given any i< j, when clear from the context, we write (ui, . . . , uj) to mean the oriented
subpath of P on vertices ui, . . . , uj; so crucially, the edges in (ui, . . . , uj) are oriented precisely as
in P.

Given two oriented paths P = (u1, . . . , uk) and P′ = (u′1, . . . , u′k′) with uk = u′1 and V(P)∩
V(P′)= {uk}, the concatenation of P and P′, denoted P ◦ P′, is the path (u1, . . . , uk, u′2, u′3, . . . , u′k′).
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The paper is organised as follows. In the next section, we give an outline of the proof of
Theorem 1.3. In Section 3 we collect together various properties of random and pseudorandom
digraphs. The main work of the paper is the proof of our absorbing lemmas, one for each of our
two theorems, which are given in Section 4 for Theorem 1.3 and Section 6 for Theorem 1.4. We
prove Theorems 1.3 and 1.4 in Sections 5 and 7, respectively. In Section 8 we give some concluding
remarks.

2. Overview of the proof of Theorem 1.3
Our goal is to show that for a given orientation C of a cycle, D0 ∪D(n, C/n) contains C with
probability at least 1− e−n. Theorem 1.3 follows from a union bound over all choices of C, of
which there are trivially at most n2n. For the rest of this section, we consider only spanning C, as
the non-spanning cycle case follows easily from the machinery we set up to deal with arbitrary
orientations of a Hamilton cycle.

Let D∗(n, p) denote the random digraph with vertex set [n] where each possible pair of edges−→uv and←−uv are included together, independently of other edges, with probability p. In this way
D∗(n, p) is the same as the binomial random graph G(n, p) where we replace every undirected
edge with a bidirected edge. Via a coupling argument from [22, 25], to prove that D0 ∪D(n, C/n)
contains C with probability at least 1− e−n, it suffices to show that D0 ∪D∗(n, C/n) contains
C with probability at least 1− e−n; see Lemma 3.1 for the precise statement. This latter goal
will be achievable as we only need to access the randomness in D∗(n, C/n) through a sim-
ple pseudorandom property that is easily shown to hold with probability at least 1− e−n; see
Definition 3.2.

Our argument applies the absorbing method, a technique that was introduced systematically
by Rödl, Ruciński, and Szemerédi [28], but that has roots in earlier work (see, e.g., [19]).

2.1. A problemwith absorbing
To highlight a key challenge we face with absorbing, we first describe a natural approach to absorb-
ing in the case of a consistently oriented Hamilton cycle. We note though that absorbing was not
the approach used in [3] to prove Theorem 1.1.

In this case, a ‘global absorber’ in D0 ∪D∗(n, C/n) is a structure A on a small (but linear size)
vertex set with the property that for every sufficiently small set of vertices R, A∪ R contains the
consistently oriented path on |V(A)∪ R| vertices with prescribed startpoint and endpoint in R. If
we can obtain such a structure A, then we can proceed as follows: by applying the pseudorandom
property of D∗(n, C/n) we find a bidirected path Q in D∗(n, C/n) disjoint from A that covers
almost all of the vertices not in A. Let R be the set of vertices consisting of the startpoint x and
endpoint y of Q, together with all those vertices not in Q or A. Using the absorbing property of A
we ensure that there is a consistently oriented pathQR onV(A)∪ Rwith startpoint y and endpoint
x. Joining the startpoints and endpoints of Q and QR, we obtain a consistently oriented Hamilton
cycle.

In this setting of consistently oriented Hamilton cycles, one can build the global absorber A
from a consistently oriented pathQA with the following property. Given any very small (but linear
size) collection of vertices R, we can find an ordering of the vertices w1, . . . ,wt in R, and disjoint
edges−→xiyi alongQA for each i ∈ [t] where (i) if i< j then−→xiyi comes before−→xjyj onQA; (ii)−→xiwi and−→wiyi are edges in D0 for all i ∈ [t]. In this case, we can ‘sandwich’ in wi between xi and yi on QA,
for all i ∈ [t], to obtain a consistently oriented path on V(QA)∪ R. One can show such an oriented
path QA exists, and this forms the heart of the global absorbing set A.1

1Further details are required to ensure the ‘prescribed startpoint and endpoint’ property of the global absorbing set.
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For an arbitrary orientation of a Hamilton cycle H, one may try to modify this argument.
Indeed, fix some linear size oriented path PH which is a segment ofH.Wewould like to find an ori-
ented path QA in D0 ∪D∗(n, C/n) that has the property that after adding any very small arbitrary
set R of vertices to V(QA), there is a copy of PH precisely covering the vertices in V(QA)∪ R.

To illustrate the difficulty for arbitrary orientations, choose two very small sets of vertices R and
R′, both of which contain some fixed vertex w. Suppose we have constructed a path QA that does
absorb both R and R′ analogously to the consistently oriented case. Then depending on how we
have ordered R and R′,wmight have to play the role of a different vertex along PH . More precisely,
supposew is the jth vertex in the ordering of R and the kth vertex in the ordering of R′ where j< k.
Then for R′ we will be sandwiching in more vertices before w along PA than compared to R. This
means that the vertex in PH that w plays the role of will be different in the R and R′ cases. In
particular, perhaps in the R case, w will need to play the role of a vertex in PH with outdegree 2,
whilst in the R′ case, w will need to play the role of a vertex with indegree 2. Furthermore, this
cascading effect also means a vertex along QA may have to play the role of a different vertex in PH
depending on the choice of R.

Of course, this would not be an issue if all the edges considered were bidirected. In that case,
no matter where we sandwich in the vertices of R or R′ in QA, we have all the necessary edges to
find a copy of PH , no matter how PH is oriented. Note that D∗(n, C/n) by itself is too sparse to
guarantee such a structure. For example, a.a.s. D∗(n, C/n) does not contain a triangle containing
a fixed vertex w, and if we were to sandwich w between two consecutive vertices xi and yi along
QA, then xi, yi,wmust form a triangle. Moreover, D0 may not contain any bidirected edges at all.
However, it turns out that we can guarantee that almost all the edges alongQA are fromD∗(n, C/n)
and so are bidirected. The problem is that we will have to take the edges between R and QA to be
deterministic, that is, from D0.

If there are many pairs of consecutive vertices xi, yi along QA which we can sandwich w
between, then this gives us some choice about how many other vertices we absorb before w along
the pathQA, potentially giving us the freedom to restrict which vertices of PH we require w to play
the role of. However, in our situation,D0 may not be very dense, so in general it is not the case that
there is a choice of QA so that for every vertex w outside of QA, there are enough edges between w
and QA in D0 for this strategy to work.

As explained shortly, we will get around this problem by constructing QA in a more sophis-
ticated way so that (α) QA is only used to absorb certain vertices, and (β) QA has some in-built
structure so that if we absorb a vertex w, it must always play the role of one of only a constant
number of vertices along the path PH in H, no matter what the set of vertices R actually is. In
particular, (β) ensures that we do not need bidirected edges between R and QA; rather, for a con-
stant number of pairs of consecutive vertices xi, yi along QA, we need single edges of the correct
orientation between {xi, yi} and w so we can sandwich w in between the two.

2.2. Montgomery’s absorbingmethod
Montgomery [23, 24] introduced an approach to absorbing that has already found a number of
applications, for example, to spanning trees in random graphs [23], decompositions of Steiner
triple systems [11], and tilings in randomly perturbed graphs [17]. The basic idea of the method
is to build a global absorber using a special graph Hm as a framework. The bipartite graph Hm
has a bounded maximum degree with vertex classes X ∪ Y and Z, and has the property that if
one deletes any set of vertices of a given size from X, then the resulting graph contains a perfect
matching; see Lemma 4.6.

Roughly speaking, a global absorber is usually built fromHm as follows: every edge xy inHm is
‘replaced’ with a ‘local absorber’ Axy in such a way that all such absorbers Axy are vertex-disjoint.
Here a local absorber Axy is some small gadget that can absorb a certain (constant size) set of
vertices Sxy.
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A reason why this approach has found many applications is that, in some sense, it allows one
to construct a global absorber in the case when one can only find ‘few’ local absorbers, where what
is meant by ‘few’ here depends on the precise setting.

In the proofs of Theorems 1.3 and 1.4, we will use Hm again as a framework to build a global
absorber. The reason we use Hm, however, is different from most applications of the method
(although morally the reason is similar to why Montgomery used this method in [23]). In partic-
ular, the key idea is that one can use this framework as a way of guaranteeing property (β) above.
More precisely, in our case, we will replace every edge in Hm incident to z ∈ Z with the same local
absorbing gadget Az. Here Az is not designed to absorb a fixed set of vertices like before; rather,
it has some local flexibility about what vertices it will absorb; see Definition 4.2. The idea is that
constructing the global absorber in this way gives us the flexibility to know in advance precisely
which (constant size) set of vertices on PH an absorbed vertex w can play the role of.

We emphasise that this version of Montgomery’s method should be useful when trying to
apply absorption to embed any spanning structure in a digraph that does not have some ‘nice’
orientation.

3. Random digraph ingredients
Recall that D(n, p) is the digraph with vertex set [n] where each of the n(n− 1) possible directed
edges is present with probability p, independently of all other edges; D∗(n, p) is the digraph with
vertex set [n] where each possible pair of edges−→uv and←−uv are included together, independently of
other edges, with probability p.

We will use the following result, observed by Montgomery [25, Theorem 3.1] as a consequence
of McDiarmid’s coupling argument [22]. Recall that an oriented graph is a digraph in which there
is at most one edge between any pair of vertices.
Lemma 3.1 ([22, 25]). Let p ∈ [0, 1] and n ∈N. LetH be a set of oriented graphs with vertex set [n]
and let D0 be a digraph with vertex set [n]. Then

P(∃H ∈H :H ⊂D0 ∪D(n, p))≥ P(∃H ∈H :H ⊂D0 ∪D∗(n, p)) .
Note the direction of the inequality in the conclusion of Lemma 3.1. The obvious coupling

between these two models gives

P(∃H ∈H :H ⊆D0 ∪D(n, p))≤ P(∃H ∈H :H ⊆D0 ∪D∗(n, 2p− p2)),

where the inequality is in the opposite direction but the edge-probabilities for the two models are
different.

For our purposes,H will consist of all possible copies of a single specific orientation of a cycle
C. Lemma 3.1 says that it is at least as difficult to find C in D0 ∪D∗(n, p) as it is in D0 ∪D(n, p). By
showing thatD0 ∪D∗(n, p) contains C with probability at least 1− e−n, we can use a union bound
to show that a.a.s. D0 ∪D(n, p) contains all our desired orientations of a cycle of every length.

As is often the case with random (di)graph arguments, we only access the randomness through
a particular sparse pseudorandom property.
Definition 3.2 (Pseudorandom). For 1≤ t≤ n/2, an n-vertex digraph D is t-pseudorandom if for
every U,W ⊆V(D) with |U| = |W| = t and U ∩W = ∅, there is an edge−→uw directed from U to W.
Moreover, if D contains both−→uw and←−uw for every such U andW, then we call it t-bipseudorandom.

Ben-Eliezer, Krivelevich, and Sudakov [2, Claim 4.3 and Lemma 4.4] proved versions of the fol-
lowing two lemmas for t-pseudorandom digraphs. The proofs for the t-bipseudorandom versions
are identical, so we omit them.
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Lemma 3.3 (Connecting Lemma). Suppose that D is a t-bipseudorandom digraph and
B1, . . . , B& ⊆V(D) are pairwise disjoint sets with |Bi|≥ 2t for every i ∈ [&]. Then there is a bidirected
path (v1, . . . , v&) in D with vi ∈ Bi for every i ∈ [&].
Lemma 3.4. If D is an n-vertex t-bipseudorandom digraph, then D has a bidirected path on at least
n− 2t vertices.

In order to use the previous lemmas, we observe that D∗(n, C/n) is εn-bipseudorandom with
very high probability. We typically assume that εn is an integer and ignore inconsequential
rounding.

Lemma 3.5. Let 0< ε < 1/2 and let C≥ 4
ε log

e
ε . Then, with probability at least 1− exp(−

Cε2n/2), the random digraph D∗(n, C/n) is εn-bipseudorandom.
Proof. Let B1 and B2 be disjoint subsets of vertices of size εn. In D∗(n, C/n), the probability that
there is no edge between B1 and B2 is (1− C/n)(εn)2 . Taking a union bound over all possible sets
B1 and B2 of size exactly εn, we get that the probability that there is some disjoint B1 and B2 with
no edge between B1 and B2 is at most

( n
εn

)2 (
1− C

n

)(εn)2

≤ exp
(
2εn log e

ε
− Cε2n

)
≤ exp

(
−Cε2n

2

)
.

!

4. The semi-degree absorbing lemma
Following the framework sketched in Section 2, in this section, we define and construct our global
and local absorbers, Definitions 4.1 and 4.2, respectively. Moreover, we prove the existence of
many local absorbers which will then be used to construct a global absorber. For the latter, we use
Montgomery’s technique [23, 24] based on the existence of a sparse auxiliary bipartite graph Hm
with ‘robust’ matching properties; see Lemma 4.6.

In this section, we do not work in the random model; instead, our results are stated for εn-
bipseudorandom digraphs with minimum semi-degree at least αn. In Section 5, we apply the
main absorbing lemma, Lemma 4.7, to the randomly perturbed model to prove Theorem 1.3.
Definition 4.1 (Global absorber). Let P be an oriented path and let D be a digraph. A subset
A⊆V(D) is called a P-global absorber if for every R⊆V(D) \A such that |R| + |A| = |V(P)|, and
for every pair of distinct vertices v, v′ ∈ R, there is a copy of P in D[A∪ R] with startpoint v and
endpoint v′.
Definition 4.2 (Local absorber). Let P be an oriented path, D be a digraph, S⊆V(D), and z ∈
V(D) \ S. A pair (A, v) is a P-absorber for (S, z) if

• A⊆V(D) \ (S∪ {z}) is a set of |V(P)|− 2 vertices,
• v ∈A,
• for every s ∈ S, D[A∪ {s, z}] contains a copy of P with startpoint v and endpoint z.

We call v the startpoint of the P-absorber (A, v).
The next lemma guarantees the existence of local absorbers with prescribed startpoint avoiding

any small set of vertices – this ensures that all the local absorbers we find will be vertex-disjoint.
Before this, we prove a simple consequence of the pseudorandom property that will be useful later.
Recall that for an oriented path P = (u1, . . . , uk), σ (uiui+1)= + if−−−→uiui+1 ∈ E(P) and σ (uiui+1)=
− otherwise.
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Proposition 4.3. Let n, t ∈N where 1≤ t < n/2. Suppose that D is an n-vertex t-bipseudorandom
digraph with δ0(D)≥ 2t + 1. For every oriented path P on 3 edges and every distinct v, v′ ∈V(D),
there is a copy of P in D with startpoint v and endpoint v′.
Proof. Let P = (u1, u2, u3, u4). Let B1 := N∗(v) for ∗= σ (u1u2), and let B2 := N∗(v′) for
∗= σ (u4u3). Since |B1|, |B2|≥ 2t + 1, there exists disjoint subsets B′1 ⊆ B1 and B′2 ⊆ B2 with
|B′1|, |B′2|≥ t which do not contain v or v′. Since D is t-bipseudorandom, there exists a bidirected
edge←→v1v2 in D with v1 ∈ B′1 and v2 ∈ B′2. Then (v, v1, v2, v′) contains a copy of P with startpoint v
and endpoint v′. !
Lemma 4.4. Let n, k ∈N and α, ε > 0, so that αn≥ 4k+ 4 and α ≥ 8(2k+ 2)ε. Let D be an n-
vertex εn-bipseudorandom digraph with δ0(D)≥ αn. Let U ⊆V(D) so that |U|≤ αn/2, and let
v ∈V(D) \U. For every oriented path P on 2k+ 5 vertices, every vertex set S⊆V(D) \ {v} of size k,
and every vertex z ∈V(D) \ (S∪ {v}), there exists a P-absorber (A, v) for (S, z) disjoint from U.
Proof. Fix P = (u1, . . . , u2k+5) and an ordering s1, . . . , sk of S. We will find a P-absorber for (S, z)
by applying Lemma 3.3 to various neighbourhoods of the si, v and z. For each i ∈ [k], define

• B1 := N∗(v), where ∗= σ (u1u2),
• B2i := N∗(si), where ∗= σ (u2i+2u2i+1),
• B2i+1 := N∗(si), where ∗= σ (u2i+2u2i+3),
• B2k+2 := N∗(z), where ∗= σ (u2k+5u2k+4).

Because of the minimum degree condition, |Bi|≥ αn, and therefore, we may take pairwise
disjoint subsets B′i ⊆ Bi \ (U ∪ S∪ {z}) such that

|B′i|≥
(αn− α

2 n− k− 1)
2k+ 2

≥ αn
4(2k+ 2)

≥ 2εn.

Hence, an application of Lemma 3.3 yields a bidirected path (v1, . . . , v2k+2) such that vi ∈ B′i for
every i ∈ [2k+ 2].

Let A := {v, v1, . . . , v2k+2}. To see that (A, v) is a P-absorber for (S, z), observe that for every
si ∈ S, the pairs (u2i+1, u2i+2) and (u2i+2, u2i+3) in P have the same directions of the underlying
edges as the edges from the pairs (v2i, si) and (si, v2i+1), allowing si to play the role of u2i+2 in P;
see Figure 1. More precisely,

(v, v1, . . . , v2i, si, v2i+1, . . . , v2k+2, z)

is a copy of P in D[A∪ {si, z}] with startpoint v and endpoint z. !
Our global absorber works in the following two-step approach: given a set R of vertices we

wish to absorb, we first absorb R using some vertices from a specific vertex set X within our global
absorber; then the rest of the global absorber essentially absorbs what is left of X in order to create
a copy of the desired oriented path P. The following lemma will be used to undertake the first step
of this approach; it follows easily from Lemma 3.4 and Proposition 4.3.
Lemma 4.5. Let 5/n< ε < β < 1, and let m and βm be integers such that βm≥ 5εn. Let D be an
n-vertex εn-bipseudorandom digraph, and suppose there is a set X⊆V(D) of size (1+ β)m such
that for every v ∈V(D) and for every ∗ ∈ {+,−}, |N∗(v)∩ X|≥ 2βm. Let R⊆V(D) \ X be such
that |R|≥ 2, and let v, v′ ∈ R be distinct. Then, for every oriented path P on |R| + βm vertices, there
exists a copy of P in D[R∪ X] with startpoint v and endpoint v′ that covers R.
Proof. Let X, R, v, and v′ be as in the statement of the lemma. Fix an arbitrary orientation of a
path P = (u1, . . . , uk) on k := |R| + βm vertices. Let t := 2εn, and X′ ⊆ X be an arbitrary set of
size βm− 2t− 4≥ εn− 4> 0. Let R0 := R∪ X′ \ {v, v′} and X0 := X \ X′.
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Figure 1. An example of a P-absorber (A, v) for (S, z) from Lemma 4.4 with k= |S| = 3. The double edges indicate that both
orientations are present. For every i ∈ {1, 2, 3}, A∪ {si , z} contains a copy of P in which vertex v plays the role of u1, vertex z
plays the role of u11, vertex si plays the role of u2i+2, and vj plays the role of uj+1 for j≤ 2i and uj+2 for j> 2i.

Observe that D[R0] is εn-bipseudorandom, so an application of Lemma 3.4 yields a bidirected
path Q↔ on exactly

|R0|− 2εn= |R|− 2+ |X′|− t = |R| + βm− 3t− 6 (4.1)

vertices. Denote by w and w′ the startpoint and endpoint of Q↔, respectively.
Label (R0 \V(Q↔))∪ {v,w} as {v0 = v, v1, . . . , vt , vt+1 =w}. For each 0≤ i≤ t, we find a copy

(vi, xi, x′i, vi+1) of the subpath (u3i+1, u3i+2, u3i+3, u3i+4) of P, and we also find a copy (w′, x, x′, v′)
of the subpath (uk−3, uk−2, uk−1, uk) of P, with xi, x′i, x, x′ ∈ X0 all distinct. This is possible by
applying Proposition 4.3, observing that in total we will use 2(t + 2) vertices of X0, and for any
U ⊆ X0 with |U|≤ 2(t + 2) and any z, z′ ∈V(D) \ X0, we have

δ0(D[(X0 \U)∪ {z, z′}])≥ 2βm− |X′|− |U|≥ βm≥ 2εn+ 1.
Recall that ◦ denotes concatenation. Thus (v0, x0, x′0, v1, x1, x′1, v2, . . . , vt+1) ◦Q↔ ◦

(w′, x, x′, v′) contains a copy of P with startpoint v and endpoint v′, since 3t + 3+ |V(Q↔)| + 3=
|R| + βm= k by (4.1); see Figure 2. !

The next lemma provides the sparse auxiliary bipartite graph Hm with robust matching
properties that we use as a framework to build our global absorber.
Lemma 4.6 ([24]). For every 0< β ≤ 1 and for sufficiently large m ∈N with βm ∈N, there exists a
bipartite graph Hm with parts X∪̇Y and Z, such that |X| = (1+ β)m, |Y| = 2m, |Z| = 3m, Hm has
maximum degree at most 40, and for every X′ ⊆ X of size m, there exists a perfect matching between
X′ ∪ Y and Z in Hm.

We are now ready to prove the absorbing lemma for Theorem 1.3.
Lemma 4.7 (Absorbing lemma). For every 0< α, η≤ 1, there exists an 0< ε < αη/1000 such that
the following holds for sufficiently large n. Given an oriented path P of size 2αn/43, every εn-
bipseudorandom n-vertex digraph D with δ0(D)≥ αn contains a P-global absorber A of size at most
η|V(P)|.
Proof. Given α and η, define p := ηα/2024. Set β := α/10 and ε := pβ/6. Let P = (u1, . . . , uk)
with k := 2αn/43.

By applying the Chernoff bound for the hypergeometric distribution, we obtain a set X⊆V(D)
such that
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Figure 2. A copy of P in D[R∪ X] with startpoint v and endpoint v′ that covers all the vertices in R, as found in Lemma 4.5.

Figure 3. The global absorber. The blue path with startpoint v and endpoint v′ is a copy of P covering R, X, Y , and Z. The red
edges are the matching in the auxiliary graph Hm, dictating which local absorber Ai to use for each vertex in X ∪ Y .

(X1) |X| = (1+ β)m with pn<m< |X| < 2pn and βm≥ 5εn+ 2, where we assume thatm and
βm are integers and ignore inconsequential rounding issues;

(X2) for every vertex v ∈V(D) and for every ∗ ∈ {+,−}, |N∗(v)∩ X|≥ p
2 |N∗(v)|≥

pαn
2 ≥

2βm+ 2.

Note that X satisfies the hypothesis of Lemma 4.5, which will be used later. Arbitrarily choose
two disjoint sets Y , Z⊆V(D) \ X of sizes 2m and 3m, respectively. We form an auxiliary graph
Hm isomorphic to the graph from Lemma 4.6 on X ∪ Y ∪ Z. We label Z as {z1, . . . , z3m}, and let
Ni ⊆ X ∪ Y be a set of size exactly 40 containing NHm(zi).

We are now ready to construct the global absorber. We will identify a particular segment of
P for each i ∈ [3m], and use Lemma 4.4 to obtain a local absorber for (Ni, zi) for such a segment.
These local absorbers combined will act as a global absorber since we can apply Lemma 4.5 to form
the rest of P with any appropriate set R of vertices we wish to absorb, using exactly βm vertices
of X in the process; the remaining part of X along with Y is matched to Z via the property of Hm
given in Lemma 4.6, and this matching will tell us how to use each local absorber; see Figure 3.

Let z0 ∈V(D) \ (X ∪ Y ∪ Z) be arbitrary. For each i ∈ [3m], we find a (u84i−80, . . . , u84i+4)-
absorber (Ai, zi−1) for (Ni, zi) such that zi−1 ∈Ai, the sets Ai for i ∈ [3m] are pairwise disjoint and
disjoint from X ∪ Y ∪ {z3m}.2 This is possible by applying Lemma 4.4 (with 40 playing the role of
k) since we require the absorbers to be disjoint from at most

|A| = |X ∪ Y| + 1+
3m∑

i=1
|Ai| = 1+ (3+ β)m+ 3m · 83= (252+ β)m+ 1≤ η|V(P)|≤ αn/2

(4.2)

2Note that, for each i ∈ [3m], zi 4∈Ai and zi−1 ∈Ai. Then the Ai’s cannot be disjoint from Z. Hence, we only ask them to be
disjoint from {z3m}.
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vertices, where we define

A := X ∪ Y ∪ {z3m}∪
⋃

i∈[3m]
Ai.

We claim that A is a P-global absorber, which by (4.2) has size at most η|V(P)|.
Let R⊆V(D) \A be such that |R| + |A| = |V(P)| = k, and let v, v′ ∈ R be distinct. By (X1) and

(X2), we have that δ0(D[X ∪ {v, z0}])≥ 2βm≥ 10εn≥ 2εn+ 1, so we may apply Proposition 4.3
to obtain a copy (v, x1, x2, z0) of (u1, u2, u3, u4), where x1, x2 ∈ X.

Let X̄ := X \ {x1, x2}, let β̄ := β − 2
m , and let R̄ := (R∪ {z3m}) \ {v}. By (X1), |X̄| = (1+ β̄)m≥

m+ 5εn, and by (X2), for every v ∈V(D) and for every ∗ ∈ {+,−}, we have |N∗(v)∩ X̄|≥ 2βm.
Therefore we may apply Lemma 4.5 to obtain a copy Q of (u252m+4, . . . , uk) in D[X̄ ∪ R̄] covering
R̄ and exactly β̄m vertices of X̄ with startpoint z3m and endpoint v′.

Now we activate the local absorbers. Let X′ := X̄ \V(Q), and note that |X′| =m. By
Lemma 4.6, there exists a matching between Z and X′ ∪ Y in Hm. Fixing such a matching, let z′i ∈
Ni be the vertex matched to zi for each i ∈ [3m]. Since (Ai, zi−1) is a (u84i−80, . . . , u84i+4)-absorber
for (Ni, zi), there exists a copy Qi of (u84i−80, . . . , u84i+4) in D[Ai ∪ {zi, z′i}] with startpoint zi−1
and endpoint zi. Concatenating as

(v, x1, x2, z0) ◦Q1 ◦ · · · ◦Q3m ◦Q,
we obtain a copy of P in D[A∪ R] with startpoint v and endpoint v′. !

5. Proof of Theorem 1.3
Proof of Theorem 1.3. Given α > 0, let ε > 0 be as in Lemma 4.7 on input α and η := 1/2. Set
C := 4e/ε2. Let D0 be an n-vertex digraph with δ0(D0)≥ αn.

Given any orientation of a cycle C of length between 3 and n, our first aim is to prove
that D := D0 ∪D∗(n, C/n) contains a copy of C with probability at least 1− e−n. Note that
Lemma 3.5 implies that D∗(n, C/n) is εn-bipseudorandom with probability at least 1− e−n; thus,
we may assume that D is εn-bipseudorandom.

If |C| = 3, we use a proof similar to that of Proposition 4.3. Fix a vertex v ∈V(D), and consider
N+
D (v) and N−D (v), which both have size at least αn≥ 2εn. Between these sets there is a bidirected

edge, giving both possible orientations of C.
If 4≤ |C|≤ αn/2, then we apply Lemma 3.4 to find a bidirected path Q↔ in D on |C|− 2

vertices. Let v and v′ be the startpoint and endpoint of Q↔, respectively, and let P be a subpath
of C on 3 edges. Observe that δ0(D[(V(D) \V(Q↔))∪ {v, v′}])≥ αn/2≥ 2εn+ 1, and hence we
may apply Proposition 4.3 to find a copy Q of P in D with startpoint v′ and endpoint v. Joining Q
and Q↔ at both ends, we obtain a copy of C in D.

If |C|≥ αn/2, then let P be a subpath of C on 2αn/43 vertices. We apply Lemma 4.7 to find a
P-global absorberA of size at most 2αn/83. SinceD[V(D) \A] is εn-bipseudorandom, Lemma 3.4
yields a bidirected path on at least n− |A|− 2εn> n− |P| + 2 vertices disjoint from A. Ignoring
some vertices, letQ↔ be a bidirected path on |C|− |P| + 2 vertices inD[V(D) \A], and let v and v′
be the startpoint and endpoint of Q↔, respectively. Let R⊆ (V(D) \ (V(Q↔)∪A))∪ {v, v′} with
v, v′ ∈ R and |R| = |P|− |A|. By Definition 4.1, there is a copy Q of P in D with startpoint v′ and
endpoint v covering exactly the vertices of R∪A. Joining Q and Q↔ at both ends, we obtain a
copy of C in D.

Thus, for every orientation of a cycle C of length between 3 and nwe have thatD0 ∪D∗(n, C/n)
contains a copy of C with probability at least 1− e−n. By Lemma 3.1, D0 ∪D(n, C/n) contains a
copy of C with probability at least 1− e−n. Taking a union bound over all n− 2 possible lengths
and all at most 2n possible orientations of each length, we have thatD0 ∪D(n, C/n) contains every
orientation of a cycle of length between 3 and n a.a.s.
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Finally, to see that D0 ∪D(n, C/n) contains a cycle of length 2 a.a.s., simply observe that D0
has at least αn2 directed edges, and so the probability no edge of D(n, C/n) is in the opposite
orientation of an edge of D0 is at most

(1− C/n)αn2 ≤ e−Cαn.
!

6. The total degree absorbing lemma
While following the same general outline as the proof of Theorem 1.3, the proof of Theorem 1.4
requires several more details in order to deal with complications arising from two sources. First,
since the statement of Theorem 1.4 would be false if we relaxed it to a statement about arbitrary
orientations of cycles, our proof needs to exploit the property that the cycles we wish to embed
do not have (1− o(1))n vertices of indegree 1. Second, the condition δ(D)≥ 2αn is only enough
to give that d+(v)≥ αn or d−(v)≥ αn, but not necessarily both, for each vertex v ∈V(D). After
introducing some convenient notation, we redefine the global and local absorbers from Section 4
to fit our needs here. The statements of the absorbing lemma and helper lemmas are very similar
to those in Section 4, of course with additional technicalities.

Let P = (u1, . . . , uk) be an oriented path. Recall that we call u1 the startpoint of P and uk the
endpoint of P, and recall that σ (uiui+1)= + if −−−→uiui+1 ∈ E(P) and σ (uiui+1)=− otherwise. For
i ∈ [k− 1] \ {1}, we call ui a swap vertex of P if the indegree of ui in P is 0 or 2. At swap vertices,
the directions of the edges of an oriented path change from forwards to backwards, or vice versa.
Note that the ‘type’ of swap vertices alternate along the path between indegree 0 and 2. Recall
that when the endpoint of P is the startpoint of P′ and the oriented paths P and P′ are otherwise
vertex-disjoint, P ◦ P′ denotes the concatenation of the two paths.

We cannot hope to find a copy of a given oriented path with prescribed startpoint and endpoint
in a digraph D unless those vertices have suitably high in- or outdegree in D. This motivates the
following two definitions.
Definition 6.1 (α-compatible). Let P = (u1, . . . , uk) be an oriented path, let D be an n-vertex
digraph, and let α > 0. For v1, vk ∈V(D), we say that (v1, vk) is α-compatible with P if d∗(v1)≥ αn
for ∗= σ (u1u2) and d∗(vk)≥ αn for ∗= σ (ukuk−1).
Definition 6.2 (Global absorber). Let P be an oriented path, let D be a digraph, and let α > 0. A
subset A⊆V(D) is a (P, α)-global absorber if for every R⊆V(D) \A such that |R| + |A| = |V(P)|,
and for every pair of distinct v, v′ ∈ R such that (v, v′) is α-compatible with P, there is a copy of P
in D[A∪ R] with startpoint v and endpoint v′.

As in Section 4, the global absorber will be constructed out of smaller units called local
absorbers, defined in Definition 6.3. We use a slightly expanded definition of local absorber as
compared to Definition 4.2 so that we have the added flexibility of specifying the endpoint of the
local absorber.
Definition 6.3 (Local absorber). Let P be an oriented path, D be a digraph, S⊆V(D), and z ∈
V(D) \ S. A triple (A, v, v′) is a P-absorber for (S, z) if

• A⊆V(D) \ (S∪ {z}) is a set of |V(P)|− 2 vertices,
• v, v′ ∈A, with v 4= v′,
• for every s ∈ S, D[A∪ {s, z}] contains a copy of P with startpoint v and endpoint v′.

We call v the startpoint and v′ the endpoint of the P-absorber (A, v, v′).
The next lemma guarantees the existence of local absorbers avoiding some small set of vertices

– this ensures that all the local absorbers we find will be vertex-disjoint.
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Lemma 6.4. Let n, k, & ∈N and ε, α > 0 so that 1
n ≤ ε≤ α

8k and k≥ 3& + 9. Let D be an n-vertex
εn-bipseudorandom digraph with δ(D)≥ 2αn. Let U ⊆V(D) so that |U|≤ αn/2, and let v, v′ ∈
V(D) \U be distinct. Let P be an arbitrary oriented path P on k vertices with at least 3& + 7 swap
vertices such that (v, v′) is α-compatible with P. For every S⊆V(D) \ {v, v′} of size &, and every
vertex z ∈V(D) \ (S∪ {v, v′}), there exists a P-absorber (A, v, v′) for (S, z) disjoint from U.
Proof. Let P = (u1, . . . , uk). Label S∪ {z} as z1, . . . , z&+1, where z&+1 := z. We will find a P-
absorber for (S, z) by applying Lemma 3.3 to various neighbourhoods of the zi, v and v′. Let
∗i := + if d+(zi)≥ αn, and let ∗i := − otherwise. Choose & + 1 swap vertices of P, ui1 , . . . , ui&+1 ,
such that

• ij+1 − ij ≥ 2 for 0≤ j≤ & + 1, where i0 := 2 and i&+2 := k− 1,
• i&+1 − i& ≥ 3,
• d∗jP (uij)= 2 for every j ∈ [& + 1].

This is possible because P has at least 3& + 7 swap vertices, and they alternate having in- or
outdegree 2. Define

• B1 := N∗(v), where ∗= σ (u1u2),
• Bij−2 := Bij−1 := N∗j(zj) for j ∈ [&],
• Bi&+1−3 := Bi&+1−2 := N∗&+1 (z&+1),
• Bk−4 := N∗(v′), where ∗= σ (ukuk−1),
• Bi := V(D) for all remaining i ∈ [k− 4].

Since (v, v′) is α-compatible with P, and by the definition of the ∗j, we have that |Bi|≥ αn for
every i ∈ [k− 4]. Since |U|≤ αn/2, there exists pairwise disjoint subsets B′i ⊆ Bi \ (U ∪ S∪ {z})
such that for all i ∈ [k− 4],

|B′i|≥
(αn− αn/2− &− 1)

(k− 4)
≥ αn

4(k− 4)
≥ 2εn.

Lemma 3.3 gives a bidirected path (v1, . . . , vk−4) in D with vi ∈ B′i for every i ∈ [k− 4]. Let A :=
{v, v1, . . . , vk−4, v′}, and note that A is disjoint from U and S∪ {z}.

To see that A is a P-absorber for (S, z), note that for every zj ∈ S, the path

(v, v1, . . . , vij−2, zj, vij−1, . . . , vi&+1−3, z, vi&+1−2, . . . , vk−4, v′)

is a copy of P in D[A∪ {zj, z}] with startpoint v and endpoint v′; see Figure 4. !
Our global absorber is structured and operates similarly to the global absorber in Section 4:

given a set R of vertices we wish to absorb, we first absorb R using some vertices from a specific set
X of vertices, whose properties are given in Definition 6.6; the rest of the global absorber absorbs
what is left of X using carefully constructed local absorbers. The existence of an appropriate X is
given by Lemma 6.7. Lemma 6.8 helps Lemma 6.9 to absorb R using X, and Lemma 6.11 is where
we actually construct the global absorber.

First, we need the following simple observation.
Fact 6.5. Let n ∈N and α > 0 such that 2αn+ 1≤ n. Let D be an n-vertex digraph with δ(D)≥
2αn. Then there exists a partition V+ ∪V− of V(D) such that for each ∗ ∈ {+,−} we have that
|V∗|≥ αn/2 and d∗(v)≥ αn/2 for every v ∈V∗.
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Figure 4. An example of a P-absorber (A, v, v′) for (S= {s1, s2}, z) from Lemma 6.4. The double edges indicate that both ori-
entations are present. Notice that u4, u7, u10 are swap vertices of P, and for each fixed i ∈ {1, 2}, A∪ {si , z} contains a copy of
P with startpoint vertex v and endpoint v′ in which vertex z plays the role of u10, and either s1 plays the role of u4 or s2 plays
the role of u7.

Proof. Let U∗ := {v ∈V(D) : d∗(v)≥ αn/2} for each ∗ ∈ {+,−}. Since δ(D)≥ 2αn, we have
that

αn
2
(n− |U∗|)+ n|U∗|≥ |E(D)|≥ αn2,

which yields |U∗|≥ αn/2 for each ∗ ∈ {+,−}. Since δ(D)≥ 2αn, U+ ∪U− =V(D).
If |U+ \U−|≥ αn/2, then V+ := U+ \U− and V− := U− is a desired partition of V(D).

Similarly, we get the desired partition if |U− \U+|≥ αn/2.
Otherwise, we must have that |U+ ∩U−|≥ n− αn≥ αn+ 1. In this case, we partition U+ ∩

U− into A∪ B with ||A|− |B||≤ 1 and set V+ := (U+ \U−)∪A and V− := (U− \U+)∪ B. !
Definition 6.6. Let n ∈N and α, β > 0. Let D be an n-vertex digraph. We call X⊆V(D) an
(α, β ,m)-reservoir if

• |X| = (1+ β)m, where m and βm are both integers;
• for every v ∈V(D) and for every ∗ ∈ {+,−}, if d∗(v)≥ αn/2, then |N∗(v)∩ X|≥ 2βm;
• there is a partition X+, X− of X such that |X+|, |X−|≥ 2βm, and for each ∗ ∈ {+,−} we

have that d∗(v)≥ αn/2 for every v ∈ X∗.
Lemma 6.7. Let α, β > 0 such that 2β ≤ α/3≤ 1/9, and let m, n ∈N such that βm ∈N, n is suf-
ficiently large, and log n5m≤ 0.9n. Let D be an n-vertex digraph with δ(D)≥ 2αn. Then there
exists an (α, β ,m)-reservoir in D.
Proof. By Fact 6.5, there exists a partition V+,V− of V(D) such that for each ∗ ∈ {+,−} we have
that |V∗|≥ αn/2 and d∗(v)≥ αn/2 for every v ∈V∗.

Let X be a randomly selected subset of V(D) of size (1+ β)m. Set X+ := V+ ∩ X and X− :=
V− ∩ X. Then by the Chernoff bound for the hypergeometric distribution, with positive prob-
ability the following hold: for every v ∈V(D) and for each ∗ ∈ {+,−}, d∗(v)≥ αn/2 implies
|N∗(v)∩ X|≥ αm/3≥ 2βm; |X+|, |X−|≥ 2βm. Thus, X is an (α, β ,m)-reservoir, as desired. !
Lemma 6.8. Let α, β , ε > 0 and k,m, n ∈N so that βm/6≥ 2εn and 4≤ k≤ 3

2βm. Let P be an
oriented path on k vertices. Let D be an n-vertex εn-bipseudorandom digraph with δ(D)≥ 2αn such
that D has an (α, β ,m)-reservoir X. For every distinct v, v′ ∈V(D) \ X such that (v, v′) is (α/2)-
compatible with P, and for every U ⊆ X with |U| + k≤ 3

2βm, there exists a copy of P in D[(X \
U)∪ {v, v′}] with startpoint v and endpoint v′.
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Proof. Let X+, X− be the partition of X as given in Definition 6.6. Let P = (u1, . . . , uk). Fix an
arbitrary U ⊆ X with |U| + k≤ 3

2βm, and let v1, vk ∈V(D) \ X be such that (v1, vk) is (α/2)-
compatible with P. We will construct a copy Q= (v1, . . . , vk) of P in D[(X \U)∪ {v1, vk}] in
stages, in all but the final step adding two vertices at a time.

For some i≤ (k− 2)/2, assume that there is a copy Q≤2i−1 = (v1, . . . , v2i−1) of (u1, . . . , u2i−1)
in D[(X \U)∪ {v1}] such that d∗(v2i−1)≥ αn/2, where ∗= σ (u2i−1u2i). Note that Q≤1 := (v1)
satisfies this for i= 1. Let B1 := N∗(v2i−1)∩ X for ∗= σ (u2i−1u2i) and B2 := X∗ for ∗=
σ (u2i+1u2i+2). Since |B1|, |B2|≥ 2βm and |U ∪V(Q≤2i−1)|≤ |U| + k≤ 3

2βm, there exist dis-
joint subsets B′i ⊆ Bi of size at least βm/4≥ εn disjoint from U and V(Q≤2i−1). Since D
is εn-bipseudorandom, there exists v2i ∈ B′1 and v2i+1 ∈ B′2 such that (v2i−1, v2i, v2i+1) is a
copy of (u2i−1, u2i, u2i+1). We thus obtain Q≤2i+1 := Q≤2i−1 ◦ (v2i−1, v2i, v2i+1) as a copy of
(u1, . . . , u2i+1) in D[(X \U)∪ {v1}] with d∗(v2i+1)≥ αn/2 for ∗= σ (u2i+1u2i+2).

If k is even, then we slightly modify the last step, after constructing Q≤k−3. Similarly as before,
we can find a bidirected edge←−−−→vk−2vk−1 betweenN∗(vk−3)∩ X with ∗= σ (uk−3uk−2) andN∗(vk)∩
X with ∗= σ (ukuk−1) disjoint from U ∪V(Q≤k−3). Thus Q := Q≤k−3 ◦ (vk−3, vk−2, vk−1, vk)
contains a copy of P with startpoint v1, endpoint vk, and all internal vertices in X \U.

If k is odd, then we construct Q≤k−4 and use Lemma 3.3 in place of the pseudorandom
property. Let B1 := N∗(vk−4)∩ X for ∗= σ (uk−4uk−3), B2 := X, and B3 := N∗(vk)∩ X with
∗= σ (ukuk−1). Since |B1|, |B2|, |B3|≥ 2βm and |U ∪V(Q≤k−4)|≤ 3

2βm, there exists disjoint sub-
sets B′i ⊆ Bi of size at least βm/6≥ 2εn disjoint from U and V(Q≤k−4). By Lemma 3.3, there
exists a bidirected path (vk−3, vk−2, vk−1) with vk−3 ∈ B1, vk−2 ∈ B2, and vk−1 ∈ B3. Thus Q :=
Q≤k−4 ◦ (vk−4, vk−3, vk−2, vk−1, vk) contains a copy of P with startpoint v1, endpoint vk, and all
internal vertices in X \U. !
Lemma 6.9. Let α, β , ε > 0 and m, n ∈N so that βm/6≥ 2εn. Let D be an n-vertex εn-
bipseudorandom digraph with δ(D)≥ 2αn, and suppose that D has an (α, β ,m)-reservoir X. Let
R⊆V(D) \ X so that |R|≥ 2, and let v, v′ ∈ R be distinct. Let P be an oriented path on |R| + βm
vertices containing at least 4|R|− 6 swap vertices. If (v, v′) is (α/2)-compatible with P, then there
exists a copy of P in D[R∪ X] with startpoint v and endpoint v′ that covers R.

Note that if P has |R| + βm vertices and at least 4|R|− 6 swap vertices, then |R|≤ 1
3 (βm+ 4).

This implies that P has less than 3
2βm vertices, which allows us to use Lemma 6.8.

Proof. Label R as {v1, . . . , v&}, with v =: v1 and v′ =: v&. Set k := βm+ & and write P =
(u1, . . . , uk). So P contains at least 4&− 6 swap vertices and (v1, v&) is (α/2)-compatible with P.

Choose &− 2 swap vertices of P, ui2 , . . . , ui&−1 , such that

• ij+1 − ij ≥ 3 for j ∈ [&− 1], where i1 := 1 and i& := k,
• d∗(vj)≥ αn with ∗= σ (uijuij+1), for every 2≤ j≤ &− 1.

This is possible because P has at least 4&− 6 swap vertices, and they alternate having in- or
outdegree 2. Let Pj := (uij , . . . , uij+1 ) for j ∈ [&− 1], and observe that (vj, vj+1) is (α/2)-compatible
with Pj. Since the number of vertices used in total is at most |P|≤ 3

2βm, by Lemma 6.8, we can find
pairwise internally disjoint copiesQj of Pj inD[X ∪ {vj, vj+1}] with startpoint vj and endpoint vj+1.
Concatenating the Qj as Q := Q1 ◦ · · · ◦Q&−1, we obtain a copy of P in D[R∪ X] with startpoint
v1 and endpoint v& covering R; see Figure 5. !

Before proving the main absorbing lemma, we need a lemma which allows us to construct long
paths with endpoints that are compatible with a given short path. This is useful in the construction
of the global absorber and in the application of the global absorber in Section 7.

5!!� �  2:6�:�4 ������� .�

�	���������
���"176 532�:97693�1$��081�6243�/96#3� 6!$���3  

https://doi.org/10.1017/S0963548323000391


172 I. Araujo et al.

Figure 5. A copy of P in D[R∪ X] with startpoint v1 and endpoint v& that covers all the vertices in R, as found in Lemma 6.9.
The path between vi and vi+1 is found by Lemma 6.8. The double edges indicate that both orientations are present, as found
by applying the bipseudorandom property.

Lemma 6.10. Let n ∈N and 0< ε, α < 1/3 such that 1/n≤ ε≤ α/32. Let D be an n-vertex εn-
bipseudorandom digraph with δ(D)≥ 2αn, and let U ⊆V(D) with |U|≤ αn/4. For every 2≤ k≤
(1− 8ε)n− |U| and for every (∗1, ∗2) ∈ {+,−}2, there exists a bidirected path on k vertices in D \U
with startpoint v and endpoint v′ satisfying d∗1D (v), d∗2D (v′)≥ αn/2.
Proof. Fix k≤ (1− 8ε)n− |U|, ∗1, and ∗2. By Fact 6.5, and as |U|≤ αn/4, we can partition
V(D) \U as V+ ∪V−, where for each ∗ ∈ {+,−} we have that |V∗|≥ αn/4, and d∗D(v)≥ αn/2
for every v ∈V∗. Lemma 3.4 gives a bidirected path Q∗ in D[V∗] on at least |V∗|− 2εn vertices
for each ∗ ∈ {+,−}.

Case 1: ∗1 4= ∗2. We take the last εn vertices of Q− and the first εn vertices of Q+ and find a
bidirected edge between them, which exists sinceD is εn-bipseudorandom. This gives a bidirected
pathQ on at least |V(Q−)| + |V(Q+)|− 2εn≥ n− |U|− 6εn vertices. TruncatingQ at both ends,
we obtain a bidirected path on k vertices with startpoint in V∗1 and endpoint in V∗2 .

Case 2: ∗1 = ∗2. Without loss of generality, assume ∗1 = ∗2 = +. If k≤ |V(Q+)|, simply trun-
cate Q+ to k vertices to obtain the desired path. If k> |V(Q+)|, then truncate Q− to Q−1 on
k− |V(Q+)| + 4εn≥ 2εn vertices, which is possible because

k− |V(Q+)| + 4εn≤ (1− 8ε)n− |U|− (|V+|− 2εn)+ 4εn= |V−|− 2εn≤ |V(Q−)|.
Between the first εn vertices ofQ−1 and the first εn vertices ofQ+ we find a bidirected edge, as well
as between the last εn vertices of Q−1 and the ‘second’ εn vertices of Q+. This yields a bidirected
path Q on at least k vertices and at most k+ 4εn vertices with startpoint and endpoint in V+.
Since

|V(Q+)|≥ |V+|− 2εn≥ αn/4− 2εn≥ 6εn,

we may truncate Q to k vertices and still have the startpoint and endpoint in V+. !
We are now ready to prove the absorbing lemma for Theorem 1.4.

Lemma 6.11 (Absorbing lemma). For every 0< α, η5 1, and every 0< ε≤ α2η4/108, there exists
an n0 ∈N such that for all n≥ n0 the following holds. Let D be an n-vertex εn-bipseudorandom
digraph with δ(D)≥ 2αn. Let P be an oriented path on 2αn/43 vertices with at least η(|V(P)|− 2)
swap vertices. Then D contains a (P, α/2)-global absorber of size at most 2αn/43 − 9εn.
Proof. Let n be chosen sufficiently large so that all our calculations will hold. Let D and P be as in
the statement of the lemma.We first construct the global absorber and then prove that it is indeed
a (P, α/2)-global absorber. Define β ,m> 0 such that α/7≤ β ≤ α/6 and αη3

50000n≤m≤ αη3

49999n,
and so that m and βm are integers. Without loss of generality, we may assume that 516/η is an
integer.
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Figure 6. The pieces Pi which compose the path P as in the proof of Lemma 6.11. P1 has at least 6192m/η2 vertices and at
least an η/2-proportion of those vertices are swap vertices, while P2 has at least 4r− 6 swap vertices. We further divide P1
into disjoint P1i of equal length which house the local absorbers.

LetX be an (α, β ,m)-reservoir, whose existence is guaranteed by Lemma 6.7. Let Y , Z⊆V(D) \
X be disjoint sets of 2m and 3m vertices, respectively. Fix an auxiliary graphHm isomorphic to the
graph from Lemma 4.6 on X ∪ Y ∪ Z. For each z ∈ Z, we set Nz := NHm(z).

We split P into several pieces as follows. Let P = (u1, . . . , uk), with k := 2αn/43. Set r := 9εn
and & := βm+ r− 4. Define

• P0 := (u1, u2, u3, u4),
• P1 := (u4, . . . , uj+1),
• P2 := (uj+1, . . . , uj+&),
• P3 := (uj+&, . . . , uk−3),
• P4 := (uk−3, uk−2, uk−1, uk),

where 4≤ j≤ k− 4− & is chosen so that P2 has at least 4r− 6 swap vertices. This is possible
because otherwise there are at most

⌊k− 10
&

⌋
(4r− 5)+ (&− 1)+ 8< 12 αn

βmεn+ βm+ 9εn< η(k− 2)n (6.1)

swap vertices of P, a contradiction. To see where (6.1) comes from, one should consider a partition
of V(P) \ {u1, . . . , u5, uk−4, . . . , uk} into

⌊
k−10

&

⌋
sets of & consecutive vertices along P, and one

‘leftover’ set of size at most &− 1. One should also note that it is only the internal vertices along a
path that can be swap vertices; this is why (6.1) has a 4r− 5 term rather than a 4r− 7 term.

We claim that for some i= 1, 3 we have that Pi has at least 6192m/η2 vertices, and at least
η|V(Pi)|/2 of those vertices are swap vertices of Pi. This is because if P1 has fewer than 6192m/η2

vertices, then P3 must have at least

η(k− 2)− 10− &− 6192m/η2 ≥max
{η

2
k, 6192m/η2

}

swap vertices; if P1 has less than an η/2-proportion of its vertices being swap vertices, then P3
must have at least

η(k− 2)− 10− &− η

2
j≥max

{η

2
|V(P3)|, 6192m/η2

}

swap vertices. Assume that our claim held for i= 1; the i= 3 case follows by an essentially identical
argument with P3 in place of P1.

Our local absorbers will be ‘housed’ in P1; the segment P2 will be used to absorb R from
Definition 6.2; P0 and P4 are used to ensure the copy of P we find has the correct startpoint and
endpoint; P3 is simply used to fill up the remaining part of P.

Let p := 516/η (recalling that p is an integer) and s := 6 j−8p 7 − 1. For 0≤ i≤ s, define P1i :=
(uip+5, . . . , u(i+1)p+4); see Figure 6. We call P1i good if it contains at least 3 · 40+ 7= 127 swap
vertices of P1i ; this will be enough to apply Lemma 6.4 later to find a local absorber for (Nz, z).
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Note that there must be at least 3m good P1i , since otherwise P1 has at most

(s+ 1) · 128+ (3m− 1) · p+ (j− 2− (s+ 1)p)< 129(s+ 1)+ 3mp≤ η

2
|V(P1)| (6.2)

swap vertices, a contradiction. Note that the first term in (6.2) is (s+ 1) · 128 as, including the
startpoint and endpoint of P1i , V(P1i ) may contain at most 128 swap vertices of P1, and yet only
contain at most 126 swap vertices of P1i . The second term in (6.2) corresponds to the P1i s in which
every vertex may be a swap vertex of P1. The third term in (6.2) counts all those vertices on P1 that
do not live in one of the P1i . The final inequality in (6.2) follows as η

4 |V(P1)|≥ 3mp (as |V(P1)|≥
6192m/η2 and p= 516/η), and as 129(s+ 1)≤ 129 j−2p = η

4 |V(P1)| (by the definition of s and p).
As |X ∪ Y ∪ Z|≤ αn/6, Fact 6.5 ensures a partition V+,V− of V(D) \ (X ∪ Y ∪ Z) such that

|V∗|≥ αn/3 and d∗D(v)≥ αn/2 for every v ∈V∗ and ∗ ∈ {+,−}. Since D is εn-bipseudorandom,
we can find pairwise disjoint bidirected edges

←→
wiw′i for 0≤ i≤ s+ 1, where wi ∈V∗ with ∗=

σ (uip+4uip+3) and wi′ ∈V∗ with ∗= σ (uip+5uip+6). In this way, (wi′,wi+1) is (α/2)-compatible
with P1i for 0≤ i≤ s.

As there are at least 3m good P1i , we can assign to each z ∈ Z a distinct iz such that P1iz is good.
We construct pairwise disjoint P1iz -absorbers (Aiz ,w′iz ,wiz+1) for (Nz, z), disjoint from X ∪ Y ∪ Z,
via repeated applications of Lemma 6.4; this is possible as ε≤ α

8p , and because in the process of
constructing these local absorbers we use at most 3mp≤ αn/4 vertices in total.

Let I := {i : 0≤ i≤ s, !z ∈ Z with i= iz}. For each i ∈ I, we find a copy Q1
i of P1i with start-

point wi′ and endpoint wi+1 such that they are pairwise disjoint and disjoint from X ∪ Y ∪ Z
and Aiz for all z ∈ Z. This is achieved by applying Lemma 3.3 as follows. Let B2 := N∗D(wi′) for ∗=
σ (uip+5uip+6) and Bp−1 := N∗D(wi+1) for ∗= σ (u(i+1)p+4u(i+1)p+3), and note that |B2|, |Bp−1|≥
αn/2. Let B′2 ⊆ B2 and B′p−1 ⊆ Bp−1 be disjoint from each other and all the vertices in X ∪ Y ∪ Z,⋃

z∈Z Aiz , and the otherQ1
i , of which there are at most k= 2αn/43, so that |B′2|, |B′p−1|≥ αn/10≥

2εn. Let B3′, . . . , Bp−2′ be arbitrary pairwise disjoint subsets of V(D) of size at least 2εn, disjoint
from everything from before. By Lemma 3.3 there is a bidirected path through the B′i; adding wi′
and wi+1 on either end gives the desired Q1

i .
Finally for P1, we find a bidirected edge

←−−−−→
ws+2w′s+2 disjoint from X ∪ Y ∪ Z, the Q1

i for i ∈ I,
and the local absorbers Aiz , with the property that ws+2 ∈V∗ with ∗= σ (ujuj−1) and w′s+2 ∈V∗
with ∗= σ (uj+1uj+2). In a similar fashion as before, since (ws+1′,ws+2) is (α/2)-compatible with
(u(s+1)p+5, . . . , uj), we find a copy Q1

s+1 of (u(s+1)p+5, . . . , uj) with startpoint ws+1′ and endpoint
ws+2.

Let
A1 := {w0}∪

⋃

z∈Z
Aiz ∪

⋃

i∈I
V(Q1

i )∪V(Q1
s+1)∪ {w′s+2},

then
|A1| = 1+ 3m(p− 2)+ (s+ 1− 3m)p+ (j− (s+ 1)p− 4)+ 1= j− 6m− 2= |V(P1)|− 6m.

(6.3)

Claim 6.12. Given anymatching in Hm covering Z, let Z′ ⊆ X ∪ Y denote the set of vertices matched
to Z. Then there exists a copy of P1 in D[A1 ∪ Z ∪ Z′] with startpoint w0 and endpoint w′s+2.
Proof. For each z ∈ Z, we activate the local absorber Aiz for z and its matched vertex z′ in Z′,
yielding a copy Q1

iz of P
1
iz containing z and z′. We concatenate the Q1

i to obtain a copy of P1 as

(w0,w′0) ◦Q1
0 ◦ (w1,w′1) ◦Q1

1 ◦ · · · ◦Q1
s+1 ◦ (ws+2,w′s+2)

with startpoint w0 and endpoint w′s+2; see Figure 7.
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Figure 7. A copy of P1 in D[A1 ∪ Z ∪ Z′] as found in Claim 6.12. The wiw′i edges are double edges, as found by applying the
bipseudorandom property to V+ and V−.

!
To complete the construction of the global absorber, we use Lemma 6.10 to obtain a copyQ3 of

P3 disjoint from A1 ∪ X ∪ Y ∪ Z with startpoint w ∈V∗ where ∗= σ (uj+&uj+&−1), and endpoint
w′ ∈V∗ where ∗= σ (uk−3uk−2). Let

A := X ∪ Y ∪ Z ∪A1 ∪V(Q3).
By (6.3), & = βm+ r− 4, r = 9εn, and k= 2αn/43, we have that

|A| = (6+ β)m+ (j− 6m− 2)+ (k− 2− j− &)= k− r = 2αn/43 − 9εn.
Now we prove that A is indeed a (P, α/2)-global absorber. Let R⊆V(D) \A with |R| + |A| =

|V(P)| be given, as well as v, v′ ∈ R which are α/2-compatible with P. Let R′ := (R \ {v, v′})∪
{w′s+2,w}. By Lemma 6.9, there exists a copy Q2 of P2 in D[R′ ∪ X] covering R′ with startpoint
w′s+2 and endpoint w. By Lemma 6.8, there exists a copy Q0 of P0 in D[X ∪ {v,w0}] disjoint from
V(Q2) with startpoint v and endpoint w0; similarly, there exists a copy Q4 of P4 in D[X ∪ {w′, v′}]
disjoint from V(Q0) and V(Q2) with startpoint w′ and endpoint v′.

Let X′ be the set of vertices in X not used in Q0, Q2, or Q4. Thus,
|X′| = |X|− (2+ |V(P2)|− |R′| + 2)= (1+ β)m− & + r− 4=m.

By Lemma 4.6, there exists a perfect matching between Z and X′ ∪ Y . By Claim 6.12, there exists
a copy Q1 of P1 with startpoint w0 and endpoint w′s+2 covering X′ ∪ Y ∪ Z ∪A1. Concatenate the
Qi as

Q := Q0 ◦Q1 ◦Q2 ◦Q3 ◦Q4.
Then Q is a copy of P in D[R∪A] with startpoint v and endpoint v′. !

7. Proof of Theorem 1.4
Proof. To prove Theorem 1.4 it clearly suffices to prove the case when η = α and 0< α5 1. Set
ε := α6/109 and C := 4e/ε2, and let n ∈N be sufficiently large. Let D0 be an n-vertex digraph
with δ(D0)≥ 2αn.

Call an oriented cycle good if it has length between 3 and n with at most (1− α)n vertices of
indegree 1, and it is not a consistently oriented cycle of length 3.

Given any good cycle C, we first prove that D := D0 ∪D∗(n, C/n) contains a copy of C with
probability at least 1− e−n. Note that Lemma 3.5 implies that D∗(n, C/n) is εn-bipseudorandom
with probability at least 1− e−n; thus, we may assume that D is an εn-bipseudorandom digraph.

When |C| = 3, then choose an arbitrary v ∈V(D). Either d+
D (v)≥ αn or d−D (v)≥ αn. In either

case, since ε≤ α/2, we can find an edge in the in- or out-neighbourhood of v using that D is
εn-bipseudorandom, yielding a non-consistently oriented cycle of length 3.

When 4≤ |C|≤ (1− 13ε/α− 8ε)n, we first fix an (α/2, α/12, 12εα n)-reservoir X, as given by
Lemma 6.7. In particular, |X|≤ 13ε

α n≤ αn/4, and for every v ∈V(D) and ∗ ∈ {+,−}, if d∗D(v)≥
αn/4 then |N∗D(v)∩ X|≥ 2εn. Let (u1, u2, u3, u4) be a subpath of C. Since |C|− 2≤ (1− 8ε)n−
|X|, Lemma 6.10 gives us a bidirected path Q↔ disjoint from X on |C|− 2 vertices with startpoint
v and endpoint v′ satisfying d∗1D (v), d∗2D (v′)≥ αn/4 with ∗1 = σ (u1u2) and ∗2 = σ (u4u3). We close

5!!� �  2:6�:�4 ������� .�

�	���������
���"176 532�:97693�1$��081�6243�/96#3� 6!$���3  

https://doi.org/10.1017/S0963548323000391


176 I. Araujo et al.

Q↔ into a copy of C by applying the bipseudorandom property to disjoint subsets of N∗1D (v)∩ X
and N∗2D (v′)∩ X.

When |C|≥ (1− 13ε/α− 8ε)n, we have at least αn− 13ε/αn− 8εn≥ 2αn/3 swap vertices in
C. By a standard averaging argument, there is a subpath P of C on 2αn/43 vertices with at least
2α
3 (|V(P)|− 2) swap vertices. By Lemma 6.11, there exists a (P, α/2)-global absorber A of size
at most 2αn/43 − 9εn. Let P = (u1, . . . , uk) with k := 2αn/43, and let ∗1 := σ (u1u2) and ∗2 :=
σ (ukuk−1). By Lemma 6.10, there exists a bidirected pathQ↔ inD \A on |C|− k+ 2≤ n− |A|−
8εn vertices with startpoint v and endpoint v′ satisfying d∗1D (v), d∗2D (v′)≥ αn/2. Let R⊆V(D) \
(A∪V(Q↔)) be arbitrary with |A| + |R| + 2= k, which exists because

0≤ k− 2− |A| = |C|− |V(Q↔)|− |A|≤ |V(D) \ (A∪V(Q↔))|.
Let R′ := R∪ {v, v′}. Since (v, v′) is (α/2)-compatible with P, A is a (P, α/2)-global absorber, and
|A| + |R′| = |V(P)|, we have that D[A∪ R′] contains a copy Q of P with startpoint v and endpoint
v′. Joining Q and Q↔ at both ends, we have a copy of C as desired.

Thus for every good cycle C, we have that D0 ∪D∗(n, C/n) contains a copy of C with proba-
bility at least 1− e−n. Hence Lemma 3.1 implies that D0 ∪D(n, C/n) contains a copy of C with
probability at least 1− e−n. Taking a union bound over all the at most n2n possible lengths and
orientations, we have that D0 ∪D(n, C/n) contains every good oriented cycle a.a.s.

Finally, we deal with consistently oriented cycles of length 2 and 3. To see that D0 ∪D(n, C/n)
contains a cycle of length 2 a.a.s., we proceed as in the proof of Theorem 1.3: observe thatD0 has at
least αn2 directed edges, and so the probability no edge ofD(n, C/n) is in the opposite orientation
of an edge of D0 is at most

(1− C/n)αn2 ≤ e−Cαn.
To see thatD0 ∪D(n, C/n) contains a consistently oriented cycle of length 3, we use the second-

moment method to show that a.a.s. there exists an edge −→uv of D0 and a vertex w 4= u, v such that−→vw,−→wu are edges ofD(n, C/n). The expected number of such triangles isµ := e(D0)(n− 2)(C/n)2,
while the variance is at most

µ (1+ 2 · 2(n− 3)(C/n))≤ 5Cµ,
since such a triangle intersects 2 · 2(n− 3) other such triangles in their random edges — 2 choices
for which edge (−→vw or −→wu) to intersect, n− 3 choices for the other vertex x, and 2 choices for
whether xw is the deterministic edge of the other triangle. Since e(D0)≥ αn2, µ is of order n,
so by Chebyshev’s inequality, D0 ∪D(n, C/n) contains a consistently oriented cycle of length 3
a.a.s. !

8. Concluding remarks
In this paper, we have determined how many random edges one must add to a digraph with lin-
ear minimum semi-degree to a.a.s. force all orientations of a Hamilton cycle. There has also been
interest in obtaining results in the perturbed setting where the initial (di)graph is sparse. In par-
ticular, Hahn-Klimroth, Maesaka, Mogge, Mohr, and Parczyk [16] proved a generalisation of the
graph version of Theorem 1.1, where now α can be a function of n that tends towards 0 as n tends
to infinity. Let G(n, p) be the binomial random graph on the vertex set [n] where every possible
edge is present with probability p, independently of all other edges.
Theorem 8.1 (Hahn-Klimroth, Maesaka, Mogge, Mohr, and Parczyk [16]). Let α = α(n) :N→
(0, 1) and C = C(α)= (6+ o(1)) log 1

α . If G0 is an n-vertex graph of minimum degree δ(G0)≥ αn,
then G0 ∪G(n, C/n) a.a.s. contains an (undirected) Hamilton cycle.

Note that one cannot take C = o( log 1
α ) in Theorem 8.1 (see [16, Section 1.1]), so in this sense

the theorem is best possible. We can also take α to be non-constant in Theorems 1.3 and 1.4;
indeed (taking α = η in Theorem 1.4), our proofs give C = ((α−4) and C = ((α−12) respectively.
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For Theorem 1.3 at least, similarly to Theorem 8.1, we would expect that this could be improved
to C = (( log 1

α ). It would be interesting to determine the optimal dependence of C on α.
In Theorem 1.4 we studied randomly perturbed digraphs with linear minimum total degree.

It is also natural to seek other such total degree results. For example, given any α > 0, k ∈N,
n ∈ kN and any n-vertex digraph D0 with δ(D0)≥ αn, how many random edges must one add to
D0 to ensure that, a.a.s., the resulting digraph contains a Tk-factor? Here by Tk-factor we mean a
collection of vertex-disjoint transitive tournaments of size k that together cover V(D).

Another natural problem is to determine the number of random edges one must add to a
digraph with linear minimum semi-degree to a.a.s. force a given oriented spanning tree. The
corresponding problem in the graph setting has been studied in [16, 18, 21].
Remark: Since a version of this paper first appeared on arXiv, Morawski and Petrova [26] have
resolved this problem for fixed-oriented spanning trees of bounded degree.
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