
III. International Conference on Electrical, Computer and Energy Technologies (ICECET 2023)

16-17 November 2023, Cape Town-South Africa

A Parallel Connected Region Algorithm Optimized
for CPU-GPU Heterogeneous Platforms

David Troendle
Computer and Information Science
The University of Mississippi

University, MS USA
david@cs.olemiss.edu

Byunghyun Jang
Computer and Information Science
The University of Mississippi

University, MS USA
bjang@cs.olemiss.edu

Abstract—In recent years, GPU has become an important
component of the system by accelerating applications with data
parallelism. While traditional discrete GPU cooperates with CPU
over I/O bus, more recent processor design trends feature fine-
grained synchronization and inexpensive data sharing between
CPU and GPU processors by tightly coupling them at a cache
level. However, designing algorithms that effectively exploit these
new architectural features has proved challenging.

In this paper we present a novel parallel algorithm called
PARAFILL that identifies connected regions of arbitrary topolo-
gies in an image very efficiently on CPU-GPU heterogeneous
platforms. PARAFILL is a greedy algorithm using dynamic
programming memoization techniques. Essential to its efficiency is
a data structure called the workload manager, which dynamically
manages the complexity of work in each pass. We evaluate the
performance of PARAFILL across two different heterogeneous
platforms: a traditional discrete GPU system where the CPU
and GPU are connected through I/O bus, and a single-chip
processor where the CPU and GPU are tightly coupled at a cache
level. We also compare PARAFILL to a CPU-optimized connected
region algorithm using applications with different parallelism
to quantify its scalability. Our experimental results show that
minimizing GPU overhead and managing pass-by-pass workload
are especially important for sparsely parallel applications. Tightly
coupled GPUs, although less powerful than discrete GPUs, com-
pete well in sparsely parallel applications because of their reduced
overhead. Finally, we present two applications of PARAFILL:
traditional flood filling and the absorption of unconnected interior
regions into a containing connected region.

Index Terms—GPU Programming, Parallel Algorithms, Flood
Fill, Connected Regions

I. INTRODUCTION

Identifying the connected regions of an image or other
forms of data is a basic yet very important task that finds
many applications in the fields of computer graphics and
computer vision [1, 2]. For example, it is commonly used in
paint programs (e.g., Adobe Photoshop), image segmentation,
or solving mazes. Although there are several well-known
algorithms for this task [3, 4], they suffer from high compu-

tation demands and can be very slow for certain topologies,
especially large topologies.

General Purpose computation on GPUs (GPGPU) provides

opportunity for significant acceleration of data and compute

intensive applications [5]. Traditional GPGPU platforms are

powered by discrete GPUs connected through I/O bus. Al-

though many algorithms and applications have been success-

fully accelerated using GPUs, there remain many unacceler-

ated algorithms and applications due to sparse parallelism and

GPU-related overhead. To address this issue and provide other

benefits such as low design cost and fast on-chip interconnec-

tion, recent industry trends have merged CPUs with GPUs on

a single processor die. Such CPU-GPU merged processors are

prevalent in the market as of the writing of this paper (AMD

APUs [6] and Intel Sandy Bridge/Ivy Bridge/Haswell [7]).

Regardless of hardware configurations (i.e., traditional dis-

crete GPUs and relatively new tightly coupled processors), de-

signing and optimizing workloads (e.g., algorithms or applica-

tions) that fully exploit the hardware features is a challenging

task. Workloads must be carefully divided into two different

kinds of tasks, one of which is executed on a task parallel CPU,

while the other is executed on a data-parallel GPU. Techniques

such as simple workload distribution/balancing are not enough

to take full advantage of computing power that hardware has

to offer. For small problem sizes, a GPU may not be the best

choice.

In this paper, we introduce a new parallel algorithm,

PARAFILL, which efficiently identifies connected regions in

images or other data on CPU-GPU heterogeneous platforms.

PARAFILL is a greedy algorithm that uses dynamic program-

ming’s memoization technique. It takes an iterative approach,

processing the work for the current pass while discovering

new work for the next pass. A data structure called workload

manager is a key to the efficiency of the algorithm by manag-

ing the complexity of each pass. Applications rich in intrinsic

data parallelism typically process against all data in one pass.

Vector addition and matrix multiplication are good examples.

In application where there is only sparse parallelism that must

be discovered over many passes, processing against all data in

each pass is manifestly inefficient. We demonstrate the over-

head of tracking and processing just the parallel opportunities

of the current pass can be less expensive than processing the

entire problem geometry in each pass. In PARAFILL’s case,

979-8-3503-2781-6/23/$31.00 ©2023 IEEE

20
23

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 E

le
ct

ric
al

, C
om

pu
te

r a
nd

 E
ne

rg
y

Te
ch

no
lo

gi
es

 (I
CE

CE
T)

 |
 9

79
-8

-3
50

3-
27

81
-6

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

OI
: 1

0.
11

09
/IC

EC
ET

58
91

1.
20

23
.1

03
89

55
0

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on October 29,2024 at 04:48:56 UTC from IEEE Xplore. Restrictions apply.

managing workload requires using inefficient operations such

as barriers and atomic operations.

Our contribution is a region connection algorithm for GPU-

powered platforms. We openly discuss the problems we faced

designing an algorithm for a sparsely parallel problem. We

share the techniques used to address these problem in the

hope others will attempt parallel designs for sparsely parallel

problem and improve upon our techniques.

Current hardware requires relatively large topologies for

effective use of the algorithm. All parallel applications have

a crossover point where the GPU becomes an effective part

of solving the problem. Our results show that for small or

complicated connected regions, the CPU has the advantage

and the GPU should not be used. The primary reason is the

significant overhead associated with using a GPU. As the

size of the region increases the advantage trends to the GPUs

(i.e., integrated GPU and discrete GPU). Because parallelism

is discovered over a series of passes, most passes do not

have sufficient parallelism to fully occupy a high-end GPU.

There simply are not enough work groups for all the CUs.

Consequently a relatively small APU (i.e., integrated GPU)

was able to hold its own against high-end discrete GPUs

thanks to mainly its efficient data sharing. In our real-world

“Hand” image example, when 6 seed points were used, the

APU was 39% faster than the optimized CPU algorithm while

the discrete GPU was 33% faster. Given the high-end GPU

used was several times more expensive than the APU, our

results call into question the cost-effectiveness of a high-end

discrete GPU for sparsely parallel applications.

To thoroughly evaluate the efficiency of PARAFILL on het-

erogeneous processors, we developed several implementations

of the algorithm. For the CPU we developed an optimized

CPU-only connected region algorithm1. For the GPU we

developed two variants with differing workload management

techniques. Our experiments show that for this application

tightly coupled heterogeneous processors compete well against

the more powerful discrete GPU.

II. IDENTIFYING CONNECTED REGION

Identification of connected regions is an important problem

in computer graphics and related fields. It is applicable to mul-

tiple dimension arrays. In this paper we limit our discussion

to 2-D images but the technique presented is expandable to

more dimensions and other types of data.

Connected region identification requires an adjacency crite-

ria. For images, the most commonly used adjacency criteria is

color. For instance Phung et al. [8] compare the effectiveness

of several color spaces for the skin segmentation problem.

Their criteria for adjacency is skin tone. For our benchmark-

ing, we used the CIE-Lab XYZ color space based on the

1The connected region and flood filling problems are closely related but
different problems. Flood filling identifies the connected region and changes
the color of the connected region, while PARAFILL focuses solely on the
identification of the connected region. Absorption of unconnected regions
wholly contained in a connected region highlights the difference in the two
approaches.

maximum tolerable distance from a reference color. We chose

the XYZ color space because it more closely represents the

way the typical human eye perceives color and intensity. Each

channel has its own tolerance because it is common to allow

more tolerance on the luminance (Y) channel.

Consider the smiley face show in Figure 1a. Using the

dominating yellow as the reference color, and the center of

the image as the starting pixel Figure 1b shows the resulting

connected region.

(a) Sample image (b) Connected region

Fig. 1. Sample image and connected region.

Note that even though it is a connectable color, the yellow

dot inside the mouth area is eliminated because it is surrounded

by the white area of the mouth, which blocks connections. The

other colors on the face (green, blue, white, and black) are not

within the tolerance used and are thus unconnected.

For our experiments, the input is (1) an image, (2) a

reference color and tolerance, and (3) a vector of starting

pixels. The output is a binary image, where white pixels

identify the connected region and the black pixels are the

unconnected pixels.

III. THE PARAFILL ALGORITHM

To determine if a pixel is part of a connected region,

we must first know if one of its neighbor is connected.

This induces an order in which pixels must be checked for

connectivity, and makes finding the connected region for an

arbitrary topology difficult to parallelize. PARAFILL addresses

this challenge by processing the region in a systematic fashion.

A. Design Challenges

As the software and hardware enabling heterogeneous com-

puting evolve, the potential uses expand. Discrete GPUs are

I/O devices – all commands and data have to be sent to and

from the device, causing significant overhead. Overcoming this

overhead requires significant data parallel acceleration on a

GPU. To be effective, the GPU execution time plus overhead

time have to be less than performing the task on the CPU.

There is an additional overhead consideration for iterative

algorithms such as PARAFILL. If there are kernel launches

in each iteration, then the kernel launch overhead costs are

multiplied by the number of iterations. Reduction of overhead

means less data parallelism is required for effective use of a

GPU.

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on October 29,2024 at 04:48:56 UTC from IEEE Xplore. Restrictions apply.

Data transfers via I/O are the most significant overhead

component. To address this, vendors integrated the GPU into

the processor die and shared physical memory with the CPU

cores via a last level shared cache. The effect is that the

CPU and GPU address the same physical memory, possibly

through different virtual addresses. This transforms the data

I/O transfer problem into a far less expensive virtual address

management problem. Placing the GPU on the processor die,

however, limits the number of GPU compute units (CUs).

Typically integrated GPUs (e.g., AMD APU, Intel Sandy

Bridge/Ivy Bridge/Haswell) have far fewer CUs than discrete

GPUs. For applications with limited data parallelism, this is a

good trade-off. For large massively data parallel applications,

discrete GPUs may be better suited.
In PARAFILL each pass operates on a relatively small

subset of the image. Thus the index range for each pass need

not be all pixels in the image. PARAFILL uses a workload

manager data structure to memoize the image subset where

parallelism is available, and sets the index range accordingly.

The workload manager is simply a queue of spans needing

processing. The size of the queue is the complexity of the

pass. As long as the workload manager has queued spans,

those spans are processed in parallel in the next pass. To

minimize overhead, PARAFILL keeps all data on the GPU and

transfers only necessary data. Only a single scalar integer is

transferred to and from the GPU at the end of each pass. There

is a delay from when a kernel is launched to when it actually

begins execution. This is called kernel launch overhead, and

is another significant overhead factor. Section IV-B discusses

the mitigation of this overhead in detail.

B. Algorithm Description

PARAFILL is a greedy algorithm using dynamic program-

ming memoization techniques. A workload management queue

memoizes work discovered for the next pass and helps keep

pass complexity low. Given an image, the starting pixel loca-

tion(s) and a color reference/tolerance, PARAFILL iteratively

finds all pixels connected to the starting pixels. The pseudo

code for the CPU version of our proposed algorithm is given

in Algorithm 1.

Algorithm 1 PARAFILL algorithm

1: function PARAFILL(Image, StartingPixels, Color, Toler-

ance)

2: MoreWork ← Initialize

3: Direction ← Horizontal

4: while MoreWork do

5: if Direction == Horizontal then

6: MoreWork ← HorizontalPass

7: else

8: MoreWork ← VerticalPass

9: end if

10: Direction ← OtherDirection(Direction)

11: end while

12: return ConnectedRegion

13: end function

To see the big picture on how the algorithm works, we first

show sample results. Figure 2 shows the output of select passes

for the jigsaw image. The pass-by-pass parallelism (i.e., the

number of spans processed in the pass) is shown in parenthesis

after each pass number. For pass 1 there are 4 spans – a left

and right horizontal span for each of the two pieces. The two

pieces are simultaneously connected in 9 passes (iterations).

Note that pass 1 is enlarged so the two initial horizontal spans

become faintly visible.

(a) Pass 1 (4) [Enlarged]

(b) Pass 2 (792) (c) Pass 3 (1,365)

(d) Pass 8 (66) (e) Pass 9 (2)

Fig. 2. Jigsaw sample iterations.

The algorithm works as follows: Initialize (line 2) initializes

the output image to black, indicating no connected pixels have

been found. It then examines the starting pixel(s), queuing

appropriate span entries in the workload manager. It then

enters the main loop.

At the start of each pass the workload manager has the

starting pixels for each span. HorizontalPass (line 6) spans

horizontally until it reaches a boundary (see definition below).

It marks each pixel along the span as connected, examining

each pixel’s neighbor above and below. Connectable neighbors

above are queued for upward spans in the next pass while

connectable neighbors below are queued for downward spans

in the next pass.

VerticalPass (line 8) proceeds in a similar fashion except

it spans vertically. It marks each pixel along the span as

connected, examining each pixel’s neighbor to the left and

right. Connectable neighbors to the left are queued for left

spans in the next pass while connectable neighbors to the right

are queued for right spans in the next pass.

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on October 29,2024 at 04:48:56 UTC from IEEE Xplore. Restrictions apply.

A boundary is defined as any one of the following:

• Spanning outside the image borders. This is detected

using the input image geometry.

• Spanning to a pixel already marked as connected. This is

detected using a memoization table of marked, connected

pixels. After the last iteration, this memoization table

contains the connected region(s).

• Spanning to a pixel that does not meet adjacency criteria.

This is detected using the reference color and tolerance.

C. Optimizations

Avoiding redundancy: There is an efficiency issue with the

parallel version of Algorithm 1. Recall that in the OpenCL

programming model you can make no assumption regarding

processing order. We now examine a problematic processing

order. Consider any three adjacent vertical spans. Figure 3

depicts processing the 4th pixel in three adjacent spans. The

black stars represent marked, connected pixels. The outlined

white star represents an unmarked but connectable pixel.

Assume the center span processes last, which delays mark-

ing the pixel as connected. The leftmost of the three spans

looks to its right neighbor and discovers an as yet unconnected

pixel and queues it for processing in the next pass. Likewise

the rightmost span looks to its left neighbor and discovers the

same as yet unconnected pixel and redundantly queues it for

processing in the next pass.

Fig. 3. Redundant span queuing

Eventually the center span marks the pixel connected, ef-

fectively rendering the queuing done by both the left and right

spans redundant and inefficient. This is not a correctness issue

because there is global synchronization between the passes and

in the next pass the redundant span(s) are immediately stopped

by the now-connected pixel. Recall that a connected pixel is

a boundary and will stop a span.

Reducing redundant queuing: From the above problem-

atic processing order we can see the most advantageous order

is for all connections of a pass to be done before checking

neighbors for adjacency.

The more pixels connected before checking their neighbors

the fewer the redundantly queued spans.

We achieve this by breaking a pass into two phases – a

“connecting” phase and a “neighbor checking” phase. In the

first phase connectable pixels along the span are marked as

connected and the path memoized. Next synchronization is

required so that all pixels along the spans of the current pass

are connected before beginning the second “neighbor check-

ing” phase. Global synchronization will ensure no redundant

pixels are queued, but this requires two kernel launches, which

incurs overhead. We call the global synchronization approach

the 2-kernel approach.

Alternatively we can achieve most of the desired effect

by synchronizing within each work group using a barrier to

separate the phases. This significantly reduces the chances of

redundant queuing while using only one kernel.

In the second phase, the neighbors of the pixels along

the memoized spans are checked for adjacency. Adjacent

neighbors still unconnected that meet the connection criteria

are queued for parallel processing in the next pass.

It should be noted the 1-kernel approach, while correct, is

not a deterministic. The 2-kernel approach is deterministic.

There are many factors that affect the exact order of work

group execution, which in turn affects redundant queuing.

Further, if the pass that connected the final pixels should

queue redundant work, an extra pass (connecting no pixels)

is required to clear the work queue. The effect ends with the

extra pass because it queues no further spans.

Multiple starting points: Note that this approach allows

for multiple staring points. Initialize simply queues a span for

each starting point. If the starting points are redundant or in

the same region it causes no problem. More interestingly, the

starting pixels can be in different regions. When this happens,

PARAFILL connects the regions in parallel. See Figure 2 for an

example. The CPU-only version of the algorithm must connect

each region serially.

IV. PERFORMANCE EVALUATION AND ANALYSIS

We evaluated PARAFILL’s performance across a wide spec-

trum of inputs and starting conditions. We benchmarked five

images (including a real-world image) with different charac-

teristics. They are listed and described in Table III.

(a) Path (Scale=0.5x)

(b) Hand (Scale=0.045x)

Fig. 4. Sample benchmark images.

Table IV summarizes the specifications of hardware used

in our experiments. The information was obtained from the

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on October 29,2024 at 04:48:56 UTC from IEEE Xplore. Restrictions apply.

Trinity APU Tahiti GPU
CPU Complexity Management Complexity Management

Image Connected None 1-Kernel 2-Kernel None 1-Kernel 2-Kernel
Path 0.00845106 1.24809000 0.08736730 0.08058060 0.74104500 0.41972500 0.48188700

Smile 0.02859232 0.25492800 0.06839640 0.07897180 0.25775100 0.21326400 0.26295700
Jigsaw 0.23433990 2.86139000 0.45200000 0.66194800 2.38367000 0.51604900 0.63093400
Square 5.15282480 11.78020000 5.06227000 7.97068000 1.67637000 0.68106600 0.80807600

Hand1SP 6.40684200 54.86030000 4.73156000 6.61682000 43.90250000 3.90011000 4.41799000
Hand6SP 6.35882400 57.52500000 3.84617000 5.32592000 44.08930000 4.02787000 5.08939000

TABLE I. Execution time analysis (seconds for 100 iterations).

Trinity APU Tahiti GPU
CPU Complexity Management Complexity Management

Image Connected None 1-Kernel 2-Kernel None 1-Kernel 2-Kernel
Path 0.00845106 1.610280000 0.21592400 0.21173300 1.889510000 0.95615600 1.09142000

Smile 0.02859232 0.338008000 0.09249990 0.10669500 0.510379000 0.38949900 0.46442900
Jigsaw 0.23433990 2.998790000 0.49233900 0.72920500 2.766530000 0.84761200 0.99653200
Square 5.15282480 11.909400009 5.08344000 8.00240000 1.778680000 0.77179500 0.91180600

Hand1SP 6.40684200 55.07060000 4.77660000 6.71834000 44.36160000 4.17927000 4.74768000
Hand6SP 6.35882400 57.74810000 3.88922000 5.41485000 44.56790000 4.28913000 5.39852000

TABLE II. Execution time analysis with overhead (seconds for 100 iterations).

Image Geometry Rationale
Path 151×281 Figure 4a. This is a small image with a jagged

path. The jaggedness requires many PARAFILL

iterations.
Smiley 217×217 Figure 1a. This is a small image with many

challenging features, especially for the absorp-
tion of internal unconnected regions.

Jigsaw 1K×512 This is a medium sized image. It contains
several connectable regions with several chal-
lenging features. It is used to demonstrate
simultaneously regions filling. Whenever this
image is used the two larger regions are con-
nected.

Square 1K×1K Not shown. This is a large, square, single
colored image. All pixels are connected. While
not a typical connected region topology, we
include it to examine PARAFILL’s performance
in a richly parallel environment.

Hand 4,128×3,096 Figure 4b. This is a very large real-world
image with many features, included jagged
boundaries. We evaluated performance with a
single starting point as well as six starting
points.

TABLE III. Benchmark images.

CPU Discrete GPU Integrated GPU
(APU)

Vendor AMD AMD AMD
Device A10-5800K HD 7970 A10-5800K

CUs/Cores 4 32 4
Max Freq. 3.8GHz 925MHz 800MHz

Max WG Size N/A 256 1,024
Unified Memory N/A No Yes

TABLE IV. Specifications of experiment platforms.

“clinfo” utility. We used A10-5800K (codenamed “Trinity”)

APU. To represent a high-end discrete GPU, we used HD

7970 (codenamed “Tahiti”) GPU which is based on AMD’s

Graphics Core Next (GCN) microarchitecture.

A. Parallelism

We measure parallelism for a pass by the number of spans

in a pass. There will be one work item for each span. The true

parallelism for a pass is the number of non-redundant spans

in a pass given by the 2-kernel approach.

There are three factors affecting performance of PARAFILL.

The first factor is parallelism intrinsic to the data. The topology

of the connected region affects the parallelism. For instance,

two images of the same size with a different connected

region topologies will offer different parallelism opportu-

nities. For connected regions, the maximum parallelism is

max(Height,Width) (the pixels in the perpendicular direc-

tion are spanned), which is far less than the total number of

pixels in the image. (The “Square” image illustrates this.) The

second factor is the algorithm’s effectiveness in discovering the

intrinsic parallelism of the data. The final factor is the GPU

hardware. While speed is always important for hardware, other

factors such as overhead are important and must be considered.

Table V details the pass-by-pass parallelism discovered

using 1) all pixels without workload management, 2) the one-

kernel approach and 3) the two-kernel approach. Since the

one-kernel approach is not deterministic, results for the APU

and GPU can differ and are therefore each detailed in the table.

No Workload 1-Kernel 2-Kernel
Pass Management APU GPU (Actual)

1 47,089 2 2 2
2 47,089 424 424 424
3 47,089 776 693 693
4 47,089 197 136 123
5 47,089 189 131 131
6 47,089 92 98 67
7 N/A 6 N/A N/A

TABLE V. Parallelism for smiley image.

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on October 29,2024 at 04:48:56 UTC from IEEE Xplore. Restrictions apply.

B. GPU Kernel Launch Overhead

As the level of data parallelization decreases, GPU launch

overhead becomes an increasingly significant issue. This is

especially true for iterative algorithms because each pass

incurs that overhead. There are three phases involved in the

execution of an OpenCL kernel: queuing, submission and

execution.

Fig. 5. Overlapping kernel launch overhead.

The top part of Figure 5 shows the launch of two kernels

separated by a clFinish. The red box represents queue time,

the yellow submit time and the green execution time. Notice

that kernel 2’s execution is delayed by its launch overhead

time. The bottom part of Figure 5 shows how time can be

saved with overlapping. Both kernels are launched but there

is no clFinish. OpenCL events are used to delay the execution

of kernel 2 until kernel 1 completes, but kernel 2’s launch

overhead time overlaps kernel 1’s execution time. The effect

is that when kernel 1 ends, kernel 2 starts almost immediately.

Table VI shows typical results of the effect of overlapping the

queue time of the second kernel with the execution of the first

kernel. Our experiments show that the APU queuing times

are significantly smaller than the GPU’s queuing times, and

overlapping offered on modest improvement (except for the

“Hand” image where there was modest cost). For the Tahiti

GPU, the queuing time for the second kernel was strikingly

lower. These results strongly suggest overlapped queuing is

an important technique for reducing overhead for the Tahiti

GPU. The Trinity’s architecture is very different and does not

significantly benefit from this technique (Table VI).

APU Tahiti GPU

Image 1
st kernel 2

nd kernel 1
st kernel 2

nd kernel
Path 0.0312249 0.0131871 0.2278180 0.0023440

Smile 0.0051703 0.0048576 0.0861462 0.0003164
Jigsaw 0.0117529 0.0105311 0.1581100 0.0005232
Square 0.0027247 0.0019998 0.0340680 0.0001142

Hand1SP 0.0138149 0.0194019 0.1330140 0.0007069
Hand6SP 0.0122907 0.0380242 0.1285040 0.0007434

TABLE VI. Effect of overlapped queuing (100 iterations in seconds).

C. Total Execution Time

Table I details execution times for the two GPUs and three

complexity models. The best time for each image is shown

in bold. Where the GPU was not the fastest time, the best

GPU time is highlighted gray. Table II shows the results with

overhead included. The best times for each algorithm are

shown in bold. Where the GPU was not the fastest time, the

best GPU time is highlighted gray. Inclusion of overhead did

not change the results.

In Tables I and II we notice the 1-kernel approach was

uniformly faster than the 2-kernel approach, whenever the

GPU was the best option. We see the CPU is better-suited

for processing the three smaller images. However, for those

images notice the APU outperformed the discrete GPU. As

the parallelism increased the APU’s becomes more effective.

The “Square” image is not a typical connected region topol-

ogy, but was included to explore the effects of a richly parallel

topology. The Tahiti GPU outperformed the optimized CPU

algorithm by an impressive 6.7 times. The APU outperformed

the optimized CPU algorithm by 1% – essentially a tie.

The result for the hand with 6 starting points is interesting.

There the APU was faster than the Tahiti GPU. Notice the

extra starting points increased parallelism in passes 2 and

3. This favored the Tahiti GPU, but passes 4-10 with less

parallelism favored the APU. This gave the slight advantage

to the APU as seen in the results. Considering the high-end

Tahiti GPU is several times more expensive than the more

modest APU, we question the cost-effectiveness of a high-end

discrete GPU in sparsely parallel applications.

ACKNOWLEDGMENT

This research is supported by the National Science Founda-

tion under Grant 1907838.

REFERENCES

[1] Y.-I. Ohta, T. Kanade, and T. Sakai, “Color information for region
segmentation,” Computer graphics and image processing, vol. 13, no. 3,
pp. 222–241, 1980.

[2] K. E. Batcher, “Sorting networks and their applications,” in Proceedings

of the April 30–May 2, 1968, Spring Joint Computer Conference, ser.
AFIPS ’68 (Spring). New York, NY, USA: ACM, 1968, pp. 307–314.
[Online]. Available: http://doi.acm.org/10.1145/1468075.1468121

[3] R. Adams and L. Bischof, “Seeded region growing,” Pattern Analysis

and Machine Intelligence, IEEE Transactions on, vol. 16, no. 6, pp.
641–647, Jun 1994.

[4] E. Nosal, “Flood-fill algorithms used for passive acoustic detection and
tracking,” in New Trends for Environmental Monitoring Using Passive

Systems, 2008, Oct 2008, pp. 1–5.
[5] NVIDIA. GPU Applications. http://www.nvidia.com/object/

gpu-applications-domain.html.
[6] AMD. (2014) AMD Accelerated Processing Units

(APUs). [Online]. Available: http://www.amd.com/en-us/innovations/
software-technologies/apu

[7] Intel. (2014) Intel Core Processor Family. [Online].
Available: http://www.intel.com/content/www/us/en/processors/core/
core-processor-family.html

[8] S. Phung, A. Bouzerdoum, and S. Chai, D., “Skin segmentation using
color pixel classification: analysis and comparison,” Pattern Analysis

and Machine Intelligence, IEEE Transactions on, vol. 27, no. 1, pp.
148–154, Jan 2005.

[9] HSA Foundation. (2014) Heterogeneous System Architecture (HSA)
Foundation. [Online]. Available: http://hsafoundation.com/

[10] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction

to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.
[11] R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd

Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2006.

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on October 29,2024 at 04:48:56 UTC from IEEE Xplore. Restrictions apply.

