2023 International Conference on Electrical, Computer and Energy Technologies (ICECET) | 979-8-3503-2781-6/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICECET58911.2023.10389550

111. International Conference on Electrical, Computer and Energy Technologies (ICECET 2023)

16-17 November 2023, Cape Town-South Africa

A Parallel Connected Region Algorithm Optimized
for CPU-GPU Heterogeneous Platforms

David Troendle
Computer and Information Science
The University of Mississippi
University, MS USA
david@cs.olemiss.edu

Abstract—In recent years, GPU has become an important
component of the system by accelerating applications with data
parallelism. While traditional discrete GPU cooperates with CPU
over I/O bus, more recent processor design trends feature fine-
grained synchronization and inexpensive data sharing between
CPU and GPU processors by tightly coupling them at a cache
level. However, designing algorithms that effectively exploit these
new architectural features has proved challenging.

In this paper we present a novel parallel algorithm called
PARAFILL that identifies connected regions of arbitrary topolo-
gies in an image very efficiently on CPU-GPU heterogeneous
platforms. PARAFILL is a greedy algorithm using dynamic
programming memoization techniques. Essential to its efficiency is
a data structure called the workload manager, which dynamically
manages the complexity of work in each pass. We evaluate the
performance of PARAFILL across two different heterogeneous
platforms: a traditional discrete GPU system where the CPU
and GPU are connected through I/O bus, and a single-chip
processor where the CPU and GPU are tightly coupled at a cache
level. We also compare PARAFILL to a CPU-optimized connected
region algorithm using applications with different parallelism
to quantify its scalability. Our experimental results show that
minimizing GPU overhead and managing pass-by-pass workload
are especially important for sparsely parallel applications. Tightly
coupled GPUs, although less powerful than discrete GPUs, com-
pete well in sparsely parallel applications because of their reduced
overhead. Finally, we present two applications of PARAFILL:
traditional flood filling and the absorption of unconnected interior
regions into a containing connected region.

Index Terms—GPU Programming, Parallel Algorithms, Flood
Fill, Connected Regions

I. INTRODUCTION

Identifying the connected regions of an image or other
forms of data is a basic yet very important task that finds
many applications in the fields of computer graphics and
computer vision [1, 2]. For example, it is commonly used in
paint programs (e.g., Adobe Photoshop), image segmentation,
or solving mazes. Although there are several well-known
algorithms for this task [3, 4], they suffer from high compu-
tation demands and can be very slow for certain topologies,
especially large topologies.

General Purpose computation on GPUs (GPGPU) provides
opportunity for significant acceleration of data and compute

979-8-3503-2781-6/23/$31.00 ©2023 IEEE

Byunghyun Jang
Computer and Information Science
The University of Mississippi
University, MS USA
bjang(@cs.olemiss.edu

intensive applications [5]. Traditional GPGPU platforms are
powered by discrete GPUs connected through I/O bus. Al-
though many algorithms and applications have been success-
fully accelerated using GPUs, there remain many unacceler-
ated algorithms and applications due to sparse parallelism and
GPU-related overhead. To address this issue and provide other
benefits such as low design cost and fast on-chip interconnec-
tion, recent industry trends have merged CPUs with GPUs on
a single processor die. Such CPU-GPU merged processors are
prevalent in the market as of the writing of this paper (AMD
APUs [6] and Intel Sandy Bridge/Ivy Bridge/Haswell [7]).

Regardless of hardware configurations (i.e., traditional dis-
crete GPUs and relatively new tightly coupled processors), de-
signing and optimizing workloads (e.g., algorithms or applica-
tions) that fully exploit the hardware features is a challenging
task. Workloads must be carefully divided into two different
kinds of tasks, one of which is executed on a task parallel CPU,
while the other is executed on a data-parallel GPU. Techniques
such as simple workload distribution/balancing are not enough
to take full advantage of computing power that hardware has
to offer. For small problem sizes, a GPU may not be the best
choice.

In this paper, we introduce a new parallel algorithm,
PARAFILL, which efficiently identifies connected regions in
images or other data on CPU-GPU heterogeneous platforms.
PARAFILL is a greedy algorithm that uses dynamic program-
ming’s memoization technique. It takes an iterative approach,
processing the work for the current pass while discovering
new work for the next pass. A data structure called workload
manager is a key to the efficiency of the algorithm by manag-
ing the complexity of each pass. Applications rich in intrinsic
data parallelism typically process against all data in one pass.
Vector addition and matrix multiplication are good examples.
In application where there is only sparse parallelism that must
be discovered over many passes, processing against all data in
each pass is manifestly inefficient. We demonstrate the over-
head of tracking and processing just the parallel opportunities
of the current pass can be less expensive than processing the
entire problem geometry in each pass. In PARAFILL’s case,

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on October 29,2024 at 04:48:56 UTC from IEEE Xplore. Restrictions apply.

managing workload requires using inefficient operations such
as barriers and atomic operations.

Our contribution is a region connection algorithm for GPU-
powered platforms. We openly discuss the problems we faced
designing an algorithm for a sparsely parallel problem. We
share the techniques used to address these problem in the
hope others will attempt parallel designs for sparsely parallel
problem and improve upon our techniques.

Current hardware requires relatively large topologies for
effective use of the algorithm. All parallel applications have
a crossover point where the GPU becomes an effective part
of solving the problem. Our results show that for small or
complicated connected regions, the CPU has the advantage
and the GPU should not be used. The primary reason is the
significant overhead associated with using a GPU. As the
size of the region increases the advantage trends to the GPUs
(i.e., integrated GPU and discrete GPU). Because parallelism
is discovered over a series of passes, most passes do not
have sufficient parallelism to fully occupy a high-end GPU.
There simply are not enough work groups for all the CUs.
Consequently a relatively small APU (i.e., integrated GPU)
was able to hold its own against high-end discrete GPUs
thanks to mainly its efficient data sharing. In our real-world
“Hand” image example, when 6 seed points were used, the
APU was 39% faster than the optimized CPU algorithm while
the discrete GPU was 33% faster. Given the high-end GPU
used was several times more expensive than the APU, our
results call into question the cost-effectiveness of a high-end
discrete GPU for sparsely parallel applications.

To thoroughly evaluate the efficiency of PARAFILL on het-
erogeneous processors, we developed several implementations
of the algorithm. For the CPU we developed an optimized
CPU-only connected region algorithm!. For the GPU we
developed two variants with differing workload management
techniques. Our experiments show that for this application
tightly coupled heterogeneous processors compete well against
the more powerful discrete GPU.

II. IDENTIFYING CONNECTED REGION

Identification of connected regions is an important problem
in computer graphics and related fields. It is applicable to mul-
tiple dimension arrays. In this paper we limit our discussion
to 2-D images but the technique presented is expandable to
more dimensions and other types of data.

Connected region identification requires an adjacency crite-
ria. For images, the most commonly used adjacency criteria is
color. For instance Phung et al. [8] compare the effectiveness
of several color spaces for the skin segmentation problem.
Their criteria for adjacency is skin tone. For our benchmark-
ing, we used the CIE-Lab XYZ color space based on the

'The connected region and flood filling problems are closely related but
different problems. Flood filling identifies the connected region and changes
the color of the connected region, while PARAFILL focuses solely on the
identification of the connected region. Absorption of unconnected regions
wholly contained in a connected region highlights the difference in the two
approaches.

maximum tolerable distance from a reference color. We chose
the XYZ color space because it more closely represents the
way the typical human eye perceives color and intensity. Each
channel has its own tolerance because it is common to allow
more tolerance on the luminance (Y) channel.

Consider the smiley face show in Figure la. Using the
dominating yellow as the reference color, and the center of
the image as the starting pixel Figure 1b shows the resulting

connected region.
* . . * l
® ®

00

(a) Sample image (b) Connected region

Fig. 1. Sample image and connected region.

Note that even though it is a connectable color, the yellow
dot inside the mouth area is eliminated because it is surrounded
by the white area of the mouth, which blocks connections. The
other colors on the face (green, blue, white, and black) are not
within the tolerance used and are thus unconnected.

For our experiments, the input is (1) an image, (2) a
reference color and tolerance, and (3) a vector of starting
pixels. The output is a binary image, where white pixels
identify the connected region and the black pixels are the
unconnected pixels.

III. THE PARAFILL ALGORITHM

To determine if a pixel is part of a connected region,
we must first know if one of its neighbor is connected.
This induces an order in which pixels must be checked for
connectivity, and makes finding the connected region for an
arbitrary topology difficult to parallelize. PARAFILL addresses
this challenge by processing the region in a systematic fashion.

A. Design Challenges

As the software and hardware enabling heterogeneous com-
puting evolve, the potential uses expand. Discrete GPUs are
I/O devices — all commands and data have to be sent to and
from the device, causing significant overhead. Overcoming this
overhead requires significant data parallel acceleration on a
GPU. To be effective, the GPU execution time plus overhead
time have to be less than performing the task on the CPU.

There is an additional overhead consideration for iterative
algorithms such as PARAFILL. If there are kernel launches
in each iteration, then the kernel launch overhead costs are
multiplied by the number of iterations. Reduction of overhead
means less data parallelism is required for effective use of a
GPU.

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on October 29,2024 at 04:48:56 UTC from IEEE Xplore. Restrictions apply.

Data transfers via I/O are the most significant overhead
component. To address this, vendors integrated the GPU into
the processor die and shared physical memory with the CPU
cores via a last level shared cache. The effect is that the
CPU and GPU address the same physical memory, possibly
through different virtual addresses. This transforms the data
I/O transfer problem into a far less expensive virtual address
management problem. Placing the GPU on the processor die,
however, limits the number of GPU compute units (CUs).
Typically integrated GPUs (e.g., AMD APU, Intel Sandy
Bridge/Ivy Bridge/Haswell) have far fewer CUs than discrete
GPUs. For applications with limited data parallelism, this is a
good trade-off. For large massively data parallel applications,
discrete GPUs may be better suited.

In PARAFILL each pass operates on a relatively small
subset of the image. Thus the index range for each pass need
not be all pixels in the image. PARAFILL uses a workload
manager data structure to memoize the image subset where
parallelism is available, and sets the index range accordingly.
The workload manager is simply a queue of spans needing
processing. The size of the queue is the complexity of the
pass. As long as the workload manager has queued spans,
those spans are processed in parallel in the next pass. To
minimize overhead, PARAFILL keeps all data on the GPU and
transfers only necessary data. Only a single scalar integer is
transferred to and from the GPU at the end of each pass. There
is a delay from when a kernel is launched to when it actually
begins execution. This is called kernel launch overhead, and
is another significant overhead factor. Section IV-B discusses
the mitigation of this overhead in detail.

B. Algorithm Description

PARAFILL is a greedy algorithm using dynamic program-
ming memoization techniques. A workload management queue
memoizes work discovered for the next pass and helps keep
pass complexity low. Given an image, the starting pixel loca-
tion(s) and a color reference/tolerance, PARAFILL iteratively
finds all pixels connected to the starting pixels. The pseudo
code for the CPU version of our proposed algorithm is given
in Algorithm 1.

Algorithm 1 PARAFILL algorithm

1: function PARAFILL(Image, StartingPixels, Color, Toler-
ance)
MoreWork < Initialize
Direction < Horizontal
while MoreWork do
if Direction == Horizontal then
MoreWork <+ HorizontalPass
else
MoreWork < VerticalPass
end if
Direction < OtherDirection(Direction)
11: end while
12: return ConnectedRegion
13: end function

B A R o

._
4

To see the big picture on how the algorithm works, we first
show sample results. Figure 2 shows the output of select passes
for the jigsaw image. The pass-by-pass parallelism (i.e., the
number of spans processed in the pass) is shown in parenthesis
after each pass number. For pass 1 there are 4 spans — a left
and right horizontal span for each of the two pieces. The two
pieces are simultaneously connected in 9 passes (iterations).
Note that pass 1 is enlarged so the two initial horizontal spans
become faintly visible.

(a) Pass 1 (4) [Enlarged]

T EX

(b) Pass 2 (792) (c) Pass 3 (1,365)

(d) Pass 8 (66) (e) Pass 9 (2)

Fig. 2. Jigsaw sample iterations.

The algorithm works as follows: Initialize (line 2) initializes
the output image to black, indicating no connected pixels have
been found. It then examines the starting pixel(s), queuing
appropriate span entries in the workload manager. It then
enters the main loop.

At the start of each pass the workload manager has the
starting pixels for each span. HorizontalPass (line 6) spans
horizontally until it reaches a boundary (see definition below).
It marks each pixel along the span as connected, examining
each pixel’s neighbor above and below. Connectable neighbors
above are queued for upward spans in the next pass while
connectable neighbors below are queued for downward spans
in the next pass.

VerticalPass (line 8) proceeds in a similar fashion except
it spans vertically. It marks each pixel along the span as
connected, examining each pixel’s neighbor to the left and
right. Connectable neighbors to the left are queued for left
spans in the next pass while connectable neighbors to the right
are queued for right spans in the next pass.

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on October 29,2024 at 04:48:56 UTC from IEEE Xplore. Restrictions apply.

A boundary is defined as any one of the following:

o Spanning outside the image borders. This is detected
using the input image geometry.

o Spanning to a pixel already marked as connected. This is
detected using a memoization table of marked, connected
pixels. After the last iteration, this memoization table
contains the connected region(s).

o Spanning to a pixel that does not meet adjacency criteria.
This is detected using the reference color and tolerance.

C. Optimizations

Avoiding redundancy: There is an efficiency issue with the
parallel version of Algorithm 1. Recall that in the OpenCL
programming model you can make no assumption regarding
processing order. We now examine a problematic processing
order. Consider any three adjacent vertical spans. Figure 3
depicts processing the 4*" pixel in three adjacent spans. The
black stars represent marked, connected pixels. The outlined
white star represents an unmarked but connectable pixel.

Assume the center span processes last, which delays mark-
ing the pixel as connected. The leftmost of the three spans
looks to its right neighbor and discovers an as yet unconnected
pixel and queues it for processing in the next pass. Likewise
the rightmost span looks to its left neighbor and discovers the
same as yet unconnected pixel and redundantly queues it for
processing in the next pass.

/\/\
ek
* %
* %
%

%

3

Fig. 3. Redundant span queuing

Eventually the center span marks the pixel connected, ef-
fectively rendering the queuing done by both the left and right
spans redundant and inefficient. This is not a correctness issue
because there is global synchronization between the passes and
in the next pass the redundant span(s) are immediately stopped
by the now-connected pixel. Recall that a connected pixel is
a boundary and will stop a span.

Reducing redundant queuing: From the above problem-
atic processing order we can see the most advantageous order
is for all connections of a pass to be done before checking
neighbors for adjacency.

The more pixels connected before checking their neighbors
the fewer the redundantly queued spans.

We achieve this by breaking a pass into two phases — a
“connecting” phase and a “neighbor checking” phase. In the
first phase connectable pixels along the span are marked as

connected and the path memoized. Next synchronization is
required so that all pixels along the spans of the current pass
are connected before beginning the second “neighbor check-
ing” phase. Global synchronization will ensure no redundant
pixels are queued, but this requires two kernel launches, which
incurs overhead. We call the global synchronization approach
the 2-kernel approach.

Alternatively we can achieve most of the desired effect
by synchronizing within each work group using a barrier to
separate the phases. This significantly reduces the chances of
redundant queuing while using only one kernel.

In the second phase, the neighbors of the pixels along
the memoized spans are checked for adjacency. Adjacent
neighbors still unconnected that meet the connection criteria
are queued for parallel processing in the next pass.

It should be noted the 1-kernel approach, while correct, is
not a deterministic. The 2-kernel approach is deterministic.
There are many factors that affect the exact order of work
group execution, which in turn affects redundant queuing.
Further, if the pass that connected the final pixels should
queue redundant work, an extra pass (connecting no pixels)
is required to clear the work queue. The effect ends with the
extra pass because it queues no further spans.

Multiple starting points: Note that this approach allows
for multiple staring points. Initialize simply queues a span for
each starting point. If the starting points are redundant or in
the same region it causes no problem. More interestingly, the
starting pixels can be in different regions. When this happens,
PARAFILL connects the regions in parallel. See Figure 2 for an
example. The CPU-only version of the algorithm must connect
each region serially.

IV. PERFORMANCE EVALUATION AND ANALYSIS

We evaluated PARAFILL’s performance across a wide spec-
trum of inputs and starting conditions. We benchmarked five
images (including a real-world image) with different charac-
teristics. They are listed and described in Table III.

(b) Hand (Scale=0.045x)

(a) Path (Scale=0.5x)

Fig. 4. Sample benchmark images.

Table IV summarizes the specifications of hardware used
in our experiments. The information was obtained from the

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on October 29,2024 at 04:48:56 UTC from IEEE Xplore. Restrictions apply.

TABLE I. Execution time analysis (seconds for 100 iterations).

Trinity APU Tahiti GPU
CPU Complexity Management Complexity Management

Image Connected None 1-Kernel 2-Kernel None 1-Kernel 2-Kernel
Path 0.00845106 1.24809000 0.08736730 | 0.08058060 0.74104500 0.41972500 | 0.48188700
Smile 0.02859232 0.25492800 0.06839640 | 0.07897180 0.25775100 0.21326400 | 0.26295700
Jigsaw 0.23433990 2.86139000 0.45200000 | 0.66194800 2.38367000 0.51604900 | 0.63093400
Square 5.15282480 | 11.78020000 | 5.06227000 | 7.97068000 1.67637000 0.68106600 | 0.80807600
HandISP | 6.40684200 | 54.86030000 | 4.73156000 | 6.61682000 | 43.90250000 | 3.90011000 | 4.41799000
Hand6SP | 6.35882400 | 57.52500000 | 3.84617000 | 5.32592000 | 44.08930000 | 4.02787000 | 5.08939000

TABLE II. Execution time analysis with overhead (seconds for 100 iterations).
Trinity APU Tahiti GPU
CPU Complexity Management Complexity Management

Image Connected None 1-Kernel 2-Kernel None 1-Kernel 2-Kernel
Path 0.00845106 1.610280000 0.21592400 | 0.21173300 | 1.889510000 | 0.95615600 | 1.09142000
Smile 0.02859232 0.338008000 0.09249990 | 0.10669500 | 0.510379000 | 0.38949900 | 0.46442900
Jigsaw 0.23433990 2.998790000 0.49233900 | 0.72920500 | 2.766530000 | 0.84761200 | 0.99653200
Square 5.15282480 | 11.909400009 | 5.08344000 | 8.00240000 | 1.778680000 | 0.77179500 | 0.91180600
Hand1SP | 6.40684200 55.07060000 4.77660000 | 6.71834000 | 44.36160000 | 4.17927000 | 4.74768000
Hand6SP | 6.35882400 57.74810000 3.88922000 | 5.41485000 | 44.56790000 | 4.28913000 | 5.39852000

TABLE III. Benchmark images.
Image Geometry Rationale .
Path 151 %281 Figure 4a. This is a small image with a jagged A. Parallelism
path. The jaggedness requires many PARAFILL
iterations. .

Smiley 217x217 Figure la. This is a small image with many . We measure par'allehsm forap 'ass by the number of spans
challenging features, especially for the absorp- in a pass. There will be one work item for each span. The true
tion of internal unconnected regions. parallelism for a pass is the number of non-redundant spans

Jigsaw 1K %512 This is a medium sized image. It contains . : ~
several connectable regions with several chal- 1 a pass given by the 2-kernel approaCh'
léngi;’g feaﬂ;res- It is fﬁi?d to SemOnStrﬁFe There are three factors affecting performance of PARAFILL.
simultaneously regions filling. Whenever this | o 6o fcfor is parallelism intrinsic to the data. The topology
image is used the two larger regions are con- X X .
nected. of the connected region affects the parallelism. For instance,

Square IKx1K Not shown. This is a large, square, single | two images of the same size with a different connected
colored image. All pixels are connected. While | 00565 opologies will offer different parallelism opportu-
not a typical connected region topology, we © . ! i .
include it to examine PARAFILL’s performance | Nities. For connected regions, the maximum parallelism is
in a richly parallel environment. maz(Height, Width) (the pixels in the perpendicular direc-

Hand | 4,128x3,09 | Figure ab. This is a very large real-world | ;51 are spanned), which is far less than the total number of
image with many features, included jagged X X R . . X K
boundaries. We evaluated performance with a | PiXels in the image. (The “Square” image illustrates this.) The
single starting point as well as six starting | second factor is the algorithm’s effectiveness in discovering the
pOInts. intrinsic parallelism of the data. The final factor is the GPU

hardware. While speed is always important for hardware, other
factors such as overhead are important and must be considered.
TABLE IV. Specifications of experiment platforms. Table V details the pass-by-pass parallelism discovered
CPU Discrete GPU | Integrated GPU using 1) all pixels without workload management, 2) the one-
(APU) kernel approach and 3) the two-kernel approach. Since the
ge“‘,ior AIOAI;/;%OK HSI\;I;O AIOAI;/;%OK one-kernel approach is not deterministic, results for the APU
evice - - . . .
CU/Cores 7 9l 7 and GPU can differ and are therefore each detailed in the table.
Max Freq. 3.8GHz 925MHz 800MHz
Max WG Size N/A 256 1,024 TABLE V. Parallelism for smiley image.
Unified Memory N/A No Yes
No Workload 1-Kernel 2-Kernel
Pass Management APU | GPU (Actual)

ITIRT 5 -1 [T DRI PEEY) 1 47,089 2 2 2

clinfo” utility. We used A10-5800K (codenamed “Trinity”) 5 77,089 T por]

APU. To represent a high-end discrete GPU, we used HD 3 47.089 776 1 693 693

7970 (codenamed “Tahiti”) GPU which is based on AMD’s 4 47,089 197 136 123

Graphics Core Next (GCN) microarchitecture. 5 47,089 189 | 131 131

6 47,089 92 98 67
7 N/A 6 N/A N/A

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on October 29,2024 at 04:48:56 UTC from IEEE Xplore. Restrictions apply.

B. GPU Kernel Launch Overhead

As the level of data parallelization decreases, GPU launch
overhead becomes an increasingly significant issue. This is
especially true for iterative algorithms because each pass
incurs that overhead. There are three phases involved in the
execution of an OpenCL kernel: queuing, submission and
execution.

No Overlapping
1 R o
Overlapping

10 2
I

Fig. 5. Overlapping kernel launch overhead.

The top part of Figure 5 shows the launch of two kernels
separated by a clFinish. The red box represents queue time,
the yellow submit time and the green execution time. Notice
that kernel 2’s execution is delayed by its launch overhead
time. The bottom part of Figure 5 shows how time can be
saved with overlapping. Both kernels are launched but there
is no clFinish. OpenCL events are used to delay the execution
of kernel 2 until kernel 1 completes, but kernel 2’s launch
overhead time overlaps kernel 1’s execution time. The effect
is that when kernel 1 ends, kernel 2 starts almost immediately.
Table VI shows typical results of the effect of overlapping the
queue time of the second kernel with the execution of the first
kernel. Our experiments show that the APU queuing times
are significantly smaller than the GPU’s queuing times, and
overlapping offered on modest improvement (except for the
“Hand” image where there was modest cost). For the Tahiti
GPU, the queuing time for the second kernel was strikingly
lower. These results strongly suggest overlapped queuing is
an important technique for reducing overhead for the Tahiti
GPU. The Trinity’s architecture is very different and does not
significantly benefit from this technique (Table VI).

TABLE VI. Effect of overlapped queuing (100 iterations in seconds).

APU Tahiti GPU

Image 1% kernel | 277 kernel | 15¢ kernel | 279 kernel
Path 0.0312249 | 0.0131871 0.2278180 | 0.0023440
Smile 0.0051703 0.0048576 | 0.0861462 0.0003164
Jigsaw 0.0117529 | 0.0105311 0.1581100 | 0.0005232
Square 0.0027247 0.0019998 0.0340680 | 0.0001142
Hand1SP | 0.0138149 | 0.0194019 0.1330140 | 0.0007069
Hand6SP | 0.0122907 0.0380242 | 0.1285040 | 0.0007434

C. Total Execution Time

Table I details execution times for the two GPUs and three
complexity models. The best time for each image is shown
in bold. Where the GPU was not the fastest time, the best
GPU time is highlighted gray. Table II shows the results with
overhead included. The best times for each algorithm are

shown in bold. Where the GPU was not the fastest time, the
best GPU time is highlighted gray. Inclusion of overhead did
not change the results.

In Tables I and II we notice the 1-kernel approach was
uniformly faster than the 2-kernel approach, whenever the
GPU was the best option. We see the CPU is better-suited
for processing the three smaller images. However, for those
images notice the APU outperformed the discrete GPU. As
the parallelism increased the APU’s becomes more effective.

The “Square” image is not a typical connected region topol-
ogy, but was included to explore the effects of a richly parallel
topology. The Tahiti GPU outperformed the optimized CPU
algorithm by an impressive 6.7 times. The APU outperformed
the optimized CPU algorithm by 1% — essentially a tie.

The result for the hand with 6 starting points is interesting.
There the APU was faster than the Tahiti GPU. Notice the
extra starting points increased parallelism in passes 2 and
3. This favored the Tahiti GPU, but passes 4-10 with less
parallelism favored the APU. This gave the slight advantage
to the APU as seen in the results. Considering the high-end
Tahiti GPU is several times more expensive than the more
modest APU, we question the cost-effectiveness of a high-end
discrete GPU in sparsely parallel applications.

ACKNOWLEDGMENT

This research is supported by the National Science Founda-
tion under Grant 1907838.

REFERENCES

[1] Y.-I. Ohta, T. Kanade, and T. Sakai, “Color information for region
segmentation,” Computer graphics and image processing, vol. 13, no. 3,
pp. 222-241, 1980.

[2] K. E. Batcher, “Sorting networks and their applications,” in Proceedings
of the April 30-May 2, 1968, Spring Joint Computer Conference, ser.
AFIPS ’68 (Spring). New York, NY, USA: ACM, 1968, pp. 307-314.
[Online]. Available: http://doi.acm.org/10.1145/1468075.1468121

[3] R. Adams and L. Bischof, “Seeded region growing,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 16, no. 6, pp.
641-647, Jun 1994.

[4] E. Nosal, “Flood-fill algorithms used for passive acoustic detection and
tracking,” in New Trends for Environmental Monitoring Using Passive
Systems, 2008, Oct 2008, pp. 1-5.

[5] NVIDIA. GPU Applications. http://www.nvidia.com/object/
gpu-applications-domain.html.
[6] AMD. (2014) AMD Accelerated Processing Units

(APUs). [Online]. Available: http://www.amd.com/en-us/innovations/
software-technologies/apu

[7] Intel. (2014) Intel Core Processor Family. [Online].
Available: http://www.intel.com/content/www/us/en/processors/core/
core-processor-family.html

[8] S. Phung, A. Bouzerdoum, and S. Chai, D., “Skin segmentation using
color pixel classification: analysis and comparison,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 27, no. 1, pp.
148-154, Jan 2005.

[91 HSA Foundation. (2014) Heterogeneous System Architecture (HSA)

Foundation. [Online]. Available: http://hsafoundation.com/

T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction

to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd

Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2006.

(10]

[11]

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on October 29,2024 at 04:48:56 UTC from IEEE Xplore. Restrictions apply.

