Downloaded via PRINCETON UNIV on October 29, 2024 at 05:28:54 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

JAIC'S

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

pubs.acs.org/JACS

Expanding the Landscape of Noncanonical Amino Acids in RiPP

Biosynthesis

Brooke A. Johnson, Kenzie A. Clark, Leah B. Bushin, Calvin N. Spolar,

and Mohammad R. Seyedsayamdost*

Cite This: J. Am. Chem. Soc. 2024, 146, 3805-3815

I: I Read Online

ACCESS | [l Metrics & More ’ Article Recommendations | @ Supporting Information

ABSTRACT: Advancements in DNA sequencing technologies
and bioinformatics have enabled the discovery of new metabolic
reactions from overlooked microbial species and metagenomic
sequences. Using a bioinformatic co-occurrence strategy, we
previously generated a network of ~600 uncharacterized
quorum-sensing-regulated biosynthetic gene clusters that code
for ribosomally synthesized and post-translationally modified
peptide (RiPP) natural products and are tailored by radical S-
adenosylmethionine (RaS) enzymes in streptococci. The most
complex of these is the GRC subfamily, named after a conserved
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motif in the precursor peptide and found exclusively in Streptococcus pneumoniae, the causative agent of bacterial pneumonia. In this
study, using both in vivo and in vitro approaches, we have elucidated the modifications installed by the grc biosynthetic enzymes,
including a ThiF-like adenylyltransferase/cyclase that generates a C-terminal Glu-to-Cys thiolactone macrocycle, and two Ra$
enzymes, which selectively epimerize the f-carbon of threonine and desaturate histidine to generate the first instances of L-allo-Thr
and didehydrohistidine in RiPP biosynthesis. RaS-RiPPs that have been discovered thus far have stood out for their exotic
macrocycles. The product of the grc cluster breaks this trend by generating two noncanonical residues rather than an unusual
macrocycle in the peptide substrate. These modifications expand the landscape of nonproteinogenic amino acids in RiPP natural
product biosynthesis and motivate downstream biocatalytic applications of the corresponding enzymes.

B INTRODUCTION

The discovery of novel natural product scaffolds has been
essential for the creation of pharmaceutical leads and the
development of new synthetic reactions.' ™ Historically,
scientists relied on “grind and find” methods to identify
bioactive natural products and possibly new chemical motifs.*
Unfortunately, over time, these efforts have led to the repeated
rediscovery of previously known natural product families and,
therefore, diminished focus on what was deemed “genetically
gifted” genera.” Concurrently, advancements in DNA sequenc-
ing technologies and bioinformatic tools at the turn of the
century paved the way for targeting microbial species on the
basis of the biosynthetic potential written in their genomes.’
These technologies have facilitated the identification of
complex structures from the most unlikely species in a
genome-first, rather than an activity-first, approach.
Streptococci provide a representative example.9 Despite
their relatively small genomes of typically <2 Mbp, they can
access diverse chemotypes by leveraging the simple bio-
synthetic logic of ribosomally synthesized and post-transla-
tionally modified peptides (RiPPs).'~"* RiPP biosynthetic
gene clusters (BGCs) typically encode a precursor peptide,
which is synthesized by the ribosome, tailoring enzymes, which
modify the core region of the peptide, and proteases and
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transporters that cleave the leader (and follower) sequence to
deliver the mature product into the environment. This
biosynthetic framework is found in diverse organisms forming
one of the largest classes of natural products and providing
bioactive molecules, as well as agriculturally and therapeutically
useful metabolites.*~"*

An intriguing group of RiPPs are those tailored by radical S-
adenosylmethionine (RaS) enzymes, a protein superfamily
present in all domains of life.'”~"> RaS enzymes catalyze
versatile and complex chemical reactions, including methyl-
ations, epimerizations, and notably, an array of macrocyclic C—
C and C—heteroatom cross-links at unactivated carbons on
peptide substrates.””~"7 RaS enzymes are united by their
radical initiation mechanism. They harbor a [4Fe—4S] cluster
in which three of the Fe atoms are held in place by three
cysteine residues, while the remaining Fe is coordinated by S-
adenosylmethionine (SAM). Reductive homolytic cleavage of
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Figure 1. Streptococcal RaS-RiPP network. (A) Sequence similarity network of RaS-RiPPs clustered according to precursor peptide homology,
with each node representing an individual BGC. The GRC subfamily, the topic of this study, is shown in dark green. Subfamilies are annotated on
the basis of conserved residues in the precursor peptide. Those for which a mature product has been isolated are labeled with the compound name
and the source organism(s). Bonds installed by RaS and Fe—S-dependent enzymes are highlighted in red. (B) The grc gene cluster from S.
pneumoniae A34562. An shp/rgg operon (green) regulates the expression of the cluster that encodes a precursor peptide (GrcA), a putative ThiF-
like adenylyltransferase (GrcB), two RaS enzymes (GrcCD), a RiPP recognition element (GrcE), and a transporter (GrcF).

SAM generates a S'-deoxyadenosyl radical (5'-dAe) that
abstracts a H-atom from substrate to start the catalytic cycle.
There remain >600000 uncharacterized RaS enzymes and
>15 000 RaS-RiPPs, which is evidence of a yet to be explored
chemical and biosynthetic space.'®

Inspired by the identification of streptide, a RaS-RiPP from
Streptococcus thermophilus featuring an unusual cross-link
between two unactivated carbons in lysine and tryptophan,
we sought to uncover additional RaS enzyme-catalyzed peptide
modifications from Streptococcus spp.'”?° To identify new
molecular scaffolds with physiologically relevant activities, our
bioinformatics inquiry searched for RaS-RiPP gene clusters
adjacent to a quorum sensing (QS) regulation operon.”' About
600 RaS-RiPP BGCs were identified and classified into 16
distinct subfamilies on the basis of precursor peptide homology
using sequence similarity networks (Figure 1A).2l’22 Since
then, we have found almost a dozen new and diverse RaS
enzyme-mediated cross-links from bacteria that play important
roles in the human microbiome and in health and disease
(Figure 1A).237%
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In this work, we elucidate the modifications installed by the
only RaS-RiPP BGC identified in Streptococcus pneumoniae
(Figure 1B), an opportunistic pathogen that resides
asymptomatically in healthy carriers but is one of the leading
causes of pneumonia-based mortality worldwide for immuno-
compromised individuals.”’ Only three subfamilies from our
network—GRC, SSH, and the recently characterized bicyclos-
treptins from HGH—contain two RaS enzymes.””” GRC
further distinguishes itself by encoding an additional tailoring
enzyme, a putative ThiF-like adenylyltransferase, and a RiPP
recognition element (RRE), a prevalent protein domain in
many RiPP BGCs that has been shown to mediate the
interaction of modification enzymes with the precursor
peptide.”” Using an in vivo heterologous coexpression platform
in which we expressed, purified, and analyzed a series of
constructs with different combinations of the grc tailoring
enzymes, as well as in vitro enzymatic assays, we decoded the
modifications that are introduced onto the precursor peptide,
including macrocyclic thiolactone formation, epimerization at a
threonine (Thr) f-carbon, and desaturation at a histidine
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Figure 2. HPLC-coupled HR-MS and HR-MS/MS analysis of heterologous grc coexpression constructs. The plasmid expression construct is
depicted on the left followed by an extracted ion chromatogram (EIC, Appm = 10 ppm) and the mass spectrum of the product. The observed HR-

MS/MS fragmentation patterns are shown on the right. Note that the mass spectrum is for the [M + 2H]*

ion. Shown are data for GrcA after

coexpression with (A) no other enzymes as control, (B) GrcB, (C) GrcBCE, (D) GrcBDE, (E) GrcBCDE, and (F) GrcCDE. Coexpression with
GrceB, GreC, and GreD gives a —18 Da product, a mass-neutral modification with a slightly shortened retention time, and a —2 Da product,
respectively. The chromatograms are focused on the product peaks to highlight chromatographic differences; the column was underloaded in these
experiments to facilitate separation of diastereomeric species. No other relevant peaks were observed throughout the elution profile.

(His) residue to generate a,f-didehydro-His, the latter two
being novel modifications installed by RaS enzymes. The
modified amino acids expand the scope of noncanonical
residues that can be incorporated into mature products via the
RiPP biosynthetic logic.

B RESULTS AND DISCUSSION

GRC Subfamily. In our initial RaS-RiPP streptococcal
network, the GRC subfamily was unique to S. pneumoniae with
an identical precursor peptide sequence in all detected grc
BGCs. In addition to the shp/rgg QS operon, the grc BGC
encodes a 39-mer precursor peptide (GrcA), a putative ThiF-
like adenylyltransferase (GrcB), two RaS enzymes (GrcC and
GrcD), a discrete RRE protein (GrcE), and a transporter from
the major facilitator superfamily (GrcF, Figure 1B).

A heterologous coexpression platform was initially used to
determine the modifications installed by the three tailoring
enzymes. Starting with a pRSFDuet expression vector, we
inserted into the first multiple cloning site grcA carrying an N-
terminal hexaHis maltose-binding protein (6éHMBP) purifica-
tion tag with an HRV-3C protease cleavage site between the
two sequences (Tables S1—S3). In the second multiple cloning

3807

site, we inserted grcB, grcC, grcD, grcE, or a combination of
these. Upon expression, modification of the precursor peptide
took place within Escherichia coli. Thereafter, the cells were
harvested, lysed, and the peptides isolated using immobilized
metal affinity chromatography. Finally, the peptides were
proteolytically cleaved, and their structures elucidated using
high-resolution mass spectrometry (HR-MS), tandem HR-MS
(HR-MS/MS), multidimensional nuclear magnetic resonance
(NMR) spectroscopy, and Marfey’s analysis to determine
absolute configurations.

HPLC-Coupled HR-MS and HR-MS/MS Analysis of
Enzymatic Products. The grcA-only expression construct
produced a peptide with the mass of the unmodified, linear
precursor, as expected ([M + 2H]*" = 780.860, Figure 2A and
Tables S4—S6). The construct featuring GreB, in addition to
the precursor peptide, exhibited an 18 Da lighter mass relative
to the precursor peptide (Figure 2B). Subsequent cleavage
with trypsin localized the modification to the C-terminal 14
residues of the peptide. The —18 Da modification was reflected
in the bl0 and yS—yl3 ions, thereby suggesting either a
modified Glu35 or macrocyclization involving Glu3S and one
of the downstream residues. Intracross-link ions b10 and y4

https://doi.org/10.1021/jacs.3c10824
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suggest that the putative macrocycle can fragment under the
spectrometric conditions (Tables S7 and S8). The modifica-
tion was also observed in the absence of GrcE, which indicated
that this standalone RRE was not required for the reaction
(Tables S4 and SS). Indeed, further HHpred-based sequence
analysis showed that GrcB contains an N-terminal RRE
domain. Recombinant constructs that lacked this domain or
the C-terminal catalytic domain of GrcB were inactive in
generating the —18 Da modification (Figure S1).

Next, we investigated the activity of the RaS enzymes. The
peptide product of the GrcBCE construct, in which the first
RaS enzyme, GrcC, was present, in addition to GreB and the
RRE GrcE, also gave a —18 Da product with respect to the
precursor peptide (Figure 2C and Tables S4—S5). However,
this species exhibited different chromatographic properties
with a shorter retention time compared with the GrcB-only
product (Figure 2C, Table S6). Coinjection of the two
products validated this result, which indicated that the two
—18 Da products were not identical (Figure S2). In addition,
the HR-MS/MS fragmentation pattern for the product of the
GrcBCE construct was analogous to those with GreB alone,
consistent with a diastereomeric relationship between the two
products (Table S9). Conversely, the GrcBDE product
featured a —20 Da mass shift relative to the precursor peptide
and an increase in retention time relative to the —18 Da
products (Figure 2D). In this product, an observed —18 Da y$
ion, =2 Da b9 ion, and y6—yl2 ijons with a —20 Da
modification relative to GrcA all pointed to a —2 Da
modification on His34, as well as the condensation involving
Glu3S (Table S10). We also observed the —2 Da modification
on His34 without the condensation ascribed to the —18 Da
alteration (Tables S11 and S12).

The construct with the full BGC, the putative ThiF-like
adenylyltransferase GrcB, both RaS enzymes GrcC and GreD,
and the RRE GrcE gave two —20 Da species relative to the
peptide substrate with two different retention times (Figure
2E). We call these species GrcBCDE 1 and GrcBCDE 2,
according to their elution profiles. Both species exhibited
analogous MS/MS fragmentation patterns; a fragment that was
2 Da lighter localized on His34 and a —18 Da lighter fragment
involving Glu3$ (Table S13). On the basis of these results, we
wondered if one of the —20 Da species was the product of the
GrcBDE reaction and, thus, an intermediate. At first glance, the
GrcBDE product (Figure 2D) and GrecBCDE_2 (Figure 2E)
had identical retention times and HR-MS profiles. When we
coinjected GrcBCDE 1 or GrcBCDE_2 with the product
from the GreBDE construct, indeed, the GrcBDE product and
GrcBCDE_2 coeluted (Figure 3, Figure S2). Their HR-MS/
MS profiles were very similar, which is consistent with the idea
that GrcBCDE_2 is an intermediate and GrcBCDE _1 the final
product (Tables S10 and S13). Finally, the GrcCDE construct
did not feature the —2 Da modification, thereby suggesting
that macrocycle formation preceded and was a requirement for
the —2 Da alteration (Table S12). The GrcCDE construct did,
however, result in a retention time shift, which suggests that
the mass-neutral modification can occur on the linear
precursor (Figure S2).

As a final experiment with the in vivo constructs, we explored
the importance of the recognizable, discrete RRE protein
(GrcE). We found that GreB and GreC do not require this
domain because their reactions occurred in the absence of
GrcE (Tables S4—S6). However, the —2 Da modification was
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Figure 3. HPLC-MS coinjection data for the —20 Da products
GrcBCDE_1, GreBCDE_2, and GreBDE. Shown are EIC traces (m/z
= 770.8461, Appm = 10). The GrcBDE and GrcBCDE_2 products
both have longer retention times relative to GrcBCDE_1 and coelute.
Together with identical HR-MS/MS patterns, these data indicate that
GrcBDE and GrcBCDE_2 are intermediates in the pathway. The
GrcBCDE _1 product does not coelute with the other species, which
suggests it contains a mass-neutral alteration.

not observed unless GrcE was present, which suggests it is
required for the GrcD-catalyzed transformation.

Structural Elucidation of the GrcBCDE Products by
NMR. To definitively determine the structure of the species
above, we conducted large-scale growth and purification of the
two —20 Da products from expression of GrcBCDE and
GrcBDE and subjected these to a suite of multidimensional
NMR experiments (Table S14, Figures S3—SS). The linear
unmodified GrcA 14-mer peptide was obtained commercially
for comparison. 'H, COSY, and heteronuclear multiple bond
correlation (HMBC) spectra of the GrcBDE product revealed
chemical shift changes at the Glu3S and Cys39 side-chains
relative to the linear peptide. Both the y-protons of Glu35 and
the B-protons of Cys39 strongly correlated to a carbonyl group
with a "*C shift at 201.4 ppm (Figure 4A). This significant
downfield shift and other correlations are consistent with a
thioester linkage between Glu3S and Cys39. Low isolation
yields and signal-to-noise precluded detection of this shift in
the HMBC spectrum of the final GrcBCDE_1-modified
product. However, on the basis of the overlap between
NMR features and analogous shifts throughout, in addition to
the HR-MS/MS data, we assign the —18 Da transformation to
installation of a thiolactone, catalyzed by GrcB in both
GrcBDE and GrecBCDE products. Thioester linkages are more
easily fragmented than their amide or ester counterparts, which
is consistent with the MS/MS fragments that are detected
within the Glu-to-Cys cross-link (Figure 2).

Next, we turned to the distinct proton shift in the
midaromatic region (around 7.6 ppm) present in the H'
NMR spectra of both the intermediate (GrcBDE and

https://doi.org/10.1021/jacs.3c10824
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GrcBCDE_2) and the final product (GrcBCDE_1) but not in
the substrate (Figure 4B). The 7.6 ppm shift was correlated
with the J- and the e-protons of His34 by COSY-NMR, which
was consistent with the HR-MS/MS results that localized the
modification onto this His residue (Figure 4C). In addition,
the expected COSY correlations between the a- and S-protons
of His34 were absent in GrcBDE and both GrcBCDE-modified
peptides (Figures S3—SS). These results, along with the
presence of NOESY correlations between the 7.6 ppm shift
and the a- and f-protons of Ala33, were indicative of an a,f-
unsaturated His residue, a conclusion that is consistent with
the broadened absorption spectrum of the product relative to
the substrate (Figure S6). Moreover, NOESY correlations
observed between the J-proton of His34 and both the Glu N—
H and the f-proton of His34 revealed a trans-configuration of
the a,f-didehydroHis in addition to the presence of
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correlations between the f-proton of His and the a- and p-
protons of Ala33 (Figure S7). Thus, GrcD dehydrogenates
His34 in a trans-selective fashion to generate the olefin
product.

To distinguish between the intermediate (GrcBDE-modified
peptide) and the final product (GrcBCDE-modified), we
overlaid the HSQC spectra of both species and observed
chemical shift differences in the Thr32 a- and f-protons and
Tyr31 a-protons (Figure 4D). The chemical shifts were most
dramatic for the Thr32 f-protons, which were shifted upfield
from 4.06 to 3.83 ppm in the product (Table S14). Since GrcC
was shown to catalyze a mass-neutral modification on the basis
of our HR-MS data, we turned to Marfey’s analysis to
determine the absolute configuration of the intermediate and
the mature product.”® After functionalizing the hydrolyzed
peptides with Marfey’s reagent, we determined that all amino
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acids in the GrcBDE-modified peptide are L-configured (Figure
S8). However, the Thr in the GrcBCDE product displayed an
identical retention time to L-allo-Thr, thereby indicating that it
is epimerized at the f-carbon (Figure 4E).

Taken together, both GrcBDE- and GrcBCDE-modified
peptides possess a thioester linkage between Glu3S and Cys39
and a didehydrohistidine installed by GrcB and GrcDE,
respectively. In addition, the final product contains an L-allo-
Thr32 epimerized by GrcC (Figure 4F). The macrocyclic
proline, which is strictly conserved in GrcA, was found in a
trans-configuration, as shown by NOESY correlations. On the
basis of these findings, we envision a reaction scheme where
either GrecB or GreC install the modification first onto the
precursor peptide to generate a macrocyclic thioester and an
epimerized Thr32. These are followed by GrcDE, which
oxidize His34 to generate an a,f-unsaturated residue. Thus,
the three enzymes install novel and an unusual set of
modifications onto the core sequence of GrcA.

Reconstitution of the GrcC and GrcB Reactions In
Vitro. After elucidating the enzymatic reactions in vivo, we
sought to reconstitute the activity of the enzymes in vitro and
to reassess the order of the reactions. GrcC, GrcB, and GreD
were cloned into a pET-28b vector with an N-terminal
hexahistidine tag. Repeated attempts to obtain soluble GrcD
failed, even though the protein was soluble and functional in
our in vivo studies. This is a common phenomenon with
biosynthetic enzymes for which suitable ex vivo conditions
cannot be easily identified.”* We were, however, able to purify
GreB and GreC and conduct in vitro enzymatic assays.”> The in
vivo experiments showed that the unmodified peptide is
accepted by GrcC and GreB but not GreD, which suggests that
GreD acts last in the pathway (Tables S4—S6). Therefore,
HRV-3C-cleaved GrcA peptide was also expressed, purified,
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and used as the substrate in the reactions. The UV—vis
absorption spectrum of as-isolated GrcC was characteristic of a
RaS enzyme exhibiting a broad band at 400 nm and a shoulder
around ~320 nm (Figure S9). Quantification of Fe and labile
S*~ gave 5.5 + 0.1 Fe and 6.0 + 0.1 S*~ per protomer, which is
consistent with the presence of at least two [4Fe—4S] clusters.
In the absence of substrate, GrcC was able to convert SAM
into S’-deoxyadenosine, thereby indicating it can trigger the
radical initiation reaction that is characteristic of the Ra$
enzyme family (Figure S9).

We next supplemented the GrcC reaction with GrcA,
reductant, and SAM. After defined intervals, the enzyme was
removed, and the peptides were subjected to tryptic digestion
followed by HPLC-MS analysis. When all reaction components
were present, we observed a new peak consistent with a mass
neutral modification, as shown by HR-MS and HR-MS/MS
analysis (Figure SA, Tables S15 and S16). This peak was not
formed in the absence of SAM or GrcC and accumulated in a
time-dependent manner (Figure S10, Figure SA). Moreover,
when GrcA was replaced with the product of the GrcB
reaction—that is, GrcA containing the C-terminal thiolactone
macrocycle—significant product formation was not detected
(Figure S11). Together, these data show that GrcC can
catalyze Thr f-carbon epimerization in vitro and that the
enzyme prefers the linear GrcA substrate.

The RaS epimerase YydG inverts the a-carbon configuration
of valine and isoleucine residues in its precursor peptide via 5'-
dAe-mediated abstraction of a-protons followed by H-atom
donation from the other face of the resulting radical
intermediate.”®*” A Cys residue in YydG has been identified
as the H-atom donor. Interestingly, a similar mechanism has
been proposed for RaS epimerases that act on glycosidic
substrates in hygromycin biosynthesis.”® To explore the GrcC
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Figure 6. Reactions catalyzed by enzymes in the grc gene cluster. GrcC catalyzes epimerization at the Thr B-carbon to generate L-allo-Thr. GreB
then condenses the C-terminal Cys with the internal Glu side chain to generate a macrocyclic thiolactone. Finally, GrcDE catalyzes

dehydrogenation to give rise to an ,f-didehydroHis residue.

reaction further, we carried out the reaction in fully deuterated
buffer. Under these conditions, we observed formation of a
product that was 1 Da heavier relative to reaction product in
protonated buffer (Figure S12, Table S1S). Moreover, HR-
MS/MS analysis showed that the mass increase was associated
solely with Thr32 in GrcA (Figure S12, Table S17). These
results are in line with those observed for YydG and provide a
starting point for future mechanistic studies.

ThiF-like adenylyltransferases derive their name from
thiamine biosynthesis and require Mg** and ATP for
activity.””*® To reconstitute the activity of GrcB in vitro,
GrcB was supplemented with Mg** and ATP in the presence of
unmodified or epimerized substrate. Product was observed
only when both ATP and Mg®* were present in a time-
dependent manner, as determined by HR-MS and HR-MS/MS
(Figure SB, Figure S13). Although GrcB was active on both
substrates, the enzyme exhibited a slight preference for the
GrcC-epimerized product (Figure S14 and Tables S15, S18,
and S19). We could, therefore, recapitulate the reaction of
GrcB in vitro and gain further insights into the order of
reactions of the three modification enzymes in the grc BGC
(Figure SC).

B CONCLUSION

The identification of GrcC as a Thr f-carbon epimerase adds a
new modification to the repertoire of RaS enzymes.
Epipeptides and proteusins are classes of RaS-RiPPs that
contain valine, isoleucine, and phenylalanines that are
epimerized at the a-carbon by the RaS enzymes YydG (an
epipeptide epimerase) and by PlpD, OspD, and AvpD
(proteusin epimerases).”**”*'™* In the case of the highly
cytotoxic polytheonamides,” ™" which features a number of
post-translational modifications, the RaS enzyme PoyD
epimerizes an impressive 18 amino acids, including valine,
alanine, asparagine, serine, and Thr, on one 48-mer peptide
substrate.'”**~*® Nonetheless, each of these modifications has
been limited to the a-carbon, thus giving rise to p-allo-Thr in
the case of the Thr modification. Finally, cypemicin is a
linaridin-type RiPP that contains D-allo-isoleucine, though
epimerization is not carried out by a RaS enzyme.”” ™" To the
best of our knowledge, GrcC distinguishes itself from

3811

previously characterized RaS epimerases in that it acts on the
p-carbon instead of the backbone. While r-allo-Thr has been
observed in natural products derived from nonribosomal
peptide synthetases, such as lysobactin, astin, and globomycin,
the noncanonical residue in these cases is thought to be
introduced by a heterolytic pathway.**~*

The characterization of GreB as an enzyme that introduces a
thioester linkage between an internal Glu side chain and a C-
terminal Cys also adds a new reaction to the growing list
catalyzed by the ThiF/El-enzyme superfamily.’’ Analysis of
the genetic sequence using HHpred revealed that GrcB is
bimodal, in that it contains both an N-terminal RRE domain
and a C-terminal catalytic domain, and is structurally
homologous to the previously characterized proteins MccB
and PaaA, which are involved in Asn and Glu—Glu cyclization
reactions, respectively.””*> The product of the GrcB reaction is
reminiscent of the five-residue thiolactone macrocycles found
in autoinducing peptides (AIPs) from Staphylococcus aureus
but distinct in that its directionality is reversed: in AIPs, an
internal Cys reacts with the C-terminal carboxylic acid,
whereas the product of GreB links an internal Glu side chain
with a C-terminal Cys-thiol.”*~°® AIPs play important roles in
QS and intraspecies communication, which is an intriguing
parallel given that the grc BGC is also regulated by QS and that
preliminary studies of mature streptococcal RaS-RiPPs suggest
that these peptides show fratricidal activities.”

The GrcD-catalyzed dehydrogenation of His is only
observed after thiolactone formation and in the presence of
the RRE GrcE. Lanthionines are a defining feature of
lanthipeptides, with 2,3-didehydroalanine or (Z)-2,3-didehy-
drobutyrine serving as intermediates toward thioether cross-
links or as residues in the mature RiPP.'"'*®” By leveraging
radical chemistry, GrcD expands the scope of a,f3-didehy-
droamino acids in RiPP biosynthesis beyond dehydroalanine
and dehydrobutyrine. The RaS maturase, MftC, from the
biosynthetic pathway of the redox cofactor mycofactocin
decarboxylates the C-terminal tyrosine of the precursor to
generate an ,f-dehydrogenated tyramine intermediate, which
after reduction of the active site Fe—S cluster by the SPASM
domain reacts further with the peptide backbone to form a C—
C cross-link.”*®” With only four total Cys residues, GreD likely
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only contains a single [4Fe—4S] cluster in its active site and,
unlike MftC, does not react further, thus installing the first
instance of dehydrogenated His onto its substrate.

The in vivo and in vitro studies allow us to propose an order
for these modifications wherein GrcC likely acts first to
epimerize the Thr32 f-carbon followed by macrocyclization
via a C-terminal thiolactone by GrcB and, finally, dehydrogen-
ation of His34 by GrcDE (Figure 6). The product of the gre
cluster consists of a mosaic of seemingly unrelated
modifications reminiscent of the linaridin class of
RiPPs.'»**7>” Cypemicin, the founding member of the
linaridins mentioned above, features a C-terminal cross-link
involving Cys and several dehydroamino acids in addition to
epimerized residues, which are not introduced by a RaS
enzyme. It will be interesting to uncover how the various
modifications in the mature grc product contribute to its
biological activity.

The two new nonproteinogenic residues introduced by RaS
enzymes underscore the rich potential of RiPP BGCs as
sources of unusual amino acid alterations. RaS-RiPPs have thus
far stood out for their unusual macrocycles.”' 7~ With
three modifications and no RaS enzyme-mediated macrocycle,
the product of the grc cluster represents one of the most
distinct structures in our network. The low abundance of
natural products often makes their discovery challenging.
However, robust in vivo heterologous expression technologies
enable discovery of new scaffolds and post-translational
modifications, as they did in this study, by decoding the
biosynthetic potential written in microbial genomes. Knowl-
edge of the reactions carried out by GrcBCDE provides
important clues in searching for the mature product. Initial
efforts to identify the mature RiPP from the grc BGC in S.
pneumoniae A34562 were unsuccessful. However, dozens of
other S. pneumoniae strains remain to be analyzed. Future
efforts to find the mature RiPP will also focus on Streptococcus
oralis, an additional species that was sequenced and shown to
possess the grc gene cluster after the initial generation of our
RaS-RiPP network. Macrococcus caseolyticus, an opportunistic
pathogen isolated from dairy products, offers an alternative
strain as it encodes a homologous grc cluster on a ?Iasmid,
albeit with a different precursor peptide sequence.”’ These
strains further underline the complex secondary metabolites
that are encoded in underexplored microbes, notably those
with small genomes.
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