

Accepted Article

Title: Synthesis of Non-canonical Tryptophan Variants via Rh-catalyzed C–H Functionalization of Anilines

Authors: Mohammad R. Seyedsayamdost, Jonathan Z. Huang, and Vanessa Y. Ying

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: *Angew. Chem. Int. Ed.* **2024**, e202414998

Link to VoR: <https://doi.org/10.1002/anie.202414998>

COMMUNICATION

Synthesis of Non-canonical Tryptophan Variants via Rh-catalyzed C–H Functionalization of Anilines

Jonathan Z. Huang,^[a] Vanessa Y. Ying,^[a] and Mohammad R. Seyedsayamdst^{*[a,b]}

[a] Dr. J. Z. Huang, V. Y. Ying, Prof. Dr. M. R. Seyedsayamdst

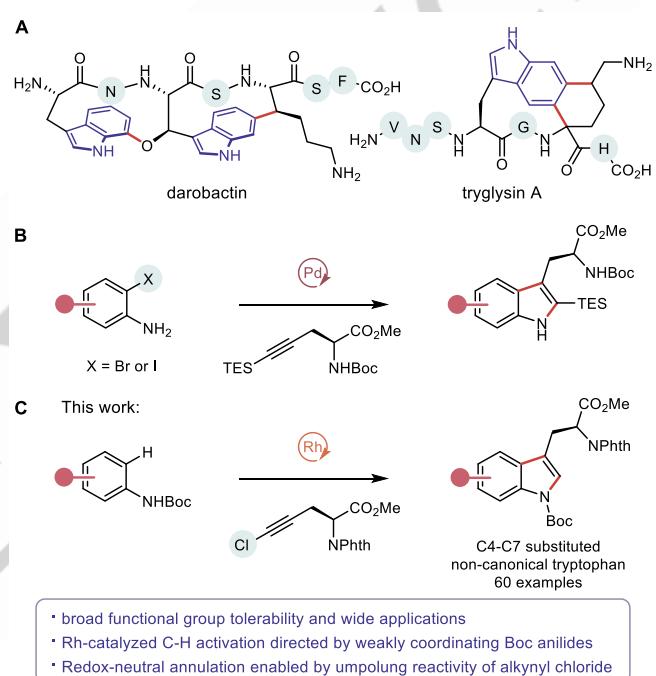
Department of Chemistry, Princeton University

Princeton, NJ 08544 (USA)

E-mail: mrseyed@princeton.edu

[b] Prof. Dr. M. R. Seyedsayamdst

Department of Molecular Biology, Princeton University


Princeton, NJ 08544 (USA)

Supporting information for this article is given via a link at the end of the document.

Abstract: Tryptophan and its non-canonical variants play critical roles in pharmaceutical molecules and enzymes. Facile access to this privileged class of amino acids from readily available building blocks remains a long-standing challenge. Here, we report a regioselective synthesis of non-canonical tryptophans bearing C4–C7 substituents via Rh-catalyzed annulation between structurally diverse *tert*-butyloxycarbonyl (Boc)-protected anilines and alkynyl chlorides readily prepared from amino acid building blocks. This transformation harnesses Boc-directed C–H metalation and demetalation to afford a wide range of C2-unsubstituted indole products in a redox-neutral fashion. This umpolung approach compared to the classic Larock indole synthesis offers a novel mechanism for heteroarene annulation and will be useful for the synthesis of natural products and drug molecules containing non-canonical tryptophan residues in a highly regioselective manner.

Tryptophan (Trp) is an indole-containing amino acid that plays myriad important roles in biology (Figure 1A).^[1–8] It serves as a starting material for the biosynthesis of indole alkaloids and peptide natural products.^[9–10] In proteins, Trp is responsible for numerous essential functions including steric, hydrophobic, and π-cation interactions as well as electron transfer (ET) and proton-coupled ET processes in redox-active enzymes.^[4–12] Chemical modifications on the indole moiety of Trp drastically alter its structure and function.^[13–14] The resulting non-canonical Trp variants are useful for the synthesis of Trp-containing natural products, drug molecules, and for studying the function of Trp in enzyme catalysis.^[5]

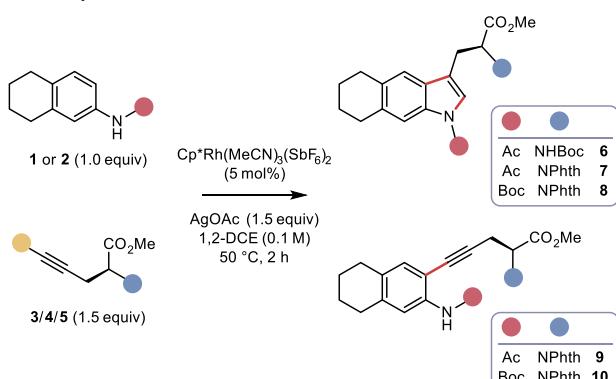
We have been interested in the discovery and synthesis of peptide natural products carrying cross-linked Trp moieties.^[15–17] Compared to the variety of existing methods for the preparation of indoles, efficient synthesis of non-canonical Trp remains underdeveloped. One of the most well-established methods for the synthesis of this class of molecules is the Larock indole synthesis, which entails Pd-catalyzed annulation between halogenated anilines and silyl alkynes (Figure 1B).^[18,19] It has become a reliable transformation for the preparation of complex macrocyclic peptide natural products containing Trp modifications.^[20–23] Despite these advantages, the method requires regioselective halogenation on the starting aniline and affords a C2-silylated indole as the precursor to C2-unsubstituted Trp.

Figure 1. (A) Examples of Trp-containing natural products. (B) Larock indole synthesis. (C) This work: Rh-catalyzed C–H annulation between Boc-anilides and alkynyl chlorides.

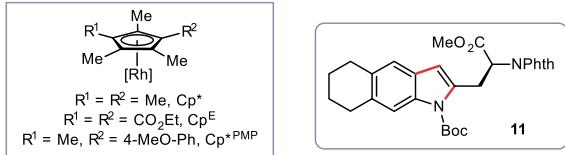
Given these limitations, a new one-step synthesis of non-canonical Trp analogs from readily available anilines is highly desirable. With recent developments, Rh-catalyzed C–H activation/annulation chemistry has become a powerful tool for the synthesis of various nitrogen-containing heterocycles.^[24–29] Most of these transformations employ internal alkynes as the coupling partner and require stoichiometric oxidants for catalyst turnover. In these reactions, the C–H activation step is well-understood, whereas the subsequent redox process remains poorly defined.^[30] One strategy to bypass this complication is embedding an internal oxidant in the directing group.^[25–26,31] Alternatively, we envisioned that alkynyl halides that are easily prepared from free- or silyl-substituted terminal alkynes could be coupled with anilines bearing non-oxidative directing group for the synthesis of non-canonical Trp. The pre-installed halogen atom in the alkyne fragment would serve not only as the internal oxidant to balance the overall redox, but also as a cleavable progenitor for C2-unsubstituted indoles. Herein, we report a Rh-catalyzed

COMMUNICATION

synthesis of C4-C7 substituted Trp and related 3-alkylindoles from Rh-catalyzed annulation between Boc-protected anilines and alkynyl chlorides (**Figure 1C**).

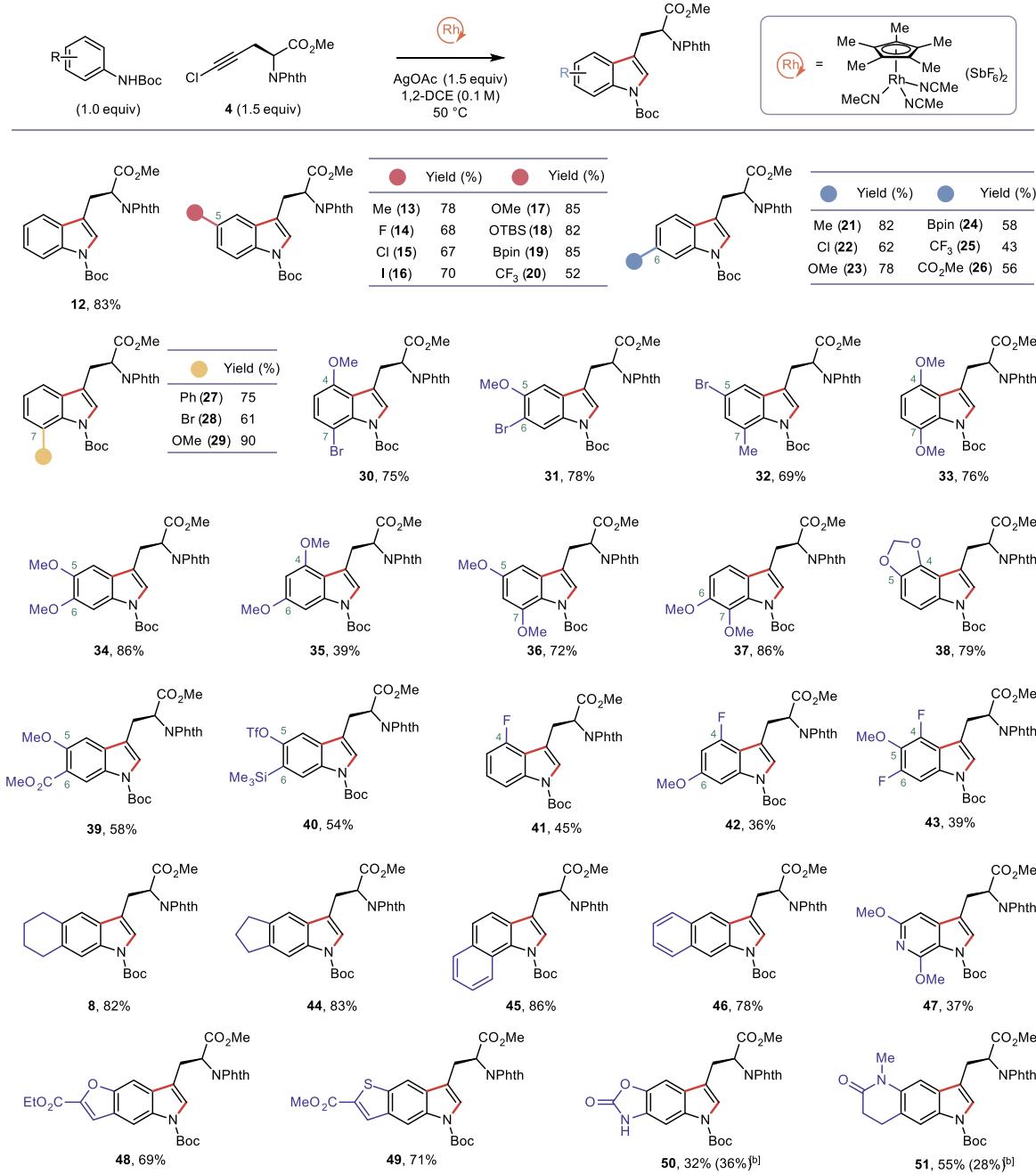

To test our hypothesis, acetanilide **1** bearing a tetralin moiety and alkynyl chloride **3** derived from (*S*)-propargyl alanine were chosen as model substrates for optimization studies (**Table 1**). In the presence of 5 mol% $[\text{Cp}^*\text{Rh}(\text{MeCN})_3](\text{SbF}_6)_2$, 1.5 equivalents of AgOAc in 1,2-DCE at 50 °C for 2 h, 11% of desired indole product **6** was detected along with other byproducts (Entry 1 and **Figure S1** in SI). We reasoned that the strong Lewis acidity of the cationic Rh(III) complexes catalyze background cyclization of alkyne substrates bearing a nucleophilic Boc amide group. Consequently, switching Boc to a more inert phthalimide group in **4** gave 35% of desired indole product **7** and 23% of the alkynylation byproduct **9** at incomplete conversion of both starting material (Entry 2). To further optimize the ratio between the two products, we screened directing groups on the aniline (**Table S3** in SI). A weakly directing^[32] and synthetically attractive Boc group is optimal for this transformation, providing 59% of the desired product and a 6:1 ratio between **8** and **10** at 70% conversion of the starting anilide (Entry 3). Using the alkynyl bromide **5** instead of **4** gave slightly diminished yield (49%), presumably due to the decreased stability (Entry 4). Screening of 14 Rh catalysts bearing different cyclopentadienyl (Cp) ligands^[33] revealed that Cp^* ligand

on Rh is optimal for this chemistry (Entries 5-6 and **Table S1** in SI). Prolonging the reaction time to 6 h led to complete consumption of the starting anilide and 83% yield of the desired Trp product **8** along with 5% alkynylation byproduct **10** and 12% of a C2-Trp isomer **11** (Entry 9). No epimerization of the α -amino carboxylate stereogenic center was observed during the transformation (**Figure S4** in SI). Notably, the reaction can be performed at room temperature with prolonged reaction time (Entry 10).


With the optimal conditions in hand, we evaluated the scope of anilide for this transformation (**Table 2**). A wide range of *para*- (13-20), *meta*- (21-26) and *ortho*- (27-29) substituted Boc-anilides can be smoothly converted to the corresponding C5-, C6- and C7-substituted Trp products ranging from 43% to 90% yield. Broad functional groups are tolerated in this transformation, including alkyl (13 & 21), aryl (27), full series of halogen (F, Cl, Br and I, 14-16, 22, 28), methoxy and siloxy (17-18, 23, 29), boronic ester (Bpin, 19 & 24), CF_3 (20 & 25) as well as carboxylic ester (26). In addition to mono-oxygenated Trp analogues, our method also allows direct access to di-oxygenated Trp products (33-38) as well as other oxygen-containing disubstituted Trp derivatives (30, 31, 39). An indolyn precursor^[34] containing Trp (40) was obtained in 54% yield, demonstrating the potential for further diversification. While in most cases C-H activation occurs *ortho*- to a hydrogen atom, it can also occur adjacent to a methoxy group when the other *ortho*-position is blocked by a bromine (30) to generate a precursor for 4-methoxytryptophan, or in a case where symmetrical Boc protected 3,5-dimethoxyanilide was used as substrate (35). Notably, C-H activation occurs preferentially adjacent to a methylenedioxy (38) or fluorine (41-43) even when both *ortho*- and *meta*-positions are occupied by hydrogen atoms on the other side of the anilide. Carbocyclic substrates such as tetralin (8), indane (44) as well as 1- and 2-substituted naphthalene (45 & 46) are well tolerated. 5,7-dimethoxy-6-azatryptophan (47) and several heterocycle-fused Trp products including furan (48), thiophene (49), oxazolidone (50) and piperidone (51) can also be prepared using this method.

The approach also allows for mono- or bis-annulation of 1,4-phenylenediamines, which can be controlled by the selection of TFA or Boc protecting groups on one of the nitrogen atoms. TFA protection facilitated the synthesis of 5-aminotryptophan analogue **54**, whereas a symmetrical bis-Boc protected 1,4-phenylenediamine enabled two successive reactions to give the bidirectional Trp **55** (**Scheme 1A**). Given the importance of cross-linked Trp residues in macrocyclic peptide natural products, we tested several dipeptides and found that our method is readily applicable to these structural motifs (**Scheme 1B**). The dipeptides include Trp-Ala bearing both acid-sensitive (Boc, **56**) and base-labile (Fmoc, **57**) groups, Trp-Val via diaryl amide linkage (**58**), Trp-Trp with bi-indole linkage (**59**) and Trp-Tyr via diaryl ether linkage (**60**). Triptans are anti-migraine drugs acting as serotonin receptor agonists, which share 5-substituted indole-3-alkylamine as the common structure.^[11] Our method allows rapid access to Trp derivatives of triptans, including zolmitriptan (**61**) and almotriptan (**62**) analogues. Remarkably, besides Trp, a pyrrole-containing amino acid **63** can also be prepared analogously from N-Boc dehydroalanine methyl ester.

Table 1. Optimization of reaction conditions.^[a]



Entry	Substrate and Condition	Conv. of 1 or 2 (%)	Yield (%)	
			6/7/8	9/10
1	● = Ac (1) ● = NHBoc ● = Cl (3)	24	11	--
2	Ac (1) NPhth Cl (4)	77	35	23
3	Boc (2) NPhth Cl (4)	70	59	10
4	Boc (2) NPhth Br (5)	65	49	9
5 ^[b]	Same as 3, Cp^E instead of Cp^* ligand	21	trace	6
6 ^[b]	Same as 3, Cp^{*PMP} instead of Cp^* ligand	72	50	10
7	Same as 3, AgOPiv instead of AgOAc	74	35	13
8	Same as 3, under N_2	53	42	9
9 ^[c]	Same as 3, 6 h reaction time	99	83	5
10	Same as 3, rt, 24 h	87	71	8

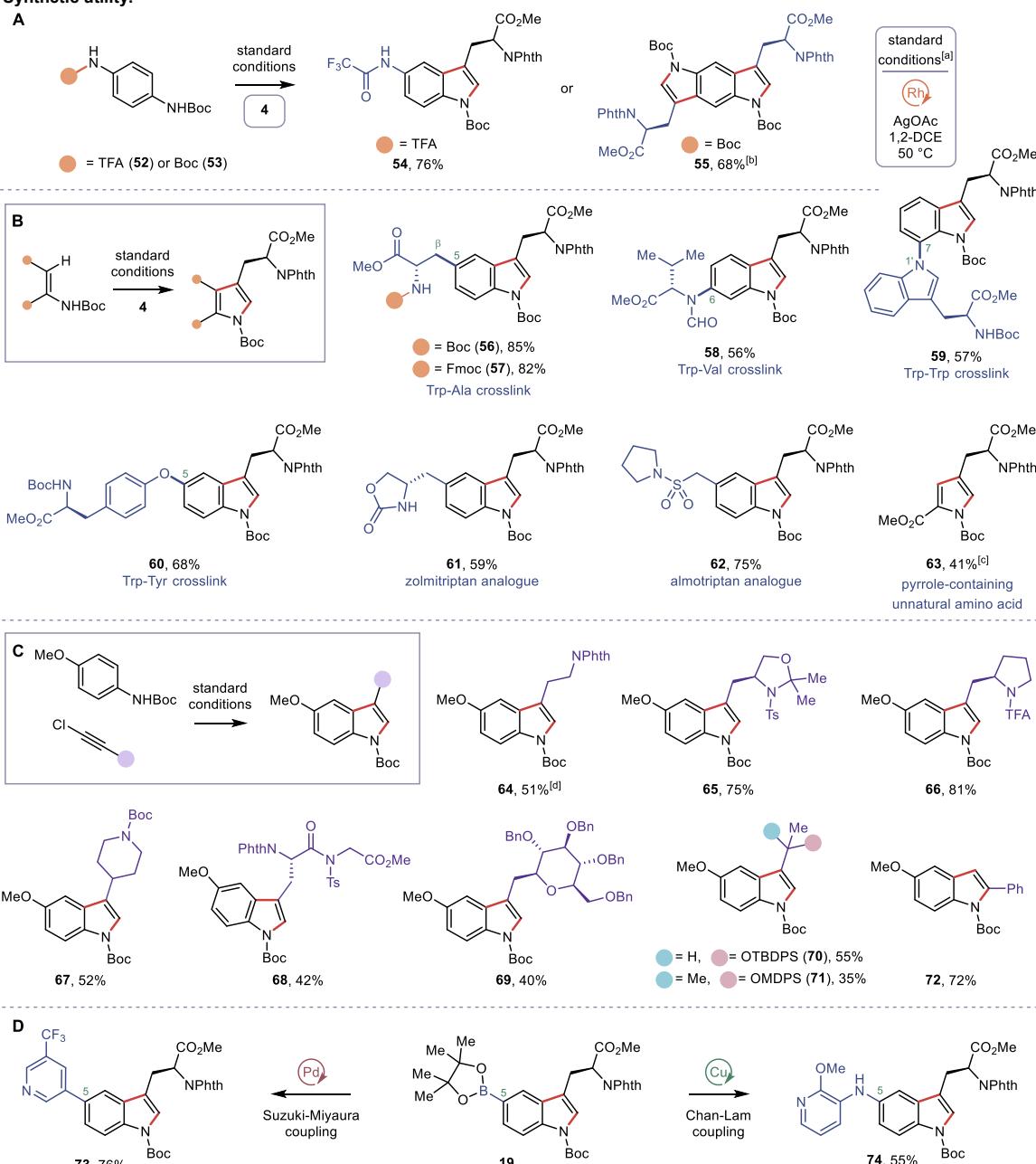
[a] Reaction performed on 0.05 mmol scale. Conversion and yield were determined by $^1\text{H-NMR}$ using 1,2-dibromoethane as the internal standard. [b] Complexation was performed *in situ* using $[\text{Cp}^*\text{RhCl}_2]_2$ (2.5 mol%), AgSbF_6 (10 mol%) and MeCN (15 mol%). [c] 12% of the C2-substituted indole **11** was detected.

COMMUNICATION

Table 2. Scope of Boc-anilides.^[a]

[a] Reaction conditions: Boc-anilide (0.10 mmol), 4 (0.15 mmol), $[\text{Cp}^*\text{Rh}(\text{MeCN})_3](\text{SbF}_6)_2$ (5 mol%), AgOAc (0.15 mmol) in 1,2-DCE (1.0 mL) at 50 °C for 4–48 h.

[b] Yield of C-2 chlorinated byproducts.

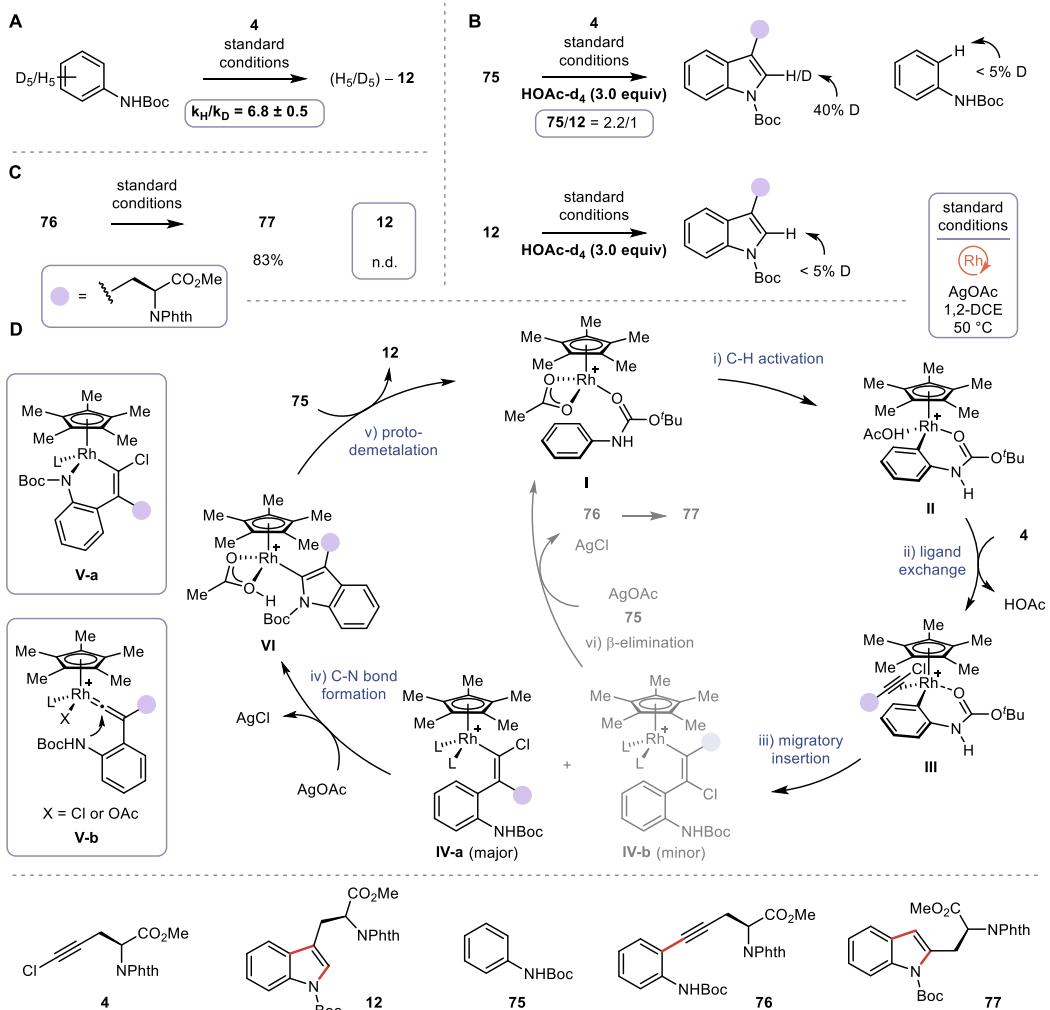

This method is generalizable for the synthesis of other 3-substituted indoles (**Scheme 1C**). Melatonin derivative **64** was prepared in 51% yield when excess HOAc is present during the reaction to inhibit C2 over-alkylation (See SI for more details). Tryptophanol derivative **65** containing tosyl amide and acetonide protections was prepared in 75% yield. C3-alkylindoles **66** and **67** bearing pyrrolidine and piperidine moieties were synthesized in 81% and 52% yield respectively. Notably, these *N*-heterocyclic sidechains are widely present in triptans and psychedelic drugs.^[1, 9] Dipeptide product **68** consisting of 5-methoxytryptophan and glycine was prepared in 42% yield. Besides nitrogen-containing alkynes, oxygen-substituted substrates including C-glycoside (**69**)

as well as silyl protected secondary and tertiary propargyl alcohols (**70** & **71**) are also suitably converted into the C3-substituted indoles. In contrast to the C3-selectivity observed for alkyl substituted alkynes, 2-arylindole product **72** was obtained predominantly when phenyl-substituted alkynyl chloride was employed.

The facile preparation of **19** bearing a Bpin group provides opportunities to further incorporate drug-like heterocyclic moieties into Trp (**Scheme 1D**). For example, pyridyl-substituted Trp **73** can be prepared by Suzuki-Miyaura coupling in 76% yield.^[35] Likewise, pyridine-containing diarylamine **74** was synthesized in 55% yield using Chan-Lam coupling.^[36]

COMMUNICATION

Scheme 1. Synthetic utility.



(A) Selective functionalization of 1,4-phenylenediamines. (B) Synthesis of complex Trp. (C) Scope of alkynyl chloride. (D) Synthetic diversification. [a] Standard conditions: Boc-anilide (0.10 mmol), alkynyl chloride (0.15 mmol), $[\text{Cp}^*\text{Rh}(\text{MeCN})_3](\text{SbF}_6)_2$ (5 mol%), AgOAc (0.15 mmol) in 1,2-DCE (1.0 mL) at 50 °C. [b] 10 mol% of the Rh catalyst, 3.0 equiv. of 4, and 3.0 equiv. of AgOAc were used. [c] Reaction performed at rt. [d] 5 equiv. of HOAc was added. See SI for more details.

To gain insights into the reaction mechanism, a series of experiments was performed (Figure 2). Reaction of Boc-anilide **75** in comparison to its D_5 -isotopologue revealed a pronounced primary kinetic isotope effect (KIE) value of 6.8 ± 0.5 (Figure 2A). This is in agreement with previously reported values for a concerted metalation deprotonation (CMD) mechanism for C–H activation, and suggests that the rate determining step of the transformation involves C–H bond cleavage by the Rh(III) catalyst.^[25,37–38] We next investigated the reversibility of C–H metalation at the *ortho*-position of starting anilide **75** and the C2-position of product **12** (Figure 2B). The addition of 3 equivalents of acetic acid-d₄ to the standard reaction between **75** and alkynyl chloride **4** provides 40% deuterium incorporation at C2 position in

12, with < 5% *ortho*-deuteration observed in the unreacted anilide **75**. In an independent control experiment, subjecting **12** into the standard reaction conditions gave <5% incorporation of deuterium at C2. The combination of both experimental results suggests that Boc-directed *ortho*-C–H activation of **75** is irreversible, and the generation of C2-unsubstituted indole **12** proceeds via acetic acid-mediated irreversible protodemetalation.^[39] Lastly, to probe if alkynylation byproduct **76** is on route to **12** or its C2-isomer **77**, we subjected **76** to the standard reaction conditions, which resulted in the formation of 83% of product **77**, with no detection of C3-substituted indole **12** (Figure 2C). This result, in addition to those in our observations during reaction optimization (Table 1, Entries 3 & 9), demonstrates that the C2-isomeric Trp product **77**

COMMUNICATION

Figure 2. Mechanistic studies. (A) Deuterium kinetic isotope effects for Boc-anilide and its isotopologue. (B) C2 deuterium incorporation experiments. (C) Isomerization of the alkynylation product. (D) Proposed catalytic cycle.

is derived from the alkynylation intermediate **76**, whereas the formation of the desired Trp product **12** occurs independently to the alkynylation pathway.

Based on these observations and previous reports,^[25, 37-39] we propose the following reaction mechanism (Figure 2D). Cationic Cp*Rh(III) intermediate **I** is formed after ligand exchange of [Cp*Rh(MeCN)₃](SbF₆)₂ with AgOAc and the Boc-anilide **75**, which sets the stage for subsequent C-H activation via CMD with an observed primary KIE of 6.8. The resulting rhodacycle **II** then undergoes ligand exchange with the alkynyl chloride, followed by migratory insertion into the aryl-rhodium bond to afford a mixture of regio-isomeric intermediates **IV-a** and **IV-b**. From the major isomer **IV-a**, C-N bond formation that closes the indole ring can occur via either a reductive elimination/oxidative addition sequence from intermediate **V-a**,^[25-26] or nucleophilic addition to a vinylidene rhodium carbene intermediate **V-b**.^[40] Both pathways give rise to a C2-rhodium substituted indole intermediate **VI** after ligand exchange between Cl and HOAc. Finally, protodehydration occurs to regenerate **I** from **VI** and release the Trp product **12**. From the minor isomer **IV-b**, β-Cl elimination occurs to provide the alkynylation product **76** and regenerate **I** following ligand exchange. **76** is then converted into the C2-isomeric Trp product **77** as demonstrated above (Figure 2C).

In summary, we report a novel and versatile synthesis of non-canonical Trp and related 3-alkylindoles by Rh-catalyzed C-H activation/heteroannulation between Boc-protected anilines and alkynyl chlorides. We demonstrate broad scope of this reaction with wide functional group tolerability and synthetic applications including natural product fragments and drug analogues. Different from traditional C-H activation / annulation chemistry, which often involves internal alkynes and requires external oxidants, our method uses alkynyl halides as the coupling partner to enable a redox-neutral annulation that provides direct access to C2-free indoles. Moreover, this work expands the utility of weak directing groups^[32] in C-H activation chemistry for direct synthesis of tryptophan products with strategically protected *N*-Boc-indoles.

Acknowledgements

We thank Life Sciences Research Foundation Postdoctoral Fellowship sponsored by the Open Philanthropy Project (to J.Z.H.), the National Science Foundation CAREER Award (No. 1847932 to M.R.S.), and the National Institutes of Health (grant R01 GM140034 to M.R.S.) for financial support. We thank P. D.

COMMUNICATION

Jeffery for assistance with X-ray crystallography and Lotus Separations for assistance with e.e. determination.

Keywords: Non-canonical Amino Acid • Tryptophan Synthesis • Rhodium Catalysis • C-H Activation • Umpolung

[1] A. J. Kochanowska-Karamyan, M. T. Hamann, *Chem. Rev.* **2010**, *110*, 4489-4497.

[2] M. Platten, E. A. A. Nollen, U. F. Röhrlig, F. Fallarino, C. A. Opitz, *Nat. Rev. Drug Discov.* **2019**, *18*, 379-401.

[3] C. Aubert, M. H. Vos, P. Mathis, A. P. M. Eker, K. Brettel, *Nature* **2000**, *405*, 586-590.

[4] K. L. Hudson, G. J. Bartlett, R. C. Diehl, J. Aguirre, T. Gallagher, L. L. Kiessling, D. N. Woolfson, *J. Am. Chem. Soc.* **2015**, *137*, 15152-15160.

[5] J. Shao, B. P. Kuiper, A.-M. W. H. Thunnissen, R. H. Cool, L. Zhou, C. Huang, B. W. Dijkstra, J. Broos, *J. Am. Chem. Soc.* **2022**, *144*, 13815-13822.

[6] J. Stubbe, D. G. Nocera, C. S. Yee, M. C. Y. Chang, *Chem. Rev.* **2003**, *103*, 2167-2202.

[7] X. Xie, P. J. Moon, S. W. M. Crossley, A. J. Bischoff, D. He, G. Li, N. Dao, A. Gonzalez-Valero, A. G. Reeves, J. M. McKenna, S. K. Elledge, J. A. Wells, F. D. Toste, C. J. Chang, *Nature* **2024**, *627*, 680-687.

[8] C. Zampaloni, P. Mattei, K. Bleicher, L. Winther, C. Thäte, C. Bucher, J.-M. Adam, A. Alanine, K. E. Amrein, V. Baidin, C. Bienossek, C. Bissantz, F. Boess, C. Cantrill, T. Clairefeuille, F. Dey, P. Di Giorgio, P. du Castel, D. Dylus, P. Dzygiel, A. Felici, F. García-Alcalde, A. Haldimann, M. Leipner, S. Leyn, S. Louvel, P. Misson, A. Osterman, K. Pahil, S. Rigo, A. Schäublin, S. Scharf, P. Schmitz, T. Stoll, A. Trauner, S. Zoffmann, D. Kahne, J. A. T. Young, M. A. Lobritz, K. A. Bradley, *Nature* **2024**, *625*, 566-571.

[9] W. Duan, D. Cao, S. Wang, J. Cheng, *Chem. Rev.* **2024**, *124*, 124-163.

[10] D. T. Nguyen, D. A. Mitchell, W. A. van der Donk, *ACS Catal.* **2024**, *14*, 4536-4553.

[11] H. Lebrette, V. Srinivas, J. John, O. Aurelius, R. Kumar, D. Lundin, A. S. Brewster, A. Bhowmick, A. Sirohiwal, I.-S. Kim, S. Gul, C. Pham, K. D. Sutherlin, P. Simon, A. Butryn, P. Aller, A. M. Orville, F. D. Fuller, R. Alonso-Mori, A. Batyuk, N. K. Sauter, V. K. Yachandra, J. Yano, V. R. I. Kaila, B.-M. Sjöberg, J. Kern, K. Roos, M. Högbom, *Science* **2023**, *382*, 109-113.

[12] T. L. Poulos, *Chem. Rev.* **2014**, *114*, 3919-3962.

[13] J. Wen, Z. Shi, *Acc. Chem. Res.* **2021**, *54*, 1723-1736.

[14] Y. Feng, D. Holte, J. Zoller, S. Umemiya, L. R. Simke, P. S. Baran, *J. Am. Chem. Soc.* **2015**, *137*, 10160-10163.

[15] K. A. Clark, M. R. Seyedsayamdst, *J. Am. Chem. Soc.* **2022**, *144*, 17876-17888.

[16] L. B. Bushin, K. A. Clark, I. Pelczer, M. R. Seyedsayamdst, *J. Am. Chem. Soc.* **2018**, *140*, 17674-17684.

[17] K. R. Schramma, L. B. Bushin, M. R. Seyedsayamdst, *Nat. Chem.* **2015**, *7*, 431-437.

[18] K. V. Chuang, M. E. Kieffer, S. E. Reisman, *Org. Lett.* **2016**, *18*, 4750-4753.

[19] R. C. Larock, E. K. Yum, *J. Am. Chem. Soc.* **1991**, *113*, 6689-6690.

[20] N. A. Isley, Y. Endo, Z.-C. Wu, B. C. Covington, L. B. Bushin, M. R. Seyedsayamdst, D. L. Boger, *J. Am. Chem. Soc.* **2019**, *141*, 17361-17369.

[21] Y.-C. Lin, F. Schneider, K. J. Eberle, D. Chiodi, H. Nakamura, S. H. Reisberg, J. Chen, M. Saito, P. S. Baran, *J. Am. Chem. Soc.* **2022**, *144*, 14458-14462.

[22] M. Nesic, D. B. Ryffel, J. Maturano, M. Shevlin, S. R. Pollack, D. R. Gauthier, Jr., P. Trigo-Mouriño, L.-K. Zhang, D. M. Schultz, J. M. McCabe Dunn, L.-C. Campeau, N. R. Patel, D. A. Petrone, D. Sarlah, *J. Am. Chem. Soc.* **2022**, *144*, 14026-14030.

[23] F. Schneider, Y. Guo, Y.-C. Lin, K. J. Eberle, D. Chiodi, J. A. Greene, C. Lu, P. S. Baran, *J. Am. Chem. Soc.* **2024**, *146*, 6444-6448.

[24] S. Dongbang, D. N. Confair, J. A. Ellman, *Acc. Chem. Res.* **2021**, *54*, 1766-1778.

[25] N. Guimond, S. I. Gorelsky, K. Fagnou, *J. Am. Chem. Soc.* **2011**, *133*, 6449-6457.

[26] N. Guimond, C. Gouliaras, K. Fagnou, *J. Am. Chem. Soc.* **2010**, *132*, 6908-6909.

[27] T. Piou, T. Rovis, *Acc. Chem. Res.* **2018**, *51*, 170-180.

[28] D. R. Stuart, P. Alsabeh, M. Kuhn, K. Fagnou, *J. Am. Chem. Soc.* **2010**, *132*, 18326-18339.

[29] D. R. Stuart, M. Bertrand-Laperle, K. M. N. Burgess, K. Fagnou, *J. Am. Chem. Soc.* **2008**, *130*, 16474-16475.

[30] I. Funes-Ardoiz, F. Maseras, *Angew. Chem. Int. Ed.* **2016**, *55*, 2764-2767.

[31] D. Zhao, Z. Shi, F. Glorius, *Angew. Chem. Int. Ed.* **2013**, *52*, 12426-12429.

[32] K. M. Engle, T.-S. Mei, M. Wasa, J.-Q. Yu, *Acc. Chem. Res.* **2012**, *45*, 788-802.

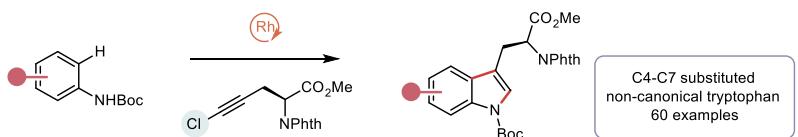
[33] T. Piou, F. Romanov-Michailidis, M. Romanova-Michaelides, K. E. Jackson, N. Semakul, T. D. Taggart, B. S. Newell, C. D. Rithner, R. S. Paton, T. Rovis, *J. Am. Chem. Soc.* **2017**, *139*, 1296-1310.

[34] G. Y. J. Im, S. M. Bronner, A. E. Goetz, R. S. Paton, P. H. Y. Cheong, K. N. Houk, N. K. Garg, *J. Am. Chem. Soc.* **2010**, *132*, 17933-17944.

[35] N. C. Bruno, M. T. Tudge, S. L. Buchwald, *Chem. Sci.* **2013**, *4*, 916-920.

[36] J. C. Vantourout, H. N. Miras, A. Isidro-Llobet, S. Sproules, A. J. B. Watson, *J. Am. Chem. Soc.* **2017**, *139*, 4769-4779.

[37] L. Ackermann, *Chem. Rev.* **2011**, *111*, 1315-1345.


[38] E. M. Simmons, J. F. Hartwig, *Angew. Chem. Int. Ed.* **2012**, *51*, 3066-3072.

[39] P. E. Piszel, B. J. Orzolek, A. K. Olszewski, M. E. Rotella, A. M. Spiewak, M. C. Kozlowski, D. J. Weix, *J. Am. Chem. Soc.* **2023**, *145*, 8517-8528.

[40] T. Watanabe, Y. Mutoh, S. Saito, *J. Am. Chem. Soc.* **2017**, *139*, 7749-7752.

COMMUNICATION

Entry for the Table of Contents

We report a regioselective synthesis of non-canonical tryptophan variants bearing C4-C7 substituents via Rh-catalyzed annulation between simple anilines and alkynyl chlorides. This umpolung approach compared to the classic Larock indole synthesis offers a novel mechanism for heteroarene annulation and will be useful for the synthesis of complex non-canonical tryptophan moieties in a highly regioselective manner.