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This paper introduces a novel wafer-edge quality inspection method based on analysis of
curved-edge diffractive fringe patterns, which occur when light is incident and diffracts
around the wafer edge. The proposed method aims to identify various defect modes at
the wafer edges, including particles, chipping, scratches, thin-film deposition, and hybrid
defect cases. The diffraction patterns formed behind the wafer edge are influenced by
various factors, including the edge geometry, topography, and the presence of defects. In
this study, edge diffractive fringe patterns were obtained from two approaches: (1) a
single photodiode collected curved-edge interferometric fringe patterns by scanning the
wafer edge and (2) an imaging device coupled with an objective lens captured the fringe
image. The first approach allowed the wafer apex characterization, while the second
approach enabled simultaneous localization and characterization of wafer quality along
two bevels and apex directions. The collected fringe patterns were analyzed by both statis-
tical feature extraction and wavelet transform; corresponding features were also evaluated
through logarithm approximation. In sum, both proposed wafer-edge inspection methods
can effectively characterize various wafer-edge defect modes. Their potential lies in their
applicability to online wafer metrology and inspection applications, thereby contributing
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1 Introduction

The continuously growing demand in the semiconductor device
market for high performance, low energy consumption, high reli-
ability, and low cost has driven the need for decreased critical
dimension (CD) and high-volume manufacturing [1]. With 400-
1200 manufacturing processes involved in producing a semicon-
ductor chip, it becomes challenging to implement comprehensive
controls across the entire manufacturing process. Due to ever-
decreasing CD features in the device patterns, the importance of
wafer defect inspection becomes paramount.

Wafer metrology and inspection are crucial components of semi-
conductor manufacturing processes, playing a vital role in maintain-
ing high wafer quality and facilitating root cause analysis [2,3].
These systems detect physical and pattern defects on wafers, pro-
viding precise defects’ location and classification information
with high sensitivity and throughput. They contribute to improved
yield, collect comprehensive data for advancing manufacturing pro-
cesses, and are instrumental in defect prevention, process optimiza-
tion, and semiconductor production efficiency enchantment.
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to the advancement of wafer manufacturing processes. [DOI: 10.1115/1.4065639]
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Wafer-edge inspection holds significant importance among
inspections as it addresses various defects that are prone to occur
in the critical region spanning from the upper near edge zone to
the bottom near edge zone. These defects include particles,
scratches, thin-film deposition, and chipping. Studies have shown
that the yield rate at the wafer edge is significantly lower, amounting
to only 50% of that at the center under certain circumstances [4].
Nevertheless, implementing effective wafer-edge inspection can
substantially enhance the overall yield, potentially increasing it by
up to 10% [5]. Additionally, edge inspection is vital to identify
the underlying causes of edge defects, providing insights into
process variations or issues. This information allows manufacturers
to take targeted corrective actions, optimize their processes, and
maintain consistent wafer quality [6]. To meet these requirements,
there is a growing demand for advanced wafer-edge inspection
tools capable of not only detecting defects but also quantifying
them while profiling the wafer geometry. These tools enable
precise monitoring and control of wafer-edge quality, thereby con-
tributing to the production of high-quality semiconductor devices.

Top players in the semiconductor metrology and inspection
industry (KLA Corporation, Applied Materials, Hitachi High-
Technologies, JEOL, and ASML) have introduced a range of
optical inspection tools based on bright-field, dark-field, or com-
bined optical microscopy techniques [7]. However, such inspection
systems are extremely expensive and remain a challenge to achieve
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extremely high resolution, aiming at one-twentieth of the light
wavelength [8—10]. In recent years, artificial intelligence (Al) tech-
nology such as deep learning has been widely adopted not only in
wafer inspection but also in the overall semiconductor design and
manufacturing processes. Al provides an innovative and effective
solution to overcome the critical challenges in wafer defect inspec-
tion, but it is still limited to identifying and classifying the wafer
defects [11-13].

In the studies regarding wafer inspection, high-resolution micros-
copy, such as atomic force microscopy (AFM), transmission elec-
tron microscopy (TEM), and scanning electron microscopy
(SEM), is widely adopted in the industry [14-19]. Equipped with
powerful image processing algorithms, these systems can visualize
the various defects with CD feature size down to 1 nanometer, even
to the sub-nanometer scale. However, their inspection speed is slow
and sometimes requires a high vacuum environment condition that
those tools are adapted as post-process inspection methods although
the industry wants to do online or inline wafer inspection to increase
productivity.

Lee and coauthors introduced knife-edge interferometry (KEI)
for displacement measurement [20-23], cutting tool edge quality
inspection [24-26], and photomask line width and line-edge-
roughness characterization [27,28]; he also applied curved-edge
interferometry to in-process spindle health and dynamic behavior
monitoring [29,30].

Inspired by the applications of KEI, curved-edge interferometry
(CEI) was further introduced in this study to be utilized for wafer-
edge metrology and inspection. Different from KEI, which uses an
ideal non-thickness edge, curved-edge was considered as the
boundary between the incident wave and measurement waves, the
measured waves further overlap and produce interference fringes.
While CEI is more complicated since asymptotic solutions to few
canonical problems related to edge topological conditions are
required, diffractive patterns of CEI also convey more useful infor-
mation and could be extracted through statistical feature extraction
and wavelet transform methods. In this study, two setups were
developed: the single-point scanning setup, evolved from KEI
experiment, is capable of wafer apex characterization, but the
areal imaging setup features high efficiency and enables simulta-
neous characterization of wafer-edge quality along two bevels
and apex directions. Details of wafer-edge inspection and fringe
pattern analysis methods will be explained, and prospective applica-
tions and future enhancements of the proposed methods are
discussed.

2 Measurement Principle

In this study, CEI was adapted for wafer-edge metrology and
inspection. When the incident light interacts with any type of
edges (e.g., sharp, circular, or any free-form shape), a diffractive
fringe pattern, the so-called interferogram, is created in the observa-
tion plane due to the interference of two superimposing waves,
which are the transmitted wave from the incident light source and
the diffracted wave from the secondary source. The diffractive
fringe patterns in the observation plane have demonstrated different
characteristics according to the edge geometrical conditions. The
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Fig. 1 Schematic principle of curved-edge diffraction

amplitude, frequency, and phase of diffractive fringe patterns can
be changed in accordance with the edge shape, size, and roughness.
Thus, the diffractive fringe patterns can be expected as a result of
the total field in the observation plane that is derived by using the
inverse Fourier transform [28,32,33].

The physical models of knife-edge diffraction have been intro-
duced in many studies [19-23,25-27,30,31]. Unlike knife-edge dif-
fraction, the diffraction effect that takes place in a curved edge is
complex because curved-edge diffraction introduces three boundar-
ies (reflection, shadow, and deep shadow) and requires the asymp-
totic solution to several canonical problems associated with the
edge shape and topological conditions. As shown in Fig. 1, three
different waves are generated when an electromagnetic wave prop-
agates to the shadow boundary of a curved edge, including an inci-
dent wave, a reflected wave, and an edge-diffracted wave. These
waves further interact and create three different regions, which
are the reflection boundary (RB), shadow boundary (SB), and
deep shadow boundary (DSB). The fringe data can be obtained in
these regions.

Curved-edge interferometry is a suitable method for edge defect
detection [29,30], since diffraction patterns formed in those regions
are significantly influenced by the edge geometry, topography, and
contaminants. Therefore, profound information about the edge
quality can be extracted through the analysis of the collected
fringe data.

3 Experiments

3.1 Experiments Setup. In this study, a total of seven wafer-
edge cases were evaluated. The reference case represented a wafer
edge with no defects, serving as a control group for comparison.
Various defect modes were artificially added to the other wafer
edges, including four single-mode cases (scratched, chipped, parti-
cle contamination, and film deposition) and two combined mode
cases (chipped with particles and chipped with thin film). By eval-
uating these different wafer-edge cases, the study aimed to assess
the performance of the proposed wafer-edge inspection methods
and their ability to detect and characterize various defect modes.

Two experiment setups were developed, a green laser (A=
532 nm) and a blue laser (1=473 nm) were employed as laser
sources, respectively. Figure 2(a) describes the experimental
setup for obtaining fringe patterns. The sample wafer was securely
fixed on a precision linear stage. The laser first propagated through
an aperture (¢p1.0 mm), interacted with the wafer edge, and shined
on the avalanche photodiode (APD) sensor. While the wafer
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Fig. 2 Schematics of Experiment setup: (a) single-point scanning method and (b) areal

imaging method
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moved at a constant speed of 1 mm/s, the output voltage of APD
was collected by a data acquisition device. Figure 2(b) depicts the
setup to acquire the diffraction pattern images. The sample wafer
was fixed on a rotational stage, and a charge-coupled device
(CCD) was positioned at the end to capture the image. A 20x objec-
tive lens was coupled with CCD, to enhance the image quality and
resolution.

Different from the mechanical scanning in the first setup, the
wafer scanning in the areal imaging method was achieved by
extracting fringe patterns at specific directions and distances in
the images. Both methods can effectively analyze the fringes, allow-
ing for the extraction of information on the wafer edge, which can
be further utilized for quantifying and analyzing the edge defect
features.

3.2 Data Analysis Methods. For the single-point scanning
method, fringe curves along the apex were directly obtained from
the APD sensor. For the areal imaging method, diffraction images
were captured and used to extract fringe intensity distribution spec-
trograms along three directions: apex, lower bevel, and upper bevel.
Appropriate filters were applied to remove DC signals and noise,
ensuring that only relevant fringe information was retained.

Fringe curves of different defect cases were individually com-
pared with the reference to calculate the cross-correlation value,
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which quantitatively represents the similarity between two
fringes. The cross-correlation coefficient is obtained by dividing
the covariance of two variables by their respective standard devia-
tion:
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The cross-correlation value » ranges from —1 to 1 and when two
groups of data become identical, the value comes to 1.

The fitted parameters of logarithm approximation also serve as
extracted features [34]. Figure 3 demostrates the process of curve
fitting through approximation. Considering the fast fringe intensity
decay rate of higher orders, an exponential function was chosen for
the envelope curve. In the envelope curve f, x is the scanning length,
A and B are parameters to be fitted, which are considered as
extracted features of edge quality, and C is a constant term.

Wavelet analysis is a well-established signal processing tech-
nique and was adapted to extract and analyze the features of differ-
ent fringes [27]. In the single-point scanning method, defect cases
were categorized into two groups: single defects and hybrid
defects. For each group, all defective fringe curves, along with ref-
erence fringe, were collectively analyzed using the wavelet feature
extraction method. Corresponding wavelet indexes, which quantita-
tively assessed the severity of the defects, were further obtained. In
the case of the areal imaging method, continuous wavelet transform
(CWT) was directly applied to each extracted fringe intensity curve.
The transformed CWT scalograms visually represent the frequency
content of the fringes, providing profound insights into the fre-
quency characteristics.

(€Y

4 Results

4.1 Single-Point Scanning Method. The fringe distributions
are shown in Fig. 4. The cross-correlation values extracted from
raw data are presented in Fig. 5. Overall, the following results
can be obtained:

(1) All orders of fringes attenuated or even vanished when the
defect deteriorates.

(2) A decreased cross-correlation value indicates a larger fringe
difference compared to the no-defect case. Statistical feature
extraction results intuitively reflect the change in edge

quality.
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(3) The results demonstrate a high sensitivity of the proposed
method to different defect modes, highlighting its ability to
quantitatively characterize edge quality.

Taking the A=532 nm scenario as an example, the intensity of
first order in scratched and chipped fringes decreased by 1.21%
and 4.47%, respectively. For particle and film cases, fringes inten-
sity of first order dropped from 1.157 to 1.101 and 1.121, respec-
tively, which could be explained by the fact that film deposition
usually results in a better surface integrity compared to particles.
The fringe data from the combined defect mode showed a more
complicated behavior. The presence of particles on the chipped
edge further deteriorated the edge quality, leading to an even atten-
uated fringe pattern and a decreased cross-correlation value, from
0.9880 to 0.9792. Conversely, the thin film on the chipped edge
reduced its roughness and had the opposite effect on experimental
data: cross-correlation increased to 0.9925. Similar trends were
observed in the A=473 nm case. The presence of particles on the
chipped edge led to a decrease in the cross-correlation value by
2.37% while adding thin film to the chipped edge slightly increased
the fringe similarity to 0.9878 from 0.9872.

From the results in Fig. 6, fringe patterns and their corresponding
edge quality characteristic are numerically illustrated by the envel-
oping curve parameters. As the edge conditions worsen, A and B
both show a consistent decreasing tendency. Based on the approx-
imation formula, a smaller A reflects lower fringe peak magnitudes,
and a smaller B represents a faster peak attenuation rate. In the
single mode case, when A=532 nm, A decreased by 32.65% and
B decreased by 37.89% as the edge quality worsened. Similarly,
in the A=473 nm case, A decreased by 28.87% and B decreased
by 33.84% as the edge quality worsened. Considering the
Chipped + SiC (2 pm) case, when A=532 nm and 1=473 nm,
A decreased by 49.19% and 25.57%, while B decreased by
51.86% and 38.72% respectively, when compared with the refer-
ence. These significant reductions in parameters A and B show a
rapid intensity diminution in its fringes, in both peak magnitudes
and attenuation rates.

Figure 7 depicts the outcome of wavelet-based feature extraction.
By decomposing the raw data across multiple scales using a series
of filters, the coefficients obtained from each resultant component
serve as the extracted features. These features contain crucial
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time—frequency information inherent to the original fringe data and
A feature selection is then conducted to identify the features with
the most discrimination ability [27,35,36]. The selected index in
Fig. 7 serves as the representation of the defect severity, with a
lower index indicating a more severe edge defect and a higher
index indicating a less severe edge defect.

In Figs. 7(a) and 7(c), the chipped case had a smaller index than
that of the scratched case, while the filmed case had a larger index
than that of the particle contamination case. Furthermore, edge
quality in combined defect modes is also reflected by the wavelet
index. particle pollutants on the chipped edge further degraded
the edge quality, indicated by a lower index, while film deposition
improved the chipped edge integrity, resulting in a higher index, as
indicated in Figs. 7(b) and 7(d). The results highlight the effective-
ness of the wavelet analysis in distinguishing between different
defect modes and assessing the edge quality in various defect
scenarios.

4.2 Areal Imaging Method. As described in Sec. 3.2, diffrac-
tion patterns were converted into fringe intensity distribution along

070908-6 / Vol. 146, JULY 2024

lower bevel, upper bevel, and apex, which is also demonstrated in
Fig. 8. This method is able to simultaneously localize and evaluate
defects present in each direction, providing a comprehensive under-
standing and valuable insights into the defect distribution and
overall quality of the wafer edge.

The data processing results are shown in Fig. 9, and the following
results can be obtained:

(1) Defects along the lower bevel, upper bevel, and apex can be
localized, and their corresponding edge quality can be char-
acterized simultaneously. For instance, under A=473 nm
experimental condition, the cross-correlation value decreased
by 7.39%, 9.21%, and 12.11% in three directions (lower
bevel, upper bevel, and apex) when the defect deteriorated
from scratched to chipped. Furthermore, it increased by
9.97%, 12.77%, and 10.09% when film deposition was
added to the chipped edge, the result suggests that thin film
on the chipped wafer tends to improve edge quality, espe-
cially in the upper bevel direction.

(2) Overall, the statistical feature extraction results in all direc-
tions are consistent with that of the single-point scanning

Transactions of the ASME
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method. As the edge roughness increases, the similarity
between the fringe pattern and the no-defect case decreases,
leading to a decrease in the cross-correlation value.

The imaging method is highly sensitive to changes in edge
topology. Taking the Chipped+ SiC (¢2 um) case as an
example, under 1=1532 nm condition, the cross-correlation
values along the lower and upper bevels are only 0.2542
and 0.5550, respectively. This could be attributed to the
accumulation of particles on a roughened chipped surface,
forming a complex and irregular topology, causing diffrac-
tion patterns to undergo significant changes.

©))

Wavelet analysis is preliminarily introduced to conduct wafer
edge feature extraction in this study. Figures 10 and 11 illustrate
the wavelet transformation scalogram of the diffraction pattern in
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the apex direction when two lasers were employed respectively.
“Morse” wavelet, a specific complex wavelet utilized for multireso-
lution analysis, was selected as the mother wavelet in this study to
create the scalograms. The y-axis represents the frequency in loga-
rithmic scale, which is calculated by

o X f;
2rs

factual = (2)
where f..,.q1 1S the actual frequency derived from wavelet transform,
 is the center frequency of the “Morse” wavelet, f; is the sampling
frequency, and s is the wavelet scale. Different scales capture infor-
mation about the data at varying frequency bands, with a larger
scale indicating a lower frequency.

The wavelet results indicate that fringe patterns of various defect
samples exhibit distinct time—frequency domain properties. The
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spectral charts are a visual tool to comprehend how different
edge conditions influence light propagation and scattering. The
no-defect case is the baseline, displaying the spectral response of
the edge without defect. It features a pronounced peak intensity
region, and the dominant frequency complement showed
shifting in tendency and changing the frequency when defects
presented.

Defects could elicit a strong response at a specific frequency; take
A=532nm case as an instance, the dominant frequency of
no-defect case was observed between 250 and 450 um at 230 Hz
frequency with a magnitude of 0.0647; that of the chipped case
was observed between 150 and 350 um, a 100 um left shirting,
at 206 Hz frequency with a magnitude of 0.0596. The results
also show that chipping resonated at another frequency
compared with the scratched case. The spectral charts for combined
defects depict more complex responses when multiple defects inter-
act. For example, when particles were added to the chipped edge,
the location of the dominant frequency further moved left by
50 um, and its value decreased to 136 Hz with a magnitude of
0.0509.

For a given setup, as the wavelength gets shorter, the spacing
between the fringes decreases which results in more fringes being
present within a given space, which could contribute to a better dif-
ferentiation of subtle features and a more efficient capture of intri-
cacies difference. For instance, in combined defects cases like
“Chipped + SiC(®2 um)” and “Chipped + Filmed,” the response
appears more dispersed under the 4=473 nm laser setup, and a
more layered interaction and broader frequency response also indi-
cate that the A =473 nm laser could offer a more comprehensive and
detailed perspective into edge defects.

5 Conclusion and Future Works

This paper proposed a new wafer-edge quality inspection tech-
nology based on the analysis of curved-edge diffraction fringe pat-
terns, which is featured as both cost-effective and efficient. Two
approaches, namely the single-point scanning method and areal
imaging method, were developed, and the camera-based imaging
system also enabled simultaneous characterization of wafer
quality along all directions.

This study thoroughly analyzed various defect cases, including
both single and combined modes. The fringe scalogram was charac-
terized through statistical feature extraction methods, wavelet trans-
form, and logarithm approximation. From the results, it was
confirmed that edge quality could be reflected by changes in
various extracted features from the fringe data, including cross-
correlation value, envelop curve parameters, and continuous
wavelet analysis. Furthermore, the 1D wavelet transformation
showed potential in edge quality detection automation through
time—frequency domain properties characterization. Implementing
the proposed methods in industry leads to increased wafer produc-
tion yield, improved throughput, and reduced operational costs,
thereby benefiting both the company and the environment in the
long term.

For future work, this paper suggests exploring advanced pattern
recognition methods or deep learning techniques to enhance real-
time and quantitative defect inspection of the wafer edge, as the
Al has already been successfully applied in fringe pattern defect
identification [37-39]. For instance, by integrating deep learning
with the wavelet analysis method, at which frequency bands
defect response and how the intensity of response changes could
be better understood, which is crucial for automatic defect catego-
rization and characterization, and efficiency and accuracy of the
inspection process could be further improved.
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