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Hybrid Semiconductor Wafer
Inspection Framework via
Autonomous Data Annotation
In smart manufacturing, semiconductors play an indispensable role in collecting, process-
ing, and analyzing data, ultimately enabling more agile and productive operations. Given
the foundational importance of wafers, the purity of a wafer is essential to maintain the
integrity of the overall semiconductor fabrication. This study proposes a novel automated
visual inspection (AVI) framework for scrutinizing semiconductor wafers from scratch,
capable of identifying defective wafers and pinpointing the location of defects through
autonomous data annotation. Initially, this proposed methodology leveraged a texture anal-
ysis method known as gray-level co-occurrence matrix (GLCM) that categorized wafer
images—captured via a stroboscopic imaging system—into distinct scenarios for high-
and low-resolution wafer images. GLCM approaches further allowed for a complete
separation of low-resolution wafer images into defective and normal wafer images, as
well as the extraction of defect images from defective low-resolution wafer images, which
were used for training a convolutional neural network (CNN) model. Consequently, the
CNN model excelled in localizing defects on defective low-resolution wafer images, achiev-
ing an F1 score—the harmonic mean of precision and recall metrics—exceeding 90.1%. In
high-resolution wafer images, a background subtraction technique represented defects as
clusters of white points. The quantity of these white points determined the defectiveness
and pinpointed locations of defects on high-resolution wafer images. Lastly, the CNN imple-
mentation further enhanced performance, robustness, and consistency irrespective of var-
iations in the ratio of white point clusters. This technique demonstrated accuracy in
localizing defects on high-resolution wafer images, yielding an F1 score greater than
99.3%. [DOI: 10.1115/1.4065276]
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1 Introduction
In the landscape of smart manufacturing, fueled by the Industrial

Internet of Things (IIoT) and cutting-edge data processing technol-
ogies, semiconductors are vital for leveraging data to enhance pro-
ductivity, quality, and diversity of production [1]. Furthermore, a
wide range of contemporary products—including smart televisions,
smartphones, and automobiles—consist of semiconductors for data
transfer, reception, and computation. The noteworthy growth in the
semiconductor sector has a ripple effect on multiple other manufac-
turing domains. For example, a shortage in semiconductor supply
has been observed to disrupt automobile production and inflate
prices. Hence, securing high productivity and quality of semicon-
ductor manufacturing is pivotal for proliferating smart manufactur-
ing and sustaining various manufacturing sectors.
Serving as the foundation for semiconductor production, the

purity of a wafer must be ensured to preserve the integrity of
the overall manufacturing process. Traditional wafer inspections
have often relied on manual visual examinations conducted by
human experts [2,3]. While this approach is versatile, simple, effi-
cient, high-throughput, and contactless, it carries inherent vulnera-
bilities on human factors such as inconsistencies due to an
inspector’s fluency, complicity and repeatability of a task, and
product yield rate [4–7]. Given the extreme sensitivity of semicon-
ductor production where even minor defects can compromise the
entire process, automated visual inspection (AVI) has been imple-
mented and aimed to provide a consistent, reliable, and cost-
effective inspection method by reducing the dependence on
human factors.
Although AVI has mitigated vulnerabilities by human factors,

past AVI approaches cannot address current manufacturing require-
ments of diverse products in small batches led by varied customers’
demands since they have focused on a certain part, task, and pro-
duction line [8]. For example, current automobile manufacturers
produce not only internal combustion vehicles but also electric
vehicles. In this circumstance, the advancement of cutting-edge
computer technology like computer vision and deep learning is pro-
pelling progress on new AVI methods. However, computer vision–
based techniques necessitate feature engineering and intricate struc-
tures to cater to various inspection contexts, while deep learning
offers autonomous feature extraction and adaptable predictions in
complex and varied scenarios [9,10]. Nevertheless, supervised
learning demands annotated data sets [11], and unsupervised learn-
ing also requires manual adjustment of thresholds and cannot
provide satisfying performance [12,13]. For instance, a specific
reconstruction error is required to distinguish two classes when
using autoencoder (AE). Consequently, it is necessary to develop
an AVI framework minimizing loads for feature engineering, data
set generation, fine-tuning, and programming with acceptable per-
formance for a new task.
This research explored a hybrid AVI framework tailored for two

distinct wafer inspection scenarios—high- and low-resolution semi-
conductor wafer images—to identify defective wafers and localize
the position of a defect without human intervention from scratch.
These are the main contributions of this study.

• A classification method for distinguishing between high- and
low-resolution wafer images was explored, leveraging a
texture-awareness algorithm.

• For each type of wafer, a method for identifying defectiveness
was developed using computer vision techniques.

• A computer vision–based technique for autonomously gener-
ating and annotating data sets was investigated for training a
convolutional neural network (CNN) model.

• The CNN model was formulated to pinpoint defects in defec-
tive wafers.

Integrating the advantages of computer vision and deep learning
techniques, the proposed hybrid AVI framework could classify the
types of wafers and localize defective regions within a 32-pixel
error range autonomously with unclassified and unannotated data.

2 Related Works

Raman spectroscopy is one of the methods for semiconductor
inspection scenarios. However, it may lead to unexpected distortion
of observation or deformation of material due to strong local heating
tightly focused laser beam generates [14]. Among non-destructive
testing (NDT) methods, the resolution of ultrasonic techniques
(UT) relies on half the wavelength of a sound source. Therefore,
the application of UT is limited to a case over a microscale [15].
In contrast, a microscopic system can observe a wide range of
scales depending on a beam source and provides versatility,
adaptability, and non-contact nature in vision inspection scenarios.
While the semiconductor industry has embraced vision inspection
methods for their simplicity, versatility, adaptability, cost-
effectiveness, and non-contact nature [5,7], such methods are
often limited by the expertise and inconsistencies of human inspec-
tors [4–6]. To address these limitations, AVI systems have been
implemented.
An AVI system consists of image acquisition and image analysis

parts. In terms of image acquisition, a stroboscopic imaging system
holds remarkable potential for applications in dynamically measur-
ing rapidly moving objects [16]. This optical approach increases the
imaging contrast of the featured area and reduces the image contrast
of the background area. Its versatile application extends across
diverse domains, including wafer inspection, aerospace, biomedi-
cine, and even machining processes or monitoring procedures
[17–21].
When it comes to image analysis, computer vision techniques

have gained prominence. Huang and Pan [3] provide a comprehen-
sive overview of semiconductor inspection algorithms and divide
them into four types: projection methods, filter-based methods,
learning-based methods, and hybrid approaches. First, projection
methods focus on identifying relationships among samples and
mapping them into a feature space that better represents their inher-
ent characteristics. Techniques such as principal component analy-
sis (PCA), linear discriminant analysis (LDA), and independent
component analysis (ICA) are commonly used for optimizing infor-
mation and reducing noise. Filter-based approaches, especially
frequency-filtering techniques like Fourier transform [22] and
wavelet transform [23], convert signals from a spatial domain into
a frequency domain. These are useful for reducing noise, amplify-
ing key features, and investigating spatial representation from
images.
Although computer vision has significantly advanced AVI

capabilities, real-world complexities often demand more sophisti-
cated algorithms and computational resources. Learning-based
approaches, including pattern recognition, support vector machine
(SVM), and deep learning, circumvent those drawbacks. Specifi-
cally, deep learning extracts features of a data set and establishes
a rule for inspection automatically. Therefore, deep learning algo-
rithms have been applied in various AVI scenarios [24–26] and
improved the adaptability, versatility, efficiency, and accuracy of
inspection.
Kulkarni and Xu [27] introduced a supervised deep learning–

based visual inspection method, implementing ResNet, to secure
the integrity of a circuit board—a fundamental element of electric
devices—with limited data. The semiconductor inspection domain
also has implemented deep learning approaches such as a super-
vised learning method of CNN. Nakazawa and Kulkarni [28] gen-
erated wafer map defect patterns synthetically and classified them
into 22 classes. Phua and Theng [29] captured defective wafer
images by a scanning electron microscopic system and identified
the defects automatically. While Wen et al. [30] identified two
types of wafers with stain and scratch defects by deploying a
CNN-based deep learning method, they pointed out the challenges
in generating training image sets for CNN model training.
Although CNN is a useful approach for analyzing semiconductor

wafer images, it necessitates annotated data sets to train a model
[11]. In contrast, AE is an unsupervised learning method and
does not need labeled data sets. It abstracts distinguished data
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attributes by compressing and depressing data through encoder and
decoder layers connected via a latent space [31]. Erhan et al. [32]
demonstrated that unsupervised pre-training can help deep learning
performance. Moreover, Feng et al. [33] introduced a self-taught
learning method based on AE with unlabeled data and explained
that it enhanced the performance of a classifier. For semiconductor
wafer inspection, several studies also utilized AE techniques to
compensate for the shortcomings of supervised learning. An inves-
tigation adopted a denoise autoencoder (DAE) and calculated
reconstruction errors as thresholds to classify normal and defective
wafers [34]. Nevertheless, this research indicated that fine-tuning or
additional techniques were necessary to get acceptable perfor-
mance, and its scope was limited to classifying normal and defec-
tive wafers, not detecting defects on a wafer. Yu et al. [35]
proposed an approach that discriminated wafer map patterns
using a stacked denoising autoencoder with convolutional layers
and constructed an SVM classifier based on the recognized features
of the patterns. They explained the performance of the models by
experimental results from a simulation data set and real-world
wafer map data set (WM-811K), then provided the comparison
by different recognizers. Although the study demonstrated perfor-
mance ranging from 81.25% to 97.79% of recognition rates, it
used pre-classified data sets to build the models.
Hybrid methods have been explored due to the pros and cons of

every algorithm and the multifaceted requirements of real-world
inspections. Hybrid methods implement multiple feature extractors
or combine them with a classifier like SVM. For instance, Wang
[36] deployed spatial statistics, kernel-based eigendecomposition,
and support vector clustering techniques to detect and divide
defect clusters. Schlosser et al. [37] devised a deep learning–
based hybrid multi-stage AVI for a semiconductor wafer. They
combined computer vision and deep learning techniques and
achieved up to an F1 score of 99.5% for detecting faults on wafers.
Although those hybrid methods address the shortcomings of each

approach by integrating multiple techniques, they still possess lim-
itations that require pre-organized data sets or extensive feature
engineering processes to generate data sets or define a threshold
for decision-making. Generally, curating field data requires a lot
of manpower since real-world data is highly noisy and is generated
in huge quantities. There are available prepared data, such as
WM-811k, and many studies have utilized it. However, the semi-
conductor industry is rapidly developing new products that
demand additional organized data sets for a physical inspection sce-
nario. It results in a huge consumption of resources for preparing
data sets for a new inspection case.
In response to the described challenges, establishing an

inspection framework, including autonomous data annotation, can
reduce costs and resources when inspecting a new product. Accord-
ingly, this study proposes a wafer inspection method consisting of a
multi-stage pipeline designed to automate entire inspection pro-
cesses—generate and annotate data sets, train deep learning
models, and execute inspection—by eliminating manual labeling,
extensive feature engineering, and fine-tuning processes.

3 Experimental Setup
This study utilized a stroboscopic imaging system to address the

need for expediting scanning times when capturing wafer images.
This integration enables the real-time capture of expansive
surface images of the wafer within a remarkably short period.
Figure 1(a) illustrates the schematic and experimental setup of the
stroboscopic imaging system incorporated into the wafer inspection
process.
Unlike conventional raster scans that solely use a linear axis for

wafer surface scanning, the inclusion of a rotary axis expedites the
wafer scanning time. Images can be sequentially captured while the
spindle is rotating. While the spindle is rotating, a stroboscopic
effect allows for obtaining a sequence of images from distinct loca-
tions. This is achieved by adjusting the frequency of the light source

or exposure time and the framerate of the imaging sensor, both of
which can be synchronized with the rotational speed of the
spindle using an encoder signal. The spindle speed and framerate
of the imaging sensor were maintained at low levels—around
0.2 rpm and 2.0 fps, respectively.
Once the spindle starts to rotate, the encoder begins to generate

binary signals that can be read using a pulse counter. The
imaging sensor can then be triggered to capture a sequence of
images under a certain framerate with a predetermined exposure
time, utilizing the phase-shifted encoder signal. The microscope
system can be moved in-line, either from the edge of the wafer
toward the center of the rotational axis or in reverse. Therefore,
the entire wafer can be scanned by moving the microscope
system while the spindle is rotating, as schematically illustrated in
Fig. 1(a).
As shown in the experimental setup, the wafer scanning config-

uration comprises one rotational axis and three linear axes. An
optical microscope, mounted on the Z-axis stage, ensures precise
focusing of the target object, while the X and Y linear stages scan
and align the wafer. The wafer can be firmly held in place by a
vacuum chuck affixed to the artifact of the spindle axis.
The inspection imaging system features a high-resolution micros-

copy encompassing a 20-megapixel color CMOS camera, inter-
changeable objective lenses (100× and 250× magnification), and a
4.5× microscope zoom lens. This high-resolution imaging system
excels in capturing particles as small as a few micrometers on a
ϕ4-inch wafer. The use of continuous white light illumination facil-
itated the acquisition of brightfield images of the surface of the
wafer.
When preparing wafer samples, a blank wafer without any parti-

cles was assessed to ensure the integrity of the wafer. As a result, the
tested blank wafer itself appeared clean without any presence of
particles or defects. For the preparation of defective wafers, parti-
cles as small as 1.0 µm were distributed across the entire wafer
surface. Subsequently, compressed air was applied to the surface,
ensuring that only small particles securely adhered to the wafer
surface. Additionally, the experiment was conducted under a
laminar flow hood that provides clean air through a high-efficiency
particulate air (HEPA) filter, capable of filtering dust or particles
down to 0.5 μm, installed in the hood to prevent any unwanted par-
ticle or dust inclusion.
Two sets of objective lenses were used for capturing images, and

the images were obtained under identical base quality wafers. Those
taken with the 100 × lens exhibited distorted backgrounds and were
named “low-resolution wafer images” in this study. Conversely,
images captured with the alternative lens displayed relatively
smoother surfaces and were referred to as “high-resolution wafer
images.” All acquired images underwent normalization and resizing
to a resolution of 1536 × 1024 pixels. Figure 1(b) presents a selec-
tion of these pre-processed images, wherein the region of interest
(ROI) is demarcated by the inner perimeter of a red circle.

4 Methodology
This proposed wafer inspection framework consists of four stages:

classification of high- and low-resolution wafer images, identification
of defective wafer images, extraction of data set with autonomous
data annotation, and localization of defects. Figure 2 provides an
overview of the entire workflow. This investigation was done with
a system operated on Ubuntu 20.04.5 LTS with Intel i7-11700K
CPU, 64 GB RAM, and Nvidia RTX A5000 GPU. PyTorch 2.0.1
with GPU acceleration [38] was used for training and executing the
deep learning model. To initiate the investigation from the ground
up, two unclassified sets of images—train and test sets—were gener-
ated by combining the collected high- and low-resolution wafer
images, both with and without defects. The two sets were used inde-
pendently for training and evaluation processes. In other words,
explored results and models during the classification of the train
set—normal and defective wafers, then normal and defective
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surfaces—were evaluated on the test set. The detailed configuration
of the image sets is described in Table 1.

4.1 Wafer Classification. A histogram is effective for
abstracting and analyzing features of an image, like the intensity
and distribution of brightness [39,40]. Figure 3 depicts the histo-
gram distribution of whole wafer images, displaying the number
of their pixels according to intensity. The distribution revealed
two distinct feature clusters. Given that low-resolution wafer
images were expected to exhibit greater variance compared to high-
resolution wafer images, the dotted and solid lines in the histogram
were interpreted as representing high- and low-resolution wafer
images, respectively. This result indicated that textures represented
different features on each wafer image type. Although the histogram
analysis provided a brief description of each group, it was insuffi-
cient to generalize the features of each group and separate them
thoroughly, and further textures of wafers were analyzed.

Gray-level co-occurrence matrix (GLCM) [41] is a statistical
approach representing features and texture distributions through a
two-dimensional histogram of paired pixel values within a specific
spatial range. GLCM has found extensive applications in various
fields, including detection, segmentation, and classification tasks
such as landscape and geomorphological pattern recognition [42–
44], medical image analysis [45,46], and fabric defect detection
[47]. Moreover, Yu et al. [48,49] presented its applicability in
detecting defects on a wafer map that represents defect patterns of
a semiconductor wafer graphically [50]. Utilizing GLCM, a range
of statistical metrics can be derived to adequately characterize
texture features adapted to each specific scenario.
Based on a GLCM g and its (i, j)th component gij, several statis-

tics were proposed. This study employed three specific GLCM sta-
tistics—homogeneity, energy, and correlation [51] with a GLCM
parameter distance of 16 and angles at 0, 45, 90, and 135 deg—tai-
lored to different use cases. Homogeneity quantifies image unifor-
mity, assigning higher values when there are smaller differences

Fig. 1 (a) Experimental setup of stroboscopic wafer inspection and (b) example of the wafer images
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in gray tones between paired elements, and can be expressed as Eq.
(1).

Homogeneity =
∑

i

∑

j

1

1 + (i − j)2
gij (1)

The correlation feature assesses the degree of linear dependencies
between gray tones in the image and is defined as follows:

Correlation =

∑
i

∑
j (ij)gij − μxμy
σxσy

(2)

where μ and σ are the mean and standard deviation of g, and x and y
indicate the row and column directions of a GLCM. Energy gauges
textural uniformity through the repetition of pixel pairs, serving
as an indicator for irregularities in textures and can be calculated
as Eq. (3).

Energy =
∑

i

∑

j

g2ij (3)

Figure 4 describes a GLCM homogeneity analysis applied to the
unclassified wafer images. Based on the partitioning boundary
by k-means clustering, the wafer images were effectively and

Fig. 2 Pipelines of the developed framework

Table 1 Configuration of the data set

Unclassified train set Unclassified test set

Low-resolution wafer images Defective 400 images Low-resolution wafer images Defective 200 images
Normal 400 images Normal 200 images

High-resolution wafer images Defective 400 images High-resolution wafer images Defective 200 images
Normal 400 images Normal 200 images

Fig. 3 Histograms of the unclassified wafer images
Fig. 4 GLCM homogeneity analysis on the unclassified wafer
images
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automatically segregated into two distinct groups. Images presumed
to be high-resolution wafer images were positioned above the divid-
ing line, while the remaining images fell below it. Since GLCM
homogeneity indicates image uniformity, this analysis validated
the earlier hypothesis formed during the histogram examination
and successfully differentiated the unclassified wafer images. In
short, unclassified wafers were divided into high- and low-
resolution wafer images as the automatically defined threshold by
k-means clustering under the GLCM homogeneity analysis.

4.2 Defective and Normal Wafer Classification. The classi-
fications of defective and normal wafers were conducted under
two separate scenarios: high- and low-resolution wafer images.
This chapter outlines the classification processes of defective and
normal wafers for both scenarios. First, normal high-resolution
wafer images generally displayed higher GLCM homogeneity and
energy values than defective high-resolution wafer images, as illus-
trated in Fig. 5. While GLCM analysis provided some insights into
the characteristics of high-resolution wafer images, it fell short of
fully distinguishing between normal and defective high-resolution
wafer images as some defective wafers exhibited atypical features
represented as the red points overlapped on the blue points. Thus,
a computer vision algorithm—background subtraction—was sug-
gested to address this challenge.
The wafer image sets had similar repetitive patterns [3] and could

be likened to video scenes with consistent backgrounds. In this
context, defects would be treated as foreground objects, and a back-
ground subtractor was employed to identify the presence of defects
on a high-resolution wafer image. The background subtraction
methods are popular in applications such as video surveillance,
where the scenes remain largely consistent except for a few
moving objects [52]. Typically, these methods initially construct
a background model based on a selected number of frames. Then,
they identify foreground objects by comparing this established
background model with a target frame, subsequently updating the
background model during the process of foreground detection [53].
This research opted BackgroundSubtractorMOG2 class in

OpenCV [54] owing to its satisfactory performance and computa-
tional efficiency [52,55]. This class is based on a Gaussian

mixture model [56], which is improved by applying constantly
updated parameters and simultaneously selecting components for
each pixel [57]. Among the parameters of the class, “setHistory,”
which defines a target frame until building a background model,
equaled 800, matching the total number of training image sets,
while default values were retained for all other parameters.
Salt-and-pepper noise was observed in the background-subtracted
images. To denoise this, the median blur function from OpenCV
was applied with a kernel size of 3. Figure 6 illustrates an
example of original, background-subtracted, and denoised images.
If a denoised image contained no white points, it was categorized
as a normal high-resolution wafer image. Conversely, any image
with white points was identified as a defective high-resolution
wafer image. Consequently, all high-resolution wafer images in
the training and test set were classified automatically and thor-
oughly via background subtraction and denoising techniques.
In contrast, the use of background subtraction and denoising

techniques proved insufficient for classifying normal and defective
low-resolution wafer images due to the presence of highly distorted
backgrounds. As shown in Fig. 7, these distorted backgrounds
generated noise, making it challenging to distinguish between
normal and defective low-resolution wafer images. GLCM analysis
was conducted in conjunction with k-means clustering to investi-
gate the characteristics of low-resolution wafer surface images.
Figure 8 demonstrates the outcome: low-resolution wafer images
were successfully separated into two groups by the dividing line
automatically defined by the k-means clustering analysis. Accord-
ing to GLCM correlation attributes, it is concluded that the group
above the line consists of normal wafers, while the group below
contains defective wafers. This assumes that normal surfaces
would exhibit higher linear dependencies between gray tones in
the image than defective surfaces.

4.3 Defects Localization 1—High-Resolution Wafer Image
Case. Background subtraction and denoising techniques effec-
tively represented defects on high-resolution wafer images as clus-
ters of white points. Therefore, the ratio of a white point cluster area,
WP ratio, is considered a critical parameter in this study. AWP ratio
was evaluated by the number of white pixels in a certain size of an

Fig. 5 GLCM analysis on the classified high-resolution wafer images: (a) GLCM homogeneity and
(b) GLCM energy

Fig. 6 Example of processed defective high-resolution wafer images: (a) defective wafer image—
original, (b) background subtraction, and (c) denoise
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image (Fig. 9). Considering factors like particle size, computational
cost, and detection accuracy, the image size was set as a 32 ×
32-pixel square, and the permissible error range was set to 32
pixels accordingly. A prediction was performed with a 32-pixel
striding step to avoid overlaps. As illustrated in Fig. 10, the
degree of detection was varied with WP ratios. Thus, the perfor-
mance of the defect localization method based on a white points
cluster was evaluated by varying WP ratios.
For evaluation, a confusion matrix was defined as Fig. 11. In this

context, the terms “Positive” and “Negative” refer to the prediction
of the defect and normal classes, respectively. For instance, the area
was estimated as “Positive” when the WP ratio of an area exceeded

a determined criterion. The evaluation metrics were precision,
recall, accuracy, and F1 score, which is calculated in Table 2. As
the ratio between normal and defect regions was imbalanced, the
precision and accuracy metrics could not evaluate the performance
of a model adequately. Therefore, the recall and F1 score metrics
were implemented to properly evaluate the performance of predict-
ing defect regions as well as normal regions.
Fig. 12 shows that the method achieved a maximum F1 score of

99.4% with a WP ratio of 3%. At this ratio, precision, recall, and
accuracy were 99.7%, 99.2%, and 100.0%, respectively, without
a manual data labeling process. It is important to note, however,
that the ideal ratio for achieving the best evaluation metrics may
differ depending on various factors and environmental conditions.
Therefore, CNN was implemented to devise a robust method inde-
pendent of WP ratios for defect localization.
A range of WP ratios—5%, 15%, 25%, 35%, 50%, 65%, 75%,

85%, and 100%—were applied to acquire defect images. These
images were extracted as 32 × 32-pixel square images from defec-
tive high-resolution wafer images with a 16-pixel stride. If a WP
ratio in a 32 × 32-pixel window exceeded a specified number
while striding an image, the scene in the window was saved as a
defect image for training. Normal surface images were gathered
as the same size as images from normal high-resolution wafer
images by striding 32 pixels. The number of images in each class
was configured to be taken over by the balance. Table 3 shows
the configurations of generated data sets with autonomous data
annotation. CNNmodels were trained for each data set by following
the neural network configuration delineated in Fig. 13. Throughout
the training process, the cross-entropy loss function and Adam opti-
mizer with a learning rate ranging from 10−4 to 10−5 were applied.

Fig. 7 Examples of processed low-resolution wafer images: (a) defective wafer image—original,
(b) background subtraction, (c) denoise, (d ) normal wafer image—original, (e) background sub-
traction, and (f ) denoise

Fig. 8 GLCM analysis on the classified low-resolution wafer
images

Fig. 9 Example of WP ratios by regions of a defective high-resolution wafer image
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The batch size was 16, and 20% of the data sets were used for val-
idation. Furthermore, the data sets were augmented by the “Auto-
Augment” PyTorch library with the “IMAGENET” policy
providing an image augmentation strategy automatically [58].

Its performance was evaluated by the same method for the white
point cluster-based defects localization method after the training.
The models classified a surface by striding 32 pixels with a 32 ×
32-pixel window, and the error range was also 32 pixels. As in
Fig. 14, the CNN models yielded consistent and solid performance,
keeping all metric values over 97.2% throughout every data set. The
best F1 score of 99.7% with a recall of 99.5%, an accuracy of
100.0%, and a precision of 99.8% was observed on the data set gen-
erated by a WP ratio of 85%. Notably, the CNN approach exhibited
a significant improvement at a WP ratio of 100%: a recall of 98.6%,
an accuracy of 99.9%, a precision of 99.9%, and an F1 score of
99.3%. In conclusion, this result emphasizes that it is possible to
build an accurate CNN model regardless of a WP ratio as long as
the white point cluster method guarantees defect detection with
high precision and accuracy to get a proper defect image set for
CNN training.

4.4 Defects Localization 2—Low-Resolution Wafer Image
Case. In contrast to the high-resolution wafer image case, a
background subtraction approach with denoising was less effec-
tive at highlighting defects as groups of white points in low-
resolution wafer images. As Fig. 15 demonstrates, the white
point cluster-based defects localization approach in the low-
resolution wafer image case achieved a maximum F1 score of
77.0% with a WP ratio of 8%. At the same ratio, precision,
recall, and accuracy were 79.1%, 75.1%, and 99.3% respectively.
The distorted surfaces of low-resolution wafer images contributed
to the worsened precision and recall values compared to the high-
resolution wafer image scenario. Hence, CNN models were
developed to improve defect localization performance in low-
resolution wafer images. Before training, however, it was neces-
sary to build a data set comprising two groups. Since the white
point cluster method yielded low precision inappropriate for
extracting defect images, detailed texture analysis on low-
resolution wafer images was investigated by GLCM energy to
figure out the way with higher precision to extract and annotate
data sets automatically.
GLCM energy was calculated for every 32 × 32-pixel size surface

with a stride of 32 pixels for both normal and defective low-
resolution wafer images. As depicted in Fig. 16, the calculation
result revealed a general trend that normal low-resolution wafer
image surfaces tended to have higher GLCM energy values than
those of defective low-resolution wafer image surfaces. Even
though it did not allow for a complete separation of two surfaces,
there were instances where the GLCM energy for some parts of
defective wafer surfaces was always lower than the lowest value
of normal wafer surfaces. To validate an assumption that defective
wafer surfaces below the dividing line were defects, defects locali-
zation performance using the lowest GLCM energy value (0.0634)
observed for normal wafer surfaces was evaluated. Specifically, the
surface was estimated to have a defect when its GLCM energy was
below the lowest GLCM energy value, and vice versa was assumed
as a normal surface.

Fig. 10 Defect samples of high-resolution wafer images by WP ratios: (a) ratio: 5%, (b) ratio: 50%, (c) ratio: 75%, and (d ) ratio:
100%

Fig. 11 Confusion matrix for defects localization

Fig. 12 Defects localization results by WP ratios on defective
high-resolution wafer images

Table 2 Metrics and formulae in evaluation

Metric Formula

Precision TP/(TP+ FP)
Recall TP/(TP+ FN)
Accuracy (TP+TN)/(TP+TN+ FP+ FN)
F1 score 2/(Recall−1+ Precision−1)
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This method yielded a recall of 61.0%, an accuracy of 99.4%, a
precision of 91.6%, and an F1 score of 73.2%, showing a low false
positive rate. It meant that defect images could be obtained with a
probability exceeding 91% by the criterion. Moreover, normal
surface images could be gathered from classified normal low-
resolution wafer image surfaces without errors. Consequently, a
defect image set for CNN training was generated by moving a 32
× 32-pixel window with a 16-pixel stride on the train set of defective
low-resolution wafer image surfaces. Normal low-resolution wafer

image surface set was extracted by the same size of a window with a
32-pixel stride on the train set of normal low-resolution wafer
images. A total of 4664 defect images and 5315 normal surface
images were acquired and annotated autonomously in this process.
Using the train data set, a CNNmodel was built based on the con-

figuration illustrated in Fig. 17. This model was trained with the
Adam optimizer with a learning rate ranging between 10−4 and
10−5, the cross-entropy loss function, and a batch size of 16. The
developed CNN model showed progress in performance compared
to other methods. It yielded a recall of 87.4%, an accuracy of 99.6%,
a precision of 83.6%, and an F1 score of 85.4%, respectively. Com-
pared to the former two approaches, the CNN model showed
improved performance even on the distorted surface with an auto-
matically labeled data set.

5 Discussion
In the previous section, it was described that GLCM methods

classified unclassified images into high- and low-resolution wafer
images thoroughly. Moreover, defective low-resolution wafer
images were completely identified, and defect images in defective
low-resolution wafer images for CNN training were extracted by
GLCM analysis. The trained CNN model localized defects on
defective low-resolution wafer images with an F1 score of 85.4%.
For the high-resolution wafer image scenario, a background sub-
traction technique was remarkably effective in distinguishing
between normal and defective high-resolution wafer images. This

Fig. 13 CNN configuration for defect localization on high-resolution wafer images

Table 3 Configurations of data sets

WP ratio 5% 15% 25% 35% 50% 65% 75% 85% 100%

No. of defect images 66,246 56,242 49,870 44,499 38,268 31,229 27,377 23,081 13,212
No. of normal images 66,969 57,402 51,024 45,709 37,571 31,890 27,638 23,386 13,819

Fig. 14 CNN model-based defects localization results on defec-
tive high-resolution wafer images

Fig. 15 Defects localization results by WP ratios on defective
low-resolution wafer images

Fig. 16 GLCM analysis on the normal and defective low-
resolution wafer image surfaces
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technique represented a defect as a cluster of white points as well
and achieved a maximum F1 score of 99.4%. To compensate for
the limitation of this method that should explore the optimal WP
ratio, CNN models were developed using a train data set generated
by referring to WP ratios. The CNN models showed a consistent
and robust result with an F1 score over 98.6%, regardless of
which WP ratio was used to extract train data set in defect localiza-
tion on defective high-resolution wafer images. In summary, the
developed framework suggests the following steps.

For unclassified wafers,

• Step 1: Classification between high- and low-resolution wafer
images following a threshold derived by GLCM homogeneity
analysis with k-mean clustering.

For high-resolution wafer images,

• Step 2: Identification of defective high-resolution wafer
images based on the number of white points after subtracting
the background.

• Step 3: Extraction of train data set on a region of a defective
high-resolution wafer image with a WP ratio of 100%.

• Step 4: CNN model training and defects localization on defec-
tive high-resolution wafer images.

For low-resolution wafer images,

• Step 5: Identification of defective low-resolution wafer
images based on GLCM correlation analysis with k-means
clustering.

• Step 6: Determination of a threshold by the minimum GLCM
energy value of normal low-resolution wafer image surfaces.

• Step 7: Extraction of train data set on a region of a defective
low-resolution wafer image showing a lower GLCM energy
value than the defined threshold.

• Step 8: CNN model training and defects localization on defec-
tive low-resolution wafer images

Fig. 17 CNN configuration for defect localization on low-resolution wafer images

Fig. 18 CNN model performance without image augmentation
on high-resolution wafer images

Fig. 19 Original and augmented defect images: (a) original defect images of high-resolution wafer images, (b) augmented
defect images of high-resolution wafer images, (c) original defect images of low-resolution wafer images, and (d ) augmented
defect images of low-resolution wafer images
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According to this procedure, the classification of wafers, identifi-
cation of defectiveness, and localization of defects could be
achieved without a manual data labeling process.
The next discussion is about the effectiveness of implementing

image augmentation for high- and low-resolution wafer images.
The image augmentation process plays a key role in improving
the performance of the defect localization CNN model for defective
high-resolution wafer images. As described in Fig. 18, the perfor-
mance of the CNN model trained without the augmentation
library for defective high-resolution wafer images showed a steep
decline in WP ratios from 65% to 100% for defect localization.
When increasing a WP ratio, only defects occupying the large
area could be confirmed and extracted (Fig. 11), resulting in
many defect images being excluded from the train data set. There-
fore, a CNN model trained by a set from a high WP ratio detected
only defects occupying a large area in a 32 × 32 square. In contrast,
the image augmentation technique provided diversity in the data set
(Figs. 19(a) and 19(b)) and enabled to generate a superior model
with a limited data set when applying a high WP ratio and provided
robustness and consistency in the development of models regardless
of the WP ratio. However, augmenting images was not effective on
low-resolution wafer images, which had more intricate patterns than
high-resolution wafer images. Unlike defects on high-resolution
wafer images, complicated surface features of low-resolution
wafer images resulted in vague boundaries between normal surfaces

and defects (Fig. 19(c)). The increased degree of complexity in aug-
mented images caused divergence during training (Fig. 19(d )).
This study adopted Gradient-Weighted Class Activation

Mapping (Grad-CAM) [59], which is based on the concept of
explainable artificial intelligence (XAI), to validate the effective-
ness of image augmentation for each case. Most deep learning
models operate as black boxes, hiding their decision-making pro-
cesses. This not only impedes understanding of these processes
but also undermines the reliability of models [60]. XAI seeks to
address these issues by providing greater transparency in decision-
making, thereby enhancing the robustness and applicability of deep
learning models [61–66]. As a result, this study delves into the inter-
pretability of deep learning models, employing Grad-CAM to visu-
alize activated pixels after the CNN layers, thereby enhancing the
robustness and applicability of deep learning models.
Figure 20 presents the heat map of Grad-CAM analysis on sur-

faces of high-resolution wafer images. The map shows the
number of activated pixels, which indicates that the CNN model
captured the overall surface features of the original images effec-
tively. As a result, the augmented images with differentiated
angles, contrast, and brightness enhanced the training by offering
more diverse features. For high-resolution wafer images, image
augmentation significantly improved the recall of the model from
89.7% to 98.6% at a WP ratio of 100%. Nonetheless, the augmen-
tation technique was not effective for low-resolution wafer image

Fig. 20 Grad-CAM heat map of surfaces of high-resolution wafer images: (a) defect image, (b) defect image, (c) normal image,
and (d ) normal image
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surfaces, and the trained model with the augmentation showed an
F1 score of 78.6%. As shown in Fig. 21, the intricate surfaces of
low-resolution wafer images resulted in deactivated pixels after
augmenting; the model could not abstract features from highly
transformed surfaces. Therefore, this study did not apply the “Auto-
Augment” PyTorch library in the low-resolution wafer image case
and sought another approach to augment images effectively.

Perez and Wang [67] combined CNN training with an augmenta-
tion neural network and improved image classifier performance.
Unlike the previous augmentation technique consisting of rotating,
inverting, and solarizing methods, an augmentation neural network
with CNN layers provided image augmentation and feature abstrac-
tion simultaneously. Figure 22 illustrates the configuration of the
augmentation neural network. Two grayscale images of the same

Fig. 21 Grad-CAM heat map of surfaces of low-resolution wafer images: (a) defect image, (b) defect image, (c) normal image,
and (d ) normal image

Fig. 22 Configuration of the augmentation neural network
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class, including one original image and another image with or
without auto-augmentation, were concatenated and inputted to the
network. The network was trained by evaluating mean square
error with the Adam optimizer compared to an input original
image. With calculated weights, the augmentation neural network
generated one-channel augmented images. The augmented images
via the neural network improved the F-score from 85.4% to
90.1% for defect localization. In other words, implementing an aug-
mentation neural network was effective in improving the perfor-
mance of defect localization in the low-resolution wafer image
case. Finally, Fig. 23 summarizes the performance of each model.

6 Conclusion
Based on GLCM, background, subtraction, and deep learning

methods, this study presents an automated visual semiconductor
wafer inspection framework for classifying high- and low-
resolution wafer images, identifying the defectiveness of wafers,
and localizing defects with self-labeling techniques. The GLCM
methods revealed the characteristics of wafers and surfaces, and
the thresholds were defined by k-means clustering autonomously.
Furthermore, the background subtraction technique revealed the
presence of a defect as a white point cluster. Depending on WP
ratios, the evaluation metrics showed varied performances. After
implementing a CNN approach, the dependency of WP ratios was
resolved by maintaining performance. While this framework suc-
cessfully processed every step, yielding F1 scores for localizing
defects over 90.1% for low-resolution wafer images and 99.3%
for high-resolution wafer images, it has still several limitations as
follows.
First, this investigation considered only two types of wafers.

When handling multiple types of wafers, it may cause unclear
separation on GLCM analysis with k-means clustering. Therefore,
an additional algorithm would be necessary to address the issue.
One tentative solution is the application of deep learning. By imple-
menting an AE, it would be possible to extract representative fea-
tures of each group and data sets for CNN training. Then, a
trained CNN model is expected to separate each group. Next, this
study solved the binary classification problems. Nevertheless,
there should be classification problems with multiple classes. The
features of defects in this research also could be divided into mul-
tiple classes by shapes and reflections. As a result, it will be the
future study of this investigation.
In addition, the detection speed is also important for real-world

applications. The speed of localizing defects was from 1.00 s per
image to 1.75 s per image. For real-time inspection, the speed
should reach around 0.03 s per image [68]. YOLO or Region-Based
Convolutional Neural Network (R-CNN) with optimization will be
implemented to tackle this problem. Moreover, the performance of
defect localization for low-resolution wafer images should be
improved to implement this framework in real-world cases, and
the framework and models will be optimized in future research.

Acknowledgment
This material is based upon work supported by the National

Science Foundation under Grant AM-2125826 (Purdue University)
and Grant CMMI-2124999 (Texas A&M University).

Conflict of Interest
There are no conflicts of interest.

Data Availability Statement
The datasets generated and supporting the findings of this article

are obtainable from the corresponding author upon reasonable
request.

References
[1] Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., Son, J. Y., Kim, B. H., and

Noh, S. D., 2016, “Smart Manufacturing: Past Research, Present Findings, and
Future Directions,” Int. J. Precis. Eng. Manuf. Green Technol., 3(1), pp. 111–128.

[2] Shankar, N. G., and Zhong, Z. W., 2005, “Defect Detection on Semiconductor
Wafer Surfaces,” Microelectron. Eng., 77(3–4), pp. 337–346.

[3] Huang, S. H., and Pan, Y. C., 2015, “Automated Visual Inspection in the
Semiconductor Industry: A Survey,” Comput. Ind., 66, pp. 1–10.

[4] Harris, D. H., 1969, “The Nature of Industrial Inspection,” Hum. Factors, 11(2),
pp. 139–148.

[5] Chin, R. T., and Harlow, C. A., 1982, “Automated Visual Inspection: A Survey,”
IEEE Trans. Pattern Anal. Mach. Intell., PAMI-4(6), pp. 557–573.

[6] Megaw, E. D., 1979, “Factors Affecting Visual Inspection Accuracy,” Appl.
Ergon., 10(1), pp. 27–32.

[7] Babic, M., Farahani, M. A., and Wuest, T., 2021, “Image Based Quality
Inspection in Smart Manufacturing Systems: A Literature Review,” Procedia
CIRP, 103, pp. 262–267.

[8] Psarommatis, F., May, G., Dreyfus, P.-A., and Kiritsis, D., 2019, “Zero Defect
Manufacturing: State-of-the-Art Review, Shortcomings and Future Directions
in Research,” Artic,” Int. J. Prod. Res., 58(1), pp. 1–17.

[9] LeCun, Y., Bengio, Y., and Hinton, G., 2015, “Deep Learning,” Nature,
521(7553), pp. 436–444.

[10] Rusk, N., 2016, “Deep Learning,” Nat. Methods, 13(1), pp. 35–35.
[11] Wang, D., and Shang, Y., 2014, “A New Active Labeling Method for Deep

Learning,” Proceedings of the International Joint Conference on Neural
Networks, Beijing, China, July 6–11, pp. 112–119.

[12] Chow, J. K., Su, Z., Wu, J., Tan, P. S., Mao, X., and Wang, Y. H., 2020,
“Anomaly Detection of Defects on Concrete Structures With the Convolutional
Autoencoder,” Adv. Eng. Inform., 45, p. 101105.

[13] Kozamernik, N., and Brac un, D., 2020, “Visual Inspection System for Anomaly
Detection on KTL Coatings Using Variational Autoencoders,” Procedia CIRP,
93, pp. 1558–1563.

[14] Kouteva-Arguirova, S., Arguirov, T., Wolfframm, D., and Reif, J., 2003,
“Influence of Local Heating on Micro-Raman Spectroscopy of Silicon,”
J. Appl. Phys., 94(8), pp. 4946–4949.

[15] Kumar, A., and Arnold, W., 2022, “High Resolution in Non-Destructive Testing:
A Review,” J. Appl. Phys., 132(10), p. 100901.

[16] Hasegawa, K., and Saito, H., 2016, “Synthesis of a Stroboscopic Image From a
Hand-Held Camera Sequence for a Sports Analysis,” Comput. Vis. Media,
2(3), pp. 277–289.

[17] Guo, X., and Lee, C. B., 2021, “Preliminary Study of Phase-Shifting
Strobo-Stereoscopy for Cutting Tool Monitoring,” J. Manuf. Process., 64,
pp. 1214–1222.

Fig. 23 Performance of the developed models

Journal of Manufacturing Science and Engineering JULY 2024, Vol. 146 / 070906-13

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/146/7/070906/7333593/m
anu_146_7_070906.pdf by Texas A & M

 U
niversity, C

habum
 Lee on 18 July 2024

http://dx.doi.org/10.1007/s40684-016-0015-5
http://dx.doi.org/10.1016/j.mee.2004.12.003
http://dx.doi.org/10.1016/j.compind.2014.10.006
http://dx.doi.org/10.1177/001872086901100207
http://dx.doi.org/10.1109/TPAMI.1982.4767309
http://dx.doi.org/10.1016/0003-6870(79)90006-1
http://dx.doi.org/10.1016/0003-6870(79)90006-1
http://dx.doi.org/10.1016/j.procir.2021.10.042
http://dx.doi.org/10.1016/j.procir.2021.10.042
http://dx.doi.org/10.1080/00207543.2019.1605228
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nmeth.3707
http://dx.doi.org/10.1016/j.aei.2020.101105
http://dx.doi.org/10.1016/j.procir.2020.04.114
http://dx.doi.org/10.1063/1.1611282
http://dx.doi.org/10.1063/5.0095328
http://dx.doi.org/10.1007/s41095-016-0053-5
http://dx.doi.org/10.1016/j.jmapro.2021.02.053


[18] Zhang, L., Tham, Z. W., Chen, Y. F., Tan, C. Y., Cui, F., Mutiargo, B., and Ke,
L., 2022, “Defect Imaging in Carbon Fiber Composites by Acoustic
Shearography,” Compos. Sci. Technol., 223, p. 109417.

[19] Grasland-Mongrain, P., Zorgani, A., Nakagawa, S., Bernard, S., Paim, L. G.,
Fitzharris, G., Catheline, S., and Cloutier, G., 2018, “Ultrafast Imaging of Cell
Elasticity With Optical Microelastography,” Proc. Natl. Acad. Sci. U. S. A.,
115(5), pp. 861–866.

[20] Yu, Y., Yang, Q., and Wang, X., 2013, “3D Imaging Application in the Studies of
Micro Air Vehicles,” Comput. Ind., 64(9), pp. 1178–1185.

[21] Versluis, M., 2013, “High-Speed Imaging in Fluids,” Exp. Fluids, 54(2), pp. 1–
35.

[22] Brigham, E. O., and Morrow, R. E., 1967, “The Fast Fourier Transform,” IEEE
Spectr., 4(12), pp. 63–70.

[23] Graps, A., 1995, “An Introduction to Wavelets,” IEEE Comput. Sci. Eng., 2(2),
pp. 50–61.

[24] Singh, S. A., and Desai, K. A., 2023, “Automated Surface Defect Detection
Framework Using Machine Vision and Convolutional Neural Networks,”
J. Intell. Manuf., 34(4), pp. 1995–2011.

[25] Yun, J. P., Shin, W. C., Koo, G., Kim, M. S., Lee, C., and Lee, S. J., 2020,
“Automated Defect Inspection System for Metal Surfaces Based on Deep
Learning and Data Augmentation,” J. Manuf. Syst., 55, pp. 317–324.

[26] Park, J. K., Kwon, B. K., Park, J. H., and Kang, D. J., 2016, “Machine
Learning-Based Imaging System for Surface Defect Inspection,” Int. J. Precis.
Eng. Manuf. Green Technol., 3(3), pp. 303–310.

[27] Kulkarni, A., and Xu, C., 2021, “A Deep Learning Approach in Optical
Inspection to Detect Hidden Hardware Trojans and Secure Cybersecurity in
Electronics Manufacturing Supply Chains,” Front. Mech. Eng., 7.

[28] Nakazawa, T., and Kulkarni, D. V., 2018, “Wafer Map Defect Pattern
Classification and Image Retrieval Using Convolutional Neural Network,”
IEEE Trans. Semicond. Manuf., 31(2), pp. 309–314.

[29] Phua, C., and Theng, L. B., 2020, “Semiconductor Wafer Surface: Automatic
Defect Classification with Deep CNN,” IEEE Region 10 Annual International
Conference Proceedings/TENCON, Osaka, Japan, November, pp. 714–719.

[30] Wen, G., Gao, Z., Cai, Q., Wang, Y., and Mei, S., 2020, “A Novel Method Based
on Deep Convolutional Neural Networks for Wafer Semiconductor Surface
Defect Inspection,” IEEE Trans. Instrum. Meas., 69(12), pp. 9668–9680.

[31] Yun, H., Kim, H., Jeong, Y. H., and Jun, M. B. G., 2023, “Autoencoder-Based
Anomaly Detection of Industrial Robot Arm Using Stethoscope Based Internal
Sound Sensor,” J. Intell. Manuf., 34(3), pp. 1427–1444.

[32] Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., and Vincent, P., 2010,
“Why Does Unsupervised Pre-Training Help Deep Learning?,” J. Mach. Learn.
Res., 11, pp. 625–660.

[33] Feng, S., Yu, H., and Duarte, M. F., 2020, “Autoencoder Based Sample Selection
for Self-Taught Learning,” Knowl. Based Syst., 192, p. 105343.

[34] Fan, S. K. S., Hsu, C. Y., Jen, C. H., Chen, K. L., and Juan, L. T., 2020,
“Defective Wafer Detection Using a Denoising Autoencoder for Semiconductor
Manufacturing Processes,” Adv. Eng. Inform., 46, p. 101166.

[35] Yu, J., Zheng, X., and Liu, J., 2019, “Stacked Convolutional Sparse Denoising
Auto-Encoder for Identification of Defect Patterns in Semiconductor Wafer
Map,” Comput. Ind., 109, pp. 121–133.

[36] Wang, C. H., 2009, “Separation of Composite Defect Patterns on Wafer Bin Map
Using Support Vector Clustering,” Expert Syst. Appl., 36(2), pp. 2554–2561.

[37] Schlosser, T., Friedrich, M., Beuth, F., and Kowerko, D., 2022, “Improving
Automated Visual Fault Inspection for Semiconductor Manufacturing Using a
Hybrid Multistage System of Deep Neural Networks,” J. Intell. Manuf., 33(4),
pp. 1099–1123.

[38] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
et al., 2019, “PyTorch: An Imperative Style, High-Performance Deep Learning
Library,” Advances in Neural Information Processing Systems 32, Vancouver,
Canada, Dec. 8–14, H. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E. Fox, and R. Garnett, eds., Curran Associates, Inc, pp. 8024–
8035.

[39] Holub, O., and Ferreira, S. T., 2006, “Quantitative Histogram Analysis of
Images,” Comput. Phys. Commun., 175(9), pp. 620–623.

[40] Salem, N., Malik, H., and Shams, A., 2019, “Medical Image Enhancement Based
on Histogram Algorithms,” Procedia Comput. Sci., 163, pp. 300–311.

[41] Haralick, R. M., 1979, “Statistical and Structural Approaches to Texture,” Proc.
IEEE, 67(5), pp. 786–804.

[42] Hall-Beyer, M., 2017, “Practical Guidelines for Choosing GLCM Textures to Use
in Landscape Classification Tasks Over a Range of Moderate Spatial Scales,”
Int. J. Remote Sens., 38(5), pp. 1312–1338.

[43] Franklin, S. E., Hall, R. J., Moskal, L. M., Maudie, A. J., and Lavigne, M. B.,
2000, “Incorporating Texture Into Classification of Forest Species Composition
From Airborne Multispectral Images,” Int. J. Remote Sens., 21(1), pp. 61–79.

[44] Ozdemir, I., Mert, A., and Senturk, O., 2012, “Predicting Landscape Structural
Metrics Using Aster Satellite Data,” J. Environ. Eng. Landsc. Manag., 20(2),
pp. 168–176.

[45] Mathew, A. R., Anto, P. B., and Thara, N. K., 2017, “Brain Tumor Segmentation
and Classification Using DWT, Gabour Wavelet and GLCM,” 2017 International
Conference on Intelligent Computing, Instrumentation and Control Technologies
(ICICICT), Kerala, India, July 6–7, pp. 1744–1750.

[46] Hussain, A., and Khunteta, A., 2020, “Semantic Segmentation of Brain Tumor
From MRI Images and SVM Classification Using GLCM Features,” 2020
Second International Conference on Inventive Research in Computing
Applications (ICIRCA), Coimbatore, India, July 15–17, pp. 38–43.

[47] Raheja, J. L., Kumar, S., and Chaudhary, A., 2013, “Fabric Defect Detection
Based on GLCM and Gabor Filter: A Comparison,” Optik, 124(23), pp. 6469–
6474.

[48] Yu, J., 2019, “Enhanced Stacked Denoising Autoencoder-Based Feature Learning
for Recognition of Wafer Map Defects,” IEEE Trans. Semicond. Manuf., 32(4),
pp. 613–624.

[49] Yu, J., and Lu, X., 2016, “Wafer Map Defect Detection and Recognition Using
Joint Local and Nonlocal Linear Discriminant Analysis,” IEEE Trans.
Semicond. Manuf., 29(1), pp. 33–43.

[50] Saqlain, M., Jargalsaikhan, B., and Lee, J. Y., 2019, “A Voting Ensemble
Classifier for Wafer Map Defect Patterns Identification in Semiconductor
Manufacturing,” IEEE Trans. Semicond. Manuf., 32(2), pp. 171–182.

[51] Gadkari, D., 2004, “Image Quality Analysis Using GLCM,” Electron. Theses
Diss. Univ. Cent. Fla.

[52] Sobral, A., and Vacavant, A., 2014, “A Comprehensive Review of Background
Subtraction Algorithms Evaluated With Synthetic and Real Videos,” Comput.
Vis. Image Underst., 122, pp. 4–21.

[53] Bouwmans, T., 2012, “Background Subtraction For Visual Surveillance: A Fuzzy
Approach,” Handb. Soft Comput. Video Surveill., pp. 103–134.

[54] Bradski, G., 2000, “The OpenCV Library,” Dr Dobbs J. Softw. Tools.
[55] Trnovszký, T., Sýkora, P., and Hudec, R., 2017, “Comparison of Background

Subtraction Methods on Near Infra-Red Spectrum Video Sequences,” Procedia
Eng., 192, pp. 887–892.

[56] Friedman, N., and Russell, S., 2013, Image Segmentation in Video Sequences: A
Probabilistic Approach,” CoRR, abs/1302.1539.

[57] Zivkovic, Z., and Heijden, F. V. D., 2006, “Efficient Adaptive Density Estimation
per Image Pixel for the Task of Background Subtraction,” Pattern Recognit. Lett.,
27(7), pp. 773–780.

[58] Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V., 2019,
“Autoaugment: Learning Augmentation Strategies From Data,” Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Long Beach, CA, June,
pp. 113–123.

[59] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D.,
2020, “Grad-CAM: Visual Explanations From Deep Networks via
Gradient-Based Localization,” Int. J. Comput. Vis., 128(2), pp. 336–359.

[60] Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., and Yang, G. Z., 2019,
“XAI-Explainable Artificial Intelligence,” Sci. Robot., 4(37), p. eaay7120.

[61] Wang, J., Fu, P., and Gao, R. X., 2019, “Machine Vision Intelligence for Product
Defect Inspection Based on Deep Learning and Hough Transform,” J. Manuf.
Syst., 51, pp. 52–60.

[62] Wang, J., Li, Y., Gao, R. X., and Zhang, F., 2022, “Hybrid Physics-Based and
Data-Driven Models for Smart Manufacturing: Modelling, Simulation, and
Explainability,” J. Manuf. Syst., 63, pp. 381–391.

[63] Cooper, C., Zhang, J., Huang, J., Bennett, J., Cao, J., and Gao, R. X., 2023,
“Tensile Strength Prediction in Directed Energy Deposition Through
Physics-Informed Machine Learning and Shapley Additive Explanations,”
J. Mater. Process. Technol., 315, p. 117908.

[64] Wang, F., Zhao, Z., Zhai, Z., Shang, Z., Yan, R., and Chen, X., 2023,
“Explainability-Driven Model Improvement for SOH Estimation of
Lithium-Ion Battery,” Reliab. Eng. Syst. Saf., 232, p. 109046.

[65] Liu, T., Lough, C. S., Sehhat, H., Ren, Y. M., Christofides, P. D., Kinzel, E. C.,
and Leu, M. C., 2022, “In-Situ Infrared Thermographic Inspection for Local
Powder Layer Thickness Measurement in Laser Powder Bed Fusion,” Addit.
Manuf., 55, p. 102873.

[66] Lee, J., Noh, I., Lee, J., and Lee, S. W., 2022, “Development of an Explainable
Fault Diagnosis Framework Based on Sensor Data Imagification: A Case Study
of the Robotic Spot-Welding Process,” IEEE Trans. Ind. Inform., 18(10),
pp. 6895–6904.

[67] Perez, L., and Wang, J., 2017, “The Effectiveness of Data Augmentation in Image
Classification Using Deep Learning.” arXiv preprint.

[68] Lee, J., Wang, P., Xu, R., Dasari, V., Weston, N., Li, Y., Bagchi, S., and Chaterji,
S., 2021, “Virtuoso: Video-Based Intelligence for Real-Time Tuning on SOCs,”
arXiv preprint.

070906-14 / Vol. 146, JULY 2024 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/146/7/070906/7333593/m
anu_146_7_070906.pdf by Texas A & M

 U
niversity, C

habum
 Lee on 18 July 2024

http://dx.doi.org/10.1016/j.compscitech.2022.109417
http://dx.doi.org/10.1073/pnas.1713395115
http://dx.doi.org/10.1016/j.compind.2013.06.009
http://dx.doi.org/10.1007/s00348-013-1458-x
http://dx.doi.org/10.1109/MSPEC.1967.5217220
http://dx.doi.org/10.1109/MSPEC.1967.5217220
http://dx.doi.org/10.1109/99.388960
http://dx.doi.org/10.1007/s10845-021-01878-w
http://dx.doi.org/10.1016/j.jmsy.2020.03.009
http://dx.doi.org/10.1007/s40684-016-0039-x
http://dx.doi.org/10.1007/s40684-016-0039-x
http://dx.doi.org/10.3389/fmech.2021.709924
http://dx.doi.org/10.1109/TSM.2018.2795466
http://dx.doi.org/10.1109/TIM.2020.3007292
http://dx.doi.org/10.1007/s10845-021-01862-4
http://dx.doi.org/10.1016/j.knosys.2019.105343
http://dx.doi.org/10.1016/j.aei.2020.101166
http://dx.doi.org/10.1016/j.compind.2019.04.015
http://dx.doi.org/10.1016/j.eswa.2008.01.057
http://dx.doi.org/10.1007/s10845-021-01906-9
http://dx.doi.org/10.1016/j.cpc.2006.06.014
http://dx.doi.org/10.1016/j.procs.2019.12.112
http://dx.doi.org/10.1109/PROC.1979.11328
http://dx.doi.org/10.1109/PROC.1979.11328
http://dx.doi.org/10.1080/01431161.2016.1278314
http://dx.doi.org/10.1080/014311600210993
http://dx.doi.org/10.3846/16486897.2012.688371
http://dx.doi.org/10.1016/j.ijleo.2013.05.004
http://dx.doi.org/10.1109/TSM.2019.2940334
http://dx.doi.org/10.1109/TSM.2015.2497264
http://dx.doi.org/10.1109/TSM.2015.2497264
http://dx.doi.org/10.1109/TSM.2019.2904306
http://dx.doi.org/10.1016/j.cviu.2013.12.005
http://dx.doi.org/10.1016/j.cviu.2013.12.005
http://dx.doi.org/10.1016/j.proeng.2017.06.153
http://dx.doi.org/10.1016/j.proeng.2017.06.153
http://dx.doi.org/10.1016/j.patrec.2005.11.005
http://dx.doi.org/10.1007/s11263-019-01228-7
http://dx.doi.org/10.1126/scirobotics.aay7120
http://dx.doi.org/10.1016/j.jmsy.2019.03.002
http://dx.doi.org/10.1016/j.jmsy.2019.03.002
http://dx.doi.org/10.1016/j.jmsy.2022.04.004
http://dx.doi.org/10.1016/j.jmatprotec.2023.117908
http://dx.doi.org/10.1016/j.ress.2022.109046
http://dx.doi.org/10.1109/TII.2021.3134250
https://arxiv.org/abs/1712.04621
https://doi.org/10.48550/arXiv.2112.13076

	1  Introduction
	2  Related Works
	3  Experimental Setup
	4  Methodology
	4.1  Wafer Classification
	4.2  Defective and Normal Wafer Classification
	4.3  Defects Localization 1—High-Resolution Wafer Image Case
	4.4  Defects Localization 2—Low-Resolution Wafer Image Case

	5  Discussion
	6  Conclusion
	 Acknowledgment
	 Conflict of Interest
	 Data Availability Statement
	 References

