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Abstract

This paper presents an innovative digital integration combining edge diffractometry with convolutional neural networks (CNN) for
via metrology and inspection. The beam propagation method (BMP) was applied to simulate the edge diffractometry-generated
interferogram for via edge roughness () characterization, and a comprehensive database that correlated distinct fringe patterns to
VER was further established for CNN training. The well-trained CNN-based methodology provided a fast and accurate VER
assessment with a root mean squared error (RMSE) of 0.073 and an average mean absolute deviation ratio (MADR) of 2.274%. In
addition, the proposed digital approach was compared with the multilayer perceptron machine (MLP) in terms of computational
efficiency and predictive accuracy. The proposed digital integration significantly improved the accuracy and speed of VER
measurement, characterization, and quantification, potentially enhancing device yield and reliability. The successful application of
this digital approach could pave the way for various types of via or pattern metrology.

Keywords Via, Via edge roughness, Metrology; Inspection; Interferogram; Artificial intelligence; Convolutional Neural Networks.

1 Introduction

Via metrology and inspection technology are vital to verify
that the vias produced through machining, laser drilling, or
chemical etching meet their designated specifications such as
diameter, circularity, roundness, and edge roughness conditions
[1]. The via technology enabled the 3D stacked chips for
miniaturization, low power consumption, and high
performance [2], which is also essential for signal transmission
and the overall performance of the devices [3]. The dimension
and shape accuracy of the vias is important since performance
degradation or complete failure of the whole device could
result from small discrepancies [4]. Similar to the line-edge
roughness (LER) of the photomask patterns, the VER is also
vital to ensure the reliability of the system, since the rough
edges could lead to increased electron scattering, affecting the
conductivity and variations in the electrical
characteristics [5]. Currently, various via-measuring methods
are utilized to perform the measurements. Optical microscopy
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is a widely used via inspection method, providing rapid
assessment of size and shape, but its ability is limited for deep
or small vias [6]. Scanning electron microscopy (SEM) and
atomic force microscopy (AFM) enable detailed analysis of
via edge roughness and its microstructure, but both methods
are expensive and time-consuming, making them unsuitable
for in-process inspection [7,8].

With the advancement of artificial intelligence (Al),
Convolutional Neural Networks (CNNs) can automatically
conduct feature extraction from images and predict performance
of semiconductor component [9]. With the aid of big data
technology and Industry 4.0 [10], various manufactured data will
be continuously collected and stored, making the training sets
more comprehensive. Thus, the robustness and reliability of
CNN will further be enhanced over time [11]. However, the
majority of deep learning-based methods are applied at wafer
level. There are only a few studies that have applied deep
learning for TSV inspection and quality evaluation. Current
research mainly focuses on the detection of TSV extrusion,
overall performance evaluation, and the dimension prediction of
TSVs, including array alignment and critical dimensions [9,12-14].
To our best knowledge, the application of deep-learning for
edge roughness characterization, which is a very challenging
metrology task, has not been developed yet.
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Inspired by previous studies [15-17], numerical optical
simulation and CNN were integrated to automate via edge
roughness characterization. By analyzing various via diffractive
patterns and their corresponding VER, the CNN can
automatically extract subtle patterns from these fringe images,
and further correlate those features with roughness metrics.
Thus, the well-trained model can directly predict the roughness
from the diffraction pattern, enabling an accurate and fast via
metrology and inspection. Instead of utilizing a simplified
aperture diffraction model in previous studies, the beam
propagation method (BPM) was applied to simulate the fringe
patterns generated from the vias. In this paper, details of dataset
construction and digital approaches to via characterization are
explained, and the potential to be integrated into existing via
inspection frameworks is also discussed.

2 Framework of the Digital Approach

Fig. 1 compares the flow charts of the proposed digital via
inspection approach to the AS-IS hole metrology method.
Instead of conducting complicated fringe preprocessing [17], a
well-trained CNN model is capable of predicting the edge
roughness condition from the diffraction image directly.

CNN is widely used in computer vision and image
processing since it simulates the cognitive pattern of the
human brain [18], being successfully applied in various
industrial scenarios [19,20]. In this study, the cropped
diffraction image served as input and predicted VER values

were the output.

The proposed digital approach consists of two major steps:
the first step involves the establishment of a database that links
distinct fringe patterns with their corresponding edge
roughness conditions. The second step focuses on the setup of
neural networks, including the training of models and
optimization of hyperparameters. Details of each step will be
discussed in the following sections.

3. Establishment of the Training Database
3.1 Experiments Setup

A grayfield through silicon via (TSV) inspection system
was constructed as shown in Fig. 2(a), which features
enhanced sensitivity to scattered light and remarkable
diffractive image contrast. A collimated laser (A 450 nm) was
utilized as the light source. The laser was further shaped into
a donut shape by the two axicon lenses installed below it, as
depicted in Fig. 2(b). To reduce the intensity saturation in the
imaging device, a 12.5% neutral density (ND) filter was
applied. The filtered donut-shaped beam was then formed into
a spherical wavefront through the first objective lens. Once the
light interacted with the edge of the TSV, the Charge-coupled
Device (CCD) on the bottom could capture the diffraction
images. In this study, all diffraction images were captured
from @100 um TSVs fabricated on 210 um thick undoped
single-crystalline silicon wafers.
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Fig. 2 Schematics of grayfield Si-via inspection system

3.2 Simulation Model

The BPM was used to simulate the laser propagation inside
the via sample. This method is widely applied for simulating
electromagnetic (EM) wave propagation through waveguides
[21,22] and other devices and media, such as waveguide
junctions [23], optical switches [24], optical fiber amplifiers
[25] and atmosphere with turbulence [26]. The BPM assumes
that the envelope of the optical wave would not change
abruptly during the propagation [23]. Therefore, the transverse
electrical field density of the optical wave traveling in z-
direction is represented as:

—ingkyz

E = Ye (1)

where ¥ is the Slowly Varying Envelope (SVE) function, n,
is the reference refractive index, and k is the wave number of
the laser in the vacuum.

By substituting this expression into the Maxwell equation
and applying the paraxial approximation, the governing
equation for a scalar wave propagation can be written as [23]:

oW oY Y
dinghy——t=—"+ ="+ ko(n’ =) ¥, ()
ox~ 0Oy

where n is the refractive index of the media. After giving the
initial condition ¥j(z=0)= %(x,y), the ¥ cou.ld be solved
for each z value by finite difference method in the alternative
direction implicit (ADI) scheme. In this study, the initial
condition was set as the Bessel-Gaussian function to represent
the laser beam generated by passing a Gaussian beam through
a pair of axicon lenses [27,28]:

2

F(p,z=0)= Amexp{—%}Jm(ﬁp) 3)
WD

where wj is the size of the beam waist, p=/x"+)" is the polar

coordinate, 4,, m and.a are constant values. By choosing

different combinations of wy, 4,,, m and Ja, various types of

laser beams, including Gaussian beam and Donut-Beam, could

be represented.

The simulation of BPM started and ended at the top (z = 0)
and bottom (z =h) of via sample, respectively. Once the field
value Uy(x,y) = ¥(z= h)~e_i"°k°h was obtained at the bottom, the
scalar diffraction theory was used to compute the diffraction
pattern received by the CCD. The expression for computing
the diffraction filed after propagating a distance Z is written as
[29]:

Up(x,p) = T {3 {Up(x,0) } & CexplmAZ(f 3+ D1} (4)

whereS and3 ' are Fourier transform and inverse Fourier
transform, fy and fy are frequency variables associated with x
and y respectively. The diffraction pattern on the CCD could
be computed as [29]:

1(x,9) =|Uy(e,0) Q)

where I(x,y) represents the irradiance of the light field, which
is the time-averaged radiometric energy flux per unit area.

3.3 Training Set Preparation

Fig. 3 depicts the workflow of training datasets processing.
After the acquisition of diffraction patterns through interferogram,
image segmentation was conducted in a 10-degree interval.
Subsequently, the measured diffraction pattern of each segment
was extracted and compared to the BPM simulation fringe in ideal
condition to obtain the similarity value (SI). Diffraction fringes of
multiple edge conditions with different VER values were further
simulated using BPM methods, which was used to compared with
the ideal fringe. Thus, the relationship between VER and SI was
obtained, and this calibration result was used to estimate the VER
of experimental fringe pattern. This method was described in
detail in a previous work [17].

After performing the same operation on each fringe segment,
a dataset containing diffractive images and its associated VER
was established, consisting of 1,872 entries total. The dataset
served as input for training the CNN model, aiming for accurate
edge roughness prediction based on precise pattern recognitions.
In this study, five experiments were conducted: in each
experiment, 100 samples were randomly selected as the testing set
while the remaining 1,772 samples served as training sets.

3.4 Model Optimization

In order to improve the prediction accuracy and obtain the best
CNN model, the hyperparameters, including the number and
properties of different types of layers, were optimized in this study.
Both perdition accuracy (RMSE and MADR) and computational
burden (training time) were taken into consideration for choosing
the best model. The final architecture of the CNN is shown in Fig. 4,
which consists of 2 convolutional layers, 2 max-pooling layers, and
1 fully connected dense layer. In corresponding sub boxes of Fig. 4,
@ denotes the number of feature maps, and X represents the
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Fig. 5 Predicted vs actual scatter plot results of five datasets

dimensions of the filter or pooling window. During the training
process, the adaptive learning rate strategy was applied to reduce the
training time needed to reach convergence.

4. Results
4.1 CNN Prediction Results

Fig. 5 shows the CNN prediction results of five experiments,
allowing an intuitive evaluation of its performance. In each
subplot, the blue points represented the relationship between
the actual value and CNN’s predicted value, while the red
dashed line represented the ideal prediction scenario where the

2 22 24 2.6 2.8 3 3.2
Real

predicted value equaled the actual value (Y= X). These charts
visualized the prediction accuracy: the closer the data points
were to the red line, the higher the accuracy of the predictions.
As shown in Fig. 5, in all five scenarios, blue points were
scattered in a region close to the red reference line along the
whole VER range, indicating the CNN model was capable of
making relatively precise VER predictions.

Two evaluation metrics were further used to numerically
evaluate the results: the root mean square error (RMSE), and
the mean absolute deviation ratio (MADR) which is computed
as mean absolute deviation divided by average. The average
RMSE for all testing sets was 0.073, with the first and second
sets having values less than 0.069 while the highest, 0.082,
was from the fourth set. Considering the average VER was
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Fig. 7 Result comparisons: (a) average RMSE, (b) average MADR, and (c) average training time

more than 2.480 pm, all RMSEs were considered relatively
small and reflected the precision of the predictions. Upon
further calculation of the MADR, the average value obtained
was only 2.274%, with the fourth set having the highest value
at just 2.767%. This further demonstrated that CNN’s average
predictive error is below 2.300%, being considered highly
accurate.

4.2 Additional Multilayer Perceptron (MLP) Results

The MLP, also a neural network-based model, is widely
used to solve classification and prediction problems [30-32]. In
the MLP model, all the layers, including the input, hidden, and
output layers, are fully connected layers [33]. As shown in Fig. 6,
the MLP consists of one input layer, one output layer and 4
hidden layers. The hyper parameters of the MLP were also
tuned through a 10-fold cross-validation for achieving the best
performance. This relatively simple model structure can make
the model training and prediction process more efficient by
reducing the number of parameters. However, this smaller
number of parameters limits the model’s capability for
complicated tasks such as complicated image and video
processing [34].

A comprehensive comparison of the prediction accuracy
and computation time between CNN and MLP was conducted,
as shown in Fig. 7. From the results, CNN showed a
significant advantage in prediction accuracy: with a lower
average RMSE and a better MADR. The average RMSE of
MLP results was 0.0872, 19.78% higher than that of CNN.
Similarly, the average MADR results for MLP was 2.507%,
10.249% higher than that of CNN. In semiconductor industry,
the TSVs provide electrical connection among multiple layers,
even a small increase in VER could result in attenuation and
distortion of the signal being transferred, due to the skin effect.
Therefore, a small difference in prediction performance can
have huge impacts in engineering practice.

However, due to the simpler network structure of MLP,

23.144% less training time was needed, making it a more
efficient inspection method in industrial applications. It is
noteworthy that by comparing the standard deviation, CNN
showed a more robust predictive performance, while MLP’s
performance was significantly influenced by the training sets
itself.

The choice between utilizing CNN or MLP should be
guided by the specific industrial requirements, depending on
whether the priority lies with achieving the highest accuracy
possible or with efficiency and speed of computation.

5 Conclusion

Through integration of experimental and theoretical edge
diffractometry with CNN, a novel digital approach to automatic
via metrology and inspection was proposed in this paper. The
electromagnetic wave propagation-based computational model of
the via created a database of simulated fringe profiles, the
experiment by the grayfield edge diffractometry was
conducted to obtain the fringe pattern dataset to further
compute VER. The CNN model was then trained to analyze
various via diffractive profiles and their corresponding VER,
automatically extracting subtle patterns from these fringe
images. A further correlation between the fringe image
features and VER showed the linear characteristics.

The proposed CNN-based digital approach showed a 0.073
RMSE and a 2.274% MADR in VER prediction results,
proving its capacity in complex fringes analysis, offering a
robust solution for the semiconductor industry's demand for
rapid and precise via inspection. An additional study on an
MLP-based model offered a trade-off between prediction
efficiency and accuracy.

In summary, the implementation of the proposed digital
approach in via metrology is promised to improve the yield
and reliability of semiconductor devices, further supporting the
technological advancements in the industry. Future research
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could focus on further optimizing the AI models and exploring
potential applications in other areas of precision engineering.
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