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Abstract

This paper presents an innovative digital integration combining edge diffractometry with convolutional neural networks (CNN) for

via metrology and inspection. The beam propagation method (BMP) was applied to simulate the edge diffractometry-generated

interferogram for via edge roughness ( ) characterization, and a comprehensive database that correlated distinct fringe patterns to

VER was further established for CNN training. The well-trained CNN-based methodology provided a fast and accurate VER

assessment with a root mean squared error (RMSE) of 0.073 and an average mean absolute deviation ratio (MADR) of 2.274%. In

addition, the proposed digital approach was compared with the multilayer perceptron machine (MLP) in terms of computational

efficiency and predictive accuracy. The proposed digital integration significantly improved the accuracy and speed of VER

measurement, characterization, and quantification, potentially enhancing device yield and reliability. The successful application of

this digital approach could pave the way for various types of via or pattern metrology.
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1 Introduction

Via metrology and inspection technology are vital to verify

that the vias produced through machining, laser drilling, or

chemical etching meet their designated specifications such as

diameter, circularity, roundness, and edge roughness conditions

[1]. The via technology enabled the 3D stacked chips for

miniaturization, low power consumption, and high

performance [2], which is also essential for signal transmission

and the overall performance of the devices [3]. The dimension

and shape accuracy of the vias is important since performance

degradation or complete failure of the whole device could

result from small discrepancies [4]. Similar to the line-edge

roughness (LER) of the photomask patterns, the VER is also

vital to ensure the reliability of the system, since the rough

edges could lead to increased electron scattering, affecting the

conductivity and cause variations in the electrical

characteristics [5]. Currently, various via-measuring methods

are utilized to perform the measurements. Optical microscopy

is a widely used via inspection method, providing rapid

assessment of size and shape, but its ability is limited for deep

or small vias [6]. Scanning electron microscopy (SEM) and

atomic force microscopy (AFM) enable detailed analysis of

via edge roughness and its microstructure, but both methods

are expensive and time-consuming, making them unsuitable

for in-process inspection [7,8]. 

With the advancement of artificial intelligence (AI),

Convolutional Neural Networks (CNNs) can automatically

conduct feature extraction from images and predict performance

of semiconductor component [9]. With the aid of big data

technology and Industry 4.0 [10], various manufactured data will

be continuously collected and stored, making the training sets

more comprehensive. Thus, the robustness and reliability of

CNN will further be enhanced over time [11]. However, the

majority of deep learning-based methods are applied at wafer

level. There are only a few studies that have applied deep

learning for TSV inspection and quality evaluation. Current

research mainly focuses on the detection of TSV extrusion,

overall performance evaluation, and the dimension prediction of

TSVs, including array alignment and critical dimensions [9,12-14].

To our best knowledge, the application of deep-learning for

edge roughness characterization, which is a very challenging

metrology task, has not been developed yet. 

REGULAR PAPER

https//doi.org/10.57062/ijpem-st.2024.00010

Dr. ChaBum Lee

cblee@tamu.edu

1 J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M

University 3123 TAMU, College Station, TX 77843-3123, USA



2 / July 2024 International Journal of Precision Engineering and Manufacturing 2(2):00-7

Inspired by previous studies [15-17], numerical optical

simulation and CNN were integrated to automate via edge

roughness characterization. By analyzing various via diffractive

patterns and their corresponding VER, the CNN can

automatically extract subtle patterns from these fringe images,

and further correlate those features with roughness metrics.

Thus, the well-trained model can directly predict the roughness

from the diffraction pattern, enabling an accurate and fast via

metrology and inspection. Instead of utilizing a simplified

aperture diffraction model in previous studies, the beam

propagation method (BPM) was applied to simulate the fringe

patterns generated from the vias. In this paper, details of dataset

construction and digital approaches to via characterization are

explained, and the potential to be integrated into existing via

inspection frameworks is also discussed.

2 Framework of the Digital Approach

Fig. 1 compares the flow charts of the proposed digital via

inspection approach to the AS-IS hole metrology method.

Instead of conducting complicated fringe preprocessing [17], a

well-trained CNN model is capable of predicting the edge

roughness condition from the diffraction image directly.

CNN is widely used in computer vision and image

processing since it simulates the cognitive pattern of the

human brain [18], being successfully applied in various

industrial scenarios [19,20]. In this study, the cropped

diffraction image served as input and predicted VER values

were the output.

The proposed digital approach consists of two major steps:

the first step involves the establishment of a database that links

distinct fringe patterns with their corresponding edge

roughness conditions. The second step focuses on the setup of

neural networks, including the training of models and

optimization of hyperparameters. Details of each step will be

discussed in the following sections.

3. Establishment of the Training Database

3.1 Experiments Setup

A grayfield through silicon via (TSV) inspection system

was constructed as shown in Fig. 2(a), which features

enhanced sensitivity to scattered light and remarkable

diffractive image contrast. A collimated laser (λ 450 nm) was

utilized as the light source. The laser was further shaped into

a donut shape by the two axicon lenses installed below it, as

depicted in Fig. 2(b). To reduce the intensity saturation in the

imaging device, a 12.5% neutral density (ND) filter was

applied. The filtered donut-shaped beam was then formed into

a spherical wavefront through the first objective lens. Once the

light interacted with the edge of the TSV, the Charge-coupled

Device (CCD) on the bottom could capture the diffraction

images. In this study, all diffraction images were captured

from φ100 μm TSVs fabricated on 210 µm thick undoped

single-crystalline silicon wafers.

Fig. 1 Comparison between AI-based digital approach and AI-IS hole inspection method
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3.2 Simulation Model 

The BPM was used to simulate the laser propagation inside

the via sample. This method is widely applied for simulating

electromagnetic (EM) wave propagation through waveguides

[21,22] and other devices and media, such as waveguide

junctions [23], optical switches [24], optical fiber amplifiers

[25] and atmosphere with turbulence [26]. The BPM assumes

that the envelope of the optical wave would not change

abruptly during the propagation [23]. Therefore, the transverse

electrical field density of the optical wave traveling in z-

direction is represented as:

(1)

where Ψt is the Slowly Varying Envelope (SVE) function, n0
is the reference refractive index, and k0 is the wave number of

the laser in the vacuum.

By substituting this expression into the Maxwell equation

and applying the paraxial approximation, the governing

equation for a scalar wave propagation can be written as [23]:

(2)

where n is the refractive index of the media. After giving the

initial condition Ψt(z = 0) = Ψ0(x,y), the Ψt cou.ld be solved

for each z value by finite difference method in the alternative

direction implicit (ADI) scheme. In this study, the initial

condition was set as the Bessel-Gaussian function to represent

the laser beam generated by passing a Gaussian beam through

a pair of axicon lenses [27,28]:

(3)

where w0 is the size of the beam waist,  is the polar

coordinate, Am, m and  are constant values. By choosing

different combinations of w0, Am, m and , various types of

laser beams, including Gaussian beam and Donut-Beam, could

be represented.

The simulation of BPM started and ended at the top (z = 0)

and bottom (z = h) of via sample, respectively. Once the field

value  was obtained at the bottom, the

scalar diffraction theory was used to compute the diffraction

pattern received by the CCD. The expression for computing

the diffraction filed after propagating a distance Z is written as

[29]:

(4)

where  and  are Fourier transform and inverse Fourier

transform, fX and fY are frequency variables associated with x

and y respectively. The diffraction pattern on the CCD could

be computed as [29]:

(5)

where I(x,y) represents the irradiance of the light field, which

is the time-averaged radiometric energy flux per unit area.

3.3 Training Set Preparation

Fig. 3 depicts the workflow of training datasets processing.

After the acquisition of diffraction patterns through interferogram,

image segmentation was conducted in a 10-degree interval.

Subsequently, the measured diffraction pattern of each segment

was extracted and compared to the BPM simulation fringe in ideal

condition to obtain the similarity value (SI). Diffraction fringes of

multiple edge conditions with different VER values were further

simulated using BPM methods, which was used to compared with

the ideal fringe. Thus, the relationship between VER and SI was

obtained, and this calibration result was used to estimate the VER

of experimental fringe pattern. This method was described in

detail in a previous work [17]. 

After performing the same operation on each fringe segment,

a dataset containing diffractive images and its associated VER

was established, consisting of 1,872 entries total. The dataset

served as input for training the CNN model, aiming for accurate

edge roughness prediction based on precise pattern recognitions.

In this study, five experiments were conducted: in each

experiment, 100 samples were randomly selected as the testing set

while the remaining 1,772 samples served as training sets. 

3.4 Model Optimization

In order to improve the prediction accuracy and obtain the best

CNN model, the hyperparameters, including the number and

properties of different types of layers, were optimized in this study.

Both perdition accuracy (RMSE and MADR) and computational

burden (training time) were taken into consideration for choosing

the best model. The final architecture of the CNN is shown in Fig. 4,

which consists of 2 convolutional layers, 2 max-pooling layers, and

1 fully connected dense layer. In corresponding sub boxes of Fig. 4,

@ denotes the number of feature maps, and × represents the
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Fig. 2 Schematics of grayfield Si-via inspection system
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dimensions of the filter or pooling window. During the training

process, the adaptive learning rate strategy was applied to reduce the

training time needed to reach convergence.

4. Results

4.1 CNN Prediction Results

Fig. 5 shows the CNN prediction results of five experiments,

allowing an intuitive evaluation of its performance. In each

subplot, the blue points represented the relationship between

the actual value and CNN’s predicted value, while the red

dashed line represented the ideal prediction scenario where the

predicted value equaled the actual value (Y = X). These charts

visualized the prediction accuracy: the closer the data points

were to the red line, the higher the accuracy of the predictions.

As shown in Fig. 5, in all five scenarios, blue points were

scattered in a region close to the red reference line along the

whole VER range, indicating the CNN model was capable of

making relatively precise VER predictions.

Two evaluation metrics were further used to numerically

evaluate the results: the root mean square error (RMSE), and

the mean absolute deviation ratio (MADR) which is computed

as mean absolute deviation divided by average. The average

RMSE for all testing sets was 0.073, with the first and second

sets having values less than 0.069 while the highest, 0.082,

was from the fourth set. Considering the average VER was

Fig. 3 Schematics of the establishment of training datasets

Fig. 4 The final architecture of the CNN model

Fig. 5 Predicted vs actual scatter plot results of five datasets
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more than 2.480 μm, all RMSEs were considered relatively

small and reflected the precision of the predictions. Upon

further calculation of the MADR, the average value obtained

was only 2.274%, with the fourth set having the highest value

at just 2.767%. This further demonstrated that CNN’s average

predictive error is below 2.300%, being considered highly

accurate.

4.2 Additional Multilayer Perceptron (MLP) Results

The MLP, also a neural network-based model, is widely

used to solve classification and prediction problems [30-32]. In

the MLP model, all the layers, including the input, hidden, and

output layers, are fully connected layers [33]. As shown in Fig. 6,

the MLP consists of one input layer, one output layer and 4

hidden layers. The hyper parameters of the MLP were also

tuned through a 10-fold cross-validation for achieving the best

performance. This relatively simple model structure can make

the model training and prediction process more efficient by

reducing the number of parameters. However, this smaller

number of parameters limits the model’s capability for

complicated tasks such as complicated image and video

processing [34]. 

A comprehensive comparison of the prediction accuracy

and computation time between CNN and MLP was conducted,

as shown in Fig. 7. From the results, CNN showed a

significant advantage in prediction accuracy: with a lower

average RMSE and a better MADR. The average RMSE of

MLP results was 0.0872, 19.78% higher than that of CNN.

Similarly, the average MADR results for MLP was 2.507%,

10.249% higher than that of CNN. In semiconductor industry,

the TSVs provide electrical connection among multiple layers,

even a small increase in VER could result in attenuation and

distortion of the signal being transferred, due to the skin effect.

Therefore, a small difference in prediction performance can

have huge impacts in engineering practice.

However, due to the simpler network structure of MLP,

23.144% less training time was needed, making it a more

efficient inspection method in industrial applications. It is

noteworthy that by comparing the standard deviation, CNN

showed a more robust predictive performance, while MLP’s

performance was significantly influenced by the training sets

itself.

The choice between utilizing CNN or MLP should be

guided by the specific industrial requirements, depending on

whether the priority lies with achieving the highest accuracy

possible or with efficiency and speed of computation.

5 Conclusion

Through integration of experimental and theoretical edge

diffractometry with CNN, a novel digital approach to automatic

via metrology and inspection was proposed in this paper. The

electromagnetic wave propagation-based computational model of

the via created a database of simulated fringe profiles, the

experiment by the grayfield edge diffractometry was

conducted to obtain the fringe pattern dataset to further

compute VER. The CNN model was then trained to analyze

various via diffractive profiles and their corresponding VER,

automatically extracting subtle patterns from these fringe

images. A further correlation between the fringe image

features and VER showed the linear characteristics. 

The proposed CNN-based digital approach showed a 0.073

RMSE and a 2.274% MADR in VER prediction results,

proving its capacity in complex fringes analysis, offering a

robust solution for the semiconductor industry's demand for

rapid and precise via inspection. An additional study on an

MLP-based model offered a trade-off between prediction

efficiency and accuracy.

In summary, the implementation of the proposed digital

approach in via metrology is promised to improve the yield

and reliability of semiconductor devices, further supporting the

technological advancements in the industry. Future research

Fig. 6 The final architecture of the MLP model

Fig. 7 Result comparisons: (a) average RMSE, (b) average MADR, and (c) average training time
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could focus on further optimizing the AI models and exploring

potential applications in other areas of precision engineering.
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