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Abstract
Differently from their classical counterpart, nonlocal minimal surfaces are known to present
boundary discontinuities, by sticking at the boundary of smooth domains. It has been observed
numerically by Borthagaray, Li, and Nochetto “that stickiness is larger near the concave
portions of the boundary than near the convex ones, and that it is absent in the corners of the
square”, leading to the conjecture “that there is a relation between the amount of stickiness
on ∂� and the nonlocal mean curvature of ∂�”. In this paper, we give a positive answer
to this conjecture, by showing that the nonlocal minimal surfaces are continuous at convex
corners of the domain boundary and discontinuous at concave corners. More generally, we
show that boundary continuity for nonlocal minimal surfaces holds true at all points in which
the domain is not better thanC1,s , with the singularity pointing outward, while, as pointed out
by a concrete example, discontinuities may occur at all point in which the domain possesses
an interior touching set of class C1,α with α > s.
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1 Introduction

1.1 Motivations

While classical minimal surfaces arise as minimizers of the perimeter functional and model
classical surface tensions, nonlocalminimal surfaces aim at capturing long-range interactions
induced by kernels with1 a fat tail. The systematic study of nonlocal minimal surfaces started
in [16] and covered many topics, such as interior regularity [10, 18, 22, 28, 37, 50], geometric
flows [19–21, 23, 24, 40, 41, 48], front propagation [17], nonlocal isoperimetric inequalities
[7, 29, 36, 38, 39], surfaces of constant nonlocal mean curvature [12–14, 25, 27], capillarity
theories [30, 44], limit embeddings [6, 47], long-range phase transitions [1, 49], fractal
analysis [43, 52], problems with higher codimension [46, 51], just to name a few directions.

An interesting feature discovered in [33] and further analyzed in [2, 8, 9, 31, 34, 35] consists
in a boundary behavior for nonlocal minimal surfaces which is significantly different from
the classical case. Namely, at least in convex domains, classical minimal surfaces detach
from the boundary in a transversal way. Conversely, nonlocal minimal surfaces can adhere
to the boundary of the domain (and actually present the strong tendency to do so). This
phenomenon, which is also related to an obstacle problem for nonlocal minimal surfaces
[15], affects the boundary regularity, since, in the presence of stickiness, nonlocal minimal
surfaces do not attain their external datum in a continuous way.

In this regard, an intriguing conjecture was posed by J. P. Borthagaray, Li, and Nochetto
[5], according to which stickiness never occurs at convex corners of the boundary, while
typically manifesting itself at concave corners.

This article is motivated by this conjecture, which we aim to address in our main results.

1.2 Main results

Fromnowon,we suppose that n � 2 and�will denote an open subset ofRn+1 with Lipschitz
boundary.

Given E ⊆ R
n+1, we consider the s-perimeter functional in � defined by

Pers(E,�) := Ls(E ∩ �, Ec ∩ �) + Ls(E ∩ �, Ec ∩ �c) + Ls(E ∩ �c, Ec ∩ �),

where s ∈ (0, 1) and

Ls(A, B) :=
∫∫

A×B

dx dy

|x − y|n+1+s
.

Asusual, the superscript “c” denotes the complementary set inR
n+1, and all sets are implicitly

assumed to be measurable.
A topical objective of interest is the family of minimizers for the s-perimeter, as recalled

here below:

Definition 1.1 If � is bounded, we say that E ⊆ R
n+1 is an s-minimal set in �

if Pers(E,�) < +∞ and

Pers(E,�) � Pers(F,�)

for all sets F ⊆ R
n+1 such that E \ � = F \ �.

1 Integrable kernels have been also taken into account and produce a different theory, see [45].
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Fig. 1 Left: a domainwith an outward pointing singularity. Right: a domainwith an inward pointing singularity

In this setting, [16, Theorem 3.2] ensures, given E0 ⊆ R
n+1, the existence of an s-minimal

set E in � such that E \ � = E0 \ �.
We will now focus our attention on the case of cylindrical domains, i.e. we assume from

now on that � = ω × R, for some bounded set ω in R
n . In this framework, since �

is unbounded, Definition 1.1 needs to be slightly modified (see also [42] for additional
information2 on situations of this type):

Definition 1.2 We say that E ⊆ R
n+1 is an s-minimal set in � if it is an s-minimal set in

every bounded open set �′ contained in � according to Definition 1.1.

Since we deal with cylindrical domains � = ω × R ⊆ R
n+1, it is often useful to denote

points in R
n+1 by X = (x, xn+1) = (x ′, xn, xn+1) ∈ R

n−1 ×R×R. The n-dimensional ball
centered at p ∈ R

n × {0} and of radius ρ > 0 will be denoted by

Bρ(p) :=
{
(x, 0) ∈ R

n × {0} s.t. |x − p| < ρ
}
.

We also consider the corresponding cylinder in R
n+1 given by

Cρ(p) := Bρ(p) × R.

When p = 0, we use the short notations Bρ and Cρ .
For an (n + 1)-dimensional ball, we use the notation, given P ∈ R

n+1,

Bρ(P) :=
{
X ∈ R

n+1 s.t.
∣∣X − P

∣∣ < ρ
}
.

Our main result establishes continuity of the s-minimal sets at the points in which the
domain is not better than C1,s , with the singularity pointing outward of the domain (see
Fig. 1 for a diagram of domains with singularities pointing outward and inward). The precise
statement goes as follows:

Theorem 1.3 (Continuity of the s-minimal sets for domains with outward singularities) Sup-
pose that there exist ρ > 0 and ϕ : R

n−1 → [0,+∞), with

ϕ(0) = 0 (1.1)

2 As a technical observation, we mention that a natural class of minimizers in the case of graphical external
data is given by that of s-minimal graphs, namely of s-minimal sets which can be written as graphs, say, in
the (n + 1)th coordinate direction. We refer to [32, Theorem 1.2] and, more generally, [26, Theorem 1.3]
for existence results of s-minimal graphs. See also [11] for a specific regularity theory for s-minimal graphs.
However, the setting of s-minimal graphs will not be explicitly used in this paper, to maintain the exposition
as simple as possible.
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and

ϕ(x ′) � c|x ′|β for all x ′ ∈ R
n−1 with |x ′| < ρ, (1.2)

for some c > 0 and β ∈ (0, s + 1], and such that

ω ∩ Bρ = {xn > ϕ(x ′)} ∩ Bρ. (1.3)

Assume that

E0 = {xn+1 < ψ(x ′, xn)} (1.4)

for some ψ ∈ L∞
loc(R

n) such that

ψ(x ′, xn) � 0 for all (x ′, xn) ∈ Bρ. (1.5)

Let E be an s-minimal set in � with E \ � = E0 \ �.
Then, for every ε > 0 there exists δ > 0 such that

E ∩ Cδ ⊆ {xn+1 � ε}. (1.6)

Some comments about Theorem 1.3 are in order. Firstly, conditions (1.1), (1.2), and (1.3)
describe the geometry of the n-dimensional domain ω (and therefore of the (n + 1)-
dimensional cylinder �): in a nutshell, these assumptions state that the origin belongs to
the boundary of ω, that the domain is not better than C1,s in the vicinity of the origin, and
that the singularity points “outward”.

Also, conditions (1.4) and (1.5) deal with the external datum and basically say that this
datum is below {xn+1 = 0} in the vicinity of the origin.

The thesis obtained in (1.6) thus controls the oscillations of the s-minimal set near the
origin.

Obviously, up to reverting the vertical direction, the inequality signs in (1.4), (1.5) and (1.6)
can be reverted (with ε replaced by−ε in (1.6)). Consequently, if (1.4) and (1.5) are replaced
by

E0 = {xn+1 = ψ(x ′, xn)}
with ψ(x ′, xn) = 0 for all (x ′, xn) ∈ Bρ,

(1.7)

then the thesis in (1.6) can be strengthen into

E ∩ Cδ ⊆ {|xn+1| � ε}, (1.8)

which can be seen as a continuity result.
In this spirit, we stress that boundary continuity for s-minimal sets is somewhat a “rare”

phenomena and typically jump discontinuities have to be expected, as established in [2,
31, 33–35]; see also [4, 5] for several accurate numerical simulations that showcase such
discontinuities in this setting. Therefore, the continuity result provided by Theorem 1.3 can
be seen as an interesting counterpart of the more common boundary discontinuity: roughly
speaking, this continuity is obtained thanks to domainswhich are “not regular enough”, with a
direction of singularity making the long-range effects coming from the external data by some
means negligible with respect to the localized interaction reminding surface tension (but of
course some care is needed to make such a statement precise and quantitatively coherent).

As a byproduct of Theorem 1.3, we can give a positive answer to the thought-provoking
conjecture posed by J. P. Borthagaray, W. Li, and R. H. Nochetto (see [5, page 25]), who
observed from numerical simulations in three-dimensional cylinders that jumpt discontinuity

123



Boundary continuity of nonlocal minimal surfaces in domains… Page 5 of 15 255

Fig. 2 Boundary continuity for “outward pointing” corners

is “absent at the convex corners of �”. We prove this conjecture as a direct consequence of
Theorem 1.3:

Corollary 1.4 (Borthagaray-Li-Nochetto Conjecture) Let ω be a two-dimensional domain
with a convex corner at the origin.

Let E0 be a smooth graph vanishing in a neighborhood of the origin and let E be an
s-minimal set in � with E \ � = E0 \ �.

Then, E is continuous at the origin, in the sense that for every ε > 0 there exists δ > 0
such that

E ∩ Cδ ⊆ {|x3| � ε}.
The result in Corollary 1.4 is showcased3 in Fig. 2.
We stress that the convexity assumption inCorollary 1.4 cannot be removed. Asmentioned

in [5, page 25], numerical evidence suggests “that stickiness is most pronounced at the
reentrant corner”. The discontinuity of s-minimal sets at these concave corners is indeed a
rather general phenomenon, and actually occurs even in the absence of corners, namely for
smooth sets (and actually it suffices for ω to possess an inner touching condition at the origin
of class C1,α with α > s, which is obviously the case for concave angles and which also
shows the optimality of the exponent β in (1.2)). The precise result that we propose in this
framework goes as follows:

Theorem 1.5 (Boundary discontinuity for “inward pointing” domains) Assume that 0 ∈
∂ω and that there exists a bounded, n-dimensional set S with boundary of class C1,α , for
some α ∈ (s, 1), contained in ω and such that 0 ∈ ∂S.

Then, for every ε > 0, there exist δ > 0, ψ ∈ C∞
0 (Rn\ω, [0, ε]) and an s-minimal set E

in � such that

E \ � = E0 \ �,

with

E0 := {xn+1 < ψ(x ′, xn)},

3 The figures of this paper are just qualitative sketches, not numerical simulations, and have to be taken with
a pinch of salt.
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ε
δ

Fig. 3 Boundary discontinuity for “inward pointing” domains. A perturbation of size ε producing a disconti-
nuity of size δ

and

E ∩ (S × R) ⊇ (S ∩ Bδ) × [0, δ]. (1.9)

Notice that (1.9) gives that the s-minimal set is discontinuous at the origin, presenting a
jump of at least δ. Interestingly, this discontinuity can be produced by an arbitrarily small
perturbation (as encoded by the parameter ε in Theorem 1.5).

The result corresponding to Theorem 1.5 is sketched in Fig. 3.
The rest of this paper is organized as follows. In Sect. 2, we present the proof of Theo-

rem 1.3, from which one also deduces Corollary 1.4. The proof of Theorem 1.5 is contained
in Sect. 3.

2 Proofs of Theorem 1.3 and Corollary 1.4

We start this section by noticing that s-minimal sets satisfy a suitable geometric equation (in
a suitable “viscosity sense”) at domain boundary points.

Lemma 2.1 Let E be an s-minimal set in �. Assume that P ∈ ∂E ∩ �.
Assume also that there exists an (n+1)-dimensional ballB such thatB ⊆ Ec and P ∈ ∂B.
Then, ∫

Rn+1

χEc (X) − χE (X)

|X − P|n+1+s
d X � 0, (2.1)

where the integral4 is taken in the Cauchy Principal Value sense.

Proof Let A ⊆ E ∩ �. Then, by minimality, we have that

0 � Pers(E,�) − Pers(E \ A,�) = Ls(A, Ec) − Ls(A, E \ A).

From this and [16, Theorem 5.1] we obtain the desired result. 	

4 The integral on the left-hand side of (2.1) is called in jargon the s-mean curvature of E at the point P , and
it is often denoted by Hs

E (P).
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Nowwe dive into the proof of Theorem 1.3. The gist is that a discontinuity would produce
an s-minimal set with regularity no better than C1,s , thus producing an infinite s-mean
curvature, in contradiction with the fact that s-minimal sets have vanishing s-mean curvature.
However, some care is needed to make such an argument rigorous, since the verification of
the s-mean curvature equation at domain boundary points is a delicate issue (evenmore when
the domain � is not regular). The details go as follows:

Proof of Theorem 1.3 Without loss of generality, in (1.2) we can suppose that c ∈ (0, 1). Up
to taking ρ smaller, we may also suppose that β � 1. Therefore, if μ

(
0, 1

8

]
and |y′| <

μ
2 ,

c|y′|β � |y′|β � |y′| <
μ

2
. (2.2)

Now, to prove (1.6) we argue by contradiction and suppose that there exist ε0 > 0, an
infinitesimal sequence δk > 0 and points Pk = (pk, pk,n+1) = (p′

k, pk,n, pk,n+1) ∈ E
with |pk | < δk and pk,n+1 > ε0. Actually, we can take Pk with the largest possi-
ble (n + 1)th coordinate, namely renaming Pk = (pk , pk,n+1) with p


k,n+1 = sup{t ∈
(ε0,+∞) s.t. (pk, t) ∈ E}. In this way, we can assume that Pk ∈ ∂E .

We take k sufficiently large such that δk < ρ. Hence, by (1.5), we see thatψ(p′
k, pk,n) � 0.

This and (1.4) entail that Pk /∈ E0 and therefore necessarily Pk ∈ �, that is

pk ∈ ω. (2.3)

Thus, from [32, Lemma 3.3] we deduce that pk,n+1 is a bounded sequence. Therefore, up to a
subsequence, we can suppose that Pk → P as k → +∞, for some P = (0, . . . , 0, Pn+1) ∈
R
n+1 with Pn+1 � ε0.
We stress that the origin of R

n belongs to ∂ω, due to (1.1), therefore P ∈ ∂�.
We define

μ := min {ε0, ρ, 1}
8

and we claim that

Bμ(0, . . . , 0,−μ, Pn+1) ⊆ Ec. (2.4)

Indeed, if there were Q = (q ′, qn, qn+1) ∈ E with |q ′|2 +|qn +μ|2 +|qn+1 − Pn+1|2 < μ2

then |q ′| < μ and |qn + μ| < μ. Therefore, qn � |qn + μ| − μ < 0 � ϕ(q ′). We also note
that |(q ′, qn)| � |q ′| + |qn | � 3μ < ρ.

From these considerations and (1.3) we conclude that (q ′, qn) /∈ ω, whence Q /∈ �.
Consequently, by (1.4) and (1.5), we see that qn+1 � ψ(q ′, qn) � 0. For this reason,

8μ � ε0 + 0 � Pn+1 − qn+1 � |qn+1 − Pn+1| < μ.

This yields a contradiction, proving (2.4).
We also note that P ∈ ∂E and that P belongs to the boundary of the ball in (2.4). Hence,

by (2.4) and Lemma 2.1,
∫
Rn+1

χEc (X) − χE (X)

|X − P|n+1+s
d X � 0. (2.5)

Now we define

Kμ := Bμ × (Pn+1 − μ, Pn+1 + μ)
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and we observe that

Kμ ∩ {xn � ϕ(x ′)} ⊆ Ec. (2.6)

Indeed, if ξ belongs to the set on the left-hand side of (2.6), we deduce from (1.3) that ξ ∈ �c

and therefore the claim reduces to checking that

ξ ∈ Ec
0. (2.7)

Since, by (1.5),

ξn+1 � Pn+1 − μ � ε0 − ε0

8
> 0 � ψ(ξ ′, ξn),

the claim in (2.7) follows from (1.4). The proof of (2.6) is thereby complete.
From (2.5) and (2.6) we infer that

0 �
∫
Kμ

χEc (X) − χE (X)

|X − P|n+1+s
d X +

∫
Rn+1\Kμ

χEc (X) − χE (X)

|X − P|n+1+s
d X

�
∫
Kμ∩{xn�ϕ(x ′)}

dX

|X − P|n+1+s
−

∫
Kμ∩{xn>ϕ(x ′)}

dX

|X − P|n+1+s

−
∫
Rn+1\Kμ

dX

|X − P|n+1+s
.

(2.8)

We also remark that ∫
Rn+1\Kμ

dX

|X − P|n+1+s
� C

μs
, (2.9)

for some C > 0 depending only on n and s.
Besides, substituting for (y′, yn, yn+1) := (x ′,−xn, xn+1), and noticing that Pn = 0,

∫
Kμ∩{xn�ϕ(x ′)}

dX

|X − P|n+1+s
=

∫
Kμ∩{yn�−ϕ(y′)}

dY

|Y − P|n+1+s
,

giving that
∫
Kμ∩{xn�ϕ(x ′)}

dX

|X − P|n+1+s
−

∫
Kμ∩{xn>ϕ(x ′)}

dX

|X − P|n+1+s

=
∫
Kμ∩{xn�−ϕ(x ′)}

dX

|X − P|n+1+s
−

∫
Kμ∩{xn>ϕ(x ′)}

dX

|X − P|n+1+s

=
∫
Kμ∩{|xn |<ϕ(x ′)}

dX

|X − P|n+1+s
.

We thereby combine this information with (2.8) and (2.9) to conclude that

C

μs
�

∫
Kμ∩{|xn |<ϕ(x ′)}

dX

|X − P|n+1+s
. (2.10)

Now we use the short notation μk := μ

2k
. By (1.2) and (2.2), up to renaming C line after

line, we have that∫
Kμ∩{|xn |<ϕ(x ′)}

dX

|X − P|n+1+s
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�
∫

{|x ′|<μ/2}×{|xn |<min{c|x ′|β ,μ/2}}×{|xn+1−Pn+1|<μ}
dX

|X − P|n+1+s

=
∫

{|y′|<μ/2}×{|yn |<min{c|y′|β ,μ/2}}×{|yn+1|<μ}
dY

|Y |n+1+s

�
∫

{|y′|<μ/2}×{|yn |<c|y′|β }×{|yn+1|<μ}
dY

|Y |n+1+s

�
+∞∑
k=1

∫
{μ/2k+1<|y′|<μ/2k }×{c|y′|β/2<|yn |<c|y′|β }×{μ/2k+1<|yn+1|<μ/2k }

dY

|Y |n+1+s

�
+∞∑
k=1

1

C

∫
{μk/2<|y′|<μk }×{c|y′|β/2<|yn |<c|y′|β }×{μk/2<|yn+1|<μk }

dY(
μ2
k + c2|y′|2β) n+1+s

2

�
+∞∑
k=1

cμk

C

∫
{μk/2<|y′|<μk }

|y′|β dy′
(
μ2
k + c2|y′|2β) n+1+s

2

�
+∞∑
k=1

cμβ+n
k

C
(
μ2
k + c2μ2β

k

) n+1+s
2

=
+∞∑
k=1

cμβ−1−s
k

C
(
1 + c2μ2(β−1)

k

) n+1+s
2

�
+∞∑
k=1

cμβ−1−s 2k(1+s−β)

C(1 + c2)
n+1+s

2

.

	

The latter is a divergent series, since β � s + 1. But this is in contradiction with (2.10)

and, as a result of this, the proof of Theorem 1.3 is complete.

Proof of Corollary 1.4 Up to a rotation, we can describe the convex corner at the origin by
writing ω in the form xn > c|x ′|, for some c > 0. This gives that the setting in (1.1), (1.2),
and (1.3) is satisfied, with n := 2 and β := 1.

We are therefore in the framework of (1.7), whence the desired result follows from (1.8).
	


3 Proof of Theorem 1.5

The argument presented here will rely on a convenient barrier. To construct it, we start with
some preliminary computations.

Lemma 3.1 Consider a bounded, n-dimensional set S with boundary of class C1,α , for
some α ∈ (0, 1), with 0 ∈ ∂S.

There exists w ∈ C1,α(Rn) such that w � 0 in S, w � 0 in R
n \ S, and

lim inf
x→0

|∇w(x)| � 1. (3.1)

Proof Up to a rotation, we can assume that S ∩ Bρ = {xn > φ(x ′)} ∩ Bρ for some ρ > 0
and φ ∈ C1,α(Rn−1). Let τ ∈ C∞

0 (Bρ, [0, 1]) with τ = 1 in Bρ/2 and

w(x) := (
xn − φ(x ′)

)
τ(x).
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Notice that

∇w(x) = ( − ∇x ′φ(x ′), 1
)
τ(x) + (

xn − φ(x ′)
) ∇τ(x),

and therefore

lim
x→0

∇w(x) = ( − ∇x ′φ(0), 1
)
,

from which the desired result follows. 	

Lemma 3.2 Let ε > 0 and α ∈ (s, 1). Let also S be an open subset of R

n.
Let w ∈ C1,α(Rn) such that w � 0 in S and w � 0 in R

n \ S. Let also w+(x) :=
max{w(x), 0} and W := {xn+1 < εw+(x)}.

Then, the s-mean curvature of W at every point on (∂W )∩ (S×R) is bounded from above
by

C
(‖w‖C1,α(Rn) ε

) s
α ,

where C > 0 depends only on n and s.

Proof Let X = (x, xn+1) ∈ (∂W )∩ (S × R). Then, x ∈ S and xn+1 = εw+(x) = εw(x). In
this way, by [3, equation (49)], up to normalizing constant, the s-mean curvature of W at X
is equal to
∫
Rn

F

(
ε
(
w+(x) − w+(x − y)

)
|y|

)
dy

|y|n+s
=

∫
Rn

F

(
ε
(
w(x) − w+(x − y)

)
|y|

)
dy

|y|n+s
,

(3.2)

where

F(t) :=
∫ t

0

dτ

(1 + τ 2)
n+1+s

2

.

Since F is monotone and w+(x − y) � w(x − y), we have that

F

(
ε
(
w(x) − w+(x − y)

)
|y|

)
� F

(
ε
(
w(x) − w(x − y)

)
|y|

)

and accordingly the quantity in (3.2) is bounded from above by
∫
Rn

F

(
ε
(
w(x) − w(x − y)

)
|y|

)
dy

|y|n+s
. (3.3)

We also remark that F is odd and therefore∫
Rn

F

(
ε∇w(x) · y

|y|
)

dy

|y|n+s
= 0,

hence we can rewrite (3.3) in the form
∫
Rn

[
F

(
ε
(
w(x) − w(x − y)

)
|y|

)
− F

(
ε∇w(x) · y

|y|
)]

dy

|y|n+s
. (3.4)

Now we observe that

F

(
ε
(
w(x) − w(x − y)

)
|y|

)
− F

(
ε∇w(x) · y

|y|
)
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Fig. 4 The barrier v in Corollary 3.3

=
∫ 1

0
F ′

(
ε

|y|
(
(1 − t)

(
w(x) − w(x − y)

) + t∇w(x)
))

dt
ε

|y|
(
w(x) − w(x − y) − ∇w(x) · y

)

� Cε

|y|
∣∣∣w(x) − w(x − y) − ∇w(x) · y

∣∣∣

� Cε

|y|
∣∣∣∣
∫ 1

0
∇w(x − θ y) · y dθ − ∇w(x) · y

∣∣∣∣
� Cε

∫ 1

0

∣∣∇w(x − θ y) − ∇w(x)
∣∣ dθ

� C‖w‖C1,α(Rn) ε |y|α

and therefore, since α > s, for all R > 0,
∫
BR

[
F

(
ε
(
w(x) − w(x − y)

)
|y|

)
− F

(
ε∇w(x) · y

|y|
)]

dy

|y|n+s
� C‖w‖C1,α(Rn) εRα−s .

(3.5)

Besides, since F is bounded,
∫
Rn\BR

[
F

(
ε
(
w(x) − w(x − y)

)
|y|

)
− F

(
ε∇w(x) · y

|y|
)]

dy

|y|n+s
� C

Rs
.

This and (3.5) give that the quantity in (3.4) is bounded fromabovebyC‖w‖C1,α(Rn) εRα−s

+ C
Rs .
It is now convenient to choose

R := 1(‖w‖C1,α(Rn) ε
) 1

α

to obtain the desired result. 	

For us, Lemmata 3.1 and 3.2 come in handy to construct a useful barrier, see Fig. 4:

Corollary 3.3 Consider a bounded, n-dimensional set S with boundary of class C1,α , for
some α ∈ (s, 1), with 0 ∈ ∂S.

Let also ω be a bounded, open set in R
n such that ω ⊇ S.

Then, for any ε > 0 small enough, there exists v ∈ C0,1
0 (Rn, [0, ε]) with v = 0 in �\ω

for some open set � with ω � � , such that, setting V := {xn+1 < v(x)}, we have that the
s-mean curvature of (∂V ) ∩ (S × R) is strictly negative and

lim inf
S
x→0

|∇v(x)| �= 0. (3.6)
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Proof We pick a ball B1(p0) in R
n such that B1(p0) ∩ ω = ∅. We take τ ∈

C∞
0 (B1(p0), [0, 1]) such that τ = 1 in B1/2(p0). Let also w be as in Lemma 3.1 and

correspondingly we let W be as in Lemma 3.2.
We define

v := εγ τ + εw+,

with γ ∈ (
0, s

α

)
.

We remark that v � εw+ and consequently V ⊇ W , giving that V c \ Wc = ∅.
Moreover, since w+ and τ have disjoint supports,

V \ W = {
v(x) > xn+1 � εw+(x)

} = {
εγ τ(x) + εw+(x) > xn+1 � εw+(x)

}
= {

εγ τ(x) > xn+1 − εw+(x) � 0
} ⊇ B1/2(p0) × [0, εγ ).

For that reason, using the notation in footnote 4, if P ∈ (∂V )∩(S×R), owing to Lemma 3.2,
we find that

Hs
V (P) = Hs

W (P) +
∫
Rn

χV c\Wc (X) − χV \W (X)

|X − P|n+1+s
d X

� C
(‖w‖C1,α(Rn) ε

) s
α −

∫
B1/2(p0)×[0,εγ )

dX

|X − P|n+1+s

� C
(‖w‖C1,α(Rn) ε

) s
α − cεγ .

This quantity is negative when ε is small enough, as desired.
In addition, by (3.1) and the fact that w � 0 in S,

lim inf
S
x→0

|∇v(x)| = ε lim inf
S
x→0

|∇w+(x)| = ε lim inf
S
x→0

|∇w(x)| � ε �= 0.

Notice also that v is bounded by a power of ε, hence the desired claim follows up to
renaming ε. 	


We are now in the position of completing the proof of Theorem 1.5 by combining the
barrier constructed in Corollary 3.3 and a careful blow-up method5 introduced in [34].

Proof of Theorem 1.5 Up to a rotation, we assume that, near the origin, the inward touching
domain S is the superlevel set of a function of class C1,α in the nth Cartesian coordinate.

If v and V are as in Corollary 3.3, we can take ψ ∈ C∞
0 (Rn, [0, ε]) such that ψ � v

in R
n\ω and ψ = 0 in ω.

By the comparison principle in [16, Section 5], we have that

E ⊇ V . (3.7)

Now we perform a blow-up at the origin, using [34, Lemmata 2.2and 2.3], obtaining in
this way an s-minimal cone E00 in (up to a rotation) {xn > 0}. By (3.6) and (3.7), it follows
that E00 presents a corner at the origin with a nontrivial slope in the vertical direction.

By [34, Theorem 4.1], we obtain that there exists δ > 0 such that either

E ∩ Bδ ∩ (S × R) = ∅. (3.8)

or

E ∩ Bδ ∩ (S × R) = Bδ ∩ (S × R). (3.9)

5 For simplicity of notation, some of the arguments were presented in [34] for the two-dimensional case, but,
as remarked at the beginning of Sect. 2 there, the n-dimensional analysis would have remained unaltered.
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But (3.8) cannot hold true, in light of (3.7), hence necessarily (3.9) is satisfied, which gives
the desired result in (1.9), up to renaming δ. 	
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