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Contact graphs, boundaries, and a central limit theorem
for CAT(0) cubical complexes

Talia Fernds, Jean Lécureux, and Frédéric Mathéus

Abstract. Let X be a nonelementary CAT(0) cubical complex. We prove that if X is essential
and irreducible, then the contact graph of X (introduced by Hagen (2014)) is unbounded and its
boundary is homeomorphic to the regular boundary of X (defined by Fernés (2018) and Kar—
Sageev (2016)). Using this, we reformulate the Caprace—Sageev’s rank-rigidity theorem in terms of
the action on the contact graph. Let G be a group with a nonelementary action on X, and let (Z,) be
arandom walk corresponding to a generating probability measure on G with finite second moment.
Using this identification of the boundary of the contact graph, we prove a central limit theorem
for (Z,), namely that d(Zno,0)=nA converges in law to a non-degenerate Gaussian distribution

(A =1limy—c0 @ is the drift of the random walk, and 0 € X is an arbitrary basepoint).

In memory of Emile Le Page

1. Introduction

Let X be a finite-dimensional CAT(0) cubical complex, and let G be a discrete countable
group acting by cubical automorphisms on X. Let i be an admissible probability measure
on G, i.e., a measure such that the semigroup generated by Supp(u) is G. We consider
the associated random walk. Namely, let (g;);>1 be a sequence of independent identically
distributed random variables of law n and Z,, = g; ... g,.

Fix an origin o € X. In our previous paper [20], we studied the behavior of the
sequence {Z,.0}. We proved in particular that if the action of G on X is nonelemen-
tary, then (Z,,.0) converges almost surely to some regular point in the Roller boundary
1N(Z,) € Oreg X . Furthermore, there is a A > 0 such that lim, w = A, where d is
the combinatorial distance on X .

In this paper, we prove the following central limit theorem.

Theorem 1.1. Assume that the action of G on X is nonelementary. Assume that | has
a finite second moment, that is,

/G (d(g0.0))* du(g) < +oo.
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Then there exists o > 0 such that d(Zn0,0)=n

Gaussian law of variance o>.

converges in distribution to a centered

This statement has several predecessors in various contexts, depending on more or less
stringent moment conditions. If we restrict ourselves to central limit theorems for random
walks on non-abelian groups, the main contributors are:

« Emile Le Page, for random walks on linear groups, under an exponential moment
condition, i.e., fG exp(ad(go,0))du(g) < +oo for some positive o [29].

» Stanley Sawyer and Tim Steger, in the case of a free product of several copies of Z /27
if p has first moment of order greater than 4 [40].

* Francois Ledrappier, who adapted Le Page’s strategy to random walks on finitely gen-
erated free non-abelian groups under an exponential moment condition [30].

*  Michael Bjorklund, who extended Ledrappier’s result to a certain class of hyperbolic
groups (still under an exponential moment condition) [9].

* Yves Benoist and Jean-Francois Quint, who proved a central limit theorem for random
walks on linear groups [5] and on any hyperbolic group [6], in both cases assuming
only that p has a finite moment of order 2.

e Camille Horbez [26], adapting the proof of Benoist and Quint for mapping class
groups and Out(F,).

» Pierre Mathieu and Alessandro Sisto [34] proved the central limit theorem for acylin-
drically hyperbolic groups, assuming again an exponential moment.

* Ilya Gekhtman, Samuel J. Taylor, and Giulio Tiozzo [21] proved the central limit
theorem for the counting measure or for random walks on groups with an automatic
structure acting on hyperbolic spaces, and apply this to some non-positively curved
groups.

Indeed, Le Page — followed by Ledrappier and Bjorklund — proved a stronger result,
namely a spectral gap property for some Markov operator Q, and used it to derive a cen-
tral limit theorem. It is the reason why an exponential moment condition on u is needed.
Using the invertibility of I — Q, they proved the existence of a martingale M, such that
M, — d(Z,0,0) + nA is bounded, and applied the central limit theorem for martingales
to get the conclusion. Benoist and Quint do not prove such a spectral gap property. They
give an explicit formula for the martingale M, by means of some integral that is defined
on a suitable boundary. They prove the existence of this integral under only a finite second
moment condition for . The proof of [34] for acylindrically hyperbolic groups follows
a different strategy: Mathieu and Sisto obtain the central limit theorem from large devi-
ation inequalities. We note that there is some intersection between our results and theirs,
as some, but not all, groups acting on CAT(0) cubical complexes are acylindrically hyper-
bolic (see, for example, [14]). In the case of [21], there are technically no overlaps in
results since we are examining the (orbit) random walk on the CAT(0) cubical complex,
whereas they are considering the random walk on a hyperbolic space (which would be the
contact graph in this case). Of course, they also assume the groups are automatic.
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CAT(0) cubical complexes have a functorial construction [15,36,38,39] which makes
them appear, together with groups acting on them, quite naturally and often “in nature”.
The list of examples is long and is sure to continue to grow. We mention just a few:
the class of right-angled Artin groups [12], Coxeter groups [35], the Higman group with
presentation (a;,i € Z/4Z | al.2+1 = ajaj4+1a; ") [33], random groups of density less
than % [31,37] in the square model at density less than % [17], fundamental groups of
closed hyperbolic 3-manifolds [1,27,43], and small cancelation groups [42].

Among the group actions appearing in this list, all are proper, almost all are co-com-
pact, and most are nonelementary. As we only require that the action is nonelementary,
we get an even larger family of groups. For example, our results apply to the nonelemen-
tary Bestvina—Brady kernels, such as the original one introduced by Stallings, namely, the
kernel of the map F, x F, — Z where the standard generators are mappedto 1 € Z [7,41],
which is clearly nonelementary.

Our result adds to the limited list of CAT(0) examples that satisfy the central limit
theorem. While Benoist and Quint have both linear (hence acting on CAT(0) spaces, such
as symmetric spaces) and hyperbolic results, it is worth noting that we follow their strategy
for the hyperbolic case [6]. In order to do so in our setting, we are first led to study
the random walk on the contact graph ¥’X simultaneously with the random walks on X,
when X is essential and irreducible. To do so, we employ the celebrated work of Maher
and Tiozzo that describes the behavior of random walks on hyperbolic spaces [32]. The
contact graph, introduced by Hagen in [24], is a hyperbolic graph associated to a CAT(0)
cubical complex. We then must consider the case when X is reducible, and in particular,
when our acting group G does not preserve each irreducible factor.

Our study of the contact graph led us to the better understanding of the boundary of the
contact graph €’X . Recall that the regular boundary d.g X is a subset of the Roller bound-
ary and is therefore endowed with the restriction topology (see Definition 2.8). We prove
the following statement.

Theorem 1.2. Let X be a finite-dimensional CAT(0) cubical complex. There exists an
Aut(X)-equivariant homeomorphism between 0. X and 06X .

2. Background

We recall here some of the basic facts we will need in the sequel. We refer the interested
reader to [11, 18] or [20] for further background on CAT(0) cubical complexes.

We adopt the conventions and notations of [20]. In particular, we identify X with its
set of vertices, and we endow it with the combinatorial distance d, given by the number
of hyperplanes separating two vertices. By a geodesic in X, we always mean a combina-
torial geodesic, i.e., a path between two vertices which is geodesic for the combinatorial
distance d. Throughout the text, all CAT(0) cubical complexes will be assumed to be
finite-dimensional. We shall often refer to a basepoint 0 € X which is arbitrary, unless
otherwise specified in some local context.
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We shall denote by Aut(X) the group of cubical automorphisms of X, that is the
bijective self maps of X that preserve the given cubical structure of X.

We denote the set of half-spaces by $, and the set of hyperplanes by $. There is a natu-
ral involution $ — $ that takes a half-space to its complement. We shall use this often and
denote the assignment /& + h*. Similarly, the hyperplane associated to / is denoted by h
and recall that 72* = /. Thanks to Sageev’s duality [15,36,39], there is a continuous injec-
tion of X into 2°: a vertex x corresponds to the set Uy of half-spaces containing x. The
Roller compactification X is the closure of X in 2°. The Roller boundary is 3X = X \ X.
We extend naturally the notation U, to the boundary, by defining U, = x for x € dX.

Remark 2.1. We note that dX is only closed when X is locally compact. Indeed, observe
that X is locally compact if and only if it is locally finite. Therefore, if X is not locally
compact, then there is a vertex xo € X with infinitely many edges emanating from it. Let
{hn}nen be an enumeration of the associated half-spaces which do not contain xy, i.e.,
Xo € ﬂn hy. Since X is essential, we have that all half-spaces are deep, and in particular,
there exists &, € h, N 0X. Furthermore, since X is compact, up to passing to a subse-
quence, we may assume that &, — x; € X. We now show that x; = xo. To this end,
it is sufficient to let & be a half-space dual to an edge emanating from x¢ with xo € h*
and prove that x; € i* as well. But for each n, we must have that h N h,, = @ or h th h,,.
Using finite-dimensionality, there is an N so that for all# > N we musthave h N h,, = @.
Therefore, for all n > N, we have that &, € h* and hence x; € h*. This completes the
proof.

Sageev’s duality then also extends to Sageev—Roller duality [38] and this also allows
us to extend the combinatorial metric: for x, y € X, let d(x, y) = %#(UXAUy) € [0, o<].

Definition 2.2. The median of x, y,z € X is the point m(x, y, z) defined by the formula
Unix,y,z) = (U NU,) U (U, NU;) U (U; N Uy).

Equivalently, define /(x, y) as the intersection of all half-spaces containing both x
and y. Then the median point m(x, y, z) is the unique pointin I(x,y) N I(x,z) N I(y, z).
Remark 2.3. The median satisfies some nice topological and algebraic properties.

* The median as a map m: X3 — X is continuous [20, Lemma 6.21].
* The median is invariant under permutation of its three variables.

e m(x,x,y)=xforallx,y e X.

e Foralla,b,x,y,z € X, we have that

m(a,b,m(x,y,z)) = m(m(a,b,x),m(a,b,y),z).

While the last 3 properties are well known for the median as a map on X3, the exten-
sion of these to X 3 follows from continuity, or is also easily verified directly. Also, though
we will not use this, it is perhaps worth giving an idea of the meaning of the last property.
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If x, y € X, then the median map yields a CAT(0) cubical morphism O(x,y): X — I(x,y)
given by

Px,y)(2) == m(x, y,2).
Therefore, the last property can be seen as an algebraic morphism property on such pairs.
Namely,

P(a,b) © P(x,y) = P(m(a.b,x),m(a,b,y))-
Definition 2.4. Let i,k € $ be half-spaces, and l?, k their respective boundary hyper-
planes. We say that & and k are

* transverse if the four intersections 7 Nk, h* Nk, h N k*, h* N k* are nonempty.
In this case, we write & th k;

* parallel if they are not transverse, or equivalently if, up to possibly reversing one or
both orientations, they are nested, i.e., we have that & C k;

» strongly separated if they are parallel and no half-space is transverse to both;
* tightly nested if up to reversing orientations, # < k and no other half-space £ is prop-
erly between, i.e.,if h C £ C k,then{ = hork.

These notions do not depend on the choice of the orientation, and therefore we say that &
and k are parallel, transverse, strongly separated or tightly nested if any choice of orien-
tation satisfies these properties.

Definition 2.5. Let X be a finite-dimensional CAT(0) cubical complex. We shall say the

action G — Aut(X) is

* nonelementary if there is no finite G-orbit in X U d«X, where d«X is the CAT(0)
visual boundary of X;

e Roller nonelementary if there is no finite G-orbit in the Roller compactification X ;

» essential if for every h € , there is a g € G such that gh C h.

Remark 2.6. We take a moment to say more about the above definitions.

(1) We note that momentarily thinking of X as the full CAT(0) cubical complex with
its CAT(0) metric, then there is a finite G-orbit in X if and only if there is a fixed
point in X .

(2) We shall later need the fact that if an action is nonelementary, then it is Roller
nonelementary [ 13, Proposition 2.26].

(3) It is worth noting that this is not in fact Caprace and Sageev’s definition of an
essential action. However, it is equivalent for nonelementary actions thanks to
their double skewering lemma. Since we shall always make the nonelementary
assumption, we provide this simpler definition.

The notion of strongly separated hyperplanes was introduced by Behrstock and Char-
ney [2]. In [11], Caprace and Sageev provide several important properties which have been
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crucial in recent developments in the theory of CAT(0) cubical complexes, in particular,
their irreducibility criterion.

Theorem 2.7 ([11]). Let X be a finite-dimensional CAT(0) cubical complex with Aut(X)
(or equivalently the existence of a subgroup) acting essentially and nonelementarily.

(1) (Irreducibility criterion) X is irreducible if and only if there exist h,k € $ that are
strongly separated.

2) If X is not reducible, then it admits a unique (up to permutation) irreducible
decomposition X = X1 x --- X Xp such that Aut(X) contains an isomorphic copy
of Aut(Xy) x -+- x Aut(Xp) as a finite index subgroup. Permutation of factors
and their cosets are the only automorphisms missing from this product decompo-
sition.

Definition 2.8. A point § € 0X is called regular if, for every h, k € U, there exists [ € Ug
such that/ C h N k and [ is strongly separated from both 4 and k.

Equivalently, the point £ is regular if and only if there exists h,+1 C hy, an infinite
decreasing chain of pairwise strongly separated half-spaces such that ("), cp 2n = {£} (see
[18, Proposition 7.5]).

Remark 2.9. In [18], the regular boundary of a product is defined to be the product of
the regular boundaries of each irreducible factor. Here in order to make the statement of
Theorem 3.7 simple, we prefer to keep the same definition as above in all cases, so that
the regular boundary of a product is empty.

Definition 2.10. An element g € Aut(X) is said to be regular rank-1 if there existn € N
and i € $ so that g"h C h are strongly separated.

Definition 2.11. Fix x € Z. The translation length of an isometry g € Isom Z is defined as

Ug) = lim Y&

n—o00 n

Furthermore, we say that g is
e loxodromic if £(g) > 0 and
» elliptic if some (or equivalently every) (g)-orbit is bounded, in which case £(g) = 0.

Remark 2.12. A few things are worth noting here.

* It is straightforward to verify that this definition does not depend on the choice of
x € Z. This translation length is sometimes called the stable translation length to dis-
tinguish it from

U'(g) = inf d(x, gx).
x€Z

When Z = X is a CAT(0) cubical complex endowed with the combinatorial metric,
Haglund showed that if £/(g) > 0, then g has a combinatorial axis on which it acts as



Contact graphs, boundaries, and a central limit theorem for CAT(0) cubical complexes 7

a translation by £'(g) and that £'(g") = n{'(g) for every n € N [25, Corollary 6.2].
Conversely, if £'(g) = 0, then there is a (g)-fixed vertex [25, Theorem 6.3].!

* For a finite-dimensional CAT(0) cubical complex X, an element g € Aut(X) is loxo-
dromic if and only if there exist # € $ and n € Z so that g"h C h (see, for example,
[19, Remark 3.2]).

Recall that in a metric space X, the Gromov product is defined, for every x,y € X,
as (x|y)o = %(d(x, 0) +d(y,0) —d(x,y)). Ina CAT(0) cubical complex, it is easy to
check that this product coincides with d(o, m(x, y, 0)), where m(x, y, o) is the median
of x, y and o. This allows us to extend the Gromov product to the boundary.

Definition 2.13. The Gromov product based at 0 € X between x, y € X is defined by
(x|y)o = d(0,m),
where m is the median of x, y and 0. (If m € 0X, then d (0, m) = 00.)

By continuity of the median, the Gromov product is a continuous function on X x X.

Definition 2.14. Fix 0 € X. For each x € X, define the horofunction based at o with
respect to x to be the map /i,: X — R as hy(a) = d(0,a) —2(alx),.

Remark 2.15. Note thatif x € X, then hy(a) = d(x,a) — d(x, 0). Furthermore, the map
(x,a) — hy(a) is continuous on X x X. It follows that if (x,),en € X is a sequence
with lim x,, = x, then the horofunction associated to x is the pointwise limit of the func-
tions iy, (y) := d(x,, y) — d(x,,0), which is the more usual definition of a horofunction.

Remark 2.16. Foreverya,z € X, x,y € X, by applying the definitions and taking limits
where necessary, we have
hx(g™'0) = =2(x[g7" ¥)o + 2(gx[)0 + hy(g0).
hy(a) = d(a,m(a, x,0)) —d(o,m(a, x,0)),
2(alx); = d(a,z) + hx(z) — hx(a).

Definition 2.17. Let G be a group acting by permutations on the set Z, and let E be an
abelian group. Amap 0: G x Z — E is said to be a cocycle if

o(gg'.x) =0(g.8'x) +0(g'. x).

Remark 2.18. By an elementary calculation (see [20, Lemma 6.22]), the map o: G x
X — R defined by o (g, x) = hx(g~'0) is a continuous cocycle.

! Actually, this is not quite correct: an automorphism may not act “stably without inversions”. However,
up to passing to the cubical subdivision of X the result is correct as stated and £(g) = £'(g). Furthermore,
passing to the cubical subdivision will not impact any of our results in this paper.



T. Fernés, J. Lécureux, and F. Mathéus 8

3. Contact graph

3.1. Basic definitions and properties

The contact graph was introduced by Hagen [24]. Since then it has proved quite useful in
the study of non-positively curved spaces. For example, it was fundamental in the devel-
opment of hierarchically hyperbolic spaces and groups [3,4]. We first recall a few basic
facts about this graph.

Definition 3.1. The contact graph of X, denoted by €X, is the graph whose vertices are
hyperplanes of X, and an edge connects two hyperplanes if either they are tightly nested
or transverse.

We denote by d¢x the distance function on the contact graph.

Remark 3.2. If /1 and k are two hyperplanes such that dey (E , lg) = 3, then 7 and k are
strongly separated.

Indeed, if & and k are distinct, parallel, and not strongly separated, then there exists
a hyperplane £ transverse to both, meaning that dey (ﬁ, {) = 1and dgx (12 ,£) = 1 so that
dx (h, k) < 2.

The following is the key fact that we shall need about the contact graph.

Theorem 3.3 ([24]). The contact graph €X is quasi-isometric to a tree and, in particular,
it is hyperbolic.

Recall that a cligue of a graph is a complete subgraph. It is possible to define a type of
projection from X to cliques in €X, as follows.

To a vertex x € X one can associate the set 7w (x) of hyperplanes which are adjacent
to x. By definition, any two hyperplanes adjacent to x are adjacent in the contact graph,
so that 7 (x) is a clique of ¥X . This defines an Aut(X )-equivariant map from X to the set
of cliques of ¥X.

We define the distance dx (C, C’) between two cliques C and C’ as the minimum of
dex(x,x"), where x € C and x € C’'.

If y is a (combinatorial) geodesic in X, one can define 7 (y) as the path in ¥X formed
by all hyperplanes crossed by y. In general, it may or may not be a geodesic in €X . But
it is always a path starting at a vertex in 7 (x) and ending at a vertex in 7 (y). We note
that we have defined two maps with the same symbol & with different domains; one is X
while the other is “geodesics in X”’. We hope that this slight abuse of notation will not
cause any confusion. We easily deduce, using Remark 3.2, the following lemma.

Lemma 3.4. Let A = 3. For any x,y € X, we have dgx (n(x), w(y)) < d(x, y). Fur-
thermore, let y be a combinatorial geodesic segment y connecting x and y. If

dex (m(x), m(y)) = A,

then y crosses at least L%J -many pairwise strongly separated hyperplanes.
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Proof. Since r(y) is a path from 7 (x) to (y) of length d(x, y), we have

dex (n(x), 7(y)) < d(x, ).

If dgx (w(x), w(y)) = A, then 7 (y) is of length at least A4, so there are at least L%J-many
vertices of 7 (y) which are at pairwise distance at least 3; by Remark 3.2, they are strongly
separated. ]

Recall that if /1 is a hyperplane, then N (i;) denotes the set of all vertices of X which
are adjacent to h and is a CAT(0) cubical complex in its own right. If / is a half-space,
we also denote N (h) = N(E).

We will make extensive use of the construction given by [4, Proposition 3.1], which
states the following.

Proposition 3.5. Let x,y € X. Then there exists a combinatorial geodesic y from x to y,
which i s obtained as a concatenatwn of geodeszcs YY1 YK such that there exist hyper-
planes h with y; C JV(h ), and the sequence (ho, . hK) is a geodesic in €X .

Such a geodesic y is called a hierarchy path between x and y, and the sequence
(l?o, ey h k) is called the projection of y on €X, despite the fact that it may not be
unique. Furthermore, if one of the edges in y; is dual to h ; (that is, y; intersects both /;
and h7}), then we say that y; crosses h ;.

3.2. Comparing boundaries

In this section, our goal is to show there is a canonical homeomorphism between the
boundary of the contact graph and the regular boundary Oyes X .

We begin with briefly recalling the definition of the boundary of a non-proper hyper-
bolic space Z (see, for example, [16]). Choose a basepoint 0 € Z. A Gromov sequence is
a sequence (X,)xeN of points of Z satisfying that (x,|x), tends to +oco asn, m — +oo.
Two Gromov sequences (X,)seN and (¥n)nen are equivalent if (x,|ym)o also tends
to +o00. The boundary dZ is the set of all equivalence classes of Gromov sequences,
and we say that the Gromov sequence (x,),eN converges to its equivalence class. This
convergence does not depend on the choice of the basepoint o.

Let £, 7 € Z U dZ. The Gromov product extends to the boundary by taking (§|1), =
inf{liminf, ,n— 400 (xi|y;)o}, Where the infimum is taken over all classes of Gromov se-
quences (X,)neN and (¥m)meN converging to £ and 7, respectively, and

liminf(x|ym)o = sup ( _inf (xi|yj)o)-
o (n,m)eN2 1Zn.j=m
The topology on Z U 02 (which is metrizable) can be defined by saying that a sequence &,
converges to £ if (§,]£), converges to +oo.

Lemma 3.6. Suppose hg C --- C hy are distinct pazrwzse strongly separated half-spaces.
Then for every 0 < n,m < N, we have (in €X) (h,,, hm) > min(n, m) — 3.

Furthermore, for every 0 < k < N, we have (h0|hN)hk <3
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Proof. Letx € hg and y € h’,, and let y be a hierarchy path from x to y with geodesic pro-
jection (€1, ..., Cpr) as in Proposition 3.5; meaning that y is a concatenation of geodesics
Y1,...,Ym Withy; C N (¢;),and ¢,. .., Cp is geodesic in €X . For every i, the geodesic y
must cross iz\,- at some point, so there exists j(i) such that y;() crosses ﬁ,-. It follows
that Ej’@ is either transverse or equal to Ei, and hence dx (Cj(i). hA,-) < 1. Note also that
since h; 41 must be crossed by y after h;, we have that j(i + 1) = j(i). Furthermore,
let i # k. Since h; is strongly separated from 7y, and ¢ is transverse or equal to hi,
it follows that ¢;(;) is not transverse (nor equal) to h k> hence j(i) # j(k). Therefore, j is
strictly increasing.

Now assume that 0 < n <m < N. Since dgy (l;o, Ci0)) < 1Awe have dyx (};0, l;n) >
degx (0. Citny) — 2 = j(n) — j(0) — 2. Similarly, digx (ho. hm) = j(m) — j(0) — 2.
Therefore,

digx (hn hm) < dgxt @y iomy) +2 = jm) = j () +2.
Summing these three inequalities, we get
2nlm)z, = 2() = 6

Now since j: N — N is strlctly 1ncreas1ng, we have j(n) = n, hence (h |hm) ho N~ 3.
Similarly, if m < n, we have (h |hm) ho =M =3, proving the first inequality.

Now to prove the other inequality, we fix 0 < k < N. Using the same argument as
above, we have dgy (ho,hk) < d(c](o) c&k)) +2=j(k)—j(0)+2and dgy (hN hk)
JN)—jk) + 2 as well as dgx (hN, ho) = j(N) — j(0) — 2. Summing these three
inequalities leads to 2(h0|h N7 e S 6. |

We are now ready to state and prove the main result of this section.

Theorem 3.7. Let X be a finite-dimensional CAT(0) cubical complex. There exists an
Aut(X)-equivariant homeomorphism 0peg X — 06X

Proof. Definition of ¢: 0 X — 0%X. Let us first define the map ¢: 0e X — 0%X.
If 0., X is empty, there is nothing to do. If not, let o € 9., X. By [18, Proposition 7.4],
there exists a decreasing sequence (%) of pairwise strongly separated half-spaces such
that (), /in = {a}. According to Lemma 3.6, we have lim,,,m_,+oo(ﬁm, 5")20 = 400.
Therefore, (h,),eN is a Gromov sequence and thus defines a point ¢(«) (and in particular
06X # D).

We claim that this point ¢ (o) does not depend on the sequence (%,). To this end, fix
a base point 0 € X and let (k,) be another sequence with (), k, = {a}. For all m large
enough, k,, separates o from «. Fix such an m. Then there is an N,, > m such that for
every n > 0, we get that i, 4y, C k,, are strongly separated [20, Lemma 5.11]. Then the
sequence (%)), defined by h) =k, if n < m and h), = h,4n,, if n > m, is a decreasing
sequence of pairwise strongly separated half-spaces. Hence by Lemma 3.6, we have for
n>m, (l€m|ﬁn+Nm),;0 = (}an;)% > m — 3 which tends to 400 as m tends to +oo.
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Continuity of ¢. Suppose (an)neN is a sequence of points in 0 X with o, — o and
(hm)menN 1is a sequence of strongly separated half-spaces containing . By the previous
argument, the sequence (l/’l\m)meN represents ¢(«) in €X, so that it suffices to prove that
((p(an)|iz\m);m tends to +oo as n and m tend jointly to 4+o0. Fix m > 0. Since «,, converges
to «, there exists an N such that for n > N, we have «, € h; for every i < m. Using
[20, Lemma 5.11] again, we see that for every n there is a decreasing sequence (k;);eN
of strongly separated half-spaces containing o, such that k; = h; for j < m.Let j > m.
Using Lemma 3.6, we get again that (l;m |i€j)ﬁo > m — 3. Letting j tend to 400, it follows
that for every n > N, we have (i, |<p(ot,,));;0 > m — 3. Hence, we get that p(a,) — ¢(a),
which proves the continuity of ¢.

Bijectivity of ¢. Conversely, let us define ¥: 06X — 0reX. Fix § € 06X Let (l’{ )neN
be a sequence converging to . In particular, (h )neN is unbounded so that extracting
a subsequence we may and shall assume that dgy (h,,, hm) 3, and therefore h and h
are strongly separated by Remark 3.2, for each n # m € N.

We claim that for each kA € N, there exists exactly one element in {/g, h,’:} contain-
ing infinitely many of the {/, : n € N} and proceed by contradiction. Suppose that for
some k the conclusion fails. Then there would exist /2 ~ and h M, for N and M arbitrar-
ily large, which are on opposite sides of Ek. Then using the second part of Lemma 3.6,
we would get (}7 N|EM)ﬁk < 3, contradicting the assumption that (ﬁn)neN is a Gromov
sequence.

For each n, we define &, as the unique half-space bounded by }’{n containing infinitely
many of the hyperplanes {ﬁm}. Then we get that (), o /# is @ nonempty subset of the
Roller boundary. Furthermore, since {ﬁn} are pairwise strongly separated, the same is true
for the chosen half-spaces /,,. Hence by [20, Lemma 5.12], their intersection is a singleton
and is a regular point, which we define as w((gn)neN) = ¥ (£) (and again, it follows that
the boundary Oreg X is nonempty) The point ¥ (£) does not depend on the choice of the
sequence (h ) Indeed, suppose (k ) is another sequence converging to £ and fix i = 0.
Then since (k ) is equivalent to (h ), the same argument as above shows that there are
inﬁnitely many n € N such that l/c\n is on the same side of &; as h, (if not, we would
get (k |h m)i s 3, contradicting that the two sequences are equlvalent) This proves that
1//((k )neN) belongs to h;. Since 7 is arbitrary, it follows that W((k JneN) = W((hn)neN)
hence ¥ (§) is well defined.

Before proving ¥ is continuous, we first show that i and ¢ are formal inverses of
each other. We begin by showing that ¢ o ¢ = Id. If either one of 06X or d,s X is empty,
then we have seen that the other one also is and the result is clear. If not, let & € 9;, X, and
write {a} = (),exy in» Where (h,)nen is a decreasing chain of strongly separated half-
spaces. Then £ = ¢() = lim hy € 36X . Since each h, contains all the hyperplanes .
for m = n, we also get that Y (§) = (e in = {0}, L., ¥ (p(@)) = a.

Now we show that ¢ oy =1d. Let £ € 0¢°X . Write £ = lim hy, and choose h, as above,
so that (h,) is a decreasing chain of strongly separated half-spaces and ¥ (§) = (),;cxy /in-
It follows that (v (§)) = lim &, = £.
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Continuity of . To prove that v is continuous, consider a sequence (£,)nen € (0€X)N
converging to £ € d¢X. Let h be a half-space containing ¥ (§), we have to prove that
Y (&) is in Ak for all n sufficiently large. Fix A > 0. We know that there is an N such that
(n1§); > A for n > N. Now we can write &, as the limit of some hyperplanes bound-
ing half-spaces contalmng V(&) In part1cular there exist half-spaces kK’ C k containing
¥ (&,) and such that (k|$,,)h > A and (k’|r§n)h > A. It follows that there exists a con-
stant C (depending only on §) such that (k[§); > A — C and (k |€); > A — C. Taking 4
large enough, it follows that k (resp. k) and % are not transverse and that k, k' and & are
on the same side of /1 and therefore contained in /. Since k’ C k, it follows that k C h,
and as ¥ (&,) € k, we indeed get that ¥ (&,) converges to ¥ (£).
Finally, we note that the equivariance of ¢ and v is straightforward. ]

The question of when the contact graph is unbounded was addressed by Hagen in [23],
where he deduces unboundedness in a variety of cases with a standing assumption that
the cubical complex is locally compact and does not have an infinite family of pairwise
crossing hyperplanes (see Sections 4 and 5). By imposing finite dimensionality, we are
able to give the following characterization, which has no additional assumptions. We note
however that the existence of a regular rank-1 isometry, as in item (2) of the corollary
below, is guaranteed when Aut(X) is essential and nonelementary on X [11].

Corollary 3.8. Let X be a finite-dimensional irreducible CAT(0) cubical complex. The
following hold:

(1) The contact graph €X is unbounded if and only if there exists an infinite descend-
ing chain of strongly separated half-spaces.

(2) Anelement in Aut(X) is regular rank-1 on X if and only if it is loxodromic on €X .

Proof. The hyperbolic graph €X is unbounded if and only if 96X # @. By Theorem 3.7,
this is equivalent to d, X # &, which by definition is equivalent to the existence of an
infinite descending chain of strongly separated half-spaces. This proves (1).

Now let us prove (2). Suppose that g € Aut(X) is regular rank-1 on X. Then g
is loxodromic on €’X if and only if all of its powers are. Without loss of generality,
assume that gh C h are strongly separated half-spaces. Then (), 8"/ = {a4} and
(Mpen & "h* = {a_} are two unique fixed points of g in d., X, and hence by Theo-
rem 3.7, it follows that ¢(«4) are two unique fixed points for g in 06X . Next, applying
Lemma 3.6 to {g"iz\},,eN, we deduce that dgx(g"ﬁ, il\) (g"h h)h n — 3. Dividing
by n and taking the limit, we deduce that £(g) > 0 and g is loxodromic.

Conversely, suppose that g € Aut(X) is not regular rank-1 on X . Then, one of the two
following options holds, and we conclude the proof in each case:

(a) the element g is elliptic on X, or
(b) itis loxodromic on X but not regular rank-1.

(a): If g is elliptic, then by [25], there is a (g)-fixed point x. Projecting to €X, we get that
(g)-orbit of 7 (x) is bounded and hence g is elliptic in €X .
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(b): Suppose g is loxodromic on X and not regular rank-1. Then the same is true for all
powers of g. Furthermore, since g is loxodromic, then there exist an i € $ and p € Z with
gPh C h and these are not strongly separated. Therefore, for every n € N we have that
g"Ph C h are not strongly separated, meaning that dx (g"” h, it\) < 2 and hence the (g)-
orbit of /1 is bounded in €X. |

Remark 3.9. It is possible to use Theorem 3.7, together with Theorem 4.5 below, to give
a simpler proof of one of the main results of [20], namely, the convergence of the random
walk on X to a regular point in the Roller boundary.

We conclude this section by comparing the various notions of elementary actions.
Recall that an action on a CAT(0) cubical complex is called nonelementary if it has no
finite orbit on X U dX. For groups acting on hyperbolic spaces, we use the following
definition.

Definition 3.10. An action of a group on a hyperbolic space is called nonelementary if
there are two elements g and g’ of the group which act as loxodromic isometries with
disjoint fixed points on the Gromov boundary.

Equivalently, the action of G on a hyperbolic space Z is nonelementary if and only
if G does not have a bounded orbit in Z or an orbit of cardinality less than 2 in 7 (see,
for example, [16, Theorem 6.2.3 and Proposition 6.2.14]).

The following addresses the question of comparing when actions on X versus actions
on X are nonelementary. It also is a reformulation of Caprace and Sageev’s rank-rigidity
theorem in terms of the action on the contact graph. While item (1) of the following
proposition below does not assume that the action on X is either essential or nonelemen-
tary, in practice, those conditions would be a reasonable way to conclude that the G action
on ZX is nonelementary. This is essentially Caprace and Sageev’s rank-rigidity theorem.
It is worth noting that Hagen also has an adaptation of Caprace and Sageev’s rank-rigidity
theorem for the contact graph, see [24, Theorem 5.4].

Proposition 3.11 (Caprace—Sageev rank-rigidity on €X). Let X be a finite-dimensional
CAT(0) cubical complex. Consider an action G — Aut(X). The following are true:

(1) If the action of G on €X is nonelementary, then X is irreducible and G contains
two regular rank-1 elements with disjoint fixed-point sets in Ores X .

(2) Ifthe G action on X is essential and nonelementary, then either X is a product or
the action of G on €X is nonelementary.

Proof. Assume the action of G on ¥X is nonelementary. Then, there exist two elements
g, g’ € G which act loxodromically on ¥X and have disjoint fixed-point sets. By Corol-
lary 3.8, it follows that g and g’ are regular rank-1 on X and by Theorem 3.7 their
fixed-point sets are disjoint. Furthermore, this also means that X is unbounded, and
hence X is not a product, i.e., it is irreducible, which proves (1).
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To prove (2), assume the action of G is essential and nonelementary, and that X is
irreducible. By [11], there exists a quadruple of pairwise facing super strongly separated
half-spaces h1, h,, b}, h),. Applying the double skewering lemma from [11], we can find
v,y € G such that yhy, C hi C ho, and y'h’, C h* C h),. By [8, Proposition 4.3], y has
only two fixed points in de, X, which are contained in ~} and A3. Similarly, y’ has two
fixed points, which are contained in 47" and /5. Using Theorem 3.7, we conclude that
indeed y and y’ are loxodromic on X with disjoint fixed points. |

4. Random walks

From now on, we fix a group G acting on X by automorphisms and assume that the action
of G is nonelementary. By [11], X contains a copy of its G-essential core as a G-invariant
sub CAT(0) cubical complex, possibly after cubical subdivision. Since we are only inter-
ested in the behavior of the orbit of some vertex, we shall replace X by its G-essential
core and assume the action is essential. Note that by [13, Proposition 2.26], any action
G — Aut(X) is either Roller elementary (i.e., has a finite orbit in the Roller compactifica-
tion) or there are a finite index subgroup Gy < G and a Gy-equivariant quotient of X that
is nonelementary and essential. However, we shall stick to these standard assumptions.

Let u € Prob(G) be such that the support of p generates G as a semigroup. The
random walk associated to p is the following process: choose g;, independently, according
to the law of p, and form the product Z,, = g1 --- gn-

More formally, let @ = I'N = I x T'N", and let P be the probability measure on 2
defined by P = §, x uN". The space €2 is the space of increments. If v € €2, we denote
by g; (w) the i-th element of the sequence w. We often omit the @ and write only g;. Then
we consider

Zn:=Zn(w) =g1(®):-gn(w) =: g1 gn-

We are interested in the behavior of Z,, - 0, where o is our choice of base-vertex in X .
This behavior will depend in particular on integrability properties of p. Recall that the
measure 4 has finite n-th moment (relative to the metric d) if [ d(go,0)" du(g) < +oo.

Finally, recall that a measure v € Prob(dX) is stationary if v =Y u(g)g«v. The
following was proved in [20, Corollary 7.3].

Theorem 4.1. Assume that the action of G on X is nonelementary and essential. Then
there exists a unique stationary measure on X, which is supported on 0X .

In the following, we will denote this stationary measure by the letter v. The stationary
measure for the reflected measure [t (defined by fi(g) = (g~!)) will be denoted by V.

4.1. Random walk on the cubical complex

Assume that p has a finite first moment. Then one can define the drift of the random walk
as follows.
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Definition 4.2. The drift of the random walk on X is

1 1
A= inf—/ d(Z,(w)o,0)dP(w) = inf—/ d(o,go)du™".

Equivalently, by a standard application of Kingman’s subadditive ergodic theorem, one
can define A as the (almost surely defined) limit

1
A= lim —d(Z,o0,0).
n—oon

Remark 4.3. Let ji be the measure defined by 7i(g) = u(g™1), and Z. be the associated
right random walk with drift X. Then A = X:

~

1 1 1
A= inf—[ d(o,go)du™ = inf—/ d(g 1o, 0)du*" = inf—/ d(go,0)dp* = A.
nn G nn G nn G

From now on, A (resp. /v\) will denote the drift of the p (resp. ft) random walk on X .
By [20, Theorem 1.2], if the action of G on X is nonelementary and essential, we always
have A, A > 0.

Proposition 4.4. Assume that X is finite-dimensional and the action of G on X is nonele-
mentary and essential, and that | has a finite second moment. Then for every € > 0, there
exist Cp such that ), -, C, < 400 and for every x € X,

P(|hx(Z,; 0) —nA| = en) < Cp,
P(|hx(Zy0) —ni| = en) < Cn,
P(|d(Zno0,0) —nA| = en) <

Proof. Let v (resp. V) be the p-stationary (resp. [i-stationary) measure on 0.X .
Recall that the map o (g, §) > he(g™'0) is a cocycle (see Remark 2.18), and

| osau@ne = [ o6 di@ee = A

GxX GxX

(using Remark 4.3 above). Note also that |hx(Z,0)| < d(0, Z,0) by the triangle inequal-
ity, so that [, g sup,c ¢ lo(x.§) |2du(g) < +o0 (and similarly for /7). Therefore, the first
and second inequalities follow from [5, Proposition 3.2], applied to the measures i and u,
respectively. The third inequality then follows from the second inequality and [20, Propo-
sition 9.4]. [

4.2. Random walk on the contact graph

Random walks on hyperbolic spaces have been intensively studied. One can prove in
particular the convergence to the boundary of the random walk. For non-proper spaces,
this was first obtained by Maher and Tiozzo [32]. Recently, Gouézel [22] improved on
their result and got rid of the moment assumptions.
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Theorem 4.5. Assume that G has a nonelementary action on a hyperbolic space (Y, dy).
Leto € Y. Let | be an admissible measure on G with finite first moment (relative to dy ),
and consider the random walk (Z,) associated to j. Then there exists Lo > 0 (possibly
infinite) such that M
exists k > 0 such that

— Ao almost surely. Furthermore, for every r < Ag there

P(dy (0, Z,0) < rn) < e “".

Now let us go back to our situation: the group G acts nonelementarily on the cubical
complex X, and we consider the random walk Z,.0 witho € X.

Let S(n) be the maximal number of pairwise strongly separated hyperplanes separat-
ing o from Z,o0.

Corollary 4.6. Assume that X is finite-dimensional and irreducible and G has a nonele-
mentary essential action on X. Then there exists 0 < Ao < +00 such that lim inf % > %
almost surely.

Furthermore, there exist A > 0 and C,, > 0, with Y_ C,, < 400, such that

P(S(n) < An) < Cy.

Proof. By Proposition 3.11, the action of G on €’X is nonelementary. Hence we can apply
Theorem 4.5 and deduce that M tends to Ao > 0, and that there exists A > 0
such that the probability P (d¢x (w(Z,0), w(0)) < An) decreases exponentially in n. The
result then follows from Lemma 3.4. ]

5. Proof of the central limit theorem

Our goal is now to prove the promised central limit theorem for cubical complexes.
As mentioned in the introduction, we shall make explicit use of the results and strate-
gies from the work of Benoist and Quint on the central limit theorem [5, 6]. Specifically,
they prove a central limit theorem for groups that act “nonelementarily” on R¢ by linear
automorphisms, or on proper Gromov hyperbolic metric space by isometries.

The general idea of their proof (and therefore of ours) is to first relate the distance
d(o, Z,0) to acocycle 0: Z x G — R. In each case, the space Z is a relevant boundary
and the cocycle can be interpreted as a suitable horofunction; the main point is that this
horofunction is at a bounded distance from the quantity d (o, Z,0). Then the main idea is
to use the cocycle relation to produce a martingale for which the central limit theorem is
well known. The relevant criterion is quoted in Theorem 5.5 below.

However, in order to do so, one must first “correct” the cocycle by the coboundary of
a bounded function in order to indeed obtain a martingale. In the previous proofs (see, for
example, [29] or [30]), this was obtained by a spectral argument, but the proof of Benoist
and Quint gives an explicit integral formula for this correction. The difficulty is then to
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check that this formula is well defined (i.e., that the integral converges). In the case of
hyperbolic groups, this is done in [6, Propositions 4.1 and 4.2]. Here while we follow the
same general argument, the geometric content of these estimates is more involved. This is
the content of Section 5.1, which culminates with the proof of Proposition 5.3.

5.1. Some geometric estimates

This strategy relies on some estimates of the speed of the random walk in various direc-
tions. In order to unfold these estimates, we first isolate a lemma in cubical geometry.

Lemma 5.1. Let X be finite-dimensional, and fix o € X and x,y,z € X. Let m; =
m(o, z,y), mpy = m(o, z, x), mz = m(o, my, my), mg = m(o, x, y). If there is a pair
of strongly separated half-spaces hy C hy such that z,my € hy and o, m3 € h}, then
mip = ms = muy.

The reader may visualize a general configuration of the points as follows:

Z

X

/‘

Proof. We begin with an observation, which directly follows from the definition of the
median: Leta,b,c € X,and m = m(a,b,c), h € $ such thata € h. It follows that m € h*
if and only if b, ¢ € h*. We will apply this observation multiple times below.

To simplify the exposition, we shall say that two points a, b are on the same side if
either a,b € hy C hy or a,b € hy C hY or on the other side if either a € hy C h, and
b € h3 C hi, or vice versa.

Our hypotheses state that z,m, € hy C hy and 0,m3 € h5 C h and so

* my = m(o, z, x) is on same side as z and both are on the other side of 0 and hence
X € hy C hs.

* m3 = m(o,my,my) is on the same side as o and both are on the other side of m, and
hence my € hy C h7.

* my = m(o, z,y) is on the same side as o and on the opposite side of x and hence
y € h5 ChY.

* 0 is on the same side as y and hence m4 € h3 C h} (we include it for completeness,
but we will not need it).
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To summarize, we have x,z,my € hy C hp and o, y,my,m3,m4 € hy C hy.

We proceed by contrapositive. We show that if m; # m3 or my # my, then hy and h;
are not strongly separated.

If my # ms, then there is a half-space k € $ such that m; € k and m3 € k*. Arguing
as above, we have that

* Since m3 = m(my, ms, 0), we deduce that m,,0 € k*.
* Since m; = m(o, z, y), we deduce that y, z € k.
* Since my = m(o, z, x), we deduce that x € k*.
Therefore, for each i = 1,2, we have that m; e k Nh} # @, 0 € k* N h} # @,
z€ekNh; # @,and x € k* N h; # @, i.e., h; Mk and so h1 and hy are not strongly

separated.
Before continuing, we note that by the median axioms (see Remark 2.3), we have

m3 = m(o,m(o,z,y),m(o,z,x)) =m(o,z,m(x,y,0)) =m(o,z,my).

Next, suppose that m3 # my. Then there exists £ € $ such that m3 € £ and m4 € £*.
Arguing as above, we conclude o, z € £, and since m4 = m(o, z, y), it follows that y € £.
And, since m; = m(o, z, y), we conclude that m; € £*.

Hence, it follows that 4; M £ for i = 1,2 using the four points o, m1, y, z and the above
calculations to show that the four appropriate intersections are not empty. Therefore, /1,
and A, are not strongly separated. ]

The following lemma is the quantitative heart of the paper. It will be applied later to the
sequence g, = Z,. Its assumptions are the ones that we know to hold with high probability
(by Proposition 4.4 and Theorem 4.5): the random walk goes to infinity at linear speed,
both in €X and in X, and the cocycle hy(Z; o) also goes to infinity at linear speed. This
will allow us to give a quantitative lower bound on the Gromov product (Z,x|y),, which
we will use in Proposition 5.3 to finally deduce the integrability needed in Lemma 5.7.

Lemma 5.2. Assume that X is finite-dimensional. Let (g,) € GV, and let S(n) be the
maximal number of pairwise strongly separated hyperplanes separating o from g,o. Fix
X,y € X. Assume that there exist A, e, A > 0 such that

o Sn) = An;

o |hx(g,'0) —nA| < en;

* |d(gno,0) —ni| <en;

*  |hy(gno) —nA| < en.

Then we have
(1) (gnoly)o < en;
(2) ©x)g71, = (A —&)n.

If in addition, A > 3e¢, then for n sufficiently large, we have that
(3) (gnx|y)o < en.
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Proof. (1) and (2): Recall that horofunctions are normalized so that /1, (0) = 0 for every
x € X. Applying the last equality of Remark 2.16, we have that

0 < 2(gn0ly)o = |d(0, gn0) — hy(gno) — An + An|
< [d(0,8n0) — An| + |hy(gn0) — Anl

< 2en.
For the second inequality, we apply the last equation of Remark 2.16:
2(0[x) g1, = d(gno,0) + hx(g,jlo) — hy(0) = —2en + 2An.

(3): Suppose that m; = m(o, gro,y), mp = m(o, g,0, gnXx), m3 = m(my, my, 0), and
mg = m(o,gnx,y).

By part (1), we have d(o,m1) = (y|gn0)o < en. Similarly, by part (2), we have
d(0,m2) = (gn0|gnX)o = (0|x)4-1, = (A — €)n, and we therefore get

d(my,m3) = d(o,my) —d(o,m3)
> d(o,my) —d(o,my)

> (A —2¢)n.

Note that m,, m3 € X, m3 € I(o, m3), and m, € (o, g,0). Therefore, there exists
a geodesic from o to g,o which passes first through m3, and then through ms, i.e.,
d(o, gno) = d(o,m3) + d(msz, my) + d(m,, gn0). Hence

d(o,m3) + d(gno,mz) = d(0, gn0) — d(m3, my)
<A4+en—(A—2¢e)n
< 3en.

Since S(n) > An, there exists a family (hy) ]ch‘l:nlJ of | An|-many pairwise strongly

separated hyperplanes which are between o and g, 0. Assume that A > 3¢. Then for n large
enough, we have | An| > 3en + 2. Among the d (0, g,0)-many hyperplanes separating o
from g0, there are at most 3en of them separating either o and m3 or g,o and m,,
and the rest of them separate m, from m3. Hence there exist two hyperplanes from the
family (A1) which separate m, from ms. In particular, there exist at least two strongly
separated hyperplanes separating m, from m3. By Lemma 5.1, we conclude that m; =
m3 = my. Hence (g,x|y)o = d(0,m4) = d(0,my) < en. |

Proposition 5.3. Let X be irreducible, and let G — Aut(X) be a nonelementary and
essential action. Assume also that pu has a finite second moment. Then there exist a > 0
and Cy such that ), -, C, < 400, and for every x,y € X, we have for every n,

/

P((Zn0|Znx)o < an) < Cy,
P((Zyo0|y)o = an) < Cy,
P((Znx|y)o = an) < Cy.

N IN
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Proof. Choose first A as in Corollary 4.6, and the sequence (C,,) accordingly. Now choose
&g < min(%, %), then apply Proposition 4.4 and obtain again some summable sequence
(C,) which we can assume to be the same as the previous one. It follows that the union
of the four events defined by the inequalities S(n) < An, |hy(Z,;'0) — ni| = en,
|d(Z,0,0) —nA| = en, and |hy(Z,0) —nA| = en has a probability which is bounded
above by 4C, . Letting C,, = 4C,,, we note that this is still a summable sequence. By Lem-
ma 5.2, if Z,, is not in this union, then we have (Z,0|Z,x), = (A — &)n, (Z,0|y)o < en
and (Z,x|y)o < en.
Therefore, choosing a € (¢, A — ¢) guarantees that the union of the three events

(Zno|Znx)o < an, (Zyoly)o =an, (Zpx|y)o =an

have probability bounded by C,,, which completes the proof. ]

5.2. Central limit theorem

We can now turn to the proof of our main theorem.
We will need the following few definitions. Let G act continuously on a compact
metrizable space Z, and E be a real vector space.

Definition 5.4. Let 0: G x Z — E be a continuous cocycle.

*  We say that o has constant drift if [; o(g,x)du(g) does not depend on x € Z. The
average of o is then [; (g, x) du(g).

*  Wesay that o is centerable if there exist a bounded Borel map y: Z — E and a cocycle
00: G x Z — E with constant drift such that for every (g, x) € G x Z,

(1) o(g.x) =00(g.x) + ¥(x) — ¥(gx),
(2) o9 has constant drift.

The average of o is then defined as the average o, = fG oo(g, x)du(g) of oy.

If v is a stationary measure on Z, then the average of a centerable cocycle does not
depend on the choice of oy and , as we have

[ o (g x) du(g)dv(x) = o, + / ¥ () dv(x) — / ¥ (gx) du(g)dv(x) = oy,
GxZ Z GxZ

X
by stationarity of v.

Even though the central limit theorem, we are aiming for, is one-dimensional, in order
to treat the case when X is reducible, we are led to study a multidimensional version
of it. Let us first introduce the relevant notations. Let E be a finite-dimensional real vector
space. We denote by S?E the space of symmetric 2-tensors on E: it is the subspace of
E ® E which is invariant by the flip x ® y = y ® x. This space can be identified to
quadratic forms on £* by the formula (x ® y + y ® x)(f) = 2f(x) f(»). In particular,
for v € E, we write v2 € S?E for v ® v, that is, the element defined by v2(f) = f(v)?
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for f € E*.If ® € S?E is non-negative, then one can define the multidimensional cen-
tered Gaussian law N (0, @) of covariance 2-tensor . One possible definition of this law
is the following: if X is a random vector, then X follows the law A (0, @) if and only
if for every f € E*, f(X) follows a (one-dimensional) centered Gaussian law of vari-
ance ©(f).

The next theorem is an application of the central limit theorem for martingales [10], [5,
Theorem 3.4].

Theorem 5.5. Let G be a countable group acting by homeomorphisms on a compact
metrizable space Z. Let E be a finite-dimensional real vector space and 0:G X Z — E
be a continuous cocycle. Assume that o is centerable with average o, that

f sup [lo-(g. )12 dya g) < +o0.
G xeZ

and that there exists a unique [L-stationary probability measure v on Z. Then the ran-
dom variable m converges in law to a Gaussian law. Furthermore, if we write
0(g,z) = 00(g,z) + ¥ (z) — ¥ (gz) with ¥ bounded and oo with constant drift, then the

covariance 2-tensor of the limit law is

| onle.x) = 0 dutpan o).

GxZ

Remark 5.6. In [5], the map ¥ is assumed to be continuous. However, in the proof of [5,
Theorem 3.4] only the boundedness of v is used.

Now let us go back to our specific situation. We continue to assume that X is a finite-
dimensional CAT(0) cubical complex and that G — Aut(X) is an essential and nonele-
mentary action.

Lemma 5.7. Assume that X is irreducible and that the action of G on X is nonelemen-

tary and essential. Assume also that | has a finite second moment. Then the cocycle

0:G x X — R defined by (g, x) = hy(g'0) is centerable. Its average is the drift A.
More precisely, we have

0(g.x) = 00(g,x) + ¥ (x) —¥(gx) withy(x)=-2 /aX(XIy)o dv(y)
and with o of constant drift.

Proof. Let ¥ be the ji-stationary measure on X. Using Proposition 5.3, we deduce as
in [6, Proposition 4.2] (replacing [6, Lemma 4.5] by Proposition 5.3) that

Yx) =2 [X (1o dB ()

is finite for every x € X, and furthermore that sup,, ¥ (x) < +o0, that is, ¥ is bounded.
We also note that ¥ is Borel by Fubini’s theorem.
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Now forall g € G and x, y € X, by Remark 2.16, we have

he(g7'0) = —=2(x|g7" V)0 + 2(gx|¥)o + hy(g0).

Now, by [20, Proposition 9.4], we have lim,_, ,llhg (Z,0) = A almost surely for
every £ € 0X. Using Birkhoff’s ergodic theorem together with the cocycle identity, as in
the proof of [20, Theorem 9.3], we also get that

1
lim —hg(Z,0) :/
n—oon

G %0

. o(g~ " x)du(g)dv(x),

hence this integral is equal to A. Integrating the previous equality on G x 0X for the
measure du(g)dv(y), we get

[ommw@=wm—/wwmm9+x
G G

This means that the cocycle 0p: G x X — R defined by the formula o¢(g, x) =
o(g,x) — ¥ (x) + ¥ (gx) has the property that if x € X, then

/%@mww=x .
G

Theorem 5.8. Let G have a nonelementary and essential action on the finite-dimensional
CAT(0) cubical complex X . Assume that the action of G on X stabilizes each irreducible
factor of X. Assume also that u has a finite second moment. There exists a Gaussian
law N, on R such that

d(Z,0,0) —ni
Jn

in distribution. Furthermore, the variance of this Gaussian law is given by

— Ny

/ (he(g™"0) — ¥ (x) + ¥ (gx) — 1) diu(g)dv (x),
Gx0X

where Y (x) = =2 [55 (x]y)o dV(p).

Proof. Let X = X x ---x Xp be the irreducible decomposition of X and note that X =
X, x---x Xp.Foreach 1 <i < D, the action of G on X; is again nonelementary and
essential, so it has positive drift A; [20, Theorem 1.2]. The total drift for the action of G
on X isthenA =A; +---+ Ap. Now foreach i, there is a cocycle 0;: G X X; — R defined
by 0i(g, x) = hy, (g7 0) (where x; is the i-th coordinate of x and so the horofunction
is understood to be computed with only i-th coordinate). Define 5: G x X — RP by
o = (01,...,0p). By Lemma 5.7, we get that o; (g, x) is centerable for every i. Therefore,
o is centerable, with average A= (A1.....Ap). Write 5(g, x) = Go(g. x) + ¥ (x) —
¥ (gx) with ¥ bounded and measurable and &, with constant drift. We use the fact that
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|hx(g7'0)| < d(o.g " 0) forevery x € X and that ;1 has a finite second moment to apply

Theorem 5.5 and Lemma 5.7 to deduce that a(z"% converges in law to a Gaussian
law
[ @ole.) -3 dule)an).
Gx0X
Letf:IRd — R be the linear form (u1,...,up)—~>u; +---+up. Writeo = f oa,

0o = f 0Gp,and ¥ = f o Y. Note that o(g,£) = he(g o) for & € 9X and g € G (so that
the notation is consistent with the previous one).

Since the linear projection of a multidimensional Gaussian is again a Gaussian, we
get that for g € G and x = (x1,...,Xp) € X, the ratio M converges to a cen-
tered Gaussian law (on R). By Remark 2.16, we get that for every £ € dX, for every
g1,-.-,.8n €G,

d(gn...810,0) —0(gn...g1.€) =2(g7" ... g, 0lE)o.

Since gl_1 ... &, Yo converges almost surely to some random point whose distribution ¥ is
non-atomic, and since g, . . . g1 has the same distribution as Z,, = gy ... g, (namely pu*"),
the sequences (‘“ZLJ%)_M)nZI and (w) have the same limit distribution. The
variance of this Gaussian law is given by foax((UO(g» £)) — A2 du(g)dv(§€), which
is precisely [, oy (he(g7'0) — ¥ (€) + ¥ (g§) — A)* du(g)dv(x), where ¥ is given by
Lemma 5.7. [

5.3. Non-degeneracy of the limit law

Our goal in this section is to complete the proof of Theorem 1.1, that is, to prove that
the limit Gaussian law is non-degenerate. By Theorem 5.8, this amounts to proving the
following.

Proposition 5.9. If the action of the group G on X is nonelementary and essential and
(Supp(u))* = G, then

/G . (he(g™"0) + (&) — ¥(g8) — 1)* du(g)dv(§) > 0.

In order to prove this, we need to use the following definition.

Definition 5.10. Suppose that g is an isometry of an essential CAT(0) cubical complex
X1 X .-+ x Xp, where each X is irreducible.

We say that g is regular if it acts as a regular rank-1 isometry on X; for every
1<i<D.

By [20, Theorem 11.7], under the assumptions of Proposition 5.9, the group G always
contains regular isometries.
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Lemma 5.11. Let X = X X --- X Xp be the irreducible decomposition for X and g
be a regular isometry. Then g has exactly 2P fixed points Fix(g) C X, with exactly one
attracting £+ € Fix(g) and one repelling £~ € Fix(g). Specifically, for every x € X \
Fix(g), we have lim,_, 1o g"x = £*. Furthermore, I(§=,£%) N X is the set of vertices
that lie on some combinatorial axis of g, and ifo € I1(§~,ET) N X, then

m(g~0,0,6T) = 0.

Proof. Let X = X; x --- x Xp, where each X; is irreducible. Let ¢ = (g1,....£&D),
where g; is regular rank-1. Using again [8, Proposition 4.3], we have that there are exact-
ly 2 fixed points of g; in X;, call them Ei+ and £, and furthermore g x converges to Si‘"
for every x; € X; \ {&7}. Thus Fix(g) is the set of 2D elements whose coordinates are
all the Eii. Moreover, the above argument applied in each factor shows that g4,x —
(Eli s 55':) for every x ¢ Fix(g). Let {1 = (Sf‘ . Eb") and &~ = (§7,....&p).

We now show that 7(§7, 1) N X is the set of vertices that lie on some combinato-
rial axis of g. By [8, Proposition 4.4], we have that o € I(§7, &™) N X if and only if
d(o, go) = £(g). Since g" is also regular rank-1 with the same fixed points as g, it fol-
lows that d (o, g"0) = £(g") = |n|{(g) for every n € Z, i.e., if n > 1, then d(o, go) +
d(go, g"0) = d(o, g"0) and m(o, go, g"0) = go. Therefore, 0 € I(§7,E1) N X if and
only if o belongs to a combinatorial axis for g. Taking the limit as n — oo, we get that
m(o, go,€T) = go. Finally, applying g~! we deduce that m(g~'0,0,£%) = o. n

Lemma 5.12. Let 0 € X be any basepoint. If g is a regular isometry, with attracting fixed
point £1, then
lim

n—o0o

—n
e &0 _ o)
Proof. First, assume that o0 € I(§7,£T) N X. According to Lemma 5.11, we have that
m(o, g7 0, &%) = o, so that hg+ (g7 0) = d(0, g7'0) = £(g). Similarly, hg+(g™"0) =
nf(g) forevery n = 0.

If o ¢ I(§,&T), choose o € I(§7,£™) and let &’ be the horofunction based at o’.
Then we have |hg+(y) — hé+ (»)| < d(o.,0") forevery y € X. Since hg+(g7"0) = nl(g),
we get

d(o,0")
LUg)| < a—

’hg (670

Taking the limit, we get the result. ]

Proof of Proposition 5.9. By contradiction, assume that

/G (g™ 0) (6~ ¥ (66) — 12 () = 0.

This implies that for almost every £ € Supp(v) and g € Supp(11), we have hg(g~'0) —
A = Y (g€) — ¥ (&). Since ¥ is uniformly bounded, we get that |g(g~"0) — A| < C for
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some C. Fixing g € Supp(u), the set of & satisfying this inequality is closed and of full
v-measure. As the support of v is, by definition, the intersection of all closed full subsets
of full measure, we get that this inequality holds for every & € Supp(v). Since Supp(w) is
countable, this inequality holds for all £ € Supp(v) and g € Supp(u).

Now fix n > 0. The random walk of law ©*" has a finite second moment, the same
stationary measure as /i, but has drift nA instead. Furthermore, one can see a random walk
of law pu*" as a subsequence of a random walk of law . Applying Theorem 5.8, we get
that |hg(g~'0) — nA| < C for every & € Supp(v) and every g € Supp(u*"), for every
n>0.

Now let g € G be aregular isometry. Let £T (resp. £7) be its attracting (resp. repelling)
fixed point. Since the action of G on X is nonelementary, in particular, it is Roller nonele-
mentary, that is, it has no finite orbits in X (see Remark 2.6) and so the stationary mea-
sure v is non-atomic. Therefore, by Lemma 5.11 for v-almost every point £ € dX, we have
that g"& — &T. This implies that §T € Supp(v).

By assumption, there exists m > 0 such that g € Supp(u*™). Hence for every n > 0,
we have g" € Supp(u*™") and therefore |hg+(g7"0) —nmA| < C. Dividing by n and
taking the limit, we get that £(g) = mA by Lemma 5.12.

Now, there exists N > 0 such that 1 € Supp(u*"). Therefore, we also have g €
Supp(u**+N)). Hence the previous argument also proves that £(g) = (m + N)A. Since
A > 0, this is a contradiction. |

We can now conclude the proof of our main theorem.

Proof of Theorem 1.1. First, note that if we replace o by some other vertex o’ € X, then
d(Z,0,0)—d(Z,0',0") is bounded and therefore the limit of w does not depend
on o. If the action of G on X was not essential, since the action is nonelementary, then
by [11, Proposition 3.5] there exists some G-invariant cubical subcomplex X’ C X on
which the action of G on X’ is essential and still nonelementary. Therefore, choosing
o € X' it suffices to prove the theorem for X’. In other words, we may and shall assume
that the action of G on X is also essential.

Let us write X = X; x -+ x X, where each X; is irreducible and Aut(X) contains
Aut(Xp) x -+ x Aut(Xy,) as a finite index subgroup (Theorem 2.7). Then G has a finite
index subgroup Go which preserves each factor. Since G¢ has a finite index in G, it is
recurrent, so we can define the probability measure o on Gg as the law of the first time
the random walk (starting at the identity) goes back to an element of G. Using [28,
Lemma 2.3], we see that p( has a finite second moment. Therefore, by Theorem 5.8, the
random walk of law p¢ satisfies a central limit theorem. More precisely, if (¥3) is such
a random walk on Gy, then the sequence (d(}’"‘”—”’z_'m})n;l converges to a Gaussian law
of variance, say ®¢. By Proposition 5.9, we also have &g > 0.

Consider a coset gGg in G/Gy. Let (Zy(,)) be the subsequence of (Z,) formed by
the elements which are in gGo. Then for every n > 1, Z,(,) has the same law as g'Yy,,
where g’ is a random element (the first element of the random walk in the class gGy),
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and Y, is the random walk on Gg of law p¢. Furthermore, using the recurrence of Gy
in G, we have that there exists a C > 0 such that @ converges to C, and it follows that
Ao = CA (see, for example, [20, Lemma 9.7]).

By the triangle inequality, we have that

d(Zy)0.0) < d(Yn0,0) +d(g'0.0),

and that 4&°2:0) converges to 0 in g)robablhty (since the law of g’ does not depend on n).

Z »(n)0,0)—nA
Therefore, the sequence (— & =—— & owo.0)=nho )n=1 converges to a Gaussian law of variance Py.
d(Z ym)0,0 n)A
Hence, (M)n>l converges to a Gaussian law of variance —%. Since this

. . Vo(n) d(Y,0,0)—nA
is valid for every coset of Go in G, we deduce that (T)ngl also converges to
a Gaussian law of variance f > 0. [ ]
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