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Abstract. We show under weak hypotheses that @X , the Roller boundary of a
finite-dimensional CAT(0) cube complex X is the Furstenberg–Poisson boundary of a
sufficiently nice random walk on an acting group 0. In particular, we show that if 0
admits a non-elementary proper action on X , and µ is a generating probability measure
of finite entropy and finite first logarithmic moment, then there is a µ-stationary measure
on @X making it the Furstenberg–Poisson boundary for the µ-random walk on 0. We
also show that the support is contained in the closure of the regular points. Regular points
exhibit strong contracting properties.
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1. Introduction
CAT(0) cube complexes are fascinating objects of study, thanks in part to the interplay
between two metrics that they naturally admit, the CAT(0) metric, and the median
metric. Restricted to each cube, these coincide either with the standard Euclidean metric
(`2) or with the ‘taxi-cab’ metric (`1). Somewhat recently, CAT(0) cube complexes
played a crucial roll in Agol’s proof of the virtual Haken conjecture (an outstanding
problem in the theory of 3-manifolds which relied in an essential way on the work of
Wise) [Ago13, BW12, HW08, KM12, Wis09]. The class of CAT(0) cube complexes
and groups acting nicely on them include trees, (universal covers of) Salvetti complexes
associated with right-angled Artin groups, Coxeter groups, small cancellation groups and
is closed under taking finite products.

Associated with a random walk on a group one has the Furstenberg–Poisson boundary.
It represents, in some sense, the limits of the trajectories of the random walk. Its existence,
as an abstract measure space, for a generating random walk is guaranteed by the seminal
result of Furstenberg [Fur73]. This important object has since established itself as an
integral part in the study of rigidity (see for example [BF14]) in particular by realizing it
as a geometric boundary of the group in question.

One may associate with any CAT(0) space a visual boundary where each point is an
equivalence class of geodesic rays. The visual boundary for a CAT(0) space gives a
compactification of the space, at least when the space is locally compact [BH99]. For
a wide class of hyperbolic groups, and more generally, certain groups acting on CAT(0)
spaces, the visual boundary is a Furstenberg–Poisson boundary for suitably chosen random
walks [Kai94, KM99].

The wall metric naturally leads to the Roller compactification of a CAT(0) cube
complex. Nevo and Sageev show that the Roller boundary (see §2.3) can be made
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2182 T. Fernós

to be a Furstenberg–Poisson boundary for a group 0 when the group admits a non-
elementary proper co-compact action on X [NS13]. The purpose of this paper is to give
a generalization of this result to groups which admit a non-elementary proper action on
a finite dimensional CAT(0) cube complex. The complex is not assumed to be locally
compact, and in particular, the action is not required to be co-compact. Our approach will
be somewhat different to that of Nevo and Sageev and in particular, we shall not address
several of the dynamical questions that they consider: for example that the resulting
stationary measure is unique, or that the action is minimal or strongly proximal. Such
questions will be examined in a forthcoming paper by Lécureux, Mathéus, and the present
author.

Let µ be a probability measure on a discrete countable group 0. Assume that it is
generating, i.e. that the semi-group generated by the support of µ is the whole of 0.
Recall that a probability measure µ on 0 is said to have finite entropy if

H(µ) := �
X

�20

µ(� ) log µ(� ) < 1.

Also, if | · | : 0 ! R is a pseudonorm on 0 then µ is said to have finite first logarithmic
moment (with respect to | · |) if

P
�20 µ(� ) log |� | < 1. (See §8.1 for more details.)

If we have an action of 0 on X , then fixing a basepoint o 2 X allows us to consider the
pseudonorm defined by |� |o := d(� o, o).

MAIN THEOREM. Let X be a finite-dimensional CAT(0) cube complex, 0 a discrete
countable group, 0 ! Aut(X) a non-elementary proper action by automorphisms on X,
and µ a generating probability measure on 0 of finite entropy. If there is a base point o 2 X
for which µ has finite first logarithmic moment then there exists a probability measure #
on the Roller boundary @X such that (@X, #) is the Furstenberg–Poisson boundary for
the µ-random walk on 0. Furthermore, # gives full measure to the regular points in @X.

The proof of the Main Theorem follows a standard path. We first show that the
Roller boundary is a quotient of the Furstenberg–Poisson boundary (§7) and then apply
Kaimanovich’s celebrated strip condition to prove maximality (§8).

We note that Karlsson and Margulis show that the visual boundary of a CAT(0) space is
the Furstenberg–Poisson boundary for suitable random walks [KM99]. They assume very
little about the space, but assume that the measure µ has finite first moment and that orbits
grow at most exponentially. The Main Theorem above applies to the restricted class of
spaces (i.e. CAT(0) cube complexes), which pays off by allowing for significantly weaker
hypotheses on the action and the measure µ.

Observe that our Main Theorem applies for example to any non-elementary subgroup
of a right-angled Artin group or more generally of a graph product of finitely generated
abelian groups [RW13].

Furthermore, we remark on the importance of the fact that the regular points are of full
measure: they exhibit strong contracting properties. This will be exploited to study random
walks on CAT(0) cube complexes in the forthcoming paper of Lécureux, Mathéus, and the
present author mentioned above.
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An action on a CAT(0) cube complex is said to be Roller non-elementary if every
orbit in the Roller compactification is infinite (see §2.3). This notion guarantees non-
amenability of the closure of the acting group in Aut(X), and characterizes it for X locally
compact. This Tits alternative, is essentially an encapsulation of results of Caprace and
Sageev [CS11], Caprace [CFI12], and Chatterji, Iozzi, and the author [CFI12]. It also
comes after several versions of Tits alternatives [CS11, SW05] (see §9 for more details).

THEOREM 1.1. (Tits alternative) Let X be a finite-dimensional CAT(0) cube complex
and 0 6 Aut(X). Either 0 contains a freely acting free group or one of the following
equivalent conditions holds:
(1) 0 preserves an interval I ⇢ X;
(2) the 0-action is Roller elementary.
If furthermore X is locally compact then these are equivalent to
(3) the closure 0 in Aut(X) is amenable.

2. CAT(0) cube complexes and medians
We shall say that a metric space is a Euclidean cube if there is an n 2 N for which it is
isometric to [0, 1]n with the standard induced Euclidean metric from Rn .

Definition 2.1. A locally countable finite-dimensional simply-connected metric polyhedral
complex X is a CAT(0) cube complex if the closed cells are Euclidean cubes, the gluing
maps are isometries and the link of each vertex is a flag complex.

Recall that a flag complex is a simplicial complex in which each complete subgraph on
(k + 1)-vertices is the 1-skeleton of a k-simplex in the complex. That the link of every
vertex is a flag complex is equivalent to the condition of being locally CAT(0), thanks to
Gromov’s link condition.

We remark that we absorb the condition of finite dimensionality in the definition of a
CAT(0) cube complex and, as such, we shall not explicitly mention it in what follows.
Furthermore, if the dimension of the CAT(0) cube complex is D, then this is equivalent to
the existence of a maximal dimensional cube of dimension D.

A morphism between two CAT(0) cube complexes is an isometry that preserves the
cubical structures, i.e. it is an isometry f : X ! Y such that f (C) is a cube in Y whenever
C is a cube in X . We denote by Aut(X) the group of automorphisms of X to itself.

2.1. Walled spaces. A space with walls or a walled space is a set S together with a
countable collection of non-empty subsets H ⇢ 2S called half-spaces with the following
properties.
(1) There is a fixed-point free involution ⇤ : H ! H

h 7! h⇤ := S\h.

(2) The collection of half-spaces separating two points of S is finite, i.e. for every
p, q 2 S the set of half-spaces h 2 H such that p 2 h and q 2 h⇤ is finite.

(3) There is a D 2 N such that for every collection of pairwise transverse half-spaces
{h1, . . . , hn} we must have that n 6 D.
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A pair of half-spaces h, k 2 H is said to be transverse if the following four intersections
are all non-empty:

h \ k, h \ k⇤, h⇤ \ k⇤, h⇤ \ k.

Associated with a walled space is the wall pseudo-metric d : S ⇥ S ! R:

d(p, q) = 1
2 #({h 2 H : p 2 h, q 2 h⇤} [ {h 2 H : q 2 h, p 2 h⇤}).

This satisfies the properties of a metric, with the exception that d(p, q) = 0 does not
necessarily imply that p = q .

Let us then consider the associated quotient S⇠ consisting of equivalence classes of
points of S whose pseudo-wall distance is 0. Clearly, the wall pseudo-metric descends to
a metric on S⇠.

For h 2 H the wall associated with h is the unordered pair {h, h⇤}. This explains the
terminology, as well as the factor of 1

2 in the definition of the (pseudo-)wall metric.

2.2. CAT(0) cube complexes as walled spaces. As we shall now see, CAT(0) cube
complexes naturally admit a walled (pseudo-)metric and are in some sense the unique
examples of such spaces.

Let [0, 1]n be an n-dimensional cube. The i th coordinate projection is denoted by
pri : [0, 1]n ! [0, 1]. A wall of a cube [0, 1]n is the set pr�1

i {1/2}. Observe that the
complement of each wall in a cube has two connected components.

Definition 2.2. A wall of a CAT(0) cube complex X is a convex subset whose intersection
with each cube is either a wall of the cube or empty.

The complement of a wall in a CAT(0) cube complex has two connected
components [Sag95, Theorem 4.10] which we call half-spaces and we denote them by
H(X). Observe that since X is second countable, there are countably many half-spaces in
H(X).

The notation and terminology here is purposefully chosen to remind the reader of a
walled space. Indeed, in essence, a walled space uniquely generates a CAT(0) cube
complex [CN05, Nic04, Sag95]. And it is this walled space structure of the CAT(0) cube
complex that we shall ultimately be interested in, if not fascinated by. Since walls separate
points in the zero-skeleton of a CAT(0) cube complex, we shall in fact consider the zero-
skeleton as our object of study.

Let X0 denote the vertex set of X and H(X0) = {h \ X0 : h 2 H(X)}. This yields a
fixed-point free involution ⇤ : H(X0) ! H(X0),

h0 7! h⇤
0 := X0\h0. (1)

One drawback of passing to the zero-skeleton is that a wall is no longer a subset of X0.
Therefore, for h0 2 H(X0), we shall denote by ĥ0 the pair {h0, h⇤

0} and think of it as a wall,
as in §2.1.

THEOREM 2.3. [CN05, Nic04, Sag95] Let (S, H) be a walled metric space. Then, there
exists a CAT(0) cube complex X and an embedding ◆ : S ,! X0 such that:
(1) if S and X0 are endowed with their respective wall metrics then ◆ is an isometry onto

its image;
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(2) the set map induced by ◆ is a bijection H ! H(X0), h 7! k such that

k \ ◆(S) = ◆(h);

(3) if � : S ! S is a wall-isometry then there exists a unique extension to an
automorphism �0 : X0 ! X0 that agrees with � on ◆(S).

Furthermore, if (X0, H(X0)) is the walled space associated with the vertex set of a CAT(0)
cube complex X, then the above association applied to (S, H) = (X0, H(X0)) yields once
more X, and ◆ : X0 ! X0 can be taken to be the identity, and the induced homomorphism
Aut(X0) ! Aut(X0) is the identity isomorphism.

When a collection of half-spaces H is given, we shall denote the associated CAT(0)
cube complex as X (H), leading to the somewhat abusive formulation of the last part of
Theorem 2.3:

X (H(X0)) = X.

This striking result shows that the combinatorial information of the wall structure
completely captures the geometry of the CAT(0) cube complex. This will be exploited
in what follows. To this end, we now set X = X0, and H = H(X0). Unless otherwise
stated, every metric property will be taken with respect to the wall metric.

The first of many beautiful properties of CAT(0) cube complexes is a type of Helly’s
theorem, as follows.

THEOREM 2.4. [Rol] Let h1, . . . , hn 2 H be half-spaces. If hi \ h j 6= ? then
n\

i=1

hi 6= ?.

Keeping with the terminology of transverse half-spaces introduced in §2.1, if
h1, . . . , hn 2 H are pairwise transverse half-spaces then n 6 D.

2.3. Sageev–Roller duality. Given a subset s ⇢ H of halfspaces, we denote by s
⇤ the

collection {h⇤ : h 2 s}. We say that s satisfies:
(1) the totality condition if s [ s

⇤ = H;
(2) the consistency condition if s \ s

⇤ = ? and if h 2 s and h ⇢ k, then k 2 s.

Remark 2.5. We note that such sets are frequently called ultrafilters in the literature.
However, as these are not the same as set theoretic ultrafilters, this can at times lead to
some confusion. We therefore avoid using the term ultrafilters.

Fix v 2 X and consider the collection Uv = {h 2 H : v 2 h}. It is straightforward to
verify that Uv satisfies both totality and consistency as a collection of half-spaces. The
Sageev–Roller duality is then obtained via the following observation:

\

h2Uv

h = {v}.

This shows that if w 2 X then we have that

Uv = Uw () v = w,
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giving an embedding X ,! 2H obtained by v 7! Uv . This embedding is made isometric
by endowing 2H with the extended metric†

d(A, B) = 1
2 #(A4B).

For now, let us consider X ⇢ 2H. Then, the Roller compactification is denoted by X and
is the closure of X in 2H. The Roller boundary is then @X = X\X . Observe that in general,
while X is a compact space containing X as a dense subset, it is not a compactification
in the usual sense. Indeed, unless X is locally compact, the embedding X ,! X does
not have an open image, and @X is not closed. This is best exemplified by taking the
wedge sum of countably many lines. The limit of any sequence of distinct points in the
boundary will be the wedge point. While it is also true that the visual boundary is not a
compactification when X is not locally comapact, the Roller boundary does present one
significant advantage: the union X t @X is indeed compact.

With this notation in place, the partition {h, h⇤} extends to a partition of X and hence,
when we speak of a half-space as a collection of points, we mean

h ⇢ X = h t h⇤.

Remark 2.6. Given h 2 H, we denote the set {h, h⇤} by ĥ. By abuse of notation, for k 2 H,
we shall say that ĥ ⇢ k if and only if h ( k or h⇤ ( k. This is consistent with the standard
notion of the wall corresponding to a mid-cube.

We now give characterizations of special types of subsets of X . To this end, we say
that s 2 2H satisfies the descending chain condition if every infinite descending chain of
half-spaces is eventually constant.

Facts 1. The following are true for a non-empty s 2 2H.
(1) If s satisfies the consistency condition then

? 6=
\

h2s

h ⇢ X .

(2) If s satisfies the consistency condition and the descending chain condition then

? 6=

✓\

h2s

h
◆

\ X.

(3) The collection s satisfies both the totality and consistency conditions if and only if
there exists v 2 X such that s = Uv . Fixing Uv 2 2H, we have that:
• v 2 X if and only if Uv satisfies the descending chain condition;
• v 2 @X if and only if Uv contains a non-trivial infinite descending chain, i.e.

for each n there is an hn 2 S such that hn+1 ( hn .

Let us say a few words about why these facts are true, or where one can find proofs,
though likely several proofs are available. In the case of Item (1), this is simple if
one can show that the collection has the finite intersection property as X is compact.
Furthermore, the CAT(0) cube complex version of Helly’s Theorem 2.4 allows one to pass

† We note that this extended metric is not continuous unless H is finite.
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from finite intersections to pairwise intersections, and this last case is easy to verify given
the condition of consistency. For the second item, we refer the reader to [NS13, Lemma
2.3]. Finally, for the last item, we refer the reader to [Rol].

There are also other special sets that will be of interest, as follows.

Definition 2.7. The collection of non-terminating elements is denoted by @NT X and
consists of the elements v 2 @X such that every finite descending chain can be extended,
i.e. given h 2 Uv there is a k 2 Uv such that

k ⇢ h.

In general, it may be the case that @NT X is empty. However, in a case where X admits
a non-elementary action (see §3.1) then @NT X is not empty [CFI12, NS13].

2.4. The median. The vertex set of a CAT(0) cube complex with the edge metric
(equivalently with the wall metric) is a median space [CN05, Nic04, Rol]. The median
structure extends nicely to the Roller compactification.

We define the interval

I(v, w) := {m 2 X : Uv \ Uw ⇢ Um}.

In the special case where v, w 2 X , this is the collection of vertices that are crossed by an
edge geodesic connecting v and w.

Then, the fact that X is a median space† is captured by the following: for every
u, v, w 2 X there is a unique m 2 X such that

{m} = I(u, v) \ I(v, w) \ I(w, u).

This unique point is called the median of u, v, and w and will sometimes be denoted by
m(u, v, w). In terms of half-spaces, we have

Um = (Uu \ Uv) [ (Uv \ Uw) [ (Uw \ Uu),

which is captured by this beautiful Venn diagram:

Uv

Uu Uw

† A median space is usually required to satisfy the condition that intervals are finite. However, we weaken this
assumption here in order to extend the notion to the Roller compactification.
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While general CAT(0) cube complexes can be quite wild†, the structure of intervals is
tamable by the following theorem.

THEOREM 2.8. [BCG
+
09, Theorem 1.16] Let v, w 2 X. Then the vertex interval I(v, w)

isometrically embeds into ZD (with the standard cubulation) where D is the dimension
of X.

The proof of this employs Dilworth’s theorem, which states that a partially ordered set
has finite width D if and only if it can be partitioned into D-chains. Here, the partially
ordered set is Uw\Uv . Set inclusion yields the partial order and an antichain corresponds
to a set of pairwise transverse half-spaces. By reversing the chains of half-spaces in Uw\Uv

in a consistent way, we may find other pairs x, y 2 X such that I(x, y) = I(v, w). This
yields the following corollary.

COROLLARY 2.9. If X has dimension D, then for any interval I ⇢ X, there are at most
2D elements on which I is an interval.

2.5. Projections and lifting decompositions. It is straightforward, thanks to
Theorem 2.3, to deduce that if H

0 ⇢ H is an involution invariant subset then there is
a natural quotient map X (H) ! X (H0). Furthermore, if H0 is 0-invariant for some acting
group 0, then the quotient is 0-equivariant as well. One can ask to what extent this can be
reversed. Namely, when is it possible to find an embedding X (H0) ,! X (H)? And if H0 is
assumed to be 0-invariant, can the embedding be made to be 0-equivariant?

Definition 2.10. Given a subset H
0 ⇢ H(X), a lifting decomposition is a choice of a

consistent subset s ⇢ H(X) such that

H(X) = H
0 t (s t s

⇤).

We note that a necessary condition for the existence of a lifting decomposition is that H0

be involution invariant and that it be convex, i.e. if h, k 2 H
0, and h ⇢ `⇢ k then ` 2 H

0.
Given a consistent set s ⇢ H(X), one can associate a set of walls (viewed as an

involution invariant set of half-spaces) Hs := H(X)\(s t s
⇤) such that s is a lifting

decomposition of Hs, though there could of course be others.
The terminology is justified by the following proposition.

PROPOSITION 2.11. [CFI12, Lemma 2.6] The following are true.
• Suppose that H0 ⇢ H(X). If there exists a lifting decomposition s for H0, then there

is an isometric embedding X(H0) ,! X induced from the map 2H
0
,! 2H(X), where

U 7! U t s and the image of this embedding is

\

h2s

h ⇢ X .

† Indeed, if T1 is the tree of countably infinite valency, then the stabilizer group stab(v) of any vertex v 2 T1
contains every discrete countable group.
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• Conversely, if s ⇢ H(X) is a consistent set of half-spaces, then, setting Hs =
H(X)\(s t s

⇤) we get an isometric embedding X(Hs) ,! X obtained as above, onto
\

h2s

h ⇢ X .

• If s satisfies the descending chain condition, then the image of X (Hs) is in X.
Furthermore, if the set s is 0-invariant then, with the restricted action on the image, the
above natural embeddings are 0-equivariant.

Remark 2.12. We note that the projection X ! X (H0) obtained by forgetting the half-
spaces H\H0 is onto. This means that if there is a lifting decomposition X(H0) ,! X then
the relationship between two half-spaces (i.e. facing, transverse, etc.) is equivalent if one
considers them as half-spaces in X or in X (H0).

Let us interpret the significance of Proposition 2.11 in the context of the collection
of the involution-invariant set of half-spaces H(v, w) := Uv4Uw, for v, w 2 X . These
are the half-spaces separating v and w. Then, the collection of half-spaces H(v, w)+ :=
Uv \ Uw, i.e. those that contain both v and w, is a consistent set of half-spaces and it is
straightforward to verify that H(v, w)+ is a lifting decomposition for H(v, w), yielding an
isometric embedding of the CAT(0) cube complex associated with H(v, w) onto I(v, w).

3. Three key notions
There are three notions that together form a powerful framework within which to
study CAT(0) cube complexes. The first is the classical notion of a non-elementary
action. Caprace and Sageev showed that this allows one to study the essential core of
a CAT(0) cube complex [CS11], which is the second notion. Finally, Behrstock and
Charney introduced the notion of strong separation which allows for the local detection
of irreducibility [BC12], which was shown by Caprace and Sageev to be available in the
non-elementary setting [CS11].

3.1. Non-elementary actions. As a CAT(0) space, a CAT(0) cube complex has a visual
boundary @^X which is obtained by considering equivalence classes of geodesic rays,
where two rays are equivalent if they are at bounded distance from each other. The
topology on @^X is the cone topology (which coincides with the topology of uniform
convergence on compact subsets, when one considers geodesic rays emanating from the
same base point) [BH99]. While the visual boundary is not well behaved for non-proper
spaces in general, the assumption that the space is finite dimensional is sufficient [CL10].

Definition 3.1. An isometric action on a CAT(0) space is said to be elementary if there is
a finite orbit in either the space or the visual boundary.

To exemplify the importance of this property, we have the following theorem.

THEOREM 3.2. [CS11] Suppose 0 ! Aut(X) is an action on the CAT(0) cube complex
X. Then either the action is elementary, or 0 contains a freely acting non-abelian free
group.
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3.2. Essential actions. Caprace and Sageev [CS11] showed that for non-elementary
actions, there is a non-empty ‘essential core’ where the action is well behaved. Let us now
develop the necessary terminology and recall the key facts.

Definition 3.3. Fix a group 0 acting by automorphisms on the CAT(0) cube complex X .
A half-space h 2 H is called:
• 0-shallow if for some (and hence all) x 2 X , the set 0 · x \ h is at bounded distance

from h⇤, otherwise, it is said to be 0-deep;
• 0-trivial if h and h⇤ are both shallow;
• 0-essential if h and h⇤ are both deep;
• 0-half-essential if it is deep and h⇤ is shallow.

Remark 3.4. Observe that the collections of essential and trivial half-spaces are both
closed under involution and that the collection of half-essential half-spaces is consistent.
Furthermore, a half-space h 2 H is 0-essential if and only if it is 00-essential for any
00 6 0 of finite index.

THEOREM 3.5. [CS11, Proposition 3.5] Assume 0 ! Aut(X) is a non-elementary action
on the CAT(0) cube complex X, then the collection of 0-essential half-spaces is non-empty.
Furthermore, if Y is the CAT(0) cube complex associated with the 0-essential half-spaces,
then Y is unbounded and there is a 0-equivariant embedding Y ,! X.

The image of Y under this embedding is called the 0-essential core. If all half-spaces
are essential, then the action is said to be essential.

A simple but powerful concept introduced by Caprace and Sageev is that of flipping
a half-space. A half-space h 2 H is said to be 0-flippable if there is a � 2 0 such that
h⇤ ⇢ � h.

LEMMA 3.6. [CS11, Flipping lemma] Assume 0 ! Aut(X) is non-elementary. If h 2 H

is essential, then h is 0-flippable.

Recall that a measure � is said to be quasi-0-invariant whenever the following holds
for every � 2 0, and every measurable set E : if �(E) > 0 then �(� E) > 0.

COROLLARY 3.7. [CFI12] Suppose 0 ! Aut(X) is a non-elementary and essential
action on the CAT(0) cube complex X. If � is a quasi-0-invariant probability measure
on X then �(h) > 0 for every half space h 2 H(X).

Proof. Let h 2 H. Then �(h t h⇤) = 1, which means that either �(h) > 0 or �(h⇤) > 0. If
�(h⇤) > 0 then apply the flipping lemma (Lemma 3.6) and deduce that there is a � 2 0
such that h⇤ ( � h and hence �(� h) > �(h⇤) > 0. But of course, � is 0-quasi-invariant so
�(h) > 0. 2

Another very important operation on half-spaces developed by Caprace and Sageev is
the notion of double skewering.
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LEMMA 3.8. [CS11, Double skewering] Suppose 0 ! Aut(X) is a non-elementary
action on the CAT(0) cube complex X. If h ( k are two essential half spaces, then there
exists a � 2 0 such that

� k ( h ( k.

The following is almost a direct consequence of the definitions. The reader will find a
more in-depth formulation in [CS11, Proposition 3.2].

LEMMA 3.9. If 0 acts on the CAT(0) cube complex X and preserves a finite collection of
half-spaces, then the 0-action is either elementary or not essential.

An action of 0 on X is said to be Roller non-elementary if there is no finite orbit
in the Roller compactification. Of course, having a finite orbit in X is equivalent to
having a fixed point, and so what distinguishes Roller non-elementary from visual non-
elementary actions is the existence of finite orbits in the corresponding boundaries.
Furthermore, (visual) non-elementary actions are necessarily Roller non-elementary,
though the converse is false in general. One can take as an example the standard action
of 0 = Z ⇥ F2 on Z ⇥ T , where T is the standard Cayley tree. It is straightforward to
see that this example is essential and elementary but not Roller elementary. On the other
hand, if we set @Z = {�1, 1}, then both {1} ⇥ T and {�1} ⇥ T are 0-invariant and
non-elementary. This phenomenon is captured in the following proposition.

PROPOSITION 3.10. ([CFI12, Proposition 2.26], [CS11]) Let X be a finite-dimensional
CAT(0) cube complex and let 0 ! Aut(X) be an action on X. One of the following holds.
(1) The 0-action is Roller elementary.
(2) There is a finite index subgroup 00 < 0 and a 00-invariant subcomplex X 0

,! X
associated with a 00-invariant H0 ⇢ H(X) on which the 00-action is non-elementary
and essential.

Moreover, if the action of 0 is non-elementary on X, then X 0 ,! X and X 0 is the 0-
essential core.

3.3. Product structures. A CAT(0) cube complex is said to be reducible if it can be
expressed as a non-trivial product. Otherwise, it is said to be irreducible. A CAT(0) cube
complex X with half-spaces H admits a product decomposition X = X1 ⇥ · · · ⇥ Xn if and
only if there is a decomposition

H = H1 t · · · t Hn

such that if i 6= j then hi t h j for every (hi , h j ) 2 Hi ⇥ H j and Xi is the CAT(0) cube
complex on half-spaces Hi .

Remark 3.11. This means that an interval in the product is the product of the intervals.
Namely if (x1, . . . , xn), (y1, . . . , yn) 2 X1 ⇥ · · · ⇥ Xn then

I((x1, . . . , xn), (y1, . . . , yn)) = I(x1, y1) ⇥ · · · ⇥ I(xn, yn).

The irreducible decomposition is unique (up to permutation of the factors) and Aut(X)

contains Aut(X1) ⇥ · · · ⇥ Aut(Xn) as a finite index subgroup. Therefore, if 0 acts on X
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by automorphisms, then there is a subgroup of finite index which preserves the product
decomposition [CS11, Proposition 2.6].

We take the opportunity to record here that the Roller boundary is incredibly well
behaved when it comes to products:

@X =
n[

i=1

X1 ⇥ · · · ⇥ X j�1 ⇥ @X j ⇥ X j+1 ⇥ · · · ⇥ Xn .

While the definition of (ir)reducibility for a CAT(0) cube complex in terms of its half-
space structure is already quite useful, its global character makes it at times difficult to
implement. Behrstock and Charney developed an incredibly useful notion for the Salvetti
complexes associated with right-angled Artin groups, which was then extended by Caprace
and Sageev.

Definition 3.12. [BC12] Two half-spaces h, k 2 H are said to be strongly separated if
there is no half-space which is simultaneously transverse to both h and k. For a subset
H

0 ⇢ H we shall say that h, k 2 H
0 are strongly separated in H

0 if there is no half-space in
H

0 which is simultaneously transverse to both h and k.

The following is proved in [BC12] for (the universal cover of) the Salvetti complex of
non-abelian RAAGs.

THEOREM 3.13. [CS11] Let X be a finite-dimensional irreducible CAT(0) cube complex
such that the action of Aut(X) is essential and non-elementary. Then X is irreducible if
and only if there exists a pair of strongly separated half-spaces.

3.4. Euclidean complexes.

Definition 3.14. Let X be a CAT(0) cube complex. We say that X is Euclidean if the
vertex set with the combinatorial metric embeds isometrically in ZD with the `1-metric,
for some D < 1.

Our prime example of a Euclidean CAT(0) cube complex is an interval, which is the
content of Theorem 2.8.

Definition 3.15. An n-tuple of half-spaces h1, . . . , hn 2 H is said to be facing if, for each
i 6= j ,

h⇤
i \ h⇤

j = ?.

As an obstruction to when a CAT(0) cube complex is Euclidean, there is the following
lemma.

LEMMA 3.16. [CFI12, Lemma 2.33] If X is a Euclidean CAT(0) cube complex that
isometrically embeds into ZD, then any set of pairwise facing halfspaces has cardinality
at most 2D.

The following is an important characterization of when a complex is Euclidean.

COROLLARY 3.17. ([CFI12, Corollary 2.33], [CS11]) Let X be an irreducible finite-
dimensional CAT(0) cube complex so that the action of Aut(X) is essential and non-
elementary. The following are equivalent:
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(1) X is an interval;
(2) X is Euclidean;
(3) H(X) does not contain a facing triple of half-spaces.

Remark 3.18. The statement of [CFI12, Corollary 2.33] states that X is Euclidean if and
only if H(X) does not contain a facing triple. However, the proof actually shows that
(2) implies (3) and (3) implies (1). The missing (1) implies (2) is of course provided by
Theorem 2.8 [BCG

+
09].

LEMMA 3.19. Let X be an interval on v, w 2 X. Then Aut(X) is elementary.

Proof. If X is an interval then the collection of points on which it is an interval is finite and
bounded above by 2D by Corollary 2.9. Let 00 be the finite index subgroup which fixes this
set pointwise and let v belong to this set. Then, for every finite collection h1, . . . , hn 2 Uv

the intersection
Tn

i=1 hi is not empty. Hence, the intersection of the visual boundaries
corresponding to the hi must be non-empty and its unique circumcenter is fixed for the
00-action by [CS11, Proposition 3.6]. 2

LEMMA 3.20. [CFI12, Lemma 2.28] Let 0 ! Aut(X) be a non-elementary action. Then
the 00-action on the irreducible factors of the essential core is also non-elementary and
essential, where 00 is the finite index subgroup preserving this decomposition.

We immediately deduce the following corollary (see also [CFI12, Corollary 2.34]).

COROLLARY 3.21. If 0 ! Aut(X) is non-elementary then any irreducible factor in the
essential core of X is not Euclidean and hence not an interval.

3.5. The combinatorial bridge. Behrstock and Charney showed that the CAT(0) bridge
connecting two strongly separated walls is a finite geodesic segment [BC12]. In [CFI12]
this idea is translated to the ‘combinatorial’, i.e. median, setting. Most of what follows is
from or adapted from [CFI12], though the notation differs slightly. Recall our convention
that {k, k⇤} is denoted by k̂, for a half-space k, and that given another half-space h we shall
say that k̂ ⇢ h if either k or k⇤ is a proper subset of h.

Remark 3.22. Observe that for two half-spaces h, k we have that h \ k and h⇤ \ k are both
non-empty if and only if h t k or ĥ ⇢ k.

Definition 3.23. Let h1 ( h⇤
2 be a nested pair of halfspaces and �(h1, h2) denote the

collection of half-spaces h 2 H such that one of the following conditions holds:
(1) ĥ1 ⇢ h and h2 t h;
(2) ĥ2 ⇢ h and h1 t h;
(3) ĥ1, ĥ2 ⇢ h.
Furthermore, a half-space h will be said to be of types (1), (2), or (3) if it satisfies the
corresponding property.

We note that both h1 and h2 are not of types (1)–(3). Furthermore, since h1 and h2
are disjoint, condition (1) actually means that h1 ⇢ h and h2 t h (and analogously for
condition (2)).
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LEMMA 3.24. Given h1 ( h⇤
2, the collection �(h1, h2) is consistent. Furthermore,

�(h1, h2) satisfies the descending chain condition.

Proof. We begin by observing that if h 2 �(h1, h2) then we necessarily have that h⇤ /2
�(h1, h2).

Now suppose that h 2 �(h1, h2) is of type (3). If h ⇢ k then clearly k is also of type (3)
and hence k 2 �(h1, h2).

Next suppose that h is of type (1) and h ⇢ k. Then ĥ1 ⇢ k. Since h2 t h and h ⇢ k we
have that h2 \ k and h⇤

2 \ k are both non-empty. By Remark 3.22, either k t h2 or ĥ2 ⇢ k,
and so k 2 �(h1, h2).

Of course, a symmetric argument shows that if h is of type (2) and h ⇢ k then k 2
�(h1, h2).

Next we turn to the question of the descending chain condition. Since there are finitely
many half-spaces in between any two, an infinite descending chain will eventually fail to
satisfy all three conditions (1) through (3). 2

Definition 3.25. The (combinatorial) bridge between h1 ( h⇤
2 is denoted by B(h1, h2) and

corresponds to
T

h2�(h1,h2)
h ⇢ X .

LEMMA 3.26. Assume that h1 ( h⇤
2 and set � = �(h1, h2). The collection H

0 = H\(� t
�⇤) consists of half-spaces h such that one of the following holds:
• h t h1 and h t h2;
• up to replacing h by h⇤ we have that

h1 ✓ h ✓ h⇤
2.

Proof. It is clear that if h is a half-space that is transverse to both h1 and h2 then h /2
� t �⇤. It is also clear that if ĥ = ĥ1 or ĥ = ĥ2 then h /2 � t �⇤.

Now assume that h1 ( h ( h⇤
2. Then h � ĥ1 and h does not contain nor is it transverse

to ĥ2 and hence h /2 � t �⇤.
Conversely, suppose that h /2 � t �⇤. If h t h1 then since h and h⇤ are not of type (2)

we must have that h t h2. Assume then that h is not transverse to both h1 and h2.
If either ĥ = ĥ1 or ĥ = ĥ2 then up to replacing h by h⇤ we have that h1 ✓ h ✓ h⇤

2.
Therefore, suppose that ĥ 6= ĥ1 and ĥ 6= ĥ2. Then, each of ĥ1 and ĥ2 is contained in h
or h⇤. Since both h and h⇤ are not of type (3), we must have, up to replacing h by h⇤,
that ĥ1 ⇢ h and ĥ2 ⇢ h⇤. Now, of course, since h1 \ h2 = ?, we conclude that h1 ⇢ h and
h2 ⇢ h⇤, i.e.

h1 ⇢ h ⇢ h⇤
2. 2

COROLLARY 3.27. Assume h1 ⇢ h⇤
2 are strongly separated. With the notation as in

Lemma 3.26, � gives a lifting decomposition of H0. Furthermore, there exists a unique
xi 2 hi such that

B(h1, h2) = I(x1, x2).

Proof. The fact that � is a lifting decomposition for

H
0 = {h 2 H : h1 ✓ h ✓ h⇤

2 or h1 ✓ h⇤ ✓ h⇤
2}
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follows from Lemmas 3.24 and 3.26. In particular, H0 is precisely the set of half-spaces
which separate points in B(h1, h2).

Let us show that B(h1, h2) is an interval. To this end, let Si = hi \ B(h1, h2). Since
hi 2 H

0 it follows that Si 6= ?.
Fixing i , suppose that x, y 2 Si . Then, any wall separating them must belong to H

0. By
Lemma 3.26 and the assumption that h1 and h2 are strongly separated (again replacing h
by h⇤ if necessary), we see that h1 ⇢ h ⇢ h⇤

2. This means of course that h1 \ h⇤ = ? and
hence x = y, i.e. Si is a singleton, for both i = 1, 2.

Set Si = {xi }. Once more, since h1 and h2 are strongly separated, the collection
H

0 corresponds to half-spaces nested in between h1 and h⇤
2 and hence H

0 ⇢ H(x1, x2).
Conversely, if h 2 H(x1, x2) then h separates the two points x1, x2 2 B(h1, h2) and hence
h 2 H

0. 2

LEMMA 3.28. Assume that h1 ⇢ h⇤
2 are strongly separated. If ⇠i 2 hi ⇢ X, and p 2

B(h1, h2), then
m(⇠1, p, ⇠2) = p.

Proof. Let m = m(⇠1, p, ⇠2). Recall that m is uniquely determined by

Um = (U⇠1 \ Up) [ (Up \ U⇠2) [ (U⇠2 \ U⇠1),

and so we must show that if h 2 U⇠2 \ U⇠1 then h 2 Up. In fact, we shall show that if
⇠1, ⇠2 2 h then h 2 �(h1, h2) ⇢ Up.

By assumption ⇠i 2 h \ hi 6= ?. Furthermore, since h1 and h2 are strongly separated, h
cannot be transverse to both h1 and h2. Suppose that h is parallel to h2. Since ⇠2 2 h2 \ h
and ⇠1 2 h⇤

2 \ h, by Remark 3.22 we have that h � ĥ2. The same argument shows that
either h is transverse to h1 or contains ĥ1 and therefore h 2 �(h1, h2). 2

3.6. More consequences.

LEMMA 3.29. [CFI12, Lemma 2.28] Suppose that 0 ! Aut(X) is a non-elementary and
essential action, with X irreducible.
• If h 2 H then there exists � , � 0 2 0 such that the following are pairwise strongly

separated
� h ⇢ h ⇢ � 0h.

• In each orbit, there are n-tuples of facing and pairwise strongly separated half-
spaces.

LEMMA 3.30. Let X be an irreducible CAT(0) cube complex with a non-elementary
and essential 0-action. Let h 2 H and n 2 Z with n > 2. Then, there exists an n-tuple
{k1, . . . , kn} contained in a single 0-orbit consisting of facing and pairwise strongly
separated half-spaces such that

ĥ 2
n\

i=1

ki .

Proof. Fix h 2 H. For n = 2 we take k1 = � h⇤ and k2 = � 0h as in Lemma 3.29.
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Now, assume n > 2. Let {b1, . . . , bn+1} be the collection of facing and pairwise
strongly separated half-spaces guaranteed by Item (2) of Lemma 3.29. For each i =
1, . . . , n + 1 exactly one of the following possibilities holds:
(a) ĥ = b̂i ;
(b) h t bi ;
(c) ĥ ⇢ b⇤

i ;
(d) ĥ ⇢ bi .

Furthermore, since the collection is strongly separated and facing, there is at most one
i , assume it is i = n + 1, for which the mutually exclusive items (a) through (c) can occur.
Therefore, we have that

ĥ ⇢
n\

i=1

bi .

Finally, if the constructed set does not belong to the same orbit, one may skewer and flip
to assure that they do belong to the same orbit yielding the desired collection. 2

LEMMA 3.31. Suppose that X is an irreducible CAT(0) cube complex with a non-
elementary and essential action of the group 0. Any non-empty subset H0 ⇢ H verifying
the following properties must be equal to H:
• (symmetric): (H0)⇤ = H

0;
• (0-invariant): 0 · H0 = H

0;
• (convex): if h, h0 2 H

0 with h ⇢ h0 and k 2 H such that h ⇢ k ⇢ h0 then k 2 H
0.

Proof. Since X is irreducible, and H
0 is non-empty and 0-invariant, we can apply

Lemmas 3.29 and 3.8 to obtain a bi-infinite sequence of pairwise strongly separated half-
spaces {hn : n 2 Z} ⇢ H

0 with hn+1 ⇢ hn .
Let k 2 H. Then, there is at most one element of {hn : n 2 Z} which is transverse to k.

This means that there is an N 2 Z for which k̂ ⇢ h⇤
N+2 \ hN . Since H

0 is symmetric and
convex, we conclude that k 2 H

0. 2

COROLLARY 3.32. Assume we have an essential and non-elementary action of 0 on X,
and 00 6 0 of finite index. If H

0 ⇢ H is a non-empty symmetric convex 00-invariant
collection of half-spaces, then either H

0 = H or X ⇠= X 0 ⇥ X 00 and H
0 is the half-space

structure for X 0.

4. The Furstenberg–Poisson boundary
We now assume that 0 is a discrete countable group.

The interested reader should consult the following references for further details [BF14,
BS06, CFI12, Fur02, Kai03]. This exposition follows closely these sources, as well as a
nice series of lectures by Uri Bader at CIRM in the winter of 2014.

Definition 4.1. Consider a measurable action ↵ : 0 ⇥ M ! M of the group 0 on the
measure space (M, m) and µ a measure on 0. The convolution as a measure on M is
the pushforward under the action map of the product measure from 0 ⇥ M :

µ ⇤ m = ↵⇤(µ ⌦ m).
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We shall make use of the following elementary fact.

LEMMA 4.2. Let Haar denote the counting measure on 0, �e the Dirac measure at the
identity e 2 0 and µ 2 P(0) be a probability measure. Then Haar ⇤ µ = Haar, and �e ⇤
µ = µ = µ ⇤ �e.

Proof. Let us show that Haar ⇤ µ(� ) = 1 for every � 2 0. Indeed,

Haar ⇤ µ(� ) = Haar ⌦ µ{(�0, �1) : �0�1 = � }

=
X

�120

Haar(� ��1
1 )µ(�1)

=
X

�120

µ(�1) = 1.

A similar calculation shows that �e ⇤ µ = µ = µ ⇤ �e. 2

Definition 4.3. A probability measure µ 2 P(0) is said to be generating if for every � 2 0
there are hi 2 supp(µ) such that � = h1 · · · hn , i.e. the support of µ generates 0 as a
semigroup.

Given a generating measure µ, we shall associate two spaces with the µ-random walk,
the space of increments and the path space. As sets, these two spaces will be the same, but
the measures on them will be different.

Let 0N = {! = (!n)n>1 : !n 2 0}. The measure µ on 0 naturally induces a measure
µN on 0N which assigns measure µ(g1) · · · µ(gn) to the cylinder set

Ci1,...,in (g1, . . . , gn) = {! 2 0N : !i j = g j for j = 1, . . . , n}.

Let � := 0 ⇥ 0N = {(!0, !1, . . . ) : !n 2 0}. Given another measure ✓ on 0, which is
not assumed to be a probability measure, we can consider the associated measure ✓ ⌦ µN

on �. This is the space of increments, where we see the first factor as where to start
the random walk (with distribution ✓ ). We shall consider the action of 0 on � which is
transitive on the first factor and trivial on the rest.

Next let �0 = 0N. We shall consider the diagonal action of 0 on �0. Observe that there
is a natural map W :�!�0, (!0, !1, !2, . . . ) 7! !0 where the nth component of the
image is given by

!0
n = !0!1!2 · · · !n�1.

With the actions of 0 defined above on � and �0 we note that W is 0-equivariant. We
think of the image of this map as the space of sample paths. Consider the time shift map

S :�!�; (!0, !1, !2, . . . ) 7! (!0!1, !2, !3, . . . ),

which is just a composition of the standard action map 0 ⇥ 0 ! 0 given by (!0, !1) 7!
!0!1 with the time shift map

S0 :�0 !�0; (!0
0, !

0
1, !

0
2, . . . ) 7! (!0

1, !
0
2, !

0
3, . . . ).

With these definitions in place, we observe that W � S = S0 � W .
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Finally, applying Lemma 4.2, we deduce that

S⇤(Haar ⌦ µN) = (Haar ⇤ µ) ⌦ µN = Haar ⌦ µN

(i.e. that S preserves Haar ⌦ µN) and

S⇤(�e ⌦ µN) = (�e ⇤ µ) ⌦ µN = µ ⌦ µN.

As it will be important below, we denote by P = �e ⌦ µN and P
0 = W⇤P the probability

measures on � and �0, respectively.

Definition 4.4. The space of ergodic components of the semi-group action generated by S0

on the space of sample paths �0 with measure class W⇤(Haar ⌦ µN) is the Furstenberg–
Poisson boundary for the µ-random walk on 0 and will be denoted by B. Define the
probability measure ⌫ on B to be the pushforward of P

0 under the natural projection
�0 ! B.

Observing that W⇤(Haar ⌦ µN) is 0-invariant and that the action of 0 commutes with
the semigroup-action of S0, one sees that 0 must preserve the ergodic components of S0,
and hence the action of 0 descends to B.

Furthermore, S0 preserves the measure W⇤(Haar ⌦ µN) and W⇤(�e ⌦ µN) is absolutely
continuous with respect to W⇤(Haar ⌦ µN) so that ⌫ is well defined on B. Finally, the
following calculation shows that µ ⇤ ⌫ = ⌫ and hence that ⌫ is µ-stationary:

µ ⇤ W⇤(�e ⌦ µN) = W⇤((µ ⇤ �e) ⌦ µN)

= W⇤S⇤(�e ⌦ µN)

= S0
⇤W⇤(�e ⌦ µN).

Definition 4.5. Let µ be a probability measure on 0. A 0-equivariant measurable quotient
of the Furstenberg–Poisson boundary (B, ⌫) is called a (0, µ)-boundary.

5. Isometric ergodicity
Recall that a measurable action of 0 on a measure space is quasi-measure preserving if
the image of a measure zero set is always measure zero. Also recall that a (quasi-measure-
preserving) action of 0 on a measure space (E, ⌫) is said to be ergodic if any 0-invariant
Borel map f : E ! R is essentially constant.

The Furstenberg–Poisson boundary has very robust ergodicity properties. Bader and
Furman have developed a general and powerful framework within which one can exploit
these ergodicity properties in what is part of a great unification (and extension) program of
previous super-rigidity results (see [BF14]).

Let (E, ⌫) be a Borel space on which the group 0 acts measurably and quasi-preserves
the measure ⌫. Such a space will be called a Lebesgue 0-space. We say that the 0-action
is isometrically ergodic if the following holds.

Let (M, d) be a separable metric space and 0 ! Isom(M, d) an action by isometries.
If f : E ! M is a 0-equivariant map, then it is essentially constant.

We remark that, for an isometrically ergodic action, the existence of such a map f is
equivalent to the existence of a 0-fixed point in M .
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Let M and V be standard Borel spaces. We say that a Borel map q : M ! V is
relatively metrizable if there is a Borel map on the fibered product d : M ⇥V M ! [0, 1)

such that the restriction dv to each fiber Mv := q�1(v) is a separable metric. (Recall
that the fibered product M ⇥V M is the subset of pairs in (x, y) 2 M ⇥ M such that
q(x) = q(y).) Such a Borel map d is called a relative metric on q : M ! V . Furthermore,
a relatively isometric action of 0 on q : M ! V is a pair of q-compatible Borel-actions
of 0 on M and V such that, as maps on fibers, each � 2 0 is an isometry; that is, if v 2 V
and x, y 2 Mv then

d� v(� x, � y) = dv(x, y).

Definition 5.1. Suppose B and B 0 are Lebesgue 0-spaces. A 0-equivariant Borel map
p : B 0 ! B is said to be relatively isometrically ergodic if for every relatively isometric
action of 0 on q : M ! V , and any (p, q)-compatible maps u : B 0 ! M and ` : B ! V ,
there exists a map f : B ! M making the following diagram commute:

B 0 u - M

B

p

? ` -

9 f
-

V

q

?

Remark 5.2. We note that if one replaces the target spaces B and V with the one point
space {⇤} then one will recover the notions defined above in ‘non-relative’ terms. Namely,
with respect to the one point projection, relative metrizability is just metrizability; a
relatively isometric action is just an isometric action; and relatively isometrically ergodic
is just isometrically ergodic.

PROPOSITION 5.3. [BF14, Proposition 2.2] Assume B, B 0, P, P 0 are measurable 0-
spaces, p : B 0 ! B is relatively isometrically ergodic and there are measurable maps
' : B ! P and '0 : B 0 ! P 0 such that ' � p = q � '0. It follows that q : P 0 ! P is also
relatively isometrically ergodic. That is to say, the property of relative isometric ergodicity
is closed under composition of 0-maps.

Definition 5.4. Let 0 be a locally compact second countable group. A pair (B�, B+) of
0-Lebesgue spaces forms a boundary pair if the 0-action on both B± are amenable and
the projections B� ⇥ B+ ! B± are relatively isometrically ergodic.

Recall that if a Lebesgue 0-space B is amenable (in the sense of Zimmer) then given a
compact metrizable space on which 0 acts by homeomorphisms, there is a 0-equivariant
map B ! P(K ).

The following is a strengthening of a result of Kaimanovich [Kai03]. We state it here
for discrete countable groups and note that the same statement holds for a locally compact
second countable group under the additional assumption that the measure µ is ‘spread out’.

THEOREM 5.5. [BF14, Theorem 2.7, Remark 2.4] Let 0 be a discrete countable group
and µ 2 P(0) a generating probability measure. Let (B�, ⌫�) and (B+, ⌫+) be the
Furstenberg–Poisson boundaries for (0, µ) and (0, µ̌), respectively. Then B� ⇥ B+ is
isometrically ergodic and (B�, B+) is a boundary pair for 0 and any of its lattices.
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Of course, since we have stated the theorem for discrete countable groups, a lattice is
necessarily a finite index subgroup.

As a direct consequence of these, we have the following corollary.

COROLLARY 5.6. Let C be a countable set on which 0 acts by permutations and (P, #)

an isometrically ergodic 0-space. There is a 0-equivariant map P ! C if and only if
there is a 0-fixed point in C. In particular, this holds for P = P� ⇥ P+ where (P�, P+)

is a 0-equivariant quotient of a 0-boundary pair (B�, B+).

Proof. We begin by putting a metric on C by setting d(x1, x2) = 1 � �(x1, x2) for x1, x2 2
C . Clearly (C, d) is separable.

If there is a 0-fixed point in C then clearly there is a 0-equivariant measurable map
P ! C . Conversely, suppose 0 is acting on C by permutations and hence by isometries.
If there is a 0-equivariant measurable map P ! C then, by isometric ergodicity, there is
a 0-fixed point C . 2

6. Tools
As we saw in the previous section, a key characteristic of the Furstenberg–Poisson
boundary is that it is Zimmer amenable. This connects the study of boundary maps to the
study of probability measures on the space of interest. We now develop some background
and tools for this purpose. More specifically, we would like to understand a probability
measure on the Roller compactification X from a geometric perspective.

6.1. Measures on X. Let P(X) denote the space of probability measures on X . If
m 2 P(X) define

Hm := {h 2 H(X) : m(h) = m(h⇤)},

H+
m := {h 2 H(X) : m(h) > 1/2},

H�
m := {h 2 H(X) : m(h) < 1/2},

H±
m := {h 2 H(X) : m(h) 6= 1/2}.

LEMMA 6.1. [CFI12, Lemmas 4.6, 4.7] The maps P(X) ! 2H(X) given by m 7!
Hm, H+

m , H�
m are Aut(X)-equivariant for the natural actions on P(X) and 2H(X).

Furthermore, for m, m0 2 P(X) the following hold.
(1) There are no facing triples in Hm. If X is not Euclidean then H+

m has facing triples
and in particular H+

m 6= ?.
(2) The collection Hm is convex, involution invariant, and the associated complex

X(Hm) is an interval.
(3) The collection of half-spaces H+

m is consistent and yields a lifting decomposition
H(X) = Hm t (H+

m t H�
m ) and corresponds to the subcomplex denoted by Xm ⇢ X.

Therefore Xm ⇠= X(Hm).

Remark 6.2. Fix m 2 P(X). By Proposition 2.11, it follows that Xm ⇢ X whenever H+
m

satisfies the descending chain condition. Furthermore, as in Remark 3.11, if X has an
irreducible decomposition corresponding to H = H1 t · · · t Hn , then we have that Xm ⇢
X whenever Hm \ Hi satisfies the descending chain condition for each i = 1, . . . , n.
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6.2. Strong separation and measures on X. As above, consider the product
decomposition into irreducible factors X = X1 ⇥ · · · ⇥ Xn . Let Si ⇢ Hi ⇥ Hi denote the
pairs of disjoint strongly separated half-spaces in Xi and let S = S1 t · · · t Sn . With
this notation in place, and recalling that an interval in a product is the product of the
corresponding intervals (see Remark 3.11) we have the following easy generalization
of [CFI12, Lemma 4.18].

LEMMA 6.3. Let X be a CAT(0) cube complex with product decomposition corresponding
to H = H1 t · · · t Hn. If m 2 P(X) and (Hm ⇥ Hm) \ Si 6= ? for each i = 1, . . . , n,
then H+

m satisfies the descending chain condition.

For completeness, we recall the proof from [CFI12].

Proof. Observe that H+
m satisfies the descending chain condition if and only if its

intersection with Hi also satisfies the descending chain condition for each i . Consider
the pushforward µi of µ under the projection of X ! Xi . For hi 2 Hi , recall that we may
consider hi as a subset of X or a subset of Xi , and so the definition of the pushforward gives
µ(hi ) = µi (hi ). We may therefore without loss of generality assume that X is irreducible.

Let h, k 2 H be a pair of strongly separated halfspaces in Hµ with h ⇢ k. There is the
following decomposition

H+
µ = P(h) [ P(k), (2)

where P(h) and P(k) are the subsets of H+
µ consisting of halfspaces parallel to h and k,

respectively. Notice that, while P(h) and P(k) are not necessarily disjoint, their union is
the whole of H+

µ since h and k are strongly separated.
Let hn 2 H+

µ be a descending chain, i.e. hn+1 ⇢ hn . We must show that the chain
terminates. Up to passing to a subsequence if necessary, and relabeling h and k, we may
assume that hn 2 P(h) for all n 2 N.

Fix n = 1. Since µ(h1) > 1/2 and µ(h) = 1/2, we cannot have that h1 ⇢ h or h ⇢ h⇤
1.

This leaves two cases, namely that h ⇢ h1 or h⇤ ⇢ h1.
Since there are only finitely many halfspaces, nested between any two, we must

conclude that H+
µ satisfies the descending chain condition. 2

LEMMA 6.4. Assume X is an irreducible CAT(0) cube complex with the action of Aut(X)

being non-elementary and essential. For every m 2 P(X) there exist strongly separated
half spaces h, k 2 H such that h ⇢ k and x̂ 2 h⇤ \ k for every x 2 Hm.

Proof. Fix x0 2 Hm . Applying Lemma 3.30 for n = 4, we find k1, . . . , k4 pairwise
strongly separated facing half-spaces with

x̂0 ⇢
4\

i=1

ki .

By Lemma 6.1, Hm does not contain facing n-tuples for n > 3, and therefore at most two
of these belong to Hm , meaning that at least two belong to H±

m . Up to relabeling, let us
assume that k⇤

1 ⇢ x0 ⇢ k2, and so k1, k2 2 H+
m .
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By Lemma 3.29 we find h, k 2 H such that h and k⇤
1 are strongly separated, k2 and k

are strongly separated, and
h ⇢ k⇤

1 ⇢ x0 ⇢ k2 ⇢ k.

We therefore have that

m(h) 6 m(k⇤
1) < m(x0) = 1/2 < m(k2) 6 m(k),

which in particular means that h 2 H�
m and k 2 H+

m .
Now let x 2 Hm be an arbitrary element. Since m(k2) > 1/2 and m(k⇤

1) < 1/2 it follows
that x 6⇢ k⇤

1 and k2 6⇢ x . This means that either x t k⇤
1 or x t k2 or x̂ ⇢ k1 \ k2. Either way,

we conclude that x̂ ⇢ h⇤ \ k. 2

LEMMA 6.5. Let X be an irreducible, essential, and non-elementary CAT(0) cube
complex. Let m 2 P(X) and E ⇢ P(X) be a non-empty subset. Assume that Hm0 does
not contain strongly separated pairs and Hm0 \ Hm 6= ? for every m0 2 E. Then, there
exists a strongly separated pair h, k 2 H such that h ⇢ k, and for every x 2

S
m02E Hm0

x̂ ⇢ h⇤ \ k.

Proof. We begin by applying Lemma 6.4 to the measure m and find a strongly separated
pair h0, k0 2 H such that h0 ⇢ k0, and x̂ 2 h⇤

0 \ k0 for every x 2 Hm .
Now we apply Lemma 3.29, to find the following chain of pairwise strongly separated

half-spaces:
h2 ⇢ h1 ⇢ h0 ⇢ k0 ⇢ k1 ⇢ k2.

Now, for each m0 2 E , and for each x 2 Hm \ Hm0 6= ?, up to replacing x by x⇤ if
necessary,

h2 ⇢ h1 ⇢ h0 ⇢ x ⇢ k0 ⇢ k1 ⇢ k2.

This means that m0(hi ) 6 1/2 and m0(ki ) > 1/2 for i = 0, 1, 2. Furthermore, since h0 and
h1 are strongly separated, and Hm0 does not have strongly separated pairs, it follows that
h1 2 H�

m0 , and hence h2 2 H�
m0 . Similarly, we conclude that k1, k2 2 H+

m0 .
Now, let y 2 Hm0 be an arbitrary element. Since m0(y) = m0(y⇤) = 1/2 < m0(k1) it

follows that k1 6⇢ y and k1 6⇢ y⇤. Therefore, either y t k1 or ŷ ⇢ k1, and by strong
separation of k1 and k2 we conclude that ŷ ⇢ k2. The same argument applies to h⇤

1, h⇤
2 2

H+
m0 and we conclude that ŷ ⇢ h⇤

2 \ k2. 2

Definition 6.6. Let H ⇢ H(X). An element h 2 H is called:
• minimal in H if for every k 2 H either k t h, h ⇢ k, or h ⇢ k⇤;
• maximal in H if for every k 2 H either k t h, k ⇢ h, or k⇤ ⇢ h, that is to say, h is

maximal if h⇤ is minimal;
• terminal in H

0 if it is either maximal or minimal.

LEMMA 6.7. [CFI12] The map ⌧ : 2H(X) ! 2H(X) taking a collection of half-spaces to
its possibly empty collection of terminal elements is measurable and Aut(X)-equivariant.

Let us look at some examples of sets of half-spaces that do and do not have terminal
elements. Consider x 2 X and the associated Dirac mass �x . Then Ux , the collection of
half-spaces that contain x , corresponds to the heavy half-spaces of �x , namely Ux = H+

�x
.

Now, if x 2 X then Ux satisfies the descending chain condition. This means exactly that

0��6�
  ��1��7/ ������	 .��������������:�21�0.���4214.��������71�/.�
41�.7�1����7.��

https://doi.org/10.1017/etds.2016.124


The Furstenberg–Poisson boundary and CAT(0) cube complexes 2203

⌧ (H+
�x

) 6= ?. Furthermore, if x 2 X and x belongs to infinitely many cubes (which may
be the case if X is not locally finite) then, ⌧ (H+

�x
) is in fact infinite. On the other hand,

if we set X = Z with the standard cubulation and take m = 1
2 (��1 + �+1), where @Z =

{�1, +1}, then we see that all half-spaces are balanced for m and that ⌧ (Hm) = ?.
We record the following straightforward but important fact.

Remark 6.8. Recall that to each measure m 2 P(X) the space associated with Hm is
X(Hm), which is an interval and therefore Euclidean. This means that, if H ⇢ Hm is
any subset, then it must have finitely many terminal elements.

6.3. Examples of Xm. Let us take the opportunity to consider various examples of
measures on a CAT(0) cube complex. More specifically, let X be the universal cover
of the Salvetti complex associated with the right-angled Artin group Z2 ⇤ Z.

In the examples below, each vertical edge is meant to have length one, all measures
are atomic, and the corresponding intervals Xm are highlighted in the appropriate color
(shading). We shall discuss the various properties of these intervals.

Example 1

In this example, two points carry equal measure of 1/2. We see that Hm has strongly
separated pairs. An example of such a pair is taking one half-space that crosses the
upper green (shaded) region and one half-space crossing the lower green (shaded) region.
Therefore, by Lemma 6.3, Xm intersects X . In fact, in this case, Xm is finite and contained
in X . Furthermore, the half-spaces closest to the atoms are terminal in Hm . Finally, any
two facing half-spaces corresponding to ‘vertical’ edges that contain this figure will be
strongly separated containing every wall associated with Hm .

Example 2
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In this example, four points carry equal measure of 1/4. We see that Hm corresponds
to the half-spaces crossing the purple (shaded) region and hence it does not have strongly
separated pairs. Nevertheless Xm is finite and contained in X . This time, the terminal
elements in Hm are those closest to the unique point of Xm that has positive measure.
Finally, any half-space containing the purple (shaded) region in the upper flat together
with any half-space in the lower flat (that also contains the purple (shaded) region) will be
strongly separated containing every wall associated with Hm .

Example 3

In this example, we note that there are an odd number of points of equal measure.
More precisely, five points each of measure 1/5. Since half-spaces partition with their
complements, we cannot have that both a half-space and its complement have an even
number of points and hence Hm = ?. This means of course that the intersection of the
half-spaces in H+

m give us a unique point marked with a star. As Hm is empty, there are no
terminal elements.

Example 4

In this example, the spacing between the lines is supposed to indicate that distances
have been contracted by a factor of 1/2 as one moves from the central point in each flat.
Once more, we have given two points equal measure of 1/2. However, this time, the points
belong to the Roller boundary @X , and in fact, are not even at finite distance in the Roller
boundary so that the interval Xm is infinite and Hm does not contain strongly separated
pairs nor terminal elements. Nevertheless, one can take ‘vertical’ half-spaces (one above
and one below) containing this flat and these will be a strongly separated pair containing
each wall associated with Hm .

6.4. Space of intervals. As we saw above, it is natural to associate with a probability
measure m 2 P(X) an interval Xm ⇢ X . For this reason, let us now look at intervals from
a more global perspective.

0��6�
  ��1��7/ ������	 .��������������:�21�0.���4214.��������71�/.�
41�.7�1����7.��

https://doi.org/10.1017/etds.2016.124


The Furstenberg–Poisson boundary and CAT(0) cube complexes 2205

Consider the continuous map 2H ⇥ 2H ! 2H ⇥ 2H where (S, T ) 7! (S4T, S \ T ).
Consider the restriction of this map to X ⇥ X ⇢ 2H ⇥ 2H. For v, w 2 X we set H(v, w) =
Uv4Uw, and H(v, w)+ = Uv \ Uw, making the first coordinate the half-spaces separating
u and v and the second coordinate the half-spaces that contain both u and v. This uniquely
determines the interval I(u, v) and hence this image is called the space of intervals and is
denoted by I(X). Summarizing, we have that

I(X) = {(H(v, w), H(v, w)+) : v, w 2 X}.

Observe that by Corollary 2.9 the map X ⇥ X ! I(X) is finite-to-one.

LEMMA 6.9. The space of intervals I(X) is closed and hence Borel as a subset of
2H ⇥ 2H.

Proof. Let (Sn, S+
n ) 2 I(X) and assume that (Sn, S+

n ) ! (S, T ) 2 2H ⇥ 2H. By
assumption, there exists vn, wn 2 X such that Sn = H(vn, wn) and S+

n = H(vn, wn)+.
Since X is compact, there is a subsequence such that (vn j , wn j ) ! (v, w) 2 X ⇥ X . We
claim that (S, T ) = (H(v, w), H(v, w)+).

Let (h, k) 2 H(v, w) ⇥ H(v, w)+ and, without loss of generality, assume that w 2 h
and v 2 h⇤. Then, since (vn j , wn j ) ! (v, w), for j sufficiently large we have that wn j 2
h, vn j 2 h⇤ and wn j , vn j 2 k. Since (H(vn, wn), H(vn, wn)+) ! (S, T ) it follows that
(h, k) 2 S ⇥ T .

Conversely, if (h, k) 2 S ⇥ T then, for all n sufficiently large, we have that (h, k) 2
H(vn, wn) ⇥ H(vn, wn)+. In particular this holds for n = n j sufficiently large and so
(h, k) 2 H(v, w) ⇥ H(v, w)+. 2

Let I(X , ⇤) denote the collection of pointed intervals of X , which is defined to be the
collection of elements 2H ⇥ 2H ⇥ 2H,

{(H(v, w), H(v, w)+, Ux ) : x 2 I(v, w), v, w 2 X}.

The proof of Lemma 6.9 easily generalizes to show the following lemma.

LEMMA 6.10. The subset of pointed intervals I(X , ⇤) ⇢ 2H ⇥ 2H ⇥ 2H is closed and
hence Borel.

We shall employ I(X , ⇤) in the proof of Theorem 7.1. For the sake of simplicity, we
shall think of an element in I(X , ⇤) rather than as triples of sets of half-spaces, as a pair
(I, x) such that I is an interval of X and x 2 I.

Remark 6.11. We observe that there is a natural continuous projection I(X , ⇤) ! X ,
where (I, x) 7! x .

7. Boundary maps
In this section we shall prove the existence of measurable equivariant maps between the
Furstenberg–Poisson boundary and the Roller boundary. The existence of such maps,
when the target has a convergence action of the group in question is guaranteed by [BF14,
Theorem 3.2]. However, as we shall see in §10, the action on the Roller compactification
is rarely a convergence action.
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In this section, we shall prove the existence of such maps, and also study some
consequences associated with them.

7.1. Existence. The following theorem can be found in [CFI12], in the case of a
symmetric measure µ. Our proof below however is streamlined thanks to the work of
Bader–Furman [BF14], which allows us to circumvent several of the cases from the proof
in [CFI12].

THEOREM 7.1. Let 0 be a discrete countable group, (B�, ⌫�) and (B+, ⌫+) be a
boundary pair for 0. Assume that 0 ! Aut(X) is an action by automorphisms on a
CAT(0) cube complex X. Then there exists a subgroup 00 of finite index in 0 and 00-
equivariant measurable maps '± : B± ! X. Furthermore, if the action of 0 is non-
elementary then 00 = 0 and '±(B±) ⇢ @X.

Before turning to the proof, let us briefly explain the geometric significance of the
several cases that will be considered in the proof. The cases consist of the possible
(generic) intersection patterns of Hm� with Hm+ . In the case of a tree, these sets uniquely
determine Im� and Im+ , respectively. Let us expand on the significance of each case when
X is a simplicial tree.
(i) Hm� \ Hm+ = ?, for #� ⌦ #+-almost every (a.e.) (m�, m+). This corresponds to

the situation that the intervals in question have trivial intersection. There are in fact
several geometric cases corresponding to whether the intervals are points, segments,
geodesic rays, or geodesic lines.

(ii) Hm� = Hm+ 6= ?, for #� ⌦ #+-a.e. (m�, m+). Here we consider when the essen-
tial image is a single interval. By 0-equivariance of the map, this means that there is
a 0-invariant interval. Geometrically, the types of intervals that can arise correspond
to the different ways an action can be elementary.

(iii) Hm� \ Hm+ 6= ? and Hm�4Hm+ 6= ?, for #� ⌦ #+-a.e. (m�, m+). For a general
CAT(0) cube complex, this third case breaks up further in to subcases, which do not
arise when we are concerning ourselves with a tree, as we do now. In fact, in the
case of a tree, the assumptions mean geometrically that the intervals Im� and Im+

(generically) have non-trivial intersection and are not equal. One may associate with
this the finite data of the (oriented) edges in Im�4Im+ that are closest to Im� \
Im+ ⇢ X .

Proof of Theorem 7.1. If 0 has a finite orbit in X then there is a finite index subgroup 00
fixing a point x0 2 X and a 00-equivariant measurable map B± ! {x0}.

Now, suppose that 0 does not have a finite orbit in the Roller compactification X . Then,
by Proposition 3.10 there exists a finite index subgroup 00 6 0 and a subcomplex X 0 ⇢ X
on which the 00-action is non-elementary and essential, with H(X 0) ⇢ H. Furthermore,
if the 0-action was assumed to be non-elementary on X , then we have that X 0 ⇢ X is
0-invaraint and essential.

We record the fact that we have possibly passed to a finite index subgroup and an
invariant subcomplex which, a priori can belong to the Roller boundary. We also observe
that (B�, B+) continues to be a boundary pair for 00 by Theorem 5.5. Finally, we note
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that @X 0 ⇢ @X is invariant under 00. And so to conserve notation, we assume now that the
0-action itself is non-elementary and essential on X .

By amenability of the 0-action on B± there exist 0-equivariant maps B± ! P(X). Let
#± be the pushforward under these maps of the measures ⌫±. To avoid confusion, let
us denote by P± the space P(X) with the measure #±. Then our goal now is to extract
maps '± : P± ! X which are measurable, 0-equivariant, and defined on a conull set. To
this end, observe that by Proposition 5.3 the projection maps ⇡± : P� ⇥ P+ ! P± are
relatively isometrically ergodic.

Let m 2 P(X) and recall that we have an associated interval denoted by Xm whose
half-space structure corresponds to the m-balanced half-spaces Hm . As a subset of X we
have

Xm =
\

h2H+
m

h.

We shall be dealing with various natural maps P(X) to 2H or R. We cite [CFI12] for
the measurability of all of them and do not address the issue again.

Consider the maps (m�, m+) 7! #(Hm� \ Hm+), #(Hm�4Hm+) which possibly take
the value 1. Since these are 0-invariant, they must be essentially constant by ergodicity
of P� ⇥ P+. Hence, we must be in one of the following cases.

(i) Hm� \ Hm+ = ?, for #� ⌦ #+-a.e. (m�, m+). Fix (m�, m+) 2 P� ⇥ P+ on a
conull set satisfying the hypotheses. Then, we must have that Hm� ⇢ H±

m+
and Hm+ ⇢

H±
m�

. By Lemma 6.1 both H+
m�

and H+
m+

are consistent sets. This means that the following
collections of half-spaces satisfy both consistency and totality, i.e. they correspond to
points in the Roller compactification. Indeed, they are the projections onto Xm� and Xm+ ,
respectively, and hence will be denoted by pm�(m+) 2 Xm� and pm+(m�) 2 Xm+ . They
are defined as

Upm� (m+) = H+
m�

[ (Hm� \ H+
m+

),

Upm+ (m�) = H+
m+

[ (Hm+ \ H+
m�

).

Recall that, as was developed at the end of §2.4, I(X , ⇤), the collection of pointed
intervals in X , is Borel and that there is a natural Borel map from I(X , ⇤) to I(X) and X ,
obtained by ‘forgetting’ the additional information of the point, or interval, respectively.
This gives rise to the following commutative diagram:

P� ⇥ P+ - I(X , ⇤) - X

P+

⇡+

?
-

9  
+

-

I(X)

q

?

The lower horizontal map P+ ! I(X) corresponds to the map

m+ 7! Xm+ ,
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and the upper horizontal map P� ⇥ P+ ! I(X , ⇤) is

(m�, m+) 7! (Xm+ , pm+(m�)).

We observe that the preimage q�1(I) = {(I, x) : x 2 I} is a countable set, and therefore
the map d : I(X , ⇤) ⇥ I(X , ⇤) ! [0, 1) defined by

d((I1, x1), (I2, x2)) = 1 � �(x1, x2)

clearly makes the preimage q�1(I) into a separable metric space such that 0 acts relatively
isometrically on q : I(X , ⇤) ! I(X).

Now, since the quotient P� ⇥ P+ ! P+ is relatively isometrically ergodic for 0, we
deduce that there is a measurable 0-equivariant map defined on a conull set  + : P+ !
I(X , ⇤). The same argument with the obvious modifications yields  � : P� ! I(X , ⇤).
Post composing these with the map I(X , ⇤) ! X we obtain

'± : P± ! X .

Now, since X and @X are both measurable 0-invariant subsets, we must have that the
essential image belongs to precisely one of these. Suppose that '±(P±) ⇢ X . Then since
X is countable, by Corollary 5.6 we conclude that there is a 0-fixed point in X , which
contradicts the assumption that the action is non-elementary. Therefore, '±(P±) ⇢ @X .

To finish the proof, we shall show that all other cases lead to a contradiction. Recall that
we remain under the assumption that the 0-action on X is essential and non-elementary.

(ii) Hm� = Hm+ 6= ?, for #� ⌦ #+-a.e. (m�, m+). Fix a generic m� 2 P� and a
#+-conull and 0-invariant set P+ ⇢ P+ so that Hm+ = Hm� for every m+ 2 P+. Set
H

0 := Hm� , and observe that this is a non-empty, symmetric, and convex 0-invariant set
of half-spaces. By Corollary 3.32, it follows that either H0 = H or X ⇠= Xm� ⇥ X2. This
contradicts Corollary 3.21: the 0-action is essential and non-elementary so X cannot have
an interval as a factor.

(iii) Hm� \ Hm+ 6= ? and Hm�4Hm+ 6= ?, for #� ⌦ #+-a.e. (m�, m+). Let X =
X1 ⇥ · · · ⇥ Xn be the decomposition of X into irreducible factors, H = H1 t · · · t Hn
be the corresponding decomposition of half-spaces into pairwise transverse collections,
and 00 be a normal finite index subgroup whose image is in Aut(X1) ⇥ · · · ⇥ Aut(Xn).
Recall that Si ⇢ Hi ⇥ Hi denotes the pairs of disjoint strongly separated half-spaces in the
irreducible factor Xi and S = S1 t · · · t Sn . Observe that Si is 00-invariant for each i =
1, . . . , n and that S is 0-invariant. We then have that the map m 7! #((Hm ⇥ Hm) \ Si )

is measurable, 00-invariant, and hence essentially constant for both #� and #+.
Up to changing the roles of #� and #+ we have the following two cases corresponding

to the essential values of m 7! #((Hm ⇥ Hm) \ Si ) for i 2 {1, . . . , n}: either the #+-
essential value is zero for some i 2 {1, . . . , n}, or the #� and #+ essential values are
both non-zero for every i 2 {1, . . . , n}.

(iii)(a) (Hm+ ⇥ Hm+) \ Si = ? for some i and #+-a.e. m+ 2 P+. Let us assume that
i = 1. Fix a #�-generic m� 2 P� and a #+-conull 00-invariant set P+ ⇢ P+ such that the
following hold for every m+ 2 P+:
• Hm� \ Hm+ 6= ?;
• Hm�4Hm+ 6= ?;
• (Hm+ ⇥ Hm+) \ S1 = ?.
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Consider now the 00-equivariant projection X ! X1 which induces a 00-equivariant map
P(X) ! P(X1). Recall that the 00-action remains essential (Remark 3.4) and non-
elementary (Lemma 3.20) on each irreducible factor, in particular on X1.

Set E and m to be the pushforwards of P+ and m�, respectively, under the 00-
equivariant projection X ! X1. Observe that E is 00-invariant and that the above
assumptions on P+ and m� descend to E and m, respectively. In particular, the hypotheses
of Lemma 6.5 are satisfied. This means that there exists a strongly separated pair
(h, k) 2 S1 such that h ⇢ k, and for every x 2

S
m02E Hm0 we have that

x̂ ⇢ h⇤ \ k.

By 00-invariance of E , it follows that h⇤ and k are not 00 flippable, which contradicts the
flipping lemma (Lemma 3.6), as the action of 00 is essential and non-elementary on X1.

(iii)(b) For each i we have (Hm ⇥ Hm) \ Si 6= ? for #±-a.e. m 2 P±. Fix a generic
(m�, m+) 2 P� ⇥ P+. In this case, by Lemma 6.3 we must have that H+

m�
[ H+

m+

satisfies the descending chain condition, i.e. every descending chain has a terminal
element. Furthermore, our assumption that Hm�4Hm+ 6= ? implies that

(Hm� \ H+
m+

) [ (Hm+ \ H+
m�

) 6= ?.

Hence, as a subset of Hm� [ Hm+ , as in Remark 6.8, there are finitely many terminal
elements in (Hm� \ H+

m+
) [ (Hm+ \ H+

m�
) and there is at least one because these are non-

empty subsets of H+
m�

[ H+
m+

. This yields a 0-equivariant map from P� ⇥ P+ to the
countable collection of finite subsets of H and so, by Corollary 5.6, there is a finite set
F ⇢ H which is 0-invariant. But Lemma 3.9 shows that this is incompatible with our
assumption that the action is both essential and non-elementary. 2

Recall that the Furstenberg–Poisson boundaries associated with µ̌ and µ and (for
generating µ 2 P(0)) give a boundary pair for a group 0 (see Theorem 5.5) and hence
by Theorem 7.1 we deduce the following corollary.

COROLLARY 7.2. Let 0 be a discrete countable group and µ 2 P(0) a generating
probability measure. Suppose furthermore that 0 ! Aut(X) is a non-elementary and
essential action on the CAT(0) cube complex X. Then there exist quasi-0-invariant
probability measures �± 2 P(@X) such that (@X, ��) and (@X, �+) are (0, µ̌)- and
(0, µ)-boundaries, respectively.

7.2. The image and regular points. Nevo and Sageev refined the description of the
Furstenberg–Poisson boundary by passing from the full Roller boundary to the closure of
the non-terminating elements [NS13]. In this section we give a further refinement in terms
of the regular points in the Roller boundary, along with some corollaries.

Definition 7.3. Let X be an irreducible CAT(0) cube complex. Define @r X , the regular
points, as the set of ⇠ 2 @X such that if h1, h2 2 U⇠ then there is a k 2 U⇠ such that k ⇢
h1 \ h2 and k is strongly separated from both h1 and h2. If X is reducible, define the
regular points to be the product of the regular points in each factor, i.e.

@r X = @r X1 ⇥ · · · ⇥ @r Xn .
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Remark 7.4. In the above definition, the reader should consider the particular case where
h1 t h2. Indeed, the aim of the definition is to point out that such points do not live on the
boundary of any ‘piece’ of a quarter plane.

Note that @r X could be empty. Consider for example the connected complex obtained
by removing the second and fourth quadrants in the plane. This example is admittedly
degenerate having only finitely many automorphisms.

PROPOSITION 7.5. Let X be an irreducible CAT(0) cube complex and ↵ 2 @X. The
following are equivalent:
(1) ↵ 2 @r X;
(2) there exists an infinite descending chain {sn}n2N ⇢ U↵ of pairwise strongly separated

half-spaces;
(3) there exists a bi-infinite descending chain {sn}n2Z ⇢ U↵ of pairwise strongly

separated half-spaces.

Proof. We begin by observing that if {sn} is an infinite descending chain of strongly
separated half-spaces and h is a half-space whose intersection with each sn is non-trivial,
then for n sufficiently large we must have that sn ⇢ h. By strong separation, we may
assume that h is parallel to each sn . Now, if s1 ⇢ h then we are done. Otherwise,
s1 \ h⇤ 6= ? and since s1 \ h is non-empty as well, by Remark 3.22, we have that ĥ ⇢ s1.
Since h \ sn 6= ? then sn is not contained in h⇤ for any n. Finally, since there are finitely
many half-spaces in between any two, we conclude that for n sufficiently large, sn ⇢ h.
(1) H) (2): Let ↵ 2 @r X . Fix s1 2 U↵ . Then there exists s2 2 U↵ such that s2 ⇢ s1 and
s2 and s1 are strongly separated.

Assume that s1, . . . , sn 2 U↵ are decreasing and pairwise strongly separated. Since ↵ 2
@r X there is sn+1 2 U↵ such that sn+1 ( sn \ sn�1 with sn+1 strongly separated with sn .
(2) H) (1): This is straightforward. Assume {sn} ⇢ U↵ is an infinite descending
sequence of pairwise strongly separated half-spaces and h1, h2 2 U↵ . As was observed
in the beginning of this proof, for n sufficiently large,

sn+1 ⇢ sn ⇢ h1 \ h2.

(2) H) (3): Let {sn : n 2 N} ⇢ U↵ be an infinite descending sequence of pairwise
strongly separated half-spaces. By the double skewering lemma (Lemma 3.8), there exists
� such that � s1 ⇢ s2 ⇢ s1, that is, s1 ⇢ ��1s2 ⇢ ��1s1 and setting s�n = ��ns1 completes
the desired sequence.
(3) H) (2): This is trivial. 2

We note that conditions (1)–(3) of Proposition 7.5 imply that ↵ 2 @NT X . That this is true
for (1) is immediate from the definition of a regular point for irreducible complexes. That
this is true for conditions (2) and (3) follows as well: if sn, h 2 U↵ then for n sufficiently
large we must have that sn ⇢ h.

COROLLARY 7.6. Let X be irreducible. The intersection of any infinite descending chain
of strongly separated half-spaces is a singleton. In particular, if ⇠1, ⇠2 2 @r X are distinct,
then ⇠1 2 h1 and ⇠2 2 h2 for some strongly separated disjoint pair h1, h2 2 H.
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Proof. Let us show that if {sn} is a strongly separated descending chain of half-spaces
then

T
n2N sn is a singleton. Indeed, since every finite intersection of these half-spaces

is non-empty, and X is compact,
T

n2N sn is non-empty. Suppose that x, y 2
T

n2N sn
are distinct. Then for some h we have that x 2 h and y 2 h⇤. This of course means that
for each n, h \ sn and h⇤ \ sn are both non-empty. By Remark 3.22, we must have that
for each n, either h t sn or ĥ ⇢ sn . By strong separation, it follows that ĥ ⇢ sn for all n
sufficiently large. But this is impossible since sn is descending and there are finitely many
half-spaces in between any two. Therefore, no such h exists and x = y. 2

COROLLARY 7.7. If X is a CAT(0) cube complex and the action of Aut(X) is essential
and non-elementary, then @r X 6= ?.

Proof. Recall that the action of Aut(X) is essential and non-elementary if and only if
the action of Aut(Xi ) is essential and non-elementary for each irreducible factor Xi
of X (Lemma 3.20 and Theorem 3.5). Caprace and Sageev’s theorem (Theorem 3.13)
characterizes such irreducible complexes by the existence of strongly separated pairs
s1 ⇢ s0 in Hi . Applying the double skewering lemma (Lemma 3.8), we find � s1 ⇢ � s0 ⇢
s1 ⇢ s0 and � s1 is strongly separated from s1. Setting sn = � n�1s1 we obtain an infinite
descending strongly separated chain and, by Proposition 7.5, we have that @r Xi is non-
empty and hence @r X is non-empty. 2

THEOREM 7.8. Let 0 be a discrete countable group, and (B�, ⌫�) and (B+, ⌫+) be a
boundary pair for 0. Assume that 0 ! Aut(X) is an essential and non-elementary action
by automorphisms on a CAT(0) cube complex X. Then any 0-equivariant measurable map
'± : B± ! @X has an essential target in @r X.

This will follow immediately from Theorem 7.14. The rest of this section is devoted
to proving this and other key results. We first establish some notation: for x, y 2 X the
collection of half-spaces containing y and not x will be denoted by [x, y]. In terms of Ux
and Uy we have [x, y] = Uy\Ux . Note that this is an oriented interval!

The following lemma is extremely useful in identifying the �� ⌦ �+-generic
relationship between the components of pairs in @X2. More specifically, if a certain
(finite) phenomenon happens once, it is guaranteed to happen infinitely many times. It
will be applied for example, in the case where S is the collection of strongly separated
pairs. Specifically, we shall deduce from the fact that strongly separated half-spaces exist
that we must have infinitely many strongly separated half-spaces separating a generic pair
(⇠�, ⇠+) 2 @X2.

LEMMA 7.9. Assume 0 ! Aut(X) is a non-elementary and essential action, �± being
quasi-0-invariant measures on @X such that (@X2, �� ⌦ �+) is isometrically ergodic.
Let N > 0 and S ⇢ H

N ⇥ H be a 0-invariant collection of (N + 1)-tuples. If there is
(h1, . . . , hN , k) 2 S with

h1 ⇢ · · · ⇢ hN ⇢ k⇤,

then the map @X2 ! N [ {1} defined by (⇠�, ⇠+) 7! #([⇠+, ⇠�]N ⇥ [⇠�, ⇠+] \ S) is
�� ⌦ �+-essentially constant with infinite essential value.
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Proof. The measurability of the map in question relies on the 0-invariance of the non-
empty set S. The proof is straightforward and similar to that of [CFI12, Corollary A.2].

Since S is 0-invariant, it follows that the map in question is 0-invariant and hence
essentially constant by (isometric) ergodicity. If the essential value is finite and non-zero,
then this gives a 0-equivariant map from @X2 to the countable collection of finite subsets of
H. By isometric ergodicity and Corollary 5.6 this yields a finite 0-invariant set in H which
contradicts the assumption that the action is essential and non-elementary by Lemma 3.9.
Therefore the essential value must be 0 or 1.

Fix (h1, . . . , hN , k) 2 S with h1 ⇢ · · · ⇢ hN ⇢ k⇤. It follows that if (⇠�, ⇠+) 2
h1 ⇥ k then (h1, . . . , hN , k) 2 [⇠+, ⇠�]N ⇥ [⇠�, ⇠+], and since �� ⌦ �+(h1 ⇥ k) > 0 by
Lemma 3.7, we have that the essential value is not zero and hence infinite. 2

From this we derive the following important consequences.

LEMMA 7.10. With the hypotheses as in Lemma 7.9, for �� ⌦ �+ a.e. (⇠�, ⇠+) 2 @X2 we
have that I(⇠�, ⇠+) \ X 6= ?.

Proof. Let X = X1 ⇥ · · · ⇥ Xn be the decomposition of X into irreducible factors and let
00 be the finite index subgroup of 0 which maps to Aut(X1) ⇥ · · · ⇥ Aut(Xn). As before,
we let Si ⇢ Hi ⇥ Hi be the collection of disjoint strongly separated pairs of half-spaces in
the irreducible factor Xi , and S = S1 t · · · t Sn . Note that Si is 00-invariant for each i .

Now, by assumption that the 0-action is essential and non-elementary on X , it follows
that the quotient action of 00 on each Xi is also essential and non-elementary (see
Remark 3.4 and Lemma 3.20). By Caprace and Sageev’s theorem (Theorem 3.13),
Si 6= ? and therefore there is an (hi , ki ) 2 Si and hi \ ki = ?. Observing that all the
hypotheses remain true for 00, we may apply Lemma 7.9 to the action of 00 on S = Si
for each i = 1, . . . , n, and we deduce that the essential value of (⇠�, ⇠+) 7! #([⇠+, ⇠�] ⇥
[⇠�, ⇠+] \ Si ) is infinite, for each i .

Next, as observed in Remark 6.2, it follows that Xm ⇢ X , where m is the average of the
Dirac masses at ⇠1 and ⇠2. Of course, I(⇠�, ⇠+) = Xm and hence I(⇠�, ⇠+) \ X 6= ?. 2

Consider two disjoint half-spaces h and k and define the map

�(h, k) = #{` : h ✓ `✓ k⇤}.

We note that this is not a distance on half-spaces†, although it is true that if h ( `✓ k⇤

then �(h, `⇤) 6 �(h, k).

Definition 7.11. Suppose H = H1 t · · · t Hn corresponds to the irreducible factor
decomposition of X . Let S(N )

R denote the collection of (h1, . . . , hN , k) 2 H
N+1 such

that h1 ( · · · ( hN ( k⇤, �(h1, k) 6 R, and for some i 2 {1, . . . , n},

(h1, h2), . . . , (hN�1, hN ), (hN , k) 2 Si .

LEMMA 7.12. Assume the hypotheses in Lemma 7.9. For each N there is an R such
that for each i = 1, . . . , n and �+ ⌦ ��-a.e. (⇠�, ⇠+) 2 @X ⇥ @X the cardinality of
[⇠+, ⇠�]N ⇥ [⇠�, ⇠+] \ S(N )

R \ H
N+1
i is infinite.

† However, if h and k are disjoint and strongly separated, and x 2 h and y 2 k are as in Corollary 3.27, then
�(h, k) = d(x, y).
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Proof. Let 00 be the finite index subgroup which preserves the irreducible factor
decomposition X = X1 ⇥ · · · ⇥ Xn and note that the 00-action is still essential and
non-elementary (Remark 3.4 and Lemma 3.20). Then, the result follows by applying
Lemma 7.9 to the 00-action on S = S(N )

R \ H
N+1
i . We must therefore show that for each

N there is an R such that, for each i = 1, . . . , n, this collection is not empty.
Fix i , and hi ⇢ k⇤

i with (hi , ki ) 2 Si . Applying the double skewering lemma
(Lemma 3.8), we find �i 2 00 such that �i k⇤

i ⇢ hi . In particular, �i hi ⇢ hi are strongly
separated in Hi . Setting R = maxi=1,...,n �(�

N�1
i hi , ki ), we have that (� N�1

i hi , . . . ,

hi , ki ) 2 S(N )
R \ H

N+1
i . 2

Recall that ⌧ : 2H ! 2H measurably assigns to a set its terminal elements (Lemma 6.7).
If H ⇢ H

N , by abuse of notation, we shall use ⌧ (H) to denote the terminal elements in the
union of the projections of H to each factor. Namely, if the i th projection is pi : HN ! H

and H ⇢ H
N then

⌧ (H) := ⌧

✓ N[

i=1

pi (H)

◆
.

By Remark 6.8, (and by considering the average of the Dirac masses at two points x, y 2
X ) there are finitely many terminal elements in any subset of [x, y] [ [y, x] and hence, by
Corollary 5.6, we deduce the following corollary.

COROLLARY 7.13. Assume the hypotheses in Lemma 7.9 and let H = H1 t · · · t Hn be
the irreducible factor decomposition. For each N and each i = 1, . . . , n the following has
�� ⌦ �+-essential value zero:

(⇠�, ⇠+) 7! #(⌧ ([⇠+, ⇠�]N ⇥ [⇠�, ⇠+] \ S(N )
R \ H

N+1
i )).

We shall denote by 1 the fat diagonal in @r X2. Namely, if X = X1 ⇥ · · · ⇥ Xn is the
irreducible decomposition of X then1 is the collection ((⇠1

1 , . . . ⇠n
1 ), (⇠1

2 , . . . ⇠n
2 )) 2 @r X2

such that ⇠ i
1 = ⇠ i

2, for some i .
Theorem 7.8 is a corollary to the following theorem.

THEOREM 7.14. With the hypotheses in Lemma 7.9, it follows that

�� ⌦ �+(@r X2) = 1.

and
�� ⌦ �+(1) = 0.

Proof. Let X = X1 ⇥ · · · ⇥ Xn be the irreducible factor decomposition of X and let 00 be
the finite index subgroup of 0 which preserves each factor. Then, applying Lemma 7.12
and Corollary 7.13 to the 00-action, and setting Si (R) = (Si )

(3)
R , we deduce that, as maps

@X ⇥ @X ! N [ {1}, the essential values of

(⇠�, ⇠+) 7! #([⇠+, ⇠�] ⇥ [⇠�, ⇠+] \ Si (R))

and
(⇠�, ⇠+) 7! #(⌧ ([⇠+, ⇠�] ⇥ [⇠�, ⇠+] \ Si (R)))

are 1 and 0, respectively.
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We claim that if R > 0 then @r X2 contains the intersection of
n\

i=1

{(⇠�, ⇠+) 2 @X ⇥ @X : #([⇠+, ⇠�] ⇥ [⇠�, ⇠+] \ Si (R)) = 1}

with
n\

i=1

{(⇠�, ⇠+) 2 @X ⇥ @X : #(⌧ ([⇠+, ⇠�] ⇥ [⇠�, ⇠+] \ Si (R))) = 0},

which, for R sufficiently large, has full �� ⌦ �+-measure.
Suppose that (⇠�, ⇠+) is such that for some R > 0 and for each i = 1, . . . , n,

#([⇠+, ⇠�] ⇥ [⇠�, ⇠+] \ Si (R)) = 1,

and
#(⌧ ([⇠+, ⇠�]N ⇥ [⇠�, ⇠+] \ Si (R))) = 0.

From these hypotheses, we shall now construct a bi-infinite descending chain {sm : m 2
Z} ⇢ [⇠+, ⇠�] \ Hi which, as elements of Hi , are strongly separated. Proposition 7.5
and the definition of regular points (in the reducible case) complete the proof that
�� ⌦ �+(@r X2) = 1.

Fix i . Suppose that am ( am�1, for m 2 Z is a bi-infinite chain in [⇠+, ⇠�] such that
for each m there exists bm, cm 2 [⇠+, ⇠�] such that am ( bm ( cm are pairwise strongly
separated in Hi with �(am, c⇤

m) 6 R. We claim that sm := am R is a bi-infinite descending
chain, pairwise strongly separated in Hi .

Fix m. Observe that �(am, a⇤
m�R) > R + 1. Since am ⇢ cm and �(am, c⇤

m) 6 R it must
be that am�R 6✓ cm , i.e. c⇤

m \ am�R 6= ?. Also, as am�R \ cm and a⇤
m�R \ c⇤

m contain
⇠� and ⇠+, respectively, we deduce that either cm ⇢ am�R or cm t am�R . Either way,
bm ⇢ am�R and hence am and am�R are strongly separated.

We now show that �� ⌦ �+(1) = 0. Indeed, by Corollary 7.6, it follows that 1 is
contained in the union of the measure 0 set

n[

i=1

{(⇠�, ⇠+) 2 @X ⇥ @X : #([⇠+, ⇠�] ⇥ [⇠�, ⇠+] \ Si (R)) = 0}. 2

7.3. Bridge points. Recall that, as in Lemma 3.28, associated with a strongly separated
pair h ⇢ k⇤ there is a combinatorial bridge B(h, k) with the property that if p 2 B(h, k)

then p = m(x, p, y) for every (x, y) 2 h ⇥ k.

Definition 7.15. Assume that X = X1 ⇥ · · · ⇥ Xn is the irreducible decomposition of
X into irreducible factors, corresponding to the decomposition H = H1 t · · · t Hn . An
element x 2 X is called a bridge point if, for each i , there exists a pair of disjoint half-
spaces hi , ki , strongly separated in Hi such that x 2 B(h1, k1) ⇥ · · · ⇥ B(hn, kn).

We note that the property of being a bridge point is 0-invariant.

LEMMA 7.16. Assume 0 ! Aut(X) is a non-elementary and essential action, �±

being quasi-0-invariant measures on @X such that (@X2, �� ⌦ �+) is isometrically
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ergodic. There are disjoint half-spaces hi , ki strongly separated in Hi such that for every
bridge point x 2 B(h1, k1) ⇥ · · · ⇥ B(hn, kn) and �� ⌦ �+-a.e. (⇠�, ⇠+) 2 @M X2 the
map (⇠�, ⇠+) 7! #(I(⇠�, ⇠+) \ 0 · x) is infinite.

Before proceeding with the proof, we note the straightforward but important fact that an
interval in a product is just the product of the corresponding intervals (see Remark 3.11).

Proof of Lemma 7.16. For every x 2 X , the map (⇠�, ⇠+) 7! #(I(⇠�, ⇠+) \ 0 · x) is
0-invariant and hence essentially constant by ergodicity. Furthermore, 0 · x ⇢ X is
countable, and so the essential value must be 0 or 1 by Corollary 5.6.

Now, by Proposition 7.5, Corollary 7.6, it follows that

@r X2\1⇢
[

(hi ,ki )2Si
i=1,...,n

(h1 ⇥ · · · ⇥ hn) ⇥ (k1 ⇥ · · · ⇥ kn).

By Theorem 7.14 this union has full measure and hence one of the sets must have
positive measure. Fix (h1 ⇥ · · · ⇥ hn) ⇥ (k1 ⇥ · · · ⇥ kn) of positive measure and note
that it is chosen precisely to have a positive measure intersection with @r X2\1. Let
x 2 (h⇤

1 \ k⇤
1) ⇥ · · · ⇥ (h⇤

n \ k⇤
n) be a bridge point. Then, by Lemma 3.28, the map

(⇠�, ⇠+) 7! #(I(⇠�, ⇠+) \ 0 · x) takes non-zero values on this positive measure set and
hence the map has infinite essential value. 2

COROLLARY 7.17. With the hypotheses and notation as in Lemma 7.16, the strip S :
@X ⇥ @X ! 20 given by S(⇠�, ⇠+) = {� 2 0 : � x 2 I(⇠�, ⇠+)} is infinite for �� ⌦ �+-
a.e. (⇠�, ⇠+) 2 @X ⇥ @X whenever x 2 B(h1, k1) ⇥ · · · ⇥ B(hn, kn).

8. Maximality
We shall employ the Kaimanovich strip condition to deduce the maximality of the
boundary. This strip condition can be interpreted as follows: if there is a 0-equivariant
assignment S : B� ⇥ B+ ! 20 that is well behaved, then B+ is the maximal (0, µ)-
boundary. The sets are called strips and are well behaved if they grow subexponentially.
For us their growth will be dominated by a polynomial of degree D, where D is the
dimension of the complex X .

8.1. The Kaimanovich strip condition.

Definition 8.1. A pseudonorm on a group 0 with identity 10 is a map | · | : 0 ! R>0 such
that, for all � , � 0 2 0, it is:
• normalized: |10| = 0;
• symmetric: |��1| = |� |;
• subadditive: |� � 0| 6 |� | + |� 0|.
A pseudonorm satisfying the property that |� | ! 1 as � ! 1 is said to be proper.
Furthermore, if |� | = 0 implies that � = 10 then it is called a norm.

Suppose that 0 acts by isometries on (X, d). Fix a base point . 2 X . This allows us
to consider the associated pseudonorm |� |. = d(�., .) on 0 which in turn yields the
following nested increasing subsets which exhaust 0:

Bk = Bk(.) = {� 2 0 : d(�., .) 6 k}.
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Definition 8.2. For a fixed pseudonorm | · | : 0 ! R, a probability measure µ on 0 is said
to have:
• finite first logarithmic moment (with respect to | · |) if

X

�20

µ(� ) log |� | < 1;

• finite entropy if H(µ) := �
P
�20 µ(� ) log µ(� ) < 1.

We should like to know that, under reasonable conditions, the random walk, when
translated to an orbit on X , is transient†.

LEMMA 8.3. Let µ be a generating probability measure on the non-amenable group
0. Then, for any proper pseudonorm | · | : 0 ! R+ and P

0-a.e. !0 2�0 we have that
|!n| ! 1.

Proof. The µ-random walk is transient since 0 is non-amenable and µ is
generating [DG73, Theorem 2]. Since | · | : 0 ! R+ is a proper function, it follows that
|� | ! 1 precisely when � ! 1 in 0. 2

We shall also require the following lemma, the proof of which is straightforward.

LEMMA 8.4. Let . 2 X be a point such that the stab0(.) is finite and set C = #stab0(.).
If S ⇢ X then

#{� 2 0 : �. 2 S} = C · #(S \ 0 · .).

And finally, in the following theorem, we have our main tool for showing maximality.

THEOREM 8.5. [Kai03, the strip condition] Let µ be a probability measure with finite
entropy H(µ) on a countable group 0, and let (B�, ��) and (B+, �+) be µ̌- and µ-
boundaries, respectively. If there exists a pseudonorm | · | : 0 ! R and a measurable 0-
equivariant map S : B� ⇥ B+ ! 20 such that, for all � 2 0 and �� ⌦ �+-a.e. (b�, b+) 2
B� ⇥ B+,

1
n

log #[S(b�, b+) · � \ G|!0
n |] �!

n!1
0

in measure P
0 on the space of sample paths !0 2�0, then the boundary (B+, �+) is

maximal.

8.2. Proof of maximality. By Theorem 7.1, if 0 ! Aut(X) is a non-elementary and
essential action on the finite-dimensional CAT(0) cube complex X , then there exist
probability measures �± on the Roller boundary @X such that (@X, ��) and (@X, �+)

are µ̌- and µ-boundaries, respectively.

THEOREM 8.6. Let 0 be a countable discrete group. Assume 0 ! Aut(X) is a non-
elementary, essential, and proper action on the finite-dimensional CAT(0) cube complex
X. Let µ be a probability measure on 0 with finite entropy H(µ). If there is a base point
. 2 X for which µ has finite first logarithmic-moment

P
�20 µ(� ) log |� |. < 1 then @X

† Recall that a random walk on a discrete countable group is said to be transient if for P
0-a.e. !0 2�0 we have

!n ! 1 in 0.
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admits probability measures �� and �+ making it the Furstenberg–Poisson boundary for
µ̌ and µ, respectively.

Proof. Assume 0 ! Aut(X) is a non-elementary, essential, and proper action on the
CAT(0) cube complex X . Fix a generating probability measure µ of finite entropy. By
Corollary 7.2, there exist �± 2 P(@X) such that (B�, ��) := (@X, ��) and (B+, �+) :=
(@X, �+) are (0, µ̌) and (0, µ) boundaries, respectively. Fix a base point . 2 X for which
µ has finite first logarithmic moment with respect to the pseudonorm induced by .; it will
be denoted by | · |.

Also recall that Corollary 7.17 guarantees the existence of disjoint half-spaces hi , ki
strongly separated in Hi such that if .0 2 B(h1, k1) ⇥ · · · ⇥ B(hn, kn) is a bridge point
then for �� ⌦ �+-a.e. (b�, b+) these associated strips are infinite:

S(b�, b+) = {� 2 0 : �.0 2 I(b�, b+)}.

Maximality of the boundary will follow from Kaimanovich’s strip condition
(Theorem 8.5) if we show that for every �0 2 0 and �� ⌦ �+-a.e. (b�, b+) 2 B� ⇥ B+,
the following converges in measure P for ! 2�:

1
n

log #[S(b�, b+) · �0 \ B|!1···!n |] �!
n!1

0.

To this end, fix �0 2 0 and a generic (b�, b+) 2 B� ⇥ B+ and note that

S(b�, b+)�0 = {� 2 0 : � ��1
0 .0 2 I(b�, b+)}

= {� 2 0 : �0� �
�1
0 .0 2 I(�0b�, �0b+)}

= ��1
0 S(�0b�, �0b+)�0.

Observe that by subadditivity and symmetry |�0� �
�1
0 | 6 |� | + 2|�0|, and so if R > 0

then �0BR�
�1
0 ⇢ BR+2|�0|. We deduce that

#[S(b�, b+) · �0 \ BR]6 #[S(�0b�, �0b+) \ BR+2|�0|].

Next, we would like to bound #[S(b�, b+) \ BR] as a function of R that is independent
of the generic point (b�, b+).

By comparing the volume in the `1-metric in ZD to the `1-metric we see that the
cardinality of any ball of radius R in Euclidean D-space is bounded above by (2R + 1)D .
Theorem 2.8 guarantees the existence of an isometric embedding I(b�, b+) ,! RD , and
so it follows that a ball of radius R in an interval also has cardinality bounded above by
(2R + 1)D .

Fix x 2 I(b�, b+) \ NR(.0), where NR(.0) denotes the ball of radius R in X centered
at .0. Then applying the triangle inequality we deduce that

I(b�, b+) \ NR(.0) ⇢ I(b�, b+) \ N2R(x)

and by the previous paragraph

#(I(b�, b+) \ NR(.0)) 6 #(I(b�, b+) \ N2R(x)) 6 (4R + 1)D.
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We also have that d(�.0, .0) 6 2d(., .0) + d(�., .) and so, setting � = 2d(., .0) and
C 0 = #stab0(.0), we apply Lemma 8.4 to deduce that

#[S(b�, b+) \ BR]6 #{� : d(�.0, .0) 6 R + 2d(., .0) and �.0 2 I(b�, b+)}

= C 0 · #(I(b�, b+) \ NR+�(.0) \ 0 · .0)

6 C 0 · [4(R + �) + 1]D.

By Lemma 8.3 and Corollary 7.17, we have that for P-a.e. ! 2�, �� ⌦ �+-a.e.
(b�, b+), and n sufficiently large, the following is non-empty:

S(b�, b+) · �0 \ B|!1···!n |.

And so

0 6 1
n

log #(S(b�, b+) · �0 \ B|!1···!n |)

6 1
n

log #(S(�0b�, �0b+) \ B|!1···!n |+2|�0|)

6 1
n

log(C 0 · [4(|!1 · · · !n| + 2|�0| + �) + 1]D).

Therefore, the quantity on the first line converges in measure to zero if the quantity on the
last line converges to zero in measure, if and only if the following converges in measure:

1
n

log |!1 · · · !n| ! 0.

To this end, observe that, since the pseudonorm is subadditive, we have that

1
n

log |!1 · · · !n| 6 1
n

log
✓ nX

k=1

|!k |

◆
.

The right-hand side of this inequality converges in measure to zero since µ has finite first
logarithmic moment with respect to | · | (see [Aar97, Proposition 2.3.1]). 2

9. Proof of the Tits alternative
There are by now various Tits alternatives for groups acting on CAT(0) cube complexes.
Sageev and Wise showed that groups that admit a (strongly) proper action on a proper
CAT(0) cube complex are either virtually free or contain a freely acting free group [SW05].

Caprace and Sageev also have two versions of a Tits alternative. They showed that a
group acting on a CAT(0) cube complex is either elementary or contains a freely acting free
group. They also showed that if the action is proper, then either the group is {locally finite}-
by-{virtually abelian} or contains a free group (which may or may not act freely)† [CS11].

We have gathered almost all the necessary tools for the proof of our Tits alternative.
Here are a few more.

PROPOSITION 9.1. If 0 ! Aut(X) is Roller elementary, then there exist v, w 2 X such
that 0 · I(v, w) = I(v, w). Furthermore, if 0 has an orbit whose cardinality is an odd
integer, then 0 has a fixed point in X.
† In fact, neither the Sageev–Wise result nor the Caprace–Sageev result prove directly that the free groups act
freely, but an argument such as the one below should suffice to deduce that these do indeed act freely.
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Proof. Let o ⇢ X be a point whose 0-orbit is finite. Let m be the average of the Dirac
masses on 0 · o. Then clearly 0 preserves the measure m and therefore Xm . Furthermore,
if o is an orbit whose cardinality is an odd integer, then m(h) 6= 1/2 for every h 2 H and, in
particular, H+

m satisfies both consistency and totality meaning that Xm is a single point. 2

From this we obtain the following version of a classical result of Adams and Ballman
which states that for a locally compact Hadamard space if 0 is an amenable group acting
by isometries then it either fixes a point in the visual boundary or preserves a flat [AB98].
This result has been generalized in many contexts such as [CL10, CM13].

LEMMA 9.2. Any action of an amenable group on a CAT(0) cube complex is Roller
elementary. Furthermore, if there is an odd orbit then there is a fixed point in X, and
otherwise there is an invariant interval.

Proof. Suppose 0 is an amenable group acting on X . Then, it admits an invariant
probability measure m on X . By invariance, we have that Hm and H+

m are invariant as
well, and hence Xm is 0-invariant. By Corollary 2.9, there are finitely many elements on
which Xm is an interval, and therefore that set is 0-invariant, hence the 0-action is Roller
elementary. 2

Recall that a subgroup is said to be X -locally elliptic if every finitely generated subgroup
has a fixed point. Also, a subgroup is said to be the X -locally elliptic radical if it is the
unique maximal normal subgroup which is X -locally elliptic. We then have the following
theorem (see also [CL11, Theorem A.5]).

THEOREM 9.3. [CFI12, Caprace’s Theorem B1] Consider the stabilizer stab(x) 6
Aut(X), for x 2 @X. Then there is a virtually abelian group A of rank n 6 dim(X) such
that if N is the X-locally elliptic radical then we have an exact sequence:

1 ! N ! stab(x) ! A ! 1.

We shall now turn to the proof of the Tits alternative. It has been rephrased from the
introduction in the spirit of Pays and Valette [PV91].

THEOREM. (Tits alternative) Let X be a finite-dimensional CAT(0) cube complex and
0 6 Aut(X). The following are equivalent:
(1) 0 does not preserve any interval I ⇢ X;
(2) the 0-action is Roller non-elementary;
(3) 0 contains a non-abelian free subgroup acting freely on X.
Furthermore, if X is locally compact, then these are equivalent to
(4) the closure 0 in Aut(X) is non-amenable.

Proof. (1) H) (2): This is Proposition 9.1.
(2) H) (3): If the action is Roller non-elementary then by Proposition 3.10 there is a finite
index subgroup 00 6 0 and a subcomplex X 0 ⇢ X with half-space structure H

0 where the
00-action is essential and non-elementary. By Corollary 3.17, there exists a facing triple
h1, h2, h3 2 H

0 such that as subsets of X 0 they are facing. Applying the double skewering
lemma (Lemma 3.8), we may assume there is a facing quadruple h1, h2, h3, h4 2 H

0

⇢ H. Once more, the double skewering lemma (Lemma 3.8) guarantees the existence

0��6�
  ��1��7/ ������	 .��������������:�21�0.���4214.��������71�/.�
41�.7�1����7.��

https://doi.org/10.1017/etds.2016.124


2220 T. Fernós

of a, b 2 00 such that ah1 ⇢ h⇤
2 ⇢ h1, and bh3 ⇢ h⇤

4 ⇢ h3. Letting A = h1, and B = h3, we
see that (the complements of) A, a A⇤, B, bB⇤ form a standard ping–pong table and so the
obvious homomorphism F2 ! ha, bi is an isomorphism. We note that, by Remark 2.12,
these half-spaces as subsets of X have the same relationships and hence we now think of
them as subsets of X .

Without loss of generality, we may assume that the F2 orbits of A, a A⇤, B, bB⇤ are
pairwise disjoint. Indeed, we may pass to the cubical subdivision if necessary to assure
that F2 · {A} \ F2 · {a A⇤} = ? = F2 · {B} \ F2 · {bB⇤}. And up to replacing this copy of
F2 with another (i.e. ha p, bqi for some p, q 2 N), we may assume that F2 · {A} \ F2 ·
{bB⇤} = ? = F2 · {B} \ F2 · {A}.

We now show that this action is free. To this extent, observe that the proof of the
ping–pong lemma shows that if there is a point fixed by an element of F2\{1}, then it
does not belong to F := A \ a A⇤ \ B \ bB⇤ or any of its translates. Therefore, we show
that if x 2 X then x 2 wF for some w 2 F2. Let us make an easy observation: if o 2
wF = wA \ wB \ wbB⇤ \ wa A⇤ with #([o, x] \ F2 · {A, a A⇤, B, bB⇤}) = 0 then x 2
wF . Therefore, we aim to produce such a pair w 2 F2 and o 2 wF .

Fix . 2 F . Consider the linearly ordered (by inclusion) set of half-spaces

[., x] \ F2 · {A, a A⇤, B, bB⇤} =: {w1h1, . . . , wnhn},

where wi 2 F2 and hn 2 {A, a A⇤, B, bB⇤}, with wi hi ⇢ wi+1hi+1. Let o = m
(., wn., x). We claim that o 2 wnF . Indeed, wnhn 2 Ux \ Uwn. and so wnhn 2 Uo.

Observe that wn · {A, B, a A⇤, bB⇤}\[o, x] = wn · {A, B, a A⇤, bB⇤}\{wnhn}. Indeed,
the half-spaces wn · {A, B, a A⇤, bB⇤} are facing, and wnhn is minimal in [o, x] \ F2 ·
{A, B, a A⇤, bB⇤}. Therefore, if h 2 wn · {A, B, a A⇤, bB⇤}\{wnhn} then either both
., x 2 h or both ., x 2 h⇤. Again, using that these half-spaces are facing, if ., x 2 h⇤

then . 2 h⇤ \ wnh⇤
n = ?. Therefore, ., x 2 h and h 2 Uo.

Observe o 2 wnF = wA \ wB \ wbB⇤ \ wa A⇤. By construction we have that

[o, x] \ F2 · {A, B, a A⇤, bB⇤} ⇢ ([., x] \ F2 · {A, B, a A⇤, bB⇤})\{w1h1, . . . , wnhn}

= ?

and hence x 2 wnF .

(3) H) (1): Suppose that 0 preserves the interval I. If I ⇢ X then it is finite and 0 has a
finite index subgroup fixing each element of I, therefore no free subgroup can act freely.

Suppose now that I = I(x, y) with x 2 @X . Once more, 0 has a finite index
subgroup 00 by Corollary 2.9, fixing x . Let F 6 0 be a non-abelian free subgroup and
Fn = 00 \ F . Since Fn is finitely generated, by Caprace’s Theorem 9.3, the commutator
subgroup [Fn, Fn] has a fixed point in X , and hence the action of F is not free.

(3) H) (4): If X is locally compact then so is Aut(X) and hence the closure 0. Since a
freely acting group is necessarily closed, and 0 contains such a free subgroup, we concude
that 0 is non-amenable.

(4) H) (1): Once more, assume that X is locally compact. By Corollary 2.9, preserving
an interval implies the existence of a finite index subgroup with a fixed point in X .
Therefore, the contrapositive will be shown if we demonstrate that point stabilizers are
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amenable. If x 2 X , the stabilizer stab(x) is compact and hence amenable. It follows that
if x 2 @X then Nx the X -locally elliptical radical of stab(x) is also amenable. Indeed, Nx
is a union of the compact groups stab(y) \ stab(x), where y 2 X and is hence amenable.
Applying Caprace’s Theorem 9.3 once more finishes the proof. 2

10. Convergence actions
An action of a countable discrete group 0 by homeomorphisms on a compact metrizable
space M is said to be a convergence action if the diagonal action on the space of distinct
triples is proper. Namely, if x, y, z 2 M are pairwise distinct, and �n 2 0 any sequence,
then up to passing to a subsequence #{�n x, �n y, �nz} ! N < 3. Bader and Furman have
shown that if 0 admits a convergence action on M then there is a 0-equivariant map � :
B ! M , where B is a Furstenberg–Poisson boundary of 0 [BF14, Theorem 3.2]. In this
section, we show that the action of 0 on the Roller compactification X is not a convergence
action if there is an interval I ⇢ X with the following properties.
• The stabilizer of I in 0 is infinite.
• There exist x1, x2, y1, y2 2 I such that I = I(x1, y1) = I(x2, y2) and

#{x1, x2, y1, y2} > 3.

We observe that these are rather weak conditions on higher dimensional CAT(0) cube
complexes, for example they are satisfied if 0 has commuting independent hyperbolic
elements, though this is by no means necessary.

Let us now show that, under the above conditions, the diagonal action of 0 on distinct
triples is not proper. To this end, recall that since I is an interval, it embeds into ZD , where
D is the dimension of X . Then, the collection of x 2 I for which there is a y 2 I such that
I = I(x, y) has cardinality bounded above by 2D by Corollary 2.9 and bounded below by
3, by assumption. Therefore, there is a subgroup of finite index which fixes each of these
elements. The assumption that the stabilizer of I is infinite implies that the point-wise
fixator of each of these is also infinite. Therefore, any distinct triple from that set has an
infinite stabilizer and hence the action is not a convergence action.

Bowditch showed that if 0 admits a convergence action on a perfect compact metrizable
space then it is hyperbolic and the space is homeomorphic to the visual boundary [Bow98].
The above discussion shows how the existence of large stabilizers of higher dimensional
flats prohibits the action from being a convergence action. However, applying Bowditch’s
result to the Roller boundary is somewhat problematic as it has many isolated points in
general, even without the presence of a higher dimensional flat. Indeed, if we take the
cubical subdivision of any complex whose visual boundary is not isomorphic to the Roller
boundary, then the vertices in the Roller boundary introduced by this process will all be
isolated.
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