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1. Introduction

In this paper we propose an energy model for N harmonic graphs with junctions and
study the regularity properties of the minimizers and their free boundaries.

The physical motivation is the following. Let  be a bounded domain in R"™ and
consider N > 2 elastic membranes which are represented by the graphs of N real-valued
functions
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{(z,ui(z))] 2€Q} CR" i=1,...,N,

which are in contact with one-another. In the most simplified form, the elastic membranes
are modeled by harmonic graphs. The non-penetration condition implies the functions
are ordered in the vertical direction, so we assume that
U12UQZ...ZUN.

Suppose all membranes coincide initially, say u; = us = ... = uy = 0, and then we
move them continuously by pulling apart their boundary data ty; on 9Q with ¢ > 0,
and ¢1 > @9 > ... > on. We consider the physical situation when the membranes do
not separate strictly in the whole cylinder 2 x R instantaneously for all small ¢ > 0, but
rather in a continuous way. In other words, for small ¢, the strict separation happens
only near the boundary while the functions still coincide well in the interior of 2. This
means the membranes stick to each other and we need to spend energy to physically
separate them (say for example if the membranes are wet, or the elastic material has
some adhesive properties).

1.1. The model

In view of the discussion above, a natural energy functional associated to a system of
adhesive elastic membranes is given by

In(U,Q) = /(|VU\2 + W)z, U:=(uy,...,un), N>2 (1.1)
Q
with
N
IVUP = [Vuil>, W(U) =#{u,...,un}, (1.2)
=1

and Jy is defined over the class of admissible vector-valued functions
A={UeH' Q)] wi>u>...>uyn}. (1.3)

Here Q) is a bounded domain in R™ with Lipschitz boundary, and the potential term
W (U) represents the cardinality of the set {uq,...,un} (that is the number of distinct
elements in the set). Clearly W(U) is minimized when all u;’s coincide. On the other
hand, the Dirichlet integral is minimized when each w; is harmonic, and by the maximum
principle they belong to the admissible cone A provided the boundary data is in A as
well. The presence of the potential term has the effect of collapsing some of these graphs
that are close to each other in a certain region, and we expect an optimal configuration
consisting of piecewise harmonic graphs with junctions.
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Fig. 1. A minimizer for N =4, n = 1.

The functional Jy is lower semicontinuous and the existence of minimizers with given
boundary data ® € A on 0N follows easily from the direct method of the calculus of
variations. We remark that Jpy is not convex, and the uniqueness of minimizers can fail.

One of the interesting questions about minimizers U of (1.4) regards the geometry of
the graphs near junctions where the membranes separate. Precisely, there are possibly
N —1 free boundaries originating from this minimization problem which are denoted by

Fi::8{u1>ui+1}ﬁ9, i=1,...,N—1.

The sets {u; > u;4+1} have no a priori constraints with respect to one-another, which
means the I';’s can intersect and cross each other and possibly have complicated geome-
tries. The functions u; are piecewise harmonic, that is they are harmonic in the interior
of the regions carved out by the collections of the free boundaries. The problem is in-
teresting even in dimension n = 1 in which the I';’s consist of points and the wu;’s are
piecewise linear, and a certain balancing condition needs to hold at the junction points.
The physical situation can be described as the equilibrium configurations of N-tapes
that stick to one another, see Fig. 1.

A first observation about minimizers U of (1.1) is that the average of the u;’s is har-
monic in §2, see Lemma 2.3. Moreover, minimizers remain invariant under the operation
of adding the same harmonic function to each component of U. In view of this, one can
reduce the problem to the 0 average situation

Y ui=0 inQ,

which means that we deal with a system involving only N — 1 unknowns. Then, the case
N = 2 corresponds to the scalar minimization problem

min / (2|Vu1|2 +X{u1>0}) dx,

w120
Q
which is the classical one-phase free boundary problem introduced by Alt and Caffarelli
in [1]. Here xg denotes the characteristic function of a set E.
The one-phase problem appears in cavitation flows in fluid dynamics, flame propa-
gation etc., and it has been extensively studied over the past four decades. We refer to
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the books of Caffarelli and Salsa [4] and Velichkov [23] for the mathematical treatment
of this problem. Concerning the free boundary regularity of I'y, it is an analytic hyper-
surface outside a closed singular set of dimension at most n — 5 (see [12]), and there are
examples of free boundaries with point singularities in dimension n =7, (see [8]).

For N > 3 we subtract 1 from W, which does not affect the problem, and rewrite the
potential term in the form

N—-1
W(U) = Z X{ui>uip1}-
=1

In this way, the model we propose can be viewed as a system of N — 1 coupled one-phase
free boundary problems that interact in the vertical direction.

1.2. Some related works

There are several works in the literature that involve free boundaries and energy
functionals for vector-valued functions similar to the one we propose in (1.1). For example
Mazzoleni, Terracini, Velichkov [15,16], Caffarelli, Shahgholian, Yeressian [5], and De
Silva, Tortone [9] considered the vectorial one-phase problem with W(U) = x{u|>o0}
and unconstrained U, which is relevant in the study of cooperative systems of species or
in optimization problems for spectral functions, see also [13,14]. On the other hand, in [2]
the authors studied a vectorial version of the obstacle problem by taking W (U) = |U]|.
In other cases motivated by strongly competitive systems or optimal partition problems,
the components u; > 0 have disjoint supports which means that the vector U is restricted
to the union of the nonnegative coordinate axes. For this situation we refer to [3] where
Caffarelli and Lin investigated harmonic maps onto such singular spaces, see also [21].

A minimization problem closely related to our model, which involves the constraint
U € A asin (1.3) and with the potential W (U) = F - U, was introduced by Chipot and
Vergara-Caffarelli in [6]. It describes the equilibrium configuration of N elastic mem-
branes interacting with each-other under the action of external forces F'. More recently,
the second author and H. Yu established the optimal regularity for this problem and
studied the free boundary regularity in a series of papers [18-20]. While these results
motivated the current work, the two models have quite different qualitative properties
that can be seen from simple one-dimensional examples as well as from the theorems in
the next section.

Some of our results that involve the junction of N = 3 membranes resemble the soap-
films like configurations for minimal surfaces in two and three dimensions that were first
studied by J. Taylor in [22]. A crucial difference with respect to soap-films is that our
energy model counts a common surface where more than two graphs coincide according
to its multiplicity, and the collapsing phenomena is only due to the presence of the
potential energy W.
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1.8. Main results

In this section we state our main results. We recall that

In(U,Q) = /(|VU\2 + W)z, U= (u,...,un), N >2, (1.4)
Q
with
N N—-1
VU => Vi, W) = > Xusui} (1.5)
1=1 =1

is defined over the class of admissible vector-valued functions
A::{UEHl(Q)| U >up > ... >un. (1.6)

Positive constants depending only on N and the ambient dimension n are called
universal. The first result gives the optimal regularity of minimizers.

Theorem 1.1 (Optimal reqularity). Let U minimize Jy in By. Then, U € C%! and
[Ullcoa (B, ,5) < C(L+ [|U][L2(By))s
for C > 0 universal.
We study the regularity of the NV — 1 free boundaries
Ty = 0{u; > uiy1}, ie{l,...,N—1},

by performing a blow-up analysis at junction points. After rescaling, we may assume that
we are in the 0-average situation, and the origin is a junction point where all membranes
coincide

d ui=0, 0ed{|U|>0} (1.7)

By employing Weiss monotonicity formula Proposition 3.1, and a non-degeneracy prop-
erty of minimizers, we can deduce that blow-ups are one-homogenous.

Theorem 1.2. Let U minimize Jy in By, and assume (1.7) holds. Then
max |U| > er,
B

and there exists a sequence of r; — 0 such that
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U(r;x

U, (x) = M
T

converges uniformly on compact sets of R™ to a cone U, i.e. a homogenous of degree one

minimizer with 0 € 0{|U| > 0}.

The minimizing cones in dimension n = 1 must coincide on one side of 0 and have
two branches on the other side. Precisely for each k£ < N — 1, we define Uy to be the
vector whose components are given by

1 1\ /2 1 1\1/2
ul:(E_N) zt for i <k, “i:_(ﬂ_ﬁ> T for i > k.

Proposition 1.3 (1d cones). The only minimizing cones in dimension n = 1 that satisfy
(1.7) are given by Uy, (up to a reflection with respect to 0).

The classification of 1d cones combined with an e-regularity theorem and a dimension
reduction argument gives the following general partial regularity result.

Theorem 1.4 (Partial regularity). Let U be a minimizer in By. The free boundaries T';
are analytic and disjoint from one another outside a closed set 3 of singular points of
Hausdorff dimension n — 2, and

H" (TN Byys) < C,
with C universal.

The remaining results focus on the intersection points of two distinct free boundaries
which, by Theorem 1.4, has dimension at most n — 2. For this part we restrict to the
simplest case that involves N = 3 membranes.

In dimension n = 2 we define Vj as the cone whose components are given by

1
up(z) = %max{z ez, 2r-e_x, 0} , eg := (cosf,sin ),
uz(x) := —uq(r1, —x2), Ug 1= —U] — U3.

Theorem 1.5. Let N = 3. Then, up to rotations and reflections, Vy is the unique mini-
mizing cone in dimension n = 2 which satisfies 0 € Ty N Ty and (1.7).

The proof of Theorem 1.5 is indirect, through an elimination process. It turns out
that there are two possible cone candidates, Vj and Vi, which are critical for the energy
Jn. We show however that V is not minimizing and also that the set of cones satisfying
0 €Ty NIy and (1.7) is nonempty, see Section 6.

The next result gives the regularity of the free boundaries in two dimensions near an
intersection point, see Fig. 2.
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Fig. 2. Free boundary geometry at an intersection point in R2.

Theorem 1.6. Let N = 3 and let U be a minimizer of Jx in @ C R2. Then I’y and T'y
are piecewise C1* curves in a neighborhood of any intersection point o € I'y N Ty, with
a ~ 0.36.

Theorem 1.6 can be extended to arbitrary dimensions. For this we define regular
intersection points

To € R@g(F1 N F?)a

as those points for which there exists a blow-up cone at zg which is a rotation of a
two-dimensional cone extended trivially in the remaining variables.

Theorem 1.7. Reg(T'; N Ty) is locally a CY*-smooth submanifold of codimension two.
Near such an intersection point, each of the free boundaries 'y and I's consists of two
piecewise C1® hypersurfaces which intersect on Reg(T'y NTs) at a 120° angle.

As a consequence we obtain a general partial regularity result for the free boundary.
We define Reg(I';) as the collection of points zg € T'; that have a blow-up profile which
is a rotation of a one-dimensional cone extended trivially in the remaining variables.

Theorem 1.8 (Partial regularity). Let N = 3 and U be a minimizer of Jy in By. Then
Fl U FQ = Reg(Fl) U Reg(Fg) U Reg(F1 N Fg) U E/,

with Reg(T;) locally analytic hypersurface, Reg(T'y N Tg) locally a CY* submanifold of
codimension two, and ¥’ a closed singular set of Hausdor[f dimension n — 3.

The study of regular intersection points leads to a transmission-type problem which
appears in the linearization, which is new and interesting in its own, see (7.2)-(7.7) in
Section 7. The value of « in the theorems above is dictated by the spectrum of the
linearized problem. The novelty is that the transmission condition does not occur along
a hypersurface but it involves a region of full dimension where two functions interact.
We refer the reader to Sections 7 and 8 for more details.
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The paper is organized as follows. In Section 2 we collect some general facts about
minimizers and prove the optimal regularity result Theorem 1.1. In Section 3 we obtain
the Weiss monotonicity formula and prove Theorem 1.2. We classify one-dimensional
cones in Section 4 and then establish Theorem 1.4 in Section 5. The last three sections
are devoted to the study of two dimensional cones and regular intersection points for
N = 3 membranes.

2. Lipschitz continuity and non-degeneracy of minimizers
2.1. Preliminaries

Recall that, throughout this note, constants depending only on possibly n, N are called
universal. Also, whenever this does not create confusion, the dependence of Jy on the
domain is omitted.

We start by proving some basic facts about minimizers. Throughout 2 is assumed to
be a bounded domain with Lipschitz boundary.

Lemma 2.1 (Lower semicontinuity). If U,, — U in L*(Q), then
liminf Jn (Up,, Q) > JIn (U, Q).

Proof. By working with subsequences we may assume lim sup Jy (U, ) < 0o, otherwise
there is nothing to prove. Then VU,, — VU in L?, and U, — U a.e. in 2. The conclusion
follows by combining the lower semicontinuity of the Dirichlet energy with the lower
semicontinuity of the function W :RY — R. O

As a consequence we obtain the existence of minimizers with boundary data in H*(£2).

Proposition 2.2. Given & € A, there exists a minimizer U of Jy in Q with boundary
data ® on 0N).

Next we show that the average of the u;’s is harmonic.
Lemma 2.3. If U is a minimizer of Jy in 2, then Zi\; u; 1s harmonic in ).
Proof. Let v € C3(Q), and ¥ = (¢),...,%). Then
W(U) =W(U + V)

and

InU+el) = Inll) _ %/(|V(U+6‘P)|2 ~ IVUP)da

Q

€
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_ Q/V(Zui)-vwdx-i-o(eL

s i=1
from which our claim follows. O

Similarly, the problem remains invariant with respect to the addition of a harmonic
function v to each component, that is

for some constant

C(\I/7<I>):/|V\Il|2dx+2 /<I>-\I!,,da,
Q on

that depends only on ¢ and the boundary data ® of U. Therefore, at times we may
assume that U satisfies,

> ui=0. (2.1)

Lemma 2.4. Let U minimize Jy in ). Then uy is subharmonic and uy is superharmonic
in Q.

Proof. We prove the first claim, the second one can be proved similarly. Let v; be the
harmonic replacement of uy in B, C 2. We wish to prove that u; < vy in B,.. Indeed, let

’ak :min{uk,vl}, [7: (ﬂl,...,fLN).

Clearly,

hence by minimality

/|VU\2d:r§ /|VU|2da:. (2.2)

B, B,

On the other hand, since
vy =uy >ug, Vk=1,...N, ondB,,

we have
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Wg = (uk — v1)+ c H&(BT)
After integration by parts and using that v; is harmonic, we get
[(9usl = [Fads = [V + w0 = [FuP)ds o,
B, B,

with strict inequality unless wy = 0. Thus, in view of (2.2), wx = 0 in B, for all k’s,
which gives the desired claim that uy < vy in B,.

Since this argument can be repeated for any ball included in 2, we conclude that wu;
is subharmonic. 0O

Next, we prove the following obvious yet useful fact.
Lemma 2.5. Let U minimize Jy in € and assume that
up > U1 for some k€ {1,...,N —1}.
Then, U:= (uq,...,ur) minimizes Ji in Q and U= (Uk41, .-, un) minimizes Jy_j.

Proof. The proof is straightforward. Assume by contradiction that ¥V minimizes Ji in
Q' cc Q with boundary data U and

S (V) < Je(U). (2.3)
Let V minimize Jy_j in ' with boundary data U, and set

V=WV).
Since, by Lemma 2.4 v;, is superharmonic while v+ is subharmonic and one in strictly
on top of the other one on the boundary, we conclude that v, > 0541 in ', hence V is
an admissible competitor. Furthermore, in view of (2.3) and our assumption,

INV) < T(V) + In—k (V) + || < Te(U) + In—x(U) + |9 = In(U)
and we reach a contradiction. O
2.2. Lipschitz continuity

We now turn to the proof of Lipschitz continuity. We start first by establishing that
minimizers are Holder continuous, by treating the potential term W (U) as a pertur-
bation. This result can be obtained directly from the theory of almost minimizers of
variational integrals, see Section 7 in Giusti’s book [11]. For completeness, we provide
the details of the proof.
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After multiplying U by §'/2, we may assume that U minimizes

J(U) = /(|VU\2 + W (U))dz,
Q

with & > 0 small. Notice that the Holder rescaling U(x) = »~*U(rz), with o € (0,1),
minimizes the energy J]‘z, with parameter 6 = 727295, and 6 < § if r < 1.

Without loss of generality, we assume that we deal with minimizers in B;. Hoélder
continuity follows with standard arguments from the next proposition.

From now on, in the body of the proofs ¢,C' > 0 are universal constants possibly
changing from step to step.

Proposition 2.6. Let U be a minimizer of J]‘i, in By. For every a € (0,1), there exist
dg, p > 0 depending on «, such that, if § < dy and

][|VU|2d1; <1, (2.4)
B,
then
pe ][ |VU|?dz < 1. (2.5)
Bﬂ
Proof. Let V' be the harmonic replacement of U in B;. Then, by the maximum principle
v; > Uiy1,4 = 1,..., N, and V is an admissible competitor for the minimization of Jj‘i,.
Thus,

/|V(U — V) 2dx < J(U) + /(\W|2 —2VU - VV)dz

Bl Bl

Hence,

][ V(U - V)|*dx < SNp~™. (2.7)

B,
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On the other hand, since |[VV|? is subharmonic in By and by (2.4)

/|VV|2dx < /|VU|2d:c <C,

B1 Bl

we conclude that
|VV| S C, in B1/2~

In particular,

][|VV|2d:c < Co,
B

P

for Cy universal. Combining this last inequality with (2.7) we conclude that,

][|VU\2dx < 20Np~™ 4 2C, < 4C,

as long as

Thus,

p>e ][ VU Pdx < 4Cop”>* <1,

B,
by choosing p such that,
PP < (4Cy)h o
The next corollary now follows via standard arguments.

Corollary 2.7. Let U be a minimizer to Jy in B1. Then U € CO’O‘(Bl), for any a € (0,1)

loc
and

[U]C“(Bl/z) < C(l + ”VUHL?(Bl))a
with C(a,n, N).

Prior to proving Lipschitz continuity, we introduce the following definition.
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Definition 2.8. We say that U is disconnected in B, if there exists k € {2,..., N} such
that up > up—1 in B,. Otherwise we say that U is connected in B,.

Our main Lipschitz regularity result reads as follows.

Lemma 2.9 (Uniform Lipschitz estimate). Let U minimize Jy in By and assume that
Z?;l u; =0 and U is connected in By ;. Then

[Ullcon(m, ) < C, (2.8)
for C > 0 universal.

Then, the next theorem is an immediate corollary.
Theorem 2.10. Let U minimize Jy in By. Then, U € C%'(By2) and
[Ullcors, ) < CA+ [|Ul|L2(5,)), (2.9)
for C > 0 universal.

We use Lemma 2.9 to prove Theorem 2.10 by induction on N.

The case N =1 corresponds to harmonic functions and it is obvious.

Next assume the claim holds for j membranes, for any j < N — 1. It suffices to prove
(2.9) only in the case of N membranes with > u; = 0.

Indeed, in the general case we let h := )", u; which is harmonic, and then U = H+V
with H := (h,...,h) and >, v; = 0. Since H satisfies (2.9) and

|H+ Vg2 = H|z + V|2,

it suffices to show that V satisfies (2.9) as well.

If the N membranes are connected in By, then the claim follows from Lemma 2.9. If
they are disconnected in By /5, then in view of Lemma 2.5, by the induction hypothesis
we have

||U||Co,1(31/4(10)) < C(l—‘r HU||L2(31/2))7 Vxo € B1/4, (210)
which gives the desired claim.

Proof of Lemma 2.9. We argue by induction. In the case N = 1, u; = 0 and the state-
ment is trivial. Let us assume that (2.8) holds when U minimizes Jj and k& < N. Then,
by the proof above, also the estimate (2.9) holds for minimizers of Jy and k < N.

Let V' be the harmonic replacement of U in Bj, and by the maximum principle
v; > viy+1, and moreover
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> wi=0. (2.11)

Then, arguing as in (2.6) in Proposition 2.6, and by Poincare’s inequality we obtain
U =Vlzzs,): VU = V)llL2s,) < C. (2.12)
Set
p 1= max {v:(0)} = v1(0).
By Harnack inequality,
v; = Vig1 > c(v; —vi41)(0) in Brg, Vi=1,...,N -1,
and in view of (2.11) simple arithmetic gives that for some k € {1,..., N — 1},
U — Vkg1 > (Vg — vky1)(0) > e in Byyg. (2.13)
Furthermore, Harnack inequality for v; > 0 and —vy > 0 also guarantees that
V| = m?x{|vi|} = max{vy, —vn} < Cp in Bys. (2.14)

We now wish to show that u is bounded by a universal constant. Indeed, if p > 1
then, by the second inequality in (2.12), (2.14), and the fact the V' is harmonic, we get

||VU||L2(B7/S) <C(p+1) <Cp.

Hence, by Corollary 2.7 and the fact that V is harmonic and satisfies (2.14), we get in
B3/4a

[Ulge <Cp, [U—=V]ce <Cp.

Thus, if at 2o € B2, (U = V)(z0)| = t, then |[U — V| > /2 in a small neighborhood of
size r ~ (t/p)'/*. By the first inequality in (2.12) we get that ¢ < C'u™/(2*+") Hence,

U-V|<Cp'™ in By,
for some 0 < § < 1. In view of (2.13)
ug —ugp1 > cp—Cp' ™’ >0 in By,

and we contradict that U is connected in By/p. Thus p < C' as desired, and it follows
from the estimates above that
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Ul z1(8,,4) < C- (2.15)

This proves the statement for the H' norm instead of the C%! norm.
In order to conclude our proof, it suffices to obtain a scale invariant version of this
H' estimate, i.e.

][ IVUP?<C, rm=27% VE>1.
B,

In terms of the rescalings
U.(x) :=U(rz)/r, x € By,
this is equivalent to
][|VUT,C|2 <C, Vk>1.
B

Let m > 1 be the first value for which U is connected in B,  but it is not connected
in B If no such m exists, then (2.15) holds for all U}k and the desired statement

follows. Otherwise, in view of (2.15),

Tm+41"

10 1By ) <€, VE<m. (2.16)

Since U is disconnected in B we can use the induction hypothesis and conclude that

Tm+17

U, lcon(s,,0) < C(L+ U, 228, ,2) < C-
Then (2.16) holds for all £k > m and we reached the conclusion. O

Having established the continuity results above, we can obtain the following compact-
ness property of minimizers.

Proposition 2.11 (Compactness of minimizers). If U, is a sequence of minimizers in By
and U,, — U uniformly on compact sets, then U is a minimizer and

JN(Um,BT) — JN(U,BT) Vr € (O, 1).

Proof. Since the U,,’s are continuous, then U is continuous and the U,,’s are uniformly
bounded on compact sets. In view of the Lipschitz continuity Theorem 2.10, we conclude
that the U,,’s and U are uniformly Lipschitz on compacts.

Let V be a competitor which agrees with U in By \ B,. Let 0 < ¢ < 1 be a radial
cutoff function which is 1 in B, and vanishes outside B,;s5. Then
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Vi =V +(1—-¢)Upn

agrees with U,, in By \ B;1s, and it is an admissible competitor as well. Thus, minimality
implies that

JN(Um,BTJr(s) < JN(Vm,BrJr&). (2.17)
Since

YV = (V = Up)Ve + @VV + (1 = 0) VU,
VUL IVU| <K, W(Un),W(V) <N, |Ve|<C5 Y,

we have that in the annulus As := B,ys5 \ B,
IN(Vins As) = IN(Un, As) < C(1+ K?)|As| + C6 U — Ul o0y

The right hand side can be made arbitrarily small by first choosing § small depending
on K and them m large. On the other hand, in view of (2.17) we have

INUmy Br) < IN(Viny, As) — IN (U, As) + In(V, By).
In conclusion
limsup Jy (Up, Br) < In(V, B;),
while the lower semicontinuity of the energy gives
Jn(U, B,) <liminf Jy(Up, B,). O
2.3. Non-degeneracy

Lemma 2.12 (Caccioppoli’s estimate). Let U minimize Jy in By. Then,

/ (VU +W(U)) de < c/ \U|2dz,
B2 B:

for C > 0 universal.

Proof. Let 0 < ¢ <1 be a smooth bump function, which equals 1 in By /5 and 0 outside
of B3/4. Set,

g =up(l—¢), k=1,...,N.
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Then U = (@1,...,ay) is an admissible competitor and by minimality,
/(|VU|2 W) de < /(|v0|2 WD) de,
Bl Bl
hence
W(U) <W(U) and W(U) =0 in B, s,
implying that
/(|VU|2 +W(U)xs,,,) dx < / \VU|? da. (2.18)
Bl Bl
Moreover,

JIVOF do = [(@ = 6P IVUP + 0PIV - (1= 6)VIUF - ) do

B B

< / VU ? dx+/\U|2(1—¢)A¢ de,
By

Bi\Bj,2
where in the last inequality we integrated by parts. Using this in (2.18) we get,
/ (VUP +W(U)) de < c/ U da
B2 B

with C'= C(n) as desired. O

A direct consequence of the Caccioppoli’s estimate is that |U| cannot be small and
strictly positive in Bj.

Corollary 2.13. If Ziil u; =0 and By(x¢) C {|U| > 0} then

max |U| > cr,
Br(wo)

for some ¢ > 0 universal.

Indeed, by scaling we may assume that zo = 0, r = 1. Then |U| > 0 implies W(U) > 1
in By and the conclusion follows by the estimate in Lemma 2.12.
We state a stronger version of non-degeneracy for |U| than in Corollary 2.13.
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Lemma 2.14 (Non-degeneracy). Let U be a minimizer in By. If Zf\;l u; =0 and 0 €
o{|U| > 0} then

max |U| > er, Vr < 1.

Proof. We use the previous corollary and a standard ball sequence construction for the
classical one-phase problem. Notice that Zfil u; = 0 and uy > .. > uy implies that

colUl <w < |UJ,

with ¢y > 0 depending on N and n, and recall that by Lemma 2.4 u; is a subharmonic
function.

Assume that r = 1. We construct inductively a sequence of points z; € {|U| > 0}
such that z¢ is sufficiently close to the origin and

1) ur(zps1) > (L4 c1)ua(zg)

2)

corp Sui(wg) < Corg,  fwppr — g <Ay, 1= d(ay, {|U] = 03).

The inequality uq(zx) < |U(xy)| < Cary is a consequence of Lemma 2.9.
Let’s assume that x1,..,x) are constructed, and let

yr € O{|U| = 0} N IB,, (zk).
Since u; > 0 is subharmonic in By, (zx), u1(zx) > cork and, by Lemma 2.9,
ui(z) < |U(2)| < Colz — yil,

it follows from the mean value inequality that there exists z; € By, (z)) such that
ui(zg) > (14 e1)ug(zy) for some ¢; > 0 depending on cg, Cz and n. We pick zyq1 €
By, (z1) to be the point where the maximum value of u; occurs, where ¢ represents the
distance from z; to the set {|{U| = 0}. Then

up (Tr4+1) = max ug
tk(Zk)

> ¢ max |U]
Bfk(zk)

Y

Co Ctk

c2 d(Tpy1, {|U| = 0})7

v

where in the second inequality we have used Corollary 2.13, and we chose ¢y small
depending on ¢y and c. This proves the existence of the sequence xy.
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Then we have
(1 +ci)ur(zr) < ur(@pyr) < Corggr < Cary < Caug(xy),

hence u(zy) is a sequence that grows at a geometric rate. The conclusion of the lemma
follows easily since uj(xg) ~ 1. O

Next we show the weak non-degeneracy for the difference of two consecutive mem-
branes. It is not clear whether the strong non-degeneracy holds for two consecutive
membranes as well. This lemma will not be used in the remaining of the paper.

Lemma 2.15. If B, C {up > ugy1} then (up — ugy1)(0) > cr.

Proof. We only sketch the proof. After rescaling, we can assume that U minimizes Jy
in By, > u; =0, and

Uk — U1 >0 in By. (2.19)
We wish to show that

(ur — ur41)(0) > co,

for some ¢y universal.

We may also assume that U = {u1,..,us} and U = {up41, .., un} are connected in Bj
for some § > 0 small to be chosen later (see Definition 2.8). Otherwise we can reduce the
problem to one in Bs with a strictly smaller number of membranes N. Let h, h denote
the averages of the membranes in U, respectively U.

Then h, h are harmonic in B; and by Lemma 2.9 we know that

Huz'—}_l”CO‘l( ) <, ie{l,..,k}.

By/o
Since U is connected in Bs we find that

[w; = B g (ps) < C8,

hence
ug < h, h(0) < ux(0) + C4.
Similarly we obtain

U1 > D, h(0) > ug41(0) — Co.

Assume by contradiction that
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(uk - uk+1)(0) S 0. (220)

Since h > h, by Harnack inequality we find

h—ﬁ§05 inBl/g.

This implies that u; < uy + C0 in By, and then by Corollary 2.13 it follows that all
membranes coincide in By /4 a contradiction. O

3. Monotonicity formula

In this section we present the Weiss type monotonicity formula associated to our
energy functional Jy and prove Theorem 1.2. This is a standard tool necessary for the
analysis of the partial regularity of free boundaries arising in a minimization problem,
see for example [24].

Proposition 3.1 (Weiss monotonicity formula). Assume that U is a critical point to Jy
in By with respect to continuous deformations in R™*t1. Then forr < 1,

(r) = r_"/ (VU +W(U))dx —r~ """ / |U|?do,
B, 9B,

is monotone increasing, and
d'(r)=2r"" / (r~'U —U,)%do > 0.
0B,

The ® functional is constant in r if and only if U is “a cone” i.e. homogenous of degree
one, and then this constant (the energy of U) is given by

B(U) = / W (U)dz.

First we specify the notion of U to be critical with respect to continuous deformations
in R**!. Given a smooth diffeomorphism ® : R**! — R"*+! with compact support in
Q x R, we deform the N-graphs of U by the map

X = X +t0(X), t small, X e R"H!,

onto the graphs of another admissible function that we denote by U;. Then we say that
U is critical if
d

EJN(Ut,Q) lt=0 = 0.
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If @ is independent of the z,41 variable then U becomes critical for Jy with respect to
the standard domain deformations in R™.

We start with the following lemma, in which we compute the first variation for critical
points with respect to domain deformations.

Lemma 3.2 (First variation). If U is a critical point of Jy with respect to domain vari-
ations then

/ (=29 Uk - Uy + (|VU]? + W(U))div ¥) dz =0, (3.1)

B,

for any Lipschitz map ¥ : R™ — R™ with compact support in Bi.
In particular, for a.e. r € (0,1)

d%(r‘"JN(U,BT)) =92r " / |Ul,|2do—2r_"_1/|VU\2da:. (3.2)
0B, B,

Proof. Let ¥ : R — R"™ be a Lipschitz map with compact support in By, and we
consider the domain deformation

zz+e¥(z)=y.
Then

D,y=1+eDV, Dyx = (Dyy) ' =1 — €DV + O(?),
dy =1+ ediv¥ + O(€?),

and

In(U(y). By) = / VU + W(U ) dy
By

= / (VoU(I — eDY)(I — eDU)(V,U)T + W(U)) (1 + ediv¥) dz + O(e?)

By

= Jn(U, By) + e/ (=2¢F Uy, - Uy + (VU + W(U))div¥) da + O(?).

B,

Here O(e?) depends on ||U||%.: and ||D¥|| .
We take in (3.1)

V() = s(lz|)z
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with s a cutoff function which is 1 in [0,7 — §] and 0 in [r,c0), and we let § — 0 and
obtain

/ (n=2)|VUP +nW(U))dz =r / (IVUP +W(U) - 2|U,|?) do,
B, 9B,

which gives (3.2). O
Let us consider continuous deformations of the graph of U in the vertical direction
(@,0) = (2,U + to(x)U) =: (z,Us(x))

with ¢ a smooth function with compact support. Notice that these deformations are
admissible for all ¢ close to 0, and in addition

W (U) = W(Uy).

Then, if U is critical for Jy with respect to the family U; we find

0= /VU -V(pU)dz, (3.3)
B
which means that
U-ANU=0

holds in the distribution sense. We take ¢(x) = 95(|z|) in (3.3), with 45 a cutoff function
as in the proof above. We let § — 0 and obtain that

/|VU|2da: = / U-U,do for a.e. r. (3.4)
B, dB,
Proof of Proposition 3.1. We compute

d

9B, 9B,

which together with (3.2) and (3.4) give the formula for ®'(r).
If U is a cone, then ®(r) is a constant which we denote by ®(U), and since

/|VU|2d:c: /U.Uuda: / |U|?do,

B, 9B, 0B
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we find

o(U) = [ W(U)dz. ©
/

Having established Weiss’ formula, we can now introduce the notion of blow-up cones.
Let U be a minimizer in © and assume U(xo) = 0. The Lipschitz continuity Theorem 2.10
shows that ®(r) is bounded below, hence it has a limit as » — 0. For a sequence of
rm — 0, consider the rescalings,

U, (z) = LE0ETmT)

rm,

Then according to Theorem 2.10, up to extracting a subsequence, U,, — Uy uniformly
on compact sets of R™ and ®(r,r) = ®,,(r) — Po(r). The limit Uy is called a blow-up
limit, and by our compactness theorem, Uy is a minimizer. The monotonicity of ® implies
®y(r) is constant, hence Uy is homogeneous of degree 1.

This discussion and the non-degeneracy Lemma 2.14 gives Theorem 1.2.

4. One dimensional minimizers
We show that the minimizing cones to Jy in dimension n = 1 are given by
Uy = Uz = .. = Up > Upy1 = .. = UN, k=1,...,N —1, (4.1)

with up = ug4q for x <0 and uy > ug4q for x > 0.
More precisely, for £ < N — 1, define Uy, as

1 1\ /2 1 1\ /2
Ul:<%_ﬁ) xT for i <k, ui:_(ﬂ_ﬁ) xt for i > k.

Notice that
\VUO,k|2 =1=W(Uok), >0,
and

oUox) =1,

where we are using the notation
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Proposition 4.1. The only minimizing cones U in dimension n =1 are given by U(x) =
L(z) 4+ Uy (), with L(z) = (a-x,...,a-x),a € R™ (up to a reflection with respect to
0). If > u; =0 then U = Uy .

Toward the proof of Proposition 4.1, we establish the next lemmas. First we obtain an
inequality that relates the values of the slopes and the potential term W near a branching
point.

Lemma 4.2 (Inwards perturbations). Let U be a minimizer to Jy in an interval around
0 in dimension n = 1. Assume that a number of membranes u; with indices

iel={j+1,.,k},

coincide at 0, and on a small interval (0,0) to the right of 0 the following two conditions
hold:

a) u; are linear,

b) the family u;, i € I, is strictly separated from the remaining membranes i.e. uj_1 >
Uj, Uk > Uk+1-

Then, in (0,0) the slopes of the u;’s satisfy the inequality

;\V(ui—uj)ﬁ > W({uj, .., ur}), uy = k%;m
Proof. After subtracting a linear function and after a dilation we reduce to the case
0=1, wur=0.
Also, after relabeling the membranes we may assume that

I=1{1,2,..,N},

and U minimizes the energy in [0, 1] among all admissible competitors V' with the same
boundary data as U in [0, 1] and with v; < uy and vy > uy. These inequalities guarantee
that V' is not interacting with other membranes outside 1.

We pick as competitor

U(=E) if zelel],

Ve(zx) :=
0 if x€]0,¢,

and find that

In(V.) = /1 (IL_GWUP +(1 - e)W(U)> dz.
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The minimality implies

d h 5
0< SN (Vo)lemo = / (VU = W(U))dz,

0

which gives the desired conclusion
VU] >W(U). O

Next we obtain the Euler-Lagrange equation at branching points where the membranes
coincide on one side.

Lemma 4.3. In addition to the hypotheses of Lemma 4.2 assume further that the wu;
with i € I coincide in [—0,0], and the strict separation with respect to the remaining
membranes holds in [—§, 0], instead of (0,0). Then the inequality in Lemma 4.2 becomes
an equality:

Z IV (ui —ur)|* = W({uj, .., ux}), in  (0,9). (4.2)

i€l

Indeed, in the proof above we can obtain the opposite inequality by replacing € with
—e€, since the corresponding competitor remains admissible.

The equality (4.2) expresses the equipartition of energy at the branching points. It
shows that Up j is the only homogenous of degree 1 minimizer U that satisfies (4.1).

Next we obtain a bound for the jump in slope of the top membrane u; at a branching
point.

Lemma 4.4. Let U be a minimizer to Jy in (—=§,0) in dimension n =1 with
Uy = Uy = .. =ug, for somek > 2.

Assume that
a) uy is linear in [0,6) and (—6,0], and let a*t, respectively a~ denote its slopes;
b) ug > w1 in (0,9).
Then

n _ 1
0<a a < N
Proof. As above, after subtracting a linear function we may assume that § = 1 and
a” = 0. Then a* > 0 since u; is subharmonic, according to Proposition 2.4.

The top k£ membranes vanish to the left of 0, and we can use as an admissible com-
petitor for these functions the same one used in the proof of Lemma 4.2 with € replaced
by —e. Precisely, let
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1
Veyi = 1—+6ul(x + €)X,y i<k, and v ;:=wu; ifi>Fk,

and notice that

L/ ok
‘]N(Ve) - JN(U) = / ( (|Vve,i|2 - |VU7|2) + X{ve,k>wc+1}ﬂ[—5xo]> dx
—1 (=

=1

k

1
€ 2
ge—1+€/2|wi| da,
0

i=1

which, as € — 0, gives the desired inequality
kE(@™)?<1. O
We are now ready to provide the proof of Proposition 4.1.

Proof of Proposition 4.1. Let U be a nonzero minimizing cone of average 0 in dimension
n =1 and let

al >a3 > .. >a

be the slopes of the membranes on [0,00) and denote by kf, . lir their multiplicities
that is, k;r is the number of membranes with slope aj'. Since U has average 0 we have
al >0> al+. Similarly on (—o0, 0] we have slopes —a; , —as5 , .., —a,, with
a; > ...>a,, a; 202>a,
with multiplicities ki, .., k,,-
We want to show that either [ =2, m =1or =1, m = 2. Then Lemma 4.3 implies

that, up to a rotation, U = Uy j, for some k.
By symmetry we may assume that

ki <k, (4.3)

and we show below that [ =2, m = 1.
We apply Lemma 4.4 to the top kf membranes and obtain

1
al +ay < “k—+' (4.4)
1

If | = 1 then, k] = N and therefore k; = N as well. This means [ = m = 1 hence U = 0
which contradicts our hypothesis. In conclusion, [ > 2.
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Next we apply Lemma 4.2 for the collection of membranes corresponding to the slopes
af and a2+ (we drop the + superscript for simplicity of notation) and obtain

ky ko
ki(ay —ap)® + & —a))?>1 =
(a1 —ar)” + ka(az —ar)” = 1, ar k1+k2a1+ kl—i-kza?’
hence
k2 k2
2 2 2
- k +k > 1,
(a1 — a) ( e R W) >
or
1 1
2
— > 4 —.
(a1 (ZQ) k‘l + kg
Thus,
1
+ +
J— > -,
ay — Qg k:f'
which together with (4.4) gives
ay < —aj <0, (4.5)
and since al+ < ag , we find
a; +a;f <0. (4.6)
We claim that
kb <k, (4.7)

Indeed, otherwise k;” > k;, and we are back at condition (4.3) after a rotation of 180°

of the graphs of the membranes. We write (4.6) for this configuration and obtain
—a; —a; <0.

This contradicts (4.6) and the claim (4.7) is proved.

The inequality (4.7) shows that we satisfy condition (4.3) after a reflection of the
membranes with respect to the x axis, i.e. (u1,..,un) = (—up, .., —u1). If { > 3 then we
may apply (4.5) for this configuration and obtain —aj < 0. This contradicts (4.5).

In conclusion | = 2, and (4.3), (4.7) imply that m = 1.

It remains to show that Upj is a minimizer. Let V' be a perturbation of U which
coincides with U outside a compact interval that contains the origin, say [—1, 1]. Let p
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Fig. 3. A minimizer for N =3, n = 1.

be such that u; > 0 € (p,1], u1(p) = 0 (and therefore U(p) = 0). Then W (V) > 1 in
[p, 1], hence

JN(Vv [71’ 1]) > JN(Va [*17 1})

where V is the harmonic replacement of V' in [p, 1], with V extended to be 0 in [~1, p].
On the other hand, the right hand side is minimized when p = 0 as can be seen from
Remark 4.3. O

If we consider minimality in the more restrictive class of continuous deformations of
the graph of U in R x R (which do not change the topology of the junctions), then there
are other cones in 1D. For example, for N = 3,

Uy :l'+, UQZO, U3:—.13+,

is a minimizing cone with a triple junction at 0. Notice that the Euler -Lagrange equation

(4.2) is satisfied. A minimizer in H' with the same boundary data in [—1,1] of the
example above is (see Fig. 3)

ulzx\(x—l—l—X) , ugz——ul—i—,u(x—l—l——) , U3 = —U] — Usg,

5. Free boundary regularity near one-dimensional cones

In this section we prove the partial regularity result for the free boundaries I';, in
dimension n > 2. For convenience we restate Theorem 1.4 from the Introduction.

Theorem 5.1 (Partial reqularity). Let U be a minimizer in By. The free boundaries T';’s
are analytic and disjoint from one another outside a closed set ¥ of singular points of
Hausdorff dimension n — 2, and

H" NI N Byp) < C.
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In order to obtain Theorem 5.1, we first establish a series of lemmas. First we write
a dimension reduction lemma for minimizers depending on fewer variables.

Lemma 5.2. U(z) is a minimizer for Jy in By C R™ if and only if its trivial extension
in one more variable is a minimizer for Jn in By x R C R**1,

The proof of this lemma is standard and we omit the details.
Next, we obtain a lower bound of the energy of non trivial cones. Recall that cones
are 1-homogeneous functions.

Lemma 5.3 (Least energy cones). Let U be a nonzero cone in R™, with Y u; = 0. Then

a(U) 2 1B,
with equality if and only if

U=Ui(x- v),
for some k < N, and some unit direction v.

Proof. We prove this by induction on the dimension n. The case n = 1 was addressed
in the previous section.

If {|{U| = 0} does not contain a ray, then W(U) > 1, and ®(U) > |B;| > i|B|.
If [U| = 0 contains a ray, then we can choose g € 9{|U| > 0} N 9By, and by the
monotonicity formula obtain

O(U) = lim @,,(U,1) > &,4,(U,0+),

T—>00

with equality only if U is constant in the z( direction. Here ®,, (U, 0+) represents the
limit of the ® functional centered at xy and its value coincides with the energy of a
blow-up cone at xg. This cone is constant in the x( direction and by the previous lemma
it is the extension of an n — 1 dimensional cone to R™. Now the conclusion follows easily
from the induction hypothesis. O

We state the e-regularity theorem for our problem.
Proposition 5.4. Assume that U is a minimizer of Jy in By with
0e{lU/>0}, > u=0,
and

1
(U, B;) < §|Bl| + 4,
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for some small § universal. Then, there exists k < N such that I'y N By /3 is an analytic
hypersurface and T's N\ By o =0 if i # k.

We start by proving the following result.

Lemma 5.5. Assume that U satisfies the hypotheses of Proposition 5.4. There exists k
such that in Bg/y u1 = .. = Up, Upy1 = .. = un, t.e. ;N B3y = 0 for all i # k.

Proof. First we show that there exists a unit direction v such that in By /g,
U — Uy p(x-v)| < n(d) with 7(6) — 0 as 6 — 0. (5.1)

This follows by compactness from Lemma 5.3. Indeed, if U, is a sequence of minimizers
in By which satisfy the hypotheses with 6 = 6,, — 0, then up to subsequences, U, — U
uniformly on compact sets of By g and

0€0{|U| >0},  @(U,Bzs) = lim®(U,, By/s) < %\Bﬂ.
Lemma 5.3 implies that U is a cone of least energy, i.e. U = Up x(z - v) for some k, and
(5.1) is proved.

Conclusion (5.1) holds also for the rescalings U,.(z) = r~1U(xr) with k and v depend-
ing on r. However, the continuity of the U,’s implies that k is in fact independent of r,
provided that we choose 1(d) sufficiently small.

On the other hand (5.1) and the non-degeneracy of |U|, give that {|U| = 0} and the
half-space x-v < 0 are close in the Hausdorff distance sense in Bj/4. The same argument
as above can be applied at any point xo € 9{|U| > 0} N By, instead of the origin, and
the conclusion easily follows. O

Proof of Proposition 5.4. Let us assume that ) u; = 0. Then, by Lemma 5.5, T';NB3 /4 =
() if 4 # k, and uy, is the minimizer for the scalar Bernoulli problem

nk
/ (n — k|VU|2 + X{u>0}> dz,

B34

with sufficiently flat free boundary in Bj,4. The result follows from the classical work of
Alt and Caffarelli [1]. O

Definition 5.6. We say that x( is a regular point of I'y, if, when restricting to the collections
of membranes that coincide at zg, the corresponding blow-up cone is one-dimensional.

Proof of Theorem 5.1. If at xg € I';, we have,

UL > U] = oo = U > Uppt1,
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with [ + 1 < k < m, then

U .= (ul+1, .../U,m),

minimizes the energy locally for the energy J,,_; involving m — [ membranes. After
subtracting the average from U, we reduce to the case U (zo) = 0. If the blow-up cone
at xg is one-dimensional, then x( is a regular point.

Then, by Proposition 5.4, T'y is an analytic surface and I'; = () near xq, with i €
{l+1,...,m}. Furthermore, Proposition 5.4 implies that if U,, — U then I, j, converges
to T, in C1® sense near z.

Now the theorem follows from the standard dimension reduction argument of Federer,
see [10]. We omit the details. O

6. 2 dimensional cones for N = 3 membranes

In this section we study nontrivial cones U which are not one-dimensional. We restrict
to the case N = 3 membranes in n = 2 dimensions.

We introduce two cones Vy and Vs which turn out to be the only one-homogenous
functions which minimize the energy locally at points outside the origin.

We use polar coordinates (r,#), and view sectors as intervals in the variable . We
also use the notation

ep = (cosf,sind).

Definition 6.1. The cone Vi = (vg,1,v0,2,v0,3) is defined as

%J;-e_%, if 96[—%%,%77],
vo,1 (%) = é T-er, if 6¢e [%7, %W],
0 otherwise,
vo,3() = —vo,1(21, —T2), Vo,2 = —Vo,1 — Yo,2-

The cone V = (vs,1,0s,2, s,3) is defined as

max {|x1],2|z2|},

1
vs1(x) = \/—1_0

US,3(':Z:) = *Us,l(x%xl)a Vs,2 = —Us,1 — VUs,3.

s

(Fig. 4.)
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Fig. 4. The free boundaries for the cones Vj and V.

Proposition 6.2. Let N = 3 and U be a cone with Y u; = 0 which minimizes Jn locally
at points on the unit circle By, and assume that U is not one-dimensional. Then, up
to rotations U = Vg, or U = V5.

Proof. By the partial regularity Theorem 5.1, the free boundaries I'; and I'y of U consist
of at most a finite number of distinct rays. Each u; is linear in the sectors determined
by these rays, and on 0B;, the membranes behave as in the 1 dimensional case at the
points on I'; N @B;. More precisely, if at such a point all three membranes coincide, i.e.

U = 0, then on one side they all coincide and on the other they split with multiplicities
1 and 2, and slopes \/g and \/g respectively. If at such a point only two membranes
coincide, then on one side the two membranes coincide, while on the other they split and
the slopes have a jump of size i%.

Let S be a sector determined by a connected component of {u; > us} which, after a

rotation, corresponds to an interval (0, 6p) in polar coordinates. Then
up=f-x>0 in S,
for some non-zero vector f. Notice that 0y < 7.

We distinguish 2 cases depending on whether or not u; vanishes on 95.

Case 1: uy >0 on 95\ {0}.
In this case we show that f bisects the sector S, and 6y > 27/3. Moreover, f bisects
also the sector {ug =uz} NS.

From the 1 dimensional analysis, in the connected sector {6 € (0,6,)} C S where
up > ug > uz, we have

ng(f—\/ﬁeg)'$, U3:(\/§€%—2f)'$.

Notice that 61 < 6, since otherwise 6y = m and we contradict that u; > 0 on 95\ {0}.
The two linear functions corresponding to us and wug in [0, 61] intersect on the line

(3f —2V2ez) 2 =0, (6.1)
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hence the ray {6 = 6;} C Ty is obtained by intersecting this line with S.
The Euler-Lagrange equation on I's implies that

13f —2V2ez| = V2, (6.2)

ie. % J belongs to the unit circle centered at 2ez, which means that the angle between
f and ex is at most 7/6.

Similarly, the equality above is satisfied also by the inner normal eg,—z to S on the
other ray of 9S. Since (6.2) holds for both ez and eg,— =, it means the vector f makes
the same angle with these 2 inner directions to S, hence f bisects S. Notice that a vector
f determines uniquely the two unit directions which satisfy (6.2) and the lines in (6.1)
where the graphs of us and ug intersect. By symmetry, f bisects also the sector where
{u2 = uz} included in S. Thus any connected sector S of {u; > us} for which u; > 0 on
05\ {0} is uniquely determined by the slope of u; in that sector.

We remark that the angle between f and ey cannot be 7/6. Otherwise, by (6.1), the
ray 6 = 601 has the direction of f. This means that the set {us = us} NS consists of a
single ray which bisects S, and then U cannot be locally minimizing by the 1 dimensional
analysis.

Case 2: uy vanishes on the ray 6 = 0.

In this case we show that U coincides with a § rotation of Vj.

From the 1 dimensional analysis,

1
+ — —
) y U2 = U3z = —ZUy,

up =14/= (x-ex 5

on a sector near the ray § = 0. Let {6 € (0,61]} be a connected sector in S where
ugy = uz. We claim that

01 < bp.

Otherwise uy = ugz = —%ul throughout S, which means that S is a half-space, i.e.
6o = m. Since u, is subharmonic, and vanishes near the endpoints of the interval [, 27]
we conclude that it vanishes in the whole interval, i.e. the formulas above hold in R? and
U is one-dimensional, a contradiction.

We remark that u; > ug > ug in the remaining sector 6 € (61,60p) of S. Then, in this
sector we have

1 1 1 1
g — e + = —— _ . + —_ P
Uy (x-ex)™, ws uy + (x-e)", wus 2u1 7

(v-e)t,

with e := 691_,_%.
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The Euler-Lagrange equation at 6 = 6, gives

3\F 1
2\V3°% T 2

which means that e = e, i.e. 61 = 7/2. Then the ray 6 = 6 is given by the direction of

=2

e

[ME]

b

|~

along which u; and usy intersect, i.e. 8y = 57/6.

Notice that the direction 6 = 6 is also the one of the gradient of —ug in the connected
sector S” := (01, 62) where {ug > uz}. We claim that U vanishes on § = 5. Otherwise we
are in case 1) for —ug in the sector S’. We apply the conclusions for case 1) and deduce
that the direction 6y bisects the angle of S’ and 6 — 6; > 27/3. This is a contradiction
since 63 — 01 = 2(0y — 601) = 27/3.

Thus we are in case 2) for —us and S’ which means that 03 = 6y + 7/2. In the
remaining sector § = [02,27], u; (and therefore U) must vanish since it is 0 on the
boundary and it is subharmonic in the interior. In conclusion U is a 7/6 rotation of Vj.

If u; and uz do not vanish on any ray, then we are in Case 1) for each sector of U,
and then the connected sectors of {u; > us} and {u; = us} occur in a periodic pattern
along the circle. Since 6y € ( %ﬂ', 7), we can only have four such sectors. Then the angle
between the bisectors of two such consecutive sectors, f for {u; > ug} and f — %e% for
{u1 = uz}, must be —7/2. This together with (6.2) determines f uniquely as

f= g(eo +Qe§)7

and then it follows that U is a rotation of V. 0O

Next we show that we can lower the energy of V; by using a compact perturbation
near the origin. Our proof does not use the precise form of V; but only that it has an axis
of symmetry. The idea is inspired by [17] where the classification of nonlocal minimal
cones in two dimensions was established.

Proposition 6.3. V; is not a minimizer of Jy in Bi.

Proof. Assume by contradiction that V; is a minimizer of Jy in Bj.
We take the domain deformation

x>y :=Y(x) =+ ep(|z|)eo, eo = (1,0),

with ¢(]z|) a radial function with compact support in By, and with ||[eD¥|/p~ < 1.
Then, using the Lipschitz continuity of Vs, we find as in the proof of Lemma 3.2 that
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satisfies
In(U, B1) = Jn(Vs, By) + /L(eD\I/,v;) + O(| DY |*)da,
B1
with L linear in the first argument. Since V; is minimizing, it follows that
/L(eD\II, Vs)dx = 0,
By
hence
In(U,By) — Jn(Vs, By) < Cé? / |Vp|?dr = o(€?)
B,
provided that we choose the logarithmic cutoff

max{log r, log(2¢)}
log(2¢)

p(r) =
Let
Up:=U(=|z1l,22), Uz :=U(|zal], 22)
and notice that Uy, Us have the same boundary data as U, hence

In(Vs,B1) < In(Ur, B1), JIn(Vs,B1) < In(Us, By)
In(Ur, Br) + In(Usz, B1) = 25 (U, By) < 2Jx5(Vs, B1) + o(€?),

which gives

In(Ur, By) < In(Vy, Br) + o(€).

35

Notice that in Bs, U is a translation of V; by the vector eey, and Uy and Us are obtained

by reflecting this translation with respect to the line z; = 0.

We claim that the minimizer U; with the boundary data of U; in B, decreases the

energy of Jy (Ui, Be) by ce?, ¢ > 0. By the scaling of ¢! factor, this is equivalent to

prove the claim for e = 1. This means that, we first translate V; by eg and take its values
in By N {z; < 0}, and then reflect them evenly with respect to {z; = 0}. We need to

show that the resulting function is not minimizing Jy in B;. Indeed, it suffices to look

at this function on the x; axis. On this line we have u; = us > 0, uz < 0 and at the

origin ug is not smooth, therefore it is not a minimizer. O
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Next we prove that V5 is a minimizing cone in R2.
Proposition 6.4. V| is a minimizer of Jy.
First we state a result about the continuity of U near the boundary.

Lemma 6.5. Assume that Q) is a Lipschitz domain and the boundary data of U is Lipschitz.
Then U € C*(Q), for some a > 0.

The proof is standard and follows as in the interior case. We omit the details.

Lemma 6.6. Assume that 0 € 9 and Q) is a conical domain near the origin. If the
boundary data of U is homogenous of degree one near 0, then the rescalings U,.(z) =
U(rz)/r of U converge on subsequences as r — 0 to a global minimizing cone (defined
in the conical domain).

This follows from the Weiss monotonicity formula which still applies in this setting.
We only use Lemma 6.6 when Q = B]” C R2.

Lemma 6.7. Assume that N =3, Q = B} = By N {x, >0}, Y. u; =0, and U vanishes
on x, = 0. If

1
max{uy, |uz|} < — x,,

V6

then U = 0 in a neighborhood of the origin.

Proof. By Lemma 6.6 and non-degeneracy, it suffices to prove the statement when U is
a cone. Since u; > 0 is subharmonic, one-homogenous, and vanishes on z,, = 0, it must
be a linear function in the z,, variable. The same is true for us and therefore also for
ug. By dimension reduction, it suffices to show the statement in dimension n = 1. The
growth hypothesis implies the slopes of uy, us and ug at the origin are strictly less that
1/4/6, and they need to vanish by Lemma 4.2. 0O

Proof of Proposition 6.4. We prove that 1} is a minimizing cone by constructing a min-
imizer U : Q — R for which I'y NT'2NQ # (). By the results above, V; is the only possible
blow-up profile at an intersection point, and it is therefore minimizing.

Let Q := [-M, M] x [—1,1], for some M large to be specified later, and let U be a
minimizer of Jy with the boundary data given by

o(r1)Uo(z2) + (1 — p(21))Uo 2(22),

where Uy 1, Up2 are the one-dimensional solutions in the case N = 3, and ¢(z1) is a
smooth non-decreasing function which is equal to 0 when z; < —1 and equal to 1 when
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21 > 1. Thus U = 0 on 90 N {zg < 0}, U # 0 on the remaining part of the boundary.
Moreover, since u;, —u3 are subharmonic we have

1
max{uy, —usz} < —(1+ z2),

V6

and by Lemma 6.7 we find that the boundary points (—M, M) x {—1} are interior to
the coincidence set {|U| = 0}. We have
In(U, Q) < (M —1)(InUo,[-1,1]) + In(Uo 2, [-1,1]) + C,
and since Uy 2 is minimizing in one dimension we find
INU, QN {x1 < —1}) > (M — 1)JIn(Up,2, [—1,1]),
thus
In(U, 20 {21 > 1}) < (M = 1)Jx(Uo s, [-1,1])) + C.

On the other hand for each y € (1, M) for which
1U(; ) = Uoa(Illzoe-1,11 = 6,
we have
IN(U, D) > In(Up2(x2),D) +0(5), D:=[y—9dy+9 x[-1,1],

for some o(d) > 0, hence if M = M(J) is large enough we can find a y € (M/4, M/2)
such that

[U—-Upi(z2)| <d in R:=[y—1,y+1] x[-1,1],

which, by Proposition 5.4, gives that the coincidence set {|U| = 0} has I'; as its boundary
in R, while 'y = (). The same conclusion holds for some y € (—M /2, —M/4) with the
roles of I'; and I's interchanged.

Now we can conclude that {|U| = 0} has a boundary point in I'y N Ty N Q. Indeed,
otherwise 9{|U| = 0} N Q is a smooth curve which locally is in either I'y or 'y and
which does not intersect the lines zg = 1 or 9 = —1 in the region |z;| < M/2. This is
topologically impossible and we reached a contradiction.

Finally we show that Vj is the unique minimizer with its own boundary data. If U is
another minimizer with the same energy and boundary data in Bj, then U extended by
Vo outside By, is a minimizer in any compact subset of R™. As above, we find that there
exists g € I'1 NT'y, and since the tangent cone at xy has the same energy with the cone
at infinity we find that U is a cone with vertex at xg, i.e. U =V;. O
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7. Regularity of cones near Vj

In this section we assume that we are in n = 2 dimensions. We establish the uniqueness
of the blow-up cone at a point in I'y N 'y and obtain the regularity of the two free
boundaries near such a point.

Theorem 7.1. Assume N = 3 and U minimizes Jy in By. If Vi is the blow-up profile of
U at 0, then Ty and 'y are piecewise CH curves.

Since Vj is the only possible blow-up profile for I'y N 'y in two dimensions, we know
that U is well-approximated by rotations of 1} at all scales. Precisely we may assume
that for each r € (0, 1], there exists a rotation matrix O, such that

[U = Vo(Orz)|[Loe(s,) < e, (7.1)

for some e sufficiently small. Our goal is to show that the value of € improves in a C
fashion with respect to r.
Assume that O; = I, and set

2

1 .
wy == <u1 ~\3 x - e_g> , defined in {uy > ua},

1 2
w3 = - <\/; T-ex —|—u3> , defined in {us > ug}.

We claim that, as ¢ — 0, the graphs of the functions (w;,ws) converge uniformly on
compact sets of

B1\ {0} x R ¢ R**!

to the graphs of a limiting pair (w;,ws3) with w; defined in the sector Sy (Fig. 5) given
by

and w; satisfies
A’J)l =0 in Sl, (72)
O,w; =0 on {T €(0,1), 6= ——} ) (7.3)

} : (7.4)
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Fig. 5. The sector S;.

while w3 is defined in S3 with

2
sii= {0 e 0 x (<530},
and
Aﬂ)g =0 in 83, (75)
O, w3 =0 on {r €(0,1), 6= 2;} , (7.6)
_ 1, _ s
O, w3 = 5('9”101 on {r €(0,1), 6= 76} . (7.7)

Here the functions w;, w3 are bounded by —1 and 1, and their first derivatives are
continuous up to the boundary at the points belonging to the lateral sides of the sector.
The equations imply that they are in fact smooth up to the boundary at these points.

Moreover, wq, w3 are continuous at 0,

1(0) = w3(0) = 0, (7.8)

and the convergence of W = (wy,ws) to W = (wy, w3) is uniform also in a neighborhood
of 0.

Indeed, by the results of Section 5, u; solves a Bernoulli one-phase problem near the
line 0 = —%71’ which is an e-perturbation of the one-dimensional solution of slope +/2/3.
Now we can apply the results for the scalar one-phase problem in [D], and find that w;
converges on subsequences as € — 0 to a limiting function w; which satisfies (7.2)-(7.3).
On the other hand

2
up — ug = 2uy +uz = \/;(26_% —ex) - x+€(2w —ws)

solves a Bernoulli one-phase problem near the line # = ¢ which is an e-perturbation of a
one-dimensional solution. The same argument as above gives (7.4). Similarly we obtain
the equations (7.5)-(7.7) for ws.

Finally, from (7.1) we have [0, — O, 5| < C¢, hence |O, — I| < Ce|log 7| which means

IU = Vo(@)|[~(B,) < Cer|logr]|.
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This implies that
wi] < Claflog fo| i [a] € [¢2,1],

hence w; has a Cr|logr| modulus of continuity at 0 and satisfies (7.8).
Next we study the linear system (7.2)-(7.7) and notice that it appears as the Euler-
Lagrange system for the quadratic functional

Q(’lUl,’LUg)::; / |Vw1|2dx+g / |Vws|?dz
81\83 83\81

+ / Vun[? + Vs [? + [V (wy — ws)|?de,
S1NS3

acting on pairs
(w1, w3) € H'(S1) x H'(S3).
For simplicity of notation we denote

W = (wl, wg), VW = (le, ng),
LA(S) = {W| w; € L*S)}, HYS):={W| w; € H'(S)},

and define the inner product on L?(S) as
3 3
(W, V) := 2 wyv dx + 3 w3vzdr
S1\Ss S3\S1

+ / w11 + wsvs + (w1 — ws)(vy — v3)dx.

S1NS3

The norm induced by the inner product is equivalent to the standard L? norm on S. We
also define (VIV,VV) as above, by replacing the terms w;v; by Vw; - Vv;. With this
notation

QW) = (VW,VIV).

We consider minimizers of Q which have fixed boundary data on dB; or, in other
words, we consider harmonic maps induced by (-, -). We establish the C1® regularity of
minimizers of ) near the origin.

Proposition 7.2. Assume that W € H(S) is a minimizer of Q among competitors with
the same boundary data on SN OBy. Then W € C120(8) and
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Wi(z)=W(0)+qlex -z,—e_= -x) + O(Jz|*T?), ¢ €R,

3 5
for some explicit ag € (0,1).

The precise formula of aq is given by

V17 -3

cos(g(l—i—ao)) = T

and ag ~ 0.36.
First we show that a solution to the system (7.2)-(7.7) which remains bounded near
the origin minimizes the energy Q.

Lemma 7.3. Assume that W is a bounded solution of (7.2)-(7.7). Then it minimizes the
energy Q with respect to perturbations in H}(S).

Proof. Indeed, we notice that if V€ C! vanishes near B; and the origin 0, then
(VW,VV) = (AW, V)

+ ——v3(ws3), + v1(w1), + v3(wW3)y + (v1 — vg) (w1 — w3), do

+ ——v1(W1), + v3(wW3), + vi(W1)y + (v3 — v1) (w3 — W), do

Let Wy be the minimizer of Q in SN B, with the same boundary data as W on SNOB,
for some r € (0,1). We show that T and Wj coincide in B,..
The computation above gives

(VW — W), VV) =0,

for any V € H'(S) which vanishes on dB; and in a neighborhood of 0.
We choose V' = ¢?(W — Wy), with ¢ a radial cutoff function which is 1 outside Bs
and vanishes near 0, and obtain the Caccioppoli inequality

WV (W — Wo), V(W — Wy)) < C{VY|(W = Wo), |[Vy|(W = Wo)).  (7.9)

Since W — W) is bounded near the origin and ||V4)||z2 can be made arbitrarily small,
we obtain

(V(W — W), V(W — W) =0,

as 0 — 0, which gives the desired conclusion. O
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Theorem 7.1 follows from the estimate of Proposition 7.2 which applies to W.
Proof of Theorem 7.1. Since W (0) = 0 then, for all p < 1/2,

W —q(eg -z, —e_z - @)||Lop,) < Cp' T,

3

with |¢| < C, and C universal.
The uniform convergence of the W’s to W and the inequality above imply

[U = Vo(Op)l| Lo,y < Cp'Teoe < ep,

with O, the rotation of angle e\/g q, provided that o < «ag and p is chosen sufficiently

small depending on a. By iterating this result we find that U is approximated in a O
fashion by rotations of V{. In particular, there is a limiting rotation Ogy such that

|U = Vo(Oo)||p(p,) < Cer'™  forall r € (0,1].

This shows that the free boundaries are piecewise C1® at the origin. The full C1®
regularity of I';’s away from the origin follows from the free boundary regularity in the
one-phase problem applied in the annuli B, \ B, /2, see [1,7]. O

It remains to prove Proposition 7.2.

Proof of Proposition 7.2. We solve the Dirichlet problem for minimizers of ¢ by the
method of Fourier series.

We investigate the eigenvalues and eigenfunctions of the corresponding () operator on
the unit circle 9By. Precisely, let

SZ/ =S8, NOBy,

and notice that

where a < b denote % and %’T

We define the corresponding spaces L?(S’), H!(S’), and the inner product (W, V) as
above. The eigenfunctions @, and eigenvalues Ay are defined inductively through the
Rayleigh quotient formula

Ak 1= min 7<VVV’VW>
" Wetspan{@s, et (W, W)

)

and ®;, = W is the element of H'(S’) which has unit norm in L?(S’), where the minimum
is realized. Then {®}%, is an orthonormal basis of L?(S’).
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The minimizer of the @ functional with boundary data ®4(6) on B is
YA, (0).

We write the Euler-Lagrange equations for an eigenfunction ®;, = W of eigenvalue
Ar = A and obtain

wi + A w; =0 in (=b,—a)U(—a,a), (7.10)
wll(_b)"r = 07
Sul(—a)_ +wh(—a)s —2wi(~a)s =0, wi(—a)s —2wh(—a)y =0,  (7.11)

2

together with similar equations for ws. Here w](—a)+ denote the left and right limits of
the derivative of w} at —a. From (7.11) we find

wi(—a)- = wi(-a); = 2wi(—a)+,
which means that equation (7.10) holds in the full interval (—b,a). In conclusion
w1 (0) = p1 cos(VA(O +b)), ws(0) = pscos(VA — b)),

and

This implies that
sin(VA(b — a)) = £2sin(VA(b + a))

or

|sin(3t)| = 2|sin(5t)|, ¢:= —. (7.12)

=5

This equation has periodic solutions in ¢ of period 7. In the interval [0, 7) we have 9
solutions, two in each interval of length 7 /5. The first one is ¢y = 0, then

T T 2

™ ™
t1: tge(g,g), t3€(3,€) etc.

ga
The solutions can be computed explicitly since after dividing by sint in (7.12), we end
up with two quadratic equations in 4 cos(2t)

B2428—4==4(B+2), B = 4cos(2t).
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The corresponding eigenvalues and eigenfunctions are

AL =0, W = (1,0),
A2 =0, W =(0,1),
Az =1, W = (cos(0 + b), —cos(6 — b)),
VA (2,2), W = (cos (\/E(H—i-b)) , COS <\/)\—4(9—b))) ,

and V3 € (2, %) etc. The eigenvalues corresponding to t/7 € Z have multiplicity 2,
while the others are simple, and notice that /Ax ~ %k for k large.
If ®(#) is the boundary data of W, then we decompose it in L%*(S’) as

o = ZokCPk

with Y~ 07 < oo, and write the solution W in S in polar coordinates as the series
W = Z Uk’l“mq)k(o),

which converges uniformly in compact intervals of r € [0, 1).
This gives the desired conclusion with

1+a =1/,

and
V17T -3
4cos(z\/)\4) =—.
3 2
We remark that ® is the trace of a function in H'(S) is equivalent to
QW) = (VIW,VIW) =) VA 0f <o0. O
8. Regularity for I'; N I'; in higher dimensions

In this section we prove a version of Theorem 7.1 in arbitrary dimensions. First we
recall the following definitions.

Definition 8.1. Let U be a minimizer of Jy with N = 3. We say that
xTo € Reg(F1 N Fg)

if there exists a blow-up profile at g which is a rotation of a two-dimensional cone V}
extended trivially in the remaining variables.
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We say that
zo € Reg(T'y)
if there exists a blow-up cone zg € I'y, which is one-dimensional.

For convenience we restate Theorems 1.7 and 1.8 from the Introduction which will be
proved in this section.

Theorem 8.2. Reg(T'y NTs) is locally a CY*-smooth manifold of codimension two. Near
such an intersection point, each of the free boundaries I'y and I'y consists of two piecewise
CY@ hypersurfaces which intersect on Reg(T'y NTy).

As a consequence we obtain the partial regularity result.
Theorem 8.3 (Partial regularity). Let N = 3 and U be a minimizer of Jy in By. Then
A{|U| > 0} = Reg(T'1) U Reg(I'2) U Reg(T1 NT2) UY,
with ¥ a closed singular set of Hausdorff dimension n — 3 and
H" Y(Reg(T;i) N Byjg) <C,  H" 2(Reg(T1 NTy) N Byy) < C.

Theorems 8.2 and 8.3 are deduced from the next proposition which will be proved
later in the section. It states that a minimizer U which is approximated in each ball B,
with r € (0,1], by a rotation of Vg, must be a C1® deformation of V;.

Proposition 8.4. Let U be a minimizer in By. Assume that for each r € (0,1] there exists

a pair of orthonormal vectors v}, v? such that

U =Vo(vy - 2,07 - @)l 1=, < er,
for some € < eg(n) small universal. Then there exists v}, V¢ such that
U - Volvg - 2,15 - @) || o,y < Cer' ™.

A direct consequence of this result is that there are no other cones that are sufficiently
close to the set of rotations of Vj.

Corollary 8.5. Assume that U is a minimal cone and ||U — Vy||po(p,) < €0. Then U is a
rotation of Vj.

We show that the hypotheses of Proposition 8.4 can be relaxed to require that U is
approximated by Vj only in By and the energy of the blow-up cones at the origin does
not go below the energy of V4.
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Lemma 8.6. Let U be a minimizer in By with 0 € 0{|U| > 0}. Assume that
HU — ‘/(J||L°°(Bl) < €, and (I)U(O+) > CI)(VQ)
Then the only possible blow-up cones for U at 0 are rotations of V.

Proof. First we notice that the hypotheses imply that

1
‘I’U(§) < O(Vp) + Ce,
and then

1
0<Py(r)—o(Vp) <Ce¢ Vre(0, 5) (8.1)
Assume by contradiction that the conclusion does not hold for a sequence U, and € =
én — 0. Then, by Proposition 8.4, we can find appropriate dilations U,, := r YU, (1)
such that

diSt(Un, Vo) = €0,

where V) represents the collections of cones obtained by rotations of V{, and the distance
between U, and the elements of Vy is measured in L°(B;). As n — 0o we may extract
a convergent subsequence in L>°(By) of the U,’s to a limiting function U. Then U must
be a cone, since its ®; energy is a constant in the radial variable by (8.1). The distance
from U to Vy is €o, and we contradict Corollary 8.5. O

Next we use the dimension reduction argument to show that the set of free boundary
points 9{|U| > 0} whose tangent cones have energy strictly between the one dimensional
solutions Uy and the two-dimensional solution Vp, has Hausdorff dimension n — 3.

Lemma 8.7. The set
A:={z € {|U| >0} N B1| Pua(0+) € (2(Uok), 2(Vo))}
has Hausdorff dimension n — 3.

Here @y, (r) denotes the Weiss energy of U in a ball of radius r centered at z, and
@y, (0+) its limit as » — 0. The continuity of ®y . (r) with respect to z, and r fixed,
shows that

(I)U@(’r‘) < (I)(Vo),

for all x € 9{|U| > 0} near a point in A and r sufficiently small. Thus, it suffices to
prove the following lemma.
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Lemma 8.8. Fiiz 6 > 0, and assume that U is a minimizer in B3 and
Oy L(r) <O(Wp) — 6, Vo € o{|U| >0} N By, Vr<l1.
Then
H 3 (AN B,) = 0.
We remark that AN Bj is a closed set by the regularity result in Proposition 5.4.

Proof. The proof follows the standard dimension reduction argument of Federer [10].
Notice that in dimension n = 3 the set AN B; is discrete by Proposition 5.4, and the
statement is obvious.

We prove the statement by induction on the dimension n > 3, in two steps. We only
sketch the main ideas and leave the details to the interested reader.

Step 1: Assume the result holds in dimension n, then it holds for any n+ 1-dimensional
cone U with ®(U) < ®(V;) — ¢.

Step 2: Assume the result holds for cones in dimension n, then it holds for a minimizer
in dimension n.

For Step 1, assume U is a cone in R™*!. We take its restriction to a ball B,(xq) with
xg € AN JB; and then normalize it to the unit ball after a translation and dilation.
The resulting function is uniformly-well approximated as r — 0 by a minimizer that is
constant in the xg-direction, for which the induction hypothesis holds. By compactness,
this means that, there exists ro(n) > 0 small such that if » < r¢ then AN IBy N By(z0)
can be covered by a finite collection of balls of radii r; and centers on AN JB; with

Z r;(t—3+5 <

Step 1 follows by iterating this result a number of times.

St (8.2)

DN | =

Step 2 is a consequence of the fact that around each point in A, U is well-approximated
by cones at all small scales, and the conclusion holds for these cones by Step 1. Precisely,
by compactness, for each zo € A N B; there exists §(zg) > 0 such that if r < §(xg)
the set A N B,(xo) can be covered by a finite collection of balls of radii r; that satisfy
inequality (8.2).

Let Ay denote the set of points xg in A4 with the property that 6(xg) > %, and notice
that A C UAg. On the other hand H"3%%( A, N B1) = 0 since, as in Step 1, we can
iterate (8.2) for Ay. Thus, the desired conclusion holds for A as well. O

In view of Lemma 8.6 and Lemma 8.7 we obtain a stronger version of Proposition 8.4
in which the only hypothesis is that U is approximated by Vj in Bj.

Proposition 8.9. Assume that U is a minimizer in By, 0 € 0{|U| > 0}, and

U = Vo(w1,22)| Lo (B,) < €0,
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for some €y small universal. Then there exist v}, v3 such that

10 = Vo - 2.8 - 2) | 5, < 7.
In particular, Ty Ny N By /o consists only of regular intersection points.
Proof. For each
v €D :={x; =22 =0}N By,

we look at the two dimensional plane generated by the first two coordinates of x. By
topological considerations in this plane, the set I'y NI’y contains at least one point z in
the disk of radius Cey around the origin.

Indeed, our hypothesis and Proposition 5.4 imply that in the two-dimensional annulus
Ceg < 1 < 2Ce the open sets {u; > u} and {uz > uz} are C! perturbations of the
sectors S and S3 defined in Section 7. By two-dimensional topology, the boundaries of
these two open sets must intersect in the disk of radius Ce.

Since dim(A) < n — 3, we find that

z¢ A for H"" 2 ae. v €D,

hence @y z(0+) > ®(V,) and we can apply Proposition 8.4 at .
The conclusion follows since the set of such x’s is dense in D. O

Theorem 8.2 follows easily from Proposition 8.9 and we omit the details.
Regarding Theorem 8.3, we notice that

¥ = 9{|U] > 0} \ (Reg(T'1) U Reg(T'3) U Reg(T'1 NT3)),

is a closed set according to Proposition 8.9 and Theorem 5.1. The dimension reduction
argument as in Lemma 8.7 implies that dim(X") < n—3, and rest of Theorem 8.3 follows
by standard techniques.

It remains to prove Proposition 8.4. The considerations at the beginning the previous
section remain valid, and they reduce the proof of Proposition 8.4 to the validity of C1:®
estimates for bounded solutions of the elliptic system (7.2)-(7.7).

The rest of the section is devoted to establish Proposition 7.2 in arbitrary dimensions,
see Proposition 8.10 below.

We introduce some notation. We denote by

x= (22", o' =(r1,22), 2" = (23,..,70),

(r,0) the polar coordinates for a,

S1:={0 € (—4a,a)} N By, S3:={0€(—a,4a)}NB1, a:= %,
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and recall the definitions of L*(S), H(S), (W, V), (VW,VV), and Q from the previous
section. We establish the C''® regularity of minimizers of Q.

Proposition 8.10. Assume that W € H'(S) is a minimizer of Q among functions with
the same trace on OBy. Then W € CY%(S) and

W (x) = W(0) + ((gez,v1) -z, (—ge—z,v5) - x) + O(|z['+9),
for some a € (0,1).
As in the previous section, Proposition 8.4 follows from Proposition 8.10 provided
we show that bounded solutions of the system (7.2)-(7.7) do minimize the energy, as in

Lemma 7.3 for n = 2.

Lemma 8.11. Assume that W € L™ solves the system (7.2)-(7.7) in the classical sense
in the domain

S\ ({z' =0} UdB,).

Then it minimizes the energy Q with respect to perturbations in H'(S) which vanish
near 0B .

Proof. The proof is essentially the same as the one of Lemma 7.3. However, in order to
justify the existence of a minimizer W, with the same boundary data as W on 9B, we
need to show first that W € HY(SN B,).
Notice that for any V' € C* that vanishes near {2’ = 0} U 3B, we have
(VW,VV) = 0.
Then the Caccioppoli inequality

(VW , VW) < C(|Ve|W,|Ve|W),

holds if ¢ vanishes near {z’ = 0} U 9B;. We choose

with ¢ a radial cutoff function which vanishes near the origin and ¢ = 1 when |2/| > §,
and 7 a cutoff function which vanishes near 0B;. Since W e L°, it follows that we can
take ¥ =1 in the limit as § — 0, i.e.

W e HY(SNB,) foranyr<l.
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We define Wy to be the minimizer of ) in S N B, with the same boundary data as W
on 9B,. Now the proof of Lemma 7.3 applies, by taking ¢ = 1(2’) depending only on
the variable 2’. O

There are several ways to prove Proposition 8.10. Here we take advantage of the
product structure of the problem and reduce it back to the two-dimensional case. The
system is invariant under translations in the 2’ variable, and then we can estimate higher
order derivatives D”

x!

W through successive iterations. Then
AW =0 = AgW=—-LpW,

and the right hand side is well behaved.
We start with some preliminary estimates.

Lemma 8.12. Let W be a minimizer of Q in H'(S). Then,
a) (Caccioppoli inequality) If o € C3(B1) then

(@VW, pVW) < C(|Vp|W, [Ve|IW),

b) W is smooth up to the boundary of S away from 0By U {z’ = 0}, and the Euler-
Lagrange equations (7.2)-(7.7) are satisfied in the classical sense,

Proof. Part a) is standard and we skip the details.
For part b) we remark that in a ball Bs(xg) near a point xg € S; N 9S3 the energy
can be written as

3 1
: / V[P + / IV (2w — wy)2da.

Bs(z0) Bs(x0)NS3

This shows that w; is harmonic near xg, and 2ws — wy can be extended harmonically
in the whole Bs(zg) by the even reflection across 0Ss. Hence W and its derivatives can
be bounded in § N By, away from the codimension two edge {#' = 0} in terms of the
L?(S) norm of W.

For part c) we first show that

W |*da, (8.3)

SNOB,

remains bounded for all  small. For this we prove a mean value inequality with respect
to the L?(S) norm:

(W(rz), W(rz))snos: , (8.4)
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is monotone increasing in r, where (-, -)snsp, denotes the inner product induced on the
sphere 0B,..
Let ¢ € C}(By), ¢ > 0, and then

(VW,V(eW)) =0,

or
0 <(VW,pVW) < (=Ve- VIV, W).

We take ¢ — xp, and obtain

0< (Wy,W)snan,-
This means that the derivative in r of the expression in (8.4) is nonnegative, and the
claim (8.3) is proved.

From (8.3) and part b) applied in S N B,., we deduce that || is bounded in By /5 N

SN {2" =0} by a multiple of its L?(S) norm. The conclusion follows by translating the
origin at the other points in {z' =0} N By/,. O

Lemma 8.13. Assume that W € H(S) is a minimizer of Q. Then
| D5 W 58y ) < CONIW l22s).

and, for each fized 2", the function W (-, z"") minimizes the two-dimensional energy

(VW, VW) +/f1w1dx’+/f3w3dx',
S Ss

for some bounded functions fi, f3.

Proof. The discrete differences of W in the z”’-directions are minimizers of Q). By iter-
ating Caccioppoli inequality we obtain that Df,,W minimizes () and

”Dg”W”Hl(SﬂBl/z) S CB)IW | L2(s)-

The L bound follows from Lemma 8.12, part ¢). This means that W(a’,0) satisfies in
the two-dimensions

N W e LOO7

and the boundary conditions in (7.2)-(7.7) hold in the classical sense on 9S \ {0}. The
conclusion follows as in Lemma 7.3 since W € L. 0O
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The results of the previous section imply the O estimates in this inhomogeneous
setting.

Lemma 8.14. Assume that W € HY(S) is a minimizer of the 2 dimensional energy

<VVV, VW>+/f1w1dx+/f3w3dx,
S1 S3

for some bounded functions f;. Then W € C1%(S) and
W (@) = W(0) +ales -, —e—z - @) < C(1+ | fallzoe + [ fslloo)IW 2 2,
in SN Bya, for some universal constant C.
Now we can prove the CH® estimate in arbitrary dimensions.

Proof of Proposition 8.10. By Lemma 8.13 and Lemma 8.14 (applied to W and D, W)
we find that

W(a,0) = W(0) + aleg o/, —e_5 ') + O/ [*)
D, W (2',0) = (v, v5) + O(|2']), |D2,W| < C,

which gives the desired conclusion. O

Finally we prove the Schauder estimates in the two-dimensional inhomogeneous set-
ting.

Proof of Lemma 8.14. The proof is standard and uses Campanato iterations. We sketch
some of the details.

Assume that ||f;||pe < 0, [|[W]g: < 6. It suffices to show inductively in & that for
each 7 = pF there exist linear functions at 0 of the type

L, = (d1+qe% x,d3 —qe_z ~:c),

depending on 7 which approximate W in B, such that

1/2
][ |W—Lr|2da: < plte,
NB,
Indeed, the rescaled function
W(z) = (W — L,)(rz),

Tl-{-a
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satisfies

[W%dz <1,

SNB;

and W is a minimizer for a functional as above with
I fill e < 0ri=e <6,
The Caccioppoli inequality for W gives

Wl s (snB,,5) < C-

Let Wy be the minimizer of the @ functional with the same boundary data as W on
8N OBy /2, and notice that

[Wollm (sns, ) < C-

Then in SN By, we have

(VW = Wo), V(W = W) = (YW, V(W — Wy)) — (VIVo, V(W — W)

1 ~ 1 -
E/fl(wl—wo,l)dm+§/f3(w3—w0,3)dx
81 83

< CHIW — Wy ..
By Poincaré inequality it follows that
W — Wollz2(snB, ) < C'6°.
The C1:20 regularity of Wy (see Proposition 7.2) gives

1/2

][ |Wo — Lo|*dx < Cpttoo,

SNB,

for some linear function Ly at 0. The last two inequalities imply the inductive result for
W with r = pF*+! by first choosing p sufficiently small depending on o < oy, and then §
small depending on p. O
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