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1. Introduction

In this paper we propose an energy model for N harmonic graphs with junctions and 
study the regularity properties of the minimizers and their free boundaries.

The physical motivation is the following. Let Ω be a bounded domain in Rn and 
consider N ≥ 2 elastic membranes which are represented by the graphs of N real-valued 
functions
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{(x, ui(x))| x ∈ Ω} ⊂ Rn+1, i = 1, . . . , N,

which are in contact with one-another. In the most simplified form, the elastic membranes 
are modeled by harmonic graphs. The non-penetration condition implies the functions 
are ordered in the vertical direction, so we assume that

u1 ≥ u2 ≥ . . . ≥ uN .

Suppose all membranes coincide initially, say u1 = u2 = . . . = uN = 0, and then we 
move them continuously by pulling apart their boundary data tϕi on ∂Ω with t ≥ 0, 
and ϕ1 > ϕ2 > . . . > ϕN . We consider the physical situation when the membranes do 
not separate strictly in the whole cylinder Ω ×R instantaneously for all small t > 0, but 
rather in a continuous way. In other words, for small t, the strict separation happens 
only near the boundary while the functions still coincide well in the interior of Ω. This 
means the membranes stick to each other and we need to spend energy to physically 
separate them (say for example if the membranes are wet, or the elastic material has 
some adhesive properties).

1.1. The model

In view of the discussion above, a natural energy functional associated to a system of 
adhesive elastic membranes is given by

JN (U, Ω) :=
ˆ

Ω

(|∇U |2 + W (U))dx, U := (u1, . . . , uN ), N ≥ 2, (1.1)

with

|∇U |2 :=
N∑

i=1
|∇ui|2, W (U) = #{u1, . . . , uN }, (1.2)

and JN is defined over the class of admissible vector-valued functions

A :=
{

U ∈ H1(Ω)| u1 ≥ u2 ≥ . . . ≥ uN

}
. (1.3)

Here Ω is a bounded domain in Rn with Lipschitz boundary, and the potential term 
W (U) represents the cardinality of the set {u1, . . . , uN } (that is the number of distinct 
elements in the set). Clearly W (U) is minimized when all ui’s coincide. On the other 
hand, the Dirichlet integral is minimized when each ui is harmonic, and by the maximum 
principle they belong to the admissible cone A provided the boundary data is in A as 
well. The presence of the potential term has the effect of collapsing some of these graphs 
that are close to each other in a certain region, and we expect an optimal configuration 
consisting of piecewise harmonic graphs with junctions.
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Fig. 1. A minimizer for N = 4, n = 1.

The functional JN is lower semicontinuous and the existence of minimizers with given 
boundary data Φ ∈ A on ∂Ω follows easily from the direct method of the calculus of 
variations. We remark that JN is not convex, and the uniqueness of minimizers can fail.

One of the interesting questions about minimizers U of (1.4) regards the geometry of 
the graphs near junctions where the membranes separate. Precisely, there are possibly 
N − 1 free boundaries originating from this minimization problem which are denoted by

Γi := ∂{ui > ui+1} ∩ Ω, i = 1, . . . , N − 1.

The sets {ui > ui+1} have no a priori constraints with respect to one-another, which 
means the Γi’s can intersect and cross each other and possibly have complicated geome-
tries. The functions ui are piecewise harmonic, that is they are harmonic in the interior 
of the regions carved out by the collections of the free boundaries. The problem is in-
teresting even in dimension n = 1 in which the Γi’s consist of points and the ui’s are 
piecewise linear, and a certain balancing condition needs to hold at the junction points. 
The physical situation can be described as the equilibrium configurations of N -tapes 
that stick to one another, see Fig. 1.

A first observation about minimizers U of (1.1) is that the average of the ui’s is har-
monic in Ω, see Lemma 2.3. Moreover, minimizers remain invariant under the operation 
of adding the same harmonic function to each component of U . In view of this, one can 
reduce the problem to the 0 average situation

∑
ui = 0 in Ω,

which means that we deal with a system involving only N − 1 unknowns. Then, the case 
N = 2 corresponds to the scalar minimization problem

min
u1≥0

ˆ

Ω

(
2|∇u1|2 + χ{u1>0}

)
dx,

which is the classical one-phase free boundary problem introduced by Alt and Caffarelli 
in [1]. Here χE denotes the characteristic function of a set E.

The one-phase problem appears in cavitation flows in fluid dynamics, flame propa-
gation etc., and it has been extensively studied over the past four decades. We refer to 
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the books of Caffarelli and Salsa [4] and Velichkov [23] for the mathematical treatment 
of this problem. Concerning the free boundary regularity of Γ1, it is an analytic hyper-
surface outside a closed singular set of dimension at most n − 5 (see [12]), and there are 
examples of free boundaries with point singularities in dimension n = 7, (see [8]).

For N ≥ 3 we subtract 1 from W , which does not affect the problem, and rewrite the 
potential term in the form

W (U) =
N−1∑
i=1

χ{ui>ui+1}.

In this way, the model we propose can be viewed as a system of N −1 coupled one-phase 
free boundary problems that interact in the vertical direction.

1.2. Some related works

There are several works in the literature that involve free boundaries and energy 
functionals for vector-valued functions similar to the one we propose in (1.1). For example 
Mazzoleni, Terracini, Velichkov [15,16], Caffarelli, Shahgholian, Yeressian [5], and De 
Silva, Tortone [9] considered the vectorial one-phase problem with W (U) = χ{|U |>0}
and unconstrained U , which is relevant in the study of cooperative systems of species or 
in optimization problems for spectral functions, see also [13,14]. On the other hand, in [2]
the authors studied a vectorial version of the obstacle problem by taking W (U) = |U |. 
In other cases motivated by strongly competitive systems or optimal partition problems, 
the components ui ≥ 0 have disjoint supports which means that the vector U is restricted 
to the union of the nonnegative coordinate axes. For this situation we refer to [3] where 
Caffarelli and Lin investigated harmonic maps onto such singular spaces, see also [21].

A minimization problem closely related to our model, which involves the constraint 
U ∈ A as in (1.3) and with the potential W (U) = F · U , was introduced by Chipot and 
Vergara-Caffarelli in [6]. It describes the equilibrium configuration of N elastic mem-
branes interacting with each-other under the action of external forces F . More recently, 
the second author and H. Yu established the optimal regularity for this problem and 
studied the free boundary regularity in a series of papers [18–20]. While these results 
motivated the current work, the two models have quite different qualitative properties 
that can be seen from simple one-dimensional examples as well as from the theorems in 
the next section.

Some of our results that involve the junction of N = 3 membranes resemble the soap-
films like configurations for minimal surfaces in two and three dimensions that were first 
studied by J. Taylor in [22]. A crucial difference with respect to soap-films is that our 
energy model counts a common surface where more than two graphs coincide according 
to its multiplicity, and the collapsing phenomena is only due to the presence of the 
potential energy W .
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1.3. Main results

In this section we state our main results. We recall that

JN (U, Ω) :=
ˆ

Ω

(|∇U |2 + W (U))dx, U = (u1, . . . , uN ), N ≥ 2, (1.4)

with

|∇U |2 =
N∑

i=1
|∇ui|2, W (U) :=

N−1∑
i=1

χ{ui>ui+1}, (1.5)

is defined over the class of admissible vector-valued functions

A :=
{

U ∈ H1(Ω)| u1 ≥ u2 ≥ . . . ≥ uN

}
. (1.6)

Positive constants depending only on N and the ambient dimension n are called 
universal. The first result gives the optimal regularity of minimizers.

Theorem 1.1 (Optimal regularity). Let U minimize JN in B1. Then, U ∈ C0,1 and

‖U‖C0,1(B1/2) ≤ C(1 + ‖U‖L2(B1)),

for C > 0 universal.

We study the regularity of the N − 1 free boundaries

Γi := ∂{ui > ui+1}, i ∈ {1, . . . , N − 1},

by performing a blow-up analysis at junction points. After rescaling, we may assume that 
we are in the 0-average situation, and the origin is a junction point where all membranes 
coincide

∑
ui = 0, 0 ∈ ∂{|U | > 0}. (1.7)

By employing Weiss monotonicity formula Proposition 3.1, and a non-degeneracy prop-
erty of minimizers, we can deduce that blow-ups are one-homogenous.

Theorem 1.2. Let U minimize JN in B1, and assume (1.7) holds. Then

max
Br

|U | ≥ cr,

and there exists a sequence of rj → 0 such that
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Urj
(x) := U(rjx)

rj

converges uniformly on compact sets of Rn to a cone Ū , i.e. a homogenous of degree one 
minimizer with 0 ∈ ∂{|Ū | > 0}.

The minimizing cones in dimension n = 1 must coincide on one side of 0 and have 
two branches on the other side. Precisely for each k ≤ N − 1, we define U0,k to be the 
vector whose components are given by

ui =
(

1
k

− 1
N

)1/2

x+ for i ≤ k, ui = −
(

1
N − k

− 1
N

)1/2

x+ for i > k.

Proposition 1.3 (1d cones). The only minimizing cones in dimension n = 1 that satisfy 
(1.7) are given by U0,k (up to a reflection with respect to 0).

The classification of 1d cones combined with an ε-regularity theorem and a dimension 
reduction argument gives the following general partial regularity result.

Theorem 1.4 (Partial regularity). Let U be a minimizer in B1. The free boundaries Γi

are analytic and disjoint from one another outside a closed set Σ of singular points of 
Hausdorff dimension n − 2, and

Hn−1(Γi ∩ B1/2) ≤ C,

with C universal.

The remaining results focus on the intersection points of two distinct free boundaries 
which, by Theorem 1.4, has dimension at most n − 2. For this part we restrict to the 
simplest case that involves N = 3 membranes.

In dimension n = 2 we define V0 as the cone whose components are given by

u1(x) := 1√
6

max
{

x · e π
6
, 2x · e− π

6
, 0
}

, eθ := (cos θ, sin θ),

u3(x) := −u1(x1, −x2), u2 := −u1 − u3.

Theorem 1.5. Let N = 3. Then, up to rotations and reflections, V0 is the unique mini-
mizing cone in dimension n = 2 which satisfies 0 ∈ Γ1 ∩ Γ2 and (1.7).

The proof of Theorem 1.5 is indirect, through an elimination process. It turns out 
that there are two possible cone candidates, V0 and Vs, which are critical for the energy 
JN . We show however that Vs is not minimizing and also that the set of cones satisfying 
0 ∈ Γ1 ∩ Γ2 and (1.7) is nonempty, see Section 6.

The next result gives the regularity of the free boundaries in two dimensions near an 
intersection point, see Fig. 2.
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Fig. 2. Free boundary geometry at an intersection point in R2.

Theorem 1.6. Let N = 3 and let U be a minimizer of JN in Ω ⊂ R2. Then Γ1 and Γ2
are piecewise C1,α curves in a neighborhood of any intersection point x0 ∈ Γ1 ∩ Γ2, with 
α ∼ 0.36.

Theorem 1.6 can be extended to arbitrary dimensions. For this we define regular 
intersection points

x0 ∈ Reg(Γ1 ∩ Γ2),

as those points for which there exists a blow-up cone at x0 which is a rotation of a 
two-dimensional cone extended trivially in the remaining variables.

Theorem 1.7. Reg(Γ1 ∩ Γ2) is locally a C1,α-smooth submanifold of codimension two. 
Near such an intersection point, each of the free boundaries Γ1 and Γ2 consists of two 
piecewise C1,α hypersurfaces which intersect on Reg(Γ1 ∩ Γ2) at a 120◦ angle.

As a consequence we obtain a general partial regularity result for the free boundary. 
We define Reg(Γi) as the collection of points x0 ∈ Γi that have a blow-up profile which 
is a rotation of a one-dimensional cone extended trivially in the remaining variables.

Theorem 1.8 (Partial regularity). Let N = 3 and U be a minimizer of JN in B1. Then

Γ1 ∪ Γ2 = Reg(Γ1) ∪ Reg(Γ2) ∪ Reg(Γ1 ∩ Γ2) ∪ Σ′,

with Reg(Γi) locally analytic hypersurface, Reg(Γ1 ∩ Γ2) locally a C1,α submanifold of 
codimension two, and Σ′ a closed singular set of Hausdorff dimension n − 3.

The study of regular intersection points leads to a transmission-type problem which 
appears in the linearization, which is new and interesting in its own, see (7.2)-(7.7) in 
Section 7. The value of α in the theorems above is dictated by the spectrum of the 
linearized problem. The novelty is that the transmission condition does not occur along 
a hypersurface but it involves a region of full dimension where two functions interact. 
We refer the reader to Sections 7 and 8 for more details.
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The paper is organized as follows. In Section 2 we collect some general facts about 
minimizers and prove the optimal regularity result Theorem 1.1. In Section 3 we obtain 
the Weiss monotonicity formula and prove Theorem 1.2. We classify one-dimensional 
cones in Section 4 and then establish Theorem 1.4 in Section 5. The last three sections 
are devoted to the study of two dimensional cones and regular intersection points for 
N = 3 membranes.

2. Lipschitz continuity and non-degeneracy of minimizers

2.1. Preliminaries

Recall that, throughout this note, constants depending only on possibly n, N are called 
universal. Also, whenever this does not create confusion, the dependence of JN on the 
domain is omitted.

We start by proving some basic facts about minimizers. Throughout Ω is assumed to 
be a bounded domain with Lipschitz boundary.

Lemma 2.1 (Lower semicontinuity). If Um → U in L2(Ω), then

lim inf JN (Um, Ω) ≥ JN (U, Ω).

Proof. By working with subsequences we may assume lim sup JN (Um, Ω) < ∞, otherwise 
there is nothing to prove. Then ∇Um ⇀ ∇U in L2, and Um → U a.e. in Ω. The conclusion 
follows by combining the lower semicontinuity of the Dirichlet energy with the lower 
semicontinuity of the function W : RN → R. �

As a consequence we obtain the existence of minimizers with boundary data in H1(Ω).

Proposition 2.2. Given Φ ∈ A, there exists a minimizer U of JN in Ω with boundary 
data Φ on ∂Ω.

Next we show that the average of the ui’s is harmonic.

Lemma 2.3. If U is a minimizer of JN in Ω, then 
∑N

i=1 ui is harmonic in Ω.

Proof. Let ψ ∈ C1
0 (Ω), and Ψ = (ψ, . . . , ψ). Then

W (U) = W (U + εΨ)

and

JN (U + εΨ) − JN (U)
ε

= 1
ε

ˆ
(|∇(U + εΨ)|2 − |∇U |2)dx
Ω
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= 2
ˆ

Ω

∇(
n∑

i=1
ui) · ∇ψdx + o(ε),

from which our claim follows. �
Similarly, the problem remains invariant with respect to the addition of a harmonic 

function ψ to each component, that is

JN (U + ψ(1, . . . , 1)) = JN (U) + C(Ψ, Φ), Ψ = ψ(1, . . . , ψ)

for some constant

C(Ψ, Φ) =
ˆ

Ω

|∇Ψ|2dx + 2
ˆ

∂Ω

Φ · Ψνdσ,

that depends only on ψ and the boundary data Φ of U . Therefore, at times we may 
assume that U satisfies,

N∑
i=1

ui = 0. (2.1)

Lemma 2.4. Let U minimize JN in Ω. Then u1 is subharmonic and uN is superharmonic 
in Ω.

Proof. We prove the first claim, the second one can be proved similarly. Let v1 be the 
harmonic replacement of u1 in Br ⊂ Ω. We wish to prove that u1 ≤ v1 in Br. Indeed, let

ũk = min{uk, v1}, Ũ = (ũ1, . . . , ũN ).

Clearly,

W (U) ≥ W (Ũ),

hence by minimality
ˆ

Br

|∇U |2dx ≤
ˆ

Br

|∇Ũ |2dx. (2.2)

On the other hand, since

v1 = u1 ≥ uk, ∀k = 1, . . . N, on ∂Br,

we have



10 D. De Silva, O. Savin / Advances in Mathematics 447 (2024) 109682
wk := (uk − v1)+ ∈ H1
0 (Br).

After integration by parts and using that v1 is harmonic, we get
ˆ

Br

(|∇uk|2 − |∇ũk|2)dx =
ˆ

Br

(|∇(v1 + wk)|2 − |∇v1|2)dx ≥ 0,

with strict inequality unless wk ≡ 0. Thus, in view of (2.2), wk ≡ 0 in Br for all k’s, 
which gives the desired claim that u1 ≤ v1 in Br.

Since this argument can be repeated for any ball included in Ω, we conclude that u1
is subharmonic. �

Next, we prove the following obvious yet useful fact.

Lemma 2.5. Let U minimize JN in Ω and assume that

uk > uk+1 for some k ∈ {1, . . . , N − 1}.

Then, U := (u1, . . . , uk) minimizes Jk in Ω and Ū := (uk+1, . . . , uN ) minimizes JN−k.

Proof. The proof is straightforward. Assume by contradiction that V minimizes Jk in 
Ω′ ⊂⊂ Ω with boundary data U and

Jk(V ) < Jk(U). (2.3)

Let V̄ minimize JN−k in Ω′ with boundary data Ū , and set

V = (V , V̄ ).

Since, by Lemma 2.4 vk is superharmonic while v̄k+1 is subharmonic and one in strictly 
on top of the other one on the boundary, we conclude that vk ≥ v̄k+1 in Ω′, hence V is 
an admissible competitor. Furthermore, in view of (2.3) and our assumption,

JN (V ) ≤ Jk(V ) + JN−k(V̄ ) + |Ω′| < Jk(U) + JN−k(Ū) + |Ω′| = JN (U)

and we reach a contradiction. �
2.2. Lipschitz continuity

We now turn to the proof of Lipschitz continuity. We start first by establishing that 
minimizers are Hölder continuous, by treating the potential term W (U) as a pertur-
bation. This result can be obtained directly from the theory of almost minimizers of 
variational integrals, see Section 7 in Giusti’s book [11]. For completeness, we provide 
the details of the proof.
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After multiplying U by δ1/2, we may assume that U minimizes

Jδ
N (U) :=

ˆ

Ω

(|∇U |2 + δW (U))dx,

with δ > 0 small. Notice that the Hölder rescaling Ũ(x) = r−αU(rx), with α ∈ (0, 1), 
minimizes the energy J δ̃

N with parameter δ̃ = r2−2αδ, and δ̃ < δ if r < 1.
Without loss of generality, we assume that we deal with minimizers in B1. Hölder 

continuity follows with standard arguments from the next proposition.
From now on, in the body of the proofs c, C > 0 are universal constants possibly 

changing from step to step.

Proposition 2.6. Let U be a minimizer of Jδ
N in B1. For every α ∈ (0, 1), there exist 

δ0, ρ > 0 depending on α, such that, if δ ≤ δ0 and
 

B1

|∇U |2dx ≤ 1, (2.4)

then

ρ2−2α

 

Bρ

|∇U |2dx ≤ 1. (2.5)

Proof. Let V be the harmonic replacement of U in B1. Then, by the maximum principle 
vi ≥ vi+1, i = 1, . . . , N , and V is an admissible competitor for the minimization of Jδ

N . 
Thus,

ˆ

B1

|∇(U − V )|2dx ≤ Jδ
N (U) +

ˆ

B1

(|∇V |2 − 2∇U · ∇V )dx

= Jδ
N (U) −

ˆ

B1

|∇V |2dx

≤ Jδ
N (V ) −

ˆ

B1

|∇V |2dx (2.6)

=
ˆ

δW (V )dx ≤ δN.

Hence,
 

|∇(U − V )|2dx ≤ δNρ−n. (2.7)

Bρ
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On the other hand, since |∇V |2 is subharmonic in B1 and by (2.4)
ˆ

B1

|∇V |2dx ≤
ˆ

B1

|∇U |2dx ≤ C,

we conclude that

|∇V | ≤ C, in B1/2.

In particular,
 

Bρ

|∇V |2dx ≤ C0,

for C0 universal. Combining this last inequality with (2.7) we conclude that,
 

Bρ

|∇U |2dx ≤ 2δNρ−n + 2C0 ≤ 4C0,

as long as

δ ≤ C0

N
ρn.

Thus,

ρ2−2α

 

Bρ

|∇U |2dx ≤ 4C0ρ2−2α ≤ 1,

by choosing ρ such that,

ρ2−2α ≤ (4C0)−1. �
The next corollary now follows via standard arguments.

Corollary 2.7. Let U be a minimizer to JN in B1. Then U ∈ C0,α
loc (B1), for any α ∈ (0, 1)

and

[U ]Cα(B1/2) ≤ C(1 + ‖∇U‖L2(B1)),

with C(α, n, N).

Prior to proving Lipschitz continuity, we introduce the following definition.
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Definition 2.8. We say that U is disconnected in Bρ if there exists k ∈ {2, . . . , N} such 
that uk > uk−1 in Bρ. Otherwise we say that U is connected in Bρ.

Our main Lipschitz regularity result reads as follows.

Lemma 2.9 (Uniform Lipschitz estimate). Let U minimize JN in B1 and assume that ∑N
i=1 ui = 0 and U is connected in B1/2. Then

‖U‖C0,1(B1/2) ≤ C, (2.8)

for C > 0 universal.

Then, the next theorem is an immediate corollary.

Theorem 2.10. Let U minimize JN in B1. Then, U ∈ C0,1(B1/2) and

‖U‖C0,1(B1/2) ≤ C(1 + ‖U‖L2(B1)), (2.9)

for C > 0 universal.

We use Lemma 2.9 to prove Theorem 2.10 by induction on N .
The case N = 1 corresponds to harmonic functions and it is obvious.
Next assume the claim holds for j membranes, for any j ≤ N − 1. It suffices to prove 

(2.9) only in the case of N membranes with 
∑

ui = 0.
Indeed, in the general case we let h :=

∑
i ui which is harmonic, and then U = H + V

with H := (h, . . . , h) and 
∑

i vi = 0. Since H satisfies (2.9) and

‖H + V ‖L2 = ‖H‖L2 + ‖V ‖L2 ,

it suffices to show that V satisfies (2.9) as well.
If the N membranes are connected in B1/2 then the claim follows from Lemma 2.9. If 

they are disconnected in B1/2, then in view of Lemma 2.5, by the induction hypothesis 
we have

‖U‖C0,1(B1/4(x0)) ≤ C(1 + ‖U‖L2(B1/2)), ∀x0 ∈ B1/4, (2.10)

which gives the desired claim.

Proof of Lemma 2.9. We argue by induction. In the case N = 1, u1 ≡ 0 and the state-
ment is trivial. Let us assume that (2.8) holds when U minimizes Jk and k < N . Then, 
by the proof above, also the estimate (2.9) holds for minimizers of Jk and k < N .

Let V be the harmonic replacement of U in B1, and by the maximum principle 
vi ≥ vi+1, and moreover
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N∑
i=1

vi = 0. (2.11)

Then, arguing as in (2.6) in Proposition 2.6, and by Poincare’s inequality we obtain

‖U − V ‖L2(B1), ‖∇(U − V )‖L2(B1) ≤ C. (2.12)

Set

μ := max
i

{vi(0)} = v1(0).

By Harnack inequality,

vi − vi+1 ≥ c(vi − vi+1)(0) in B7/8, ∀i = 1, . . . , N − 1,

and in view of (2.11) simple arithmetic gives that for some k ∈ {1, . . . , N − 1},

vk − vk+1 ≥ c(vk − vk+1)(0) ≥ cμ in B7/8. (2.13)

Furthermore, Harnack inequality for v1 ≥ 0 and −vN ≥ 0 also guarantees that

|V | = max
i

{|vi|} = max{v1, −vN } ≤ Cμ in B7/8. (2.14)

We now wish to show that μ is bounded by a universal constant. Indeed, if μ � 1
then, by the second inequality in (2.12), (2.14), and the fact the V is harmonic, we get

‖∇U‖L2(B7/8) ≤ C(μ + 1) ≤ Cμ.

Hence, by Corollary 2.7 and the fact that V is harmonic and satisfies (2.14), we get in 
B3/4,

[U ]Cα ≤ Cμ, [U − V ]Cα ≤ Cμ.

Thus, if at x0 ∈ B1/2, |(U − V )(x0)| = t, then |U − V | ≥ t/2 in a small neighborhood of 
size r ∼ (t/μ)1/α. By the first inequality in (2.12) we get that t ≤ Cμn/(2α+n). Hence,

|U − V | ≤ Cμ1−δ in B1/2,

for some 0 < δ < 1. In view of (2.13)

uk − uk+1 ≥ cμ − Cμ1−δ > 0 in B1/2,

and we contradict that U is connected in B1/2. Thus μ ≤ C as desired, and it follows 
from the estimates above that
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‖U‖H1(B1/2) ≤ C. (2.15)

This proves the statement for the H1 norm instead of the C0,1 norm.
In order to conclude our proof, it suffices to obtain a scale invariant version of this 

H1 estimate, i.e.
 

Brk

|∇U |2 ≤ C, rk = 2−k, ∀k ≥ 1.

In terms of the rescalings

Ũr(x) := U(rx)/r, x ∈ B1,

this is equivalent to
 

B1

|∇Ũrk
|2 ≤ C, ∀k ≥ 1.

Let m ≥ 1 be the first value for which U is connected in Brm
but it is not connected 

in Brm+1 . If no such m exists, then (2.15) holds for all Ũrk
and the desired statement 

follows. Otherwise, in view of (2.15),

‖Urk
‖H1(B1/2) ≤ C, ∀k ≤ m. (2.16)

Since U is disconnected in Brm+1 , we can use the induction hypothesis and conclude that

‖Urm
‖C0,1(B1/4) ≤ C(1 + ‖Urm

‖L2(B1/2)) ≤ C.

Then (2.16) holds for all k ≥ m and we reached the conclusion. �
Having established the continuity results above, we can obtain the following compact-

ness property of minimizers.

Proposition 2.11 (Compactness of minimizers). If Um is a sequence of minimizers in B1
and Um → Ū uniformly on compact sets, then Ū is a minimizer and

JN (Um, Br) → JN (Ū , Br) ∀r ∈ (0, 1).

Proof. Since the Um’s are continuous, then Ū is continuous and the Um’s are uniformly 
bounded on compact sets. In view of the Lipschitz continuity Theorem 2.10, we conclude 
that the Um’s and Ū are uniformly Lipschitz on compacts.

Let V be a competitor which agrees with Ū in B1 \ Br. Let 0 ≤ ϕ ≤ 1 be a radial 
cutoff function which is 1 in Br and vanishes outside Br+δ. Then
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Vm := ϕ V + (1 − ϕ)Um

agrees with Um in B1 \Br+δ, and it is an admissible competitor as well. Thus, minimality 
implies that

JN (Um, Br+δ) ≤ JN (Vm, Br+δ). (2.17)

Since

∇Vm = (V − Um)∇ϕ + ϕ∇V + (1 − ϕ)∇Um,

|∇Um|, |∇Ū | ≤ K, W (Um), W (Vm) ≤ N, |∇ϕ| ≤ Cδ−1,

we have that in the annulus Aδ := Br+δ \ Br,

JN (Vm, Aδ) − JN (Um, Aδ) ≤ C(1 + K2)|Aδ| + Cδ−1‖Um − Ū‖2
L∞(Aδ).

The right hand side can be made arbitrarily small by first choosing δ small depending 
on K and them m large. On the other hand, in view of (2.17) we have

JN (Um, Br) ≤ JN (Vm, Aδ) − JN (Um, Aδ) + JN (V, Br).

In conclusion

lim sup JN (Um, Br) ≤ JN (V, Br),

while the lower semicontinuity of the energy gives

JN (Ū , Br) ≤ lim inf JN (Um, Br). �
2.3. Non-degeneracy

Lemma 2.12 (Caccioppoli’s estimate). Let U minimize JN in B1. Then,

ˆ

B1/2

(|∇U |2 + W (U)) dx ≤ C

ˆ

B1

|U |2dx,

for C > 0 universal.

Proof. Let 0 ≤ φ ≤ 1 be a smooth bump function, which equals 1 in B1/2 and 0 outside 
of B3/4. Set,

ũk := uk(1 − φ), k = 1, . . . , N.
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Then Ũ = (ũ1, . . . , ̃uN ) is an admissible competitor and by minimality,

ˆ

B1

(|∇U |2 + W (U)) dx ≤
ˆ

B1

(|∇Ũ |2 + W (Ũ)) dx,

hence

W (Ũ) ≤ W (U) and W (Ũ) = 0 in B1/2,

implying that

ˆ

B1

(|∇U |2 + W (U)χB1/2) dx ≤
ˆ

B1

|∇Ũ |2 dx. (2.18)

Moreover,

ˆ

B1

|∇Ũ |2 dx =
ˆ

B1

((1 − φ)2|∇U |2 + |U |2|∇φ|2 − (1 − φ)∇|U |2 · ∇φ) dx

≤
ˆ

B1\B1/2

|∇U |2 dx +
ˆ

B1

|U |2(1 − φ)Δφ dx,

where in the last inequality we integrated by parts. Using this in (2.18) we get,

ˆ

B1/2

(|∇U |2 + W (U)) dx ≤ C

ˆ

B1

|U |2 dx

with C = C(n) as desired. �
A direct consequence of the Caccioppoli’s estimate is that |U | cannot be small and 

strictly positive in B1.

Corollary 2.13. If 
∑N

i=1 ui = 0 and Br(x0) ⊂ {|U | > 0} then

max
Br(x0)

|U | ≥ cr,

for some c > 0 universal.

Indeed, by scaling we may assume that x0 = 0, r = 1. Then |U | > 0 implies W (U) ≥ 1
in B1 and the conclusion follows by the estimate in Lemma 2.12.

We state a stronger version of non-degeneracy for |U | than in Corollary 2.13.
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Lemma 2.14 (Non-degeneracy). Let U be a minimizer in B1. If 
∑N

i=1 ui = 0 and 0 ∈
∂{|U | > 0} then

max
Br

|U | ≥ cr, ∀r < 1.

Proof. We use the previous corollary and a standard ball sequence construction for the 
classical one-phase problem. Notice that 

∑N
i=1 ui = 0 and u1 ≥ .. ≥ uN implies that

c0|U | ≤ u1 ≤ |U |,

with c0 > 0 depending on N and n, and recall that by Lemma 2.4 u1 is a subharmonic 
function.

Assume that r = 1. We construct inductively a sequence of points xk ∈ {|U | > 0}
such that x0 is sufficiently close to the origin and

1) u1(xk+1) ≥ (1 + c1)u1(xk)
2)

c2rk ≤ u1(xk) ≤ C2rk, |xk+1 − xk| ≤ 4rk, rk := d(xk, {|U | = 0}).

The inequality u1(xk) ≤ |U(xk)| ≤ C2rk is a consequence of Lemma 2.9.
Let’s assume that x1,..,xk are constructed, and let

yk ∈ ∂{|U | = 0} ∩ ∂Brk
(xk).

Since u1 ≥ 0 is subharmonic in Brk
(xk), u1(xk) ≥ c2rk and, by Lemma 2.9,

u1(x) ≤ |U(x)| ≤ C2|x − yk|,

it follows from the mean value inequality that there exists zk ∈ Brk
(xk) such that 

u1(zk) ≥ (1 + c1)u1(xk) for some c1 > 0 depending on c2, C2 and n. We pick xk+1 ∈
Btk

(zk) to be the point where the maximum value of u1 occurs, where tk represents the 
distance from zk to the set {|U | = 0}. Then

u1(xk+1) = max
Btk

(zk)
u1

≥ c0 max
Btk

(zk)
|U |

≥ c0 c tk

≥ c2 d(xk+1, {|U | = 0}),

where in the second inequality we have used Corollary 2.13, and we chose c2 small 
depending on c0 and c. This proves the existence of the sequence xk.
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Then we have

(1 + c1)u1(xk) ≤ u1(xk+1) ≤ C2rk+1 ≤ C3rk ≤ C4u1(xk),

hence u1(xk) is a sequence that grows at a geometric rate. The conclusion of the lemma 
follows easily since u1(xk) ∼ rk. �

Next we show the weak non-degeneracy for the difference of two consecutive mem-
branes. It is not clear whether the strong non-degeneracy holds for two consecutive 
membranes as well. This lemma will not be used in the remaining of the paper.

Lemma 2.15. If Br ⊂ {uk > uk+1} then (uk − uk+1)(0) ≥ cr.

Proof. We only sketch the proof. After rescaling, we can assume that U minimizes JN

in B1, 
∑

ui = 0, and

uk − uk+1 > 0 in B1. (2.19)

We wish to show that

(uk − uk+1)(0) ≥ c0,

for some c0 universal.
We may also assume that Ū = {u1, .., uk} and U = {uk+1, .., uN } are connected in Bδ

for some δ > 0 small to be chosen later (see Definition 2.8). Otherwise we can reduce the 
problem to one in Bδ with a strictly smaller number of membranes N . Let h̄, h denote 
the averages of the membranes in Ū , respectively U .

Then h̄, h are harmonic in B1 and by Lemma 2.9 we know that

‖ui − h̄‖C0,1(B1/2) ≤ C, i ∈ {1, .., k}.

Since Ū is connected in Bδ we find that

‖ui − h̄‖L∞(Bδ) ≤ Cδ,

hence

uk ≤ h̄, h̄(0) ≤ uk(0) + Cδ.

Similarly we obtain

uk+1 ≥ h, h(0) ≥ uk+1(0) − Cδ.

Assume by contradiction that
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(uk − uk+1)(0) ≤ δ. (2.20)

Since h̄ > h, by Harnack inequality we find

h̄ − h ≤ Cδ in B1/2.

This implies that u1 ≤ uN + Cδ in B1/2 and then by Corollary 2.13 it follows that all 
membranes coincide in B1/4 a contradiction. �
3. Monotonicity formula

In this section we present the Weiss type monotonicity formula associated to our 
energy functional JN and prove Theorem 1.2. This is a standard tool necessary for the 
analysis of the partial regularity of free boundaries arising in a minimization problem, 
see for example [24].

Proposition 3.1 (Weiss monotonicity formula). Assume that U is a critical point to JN

in B1 with respect to continuous deformations in Rn+1. Then for r < 1,

Φ(r) := r−n

ˆ

Br

(
|∇U |2 + W (U)

)
dx − r−n−1

ˆ

∂Br

|U |2dσ,

is monotone increasing, and

Φ′(r) = 2 r−n

ˆ

∂Br

(r−1U − Uν)2dσ ≥ 0.

The Φ functional is constant in r if and only if U is “a cone” i.e. homogenous of degree 
one, and then this constant (the energy of U) is given by

Φ(U) =
ˆ

B1

W (U)dx.

First we specify the notion of U to be critical with respect to continuous deformations 
in Rn+1. Given a smooth diffeomorphism Φ : Rn+1 → Rn+1 with compact support in 
Ω × R, we deform the N -graphs of U by the map

X �→ X + tΦ(X), t small, X ∈ Rn+1,

onto the graphs of another admissible function that we denote by Ut. Then we say that 
U is critical if

d
JN (Ut, Ω) |t=0 = 0.
dt
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If Φ is independent of the xn+1 variable then U becomes critical for JN with respect to 
the standard domain deformations in Rn.

We start with the following lemma, in which we compute the first variation for critical 
points with respect to domain deformations.

Lemma 3.2 (First variation). If U is a critical point of JN with respect to domain vari-
ations then

ˆ

B1

(
−2 ψk

l Uk · Ul + (|∇U |2 + W (U))div Ψ
)

dx = 0, (3.1)

for any Lipschitz map Ψ : Rn → Rn with compact support in B1.
In particular, for a.e. r ∈ (0, 1)

d

dr
(r−nJN (U, Br)) = 2r−n

ˆ

∂Br

|Uν |2dσ − 2 r−n−1
ˆ

Br

|∇U |2dx. (3.2)

Proof. Let Ψ : Rn → Rn be a Lipschitz map with compact support in B1, and we 
consider the domain deformation

x �→ x + ε Ψ(x) =: y.

Then

Dxy = I + ε DΨ, Dyx = (Dxy)−1 = I − εDΨ + O(ε2),

dy = 1 + ε div Ψ + O(ε2),

and

JN (U(y), B1) =
ˆ

B1

|∇yU |2 + W (U(y)) dy

=
ˆ

B1

(
∇xU(I − ε DΨ)(I − εDΨ)T (∇xU)T + W (U)

)
(1 + ε div Ψ) dx + O(ε2)

= JN (U, B1) + ε

ˆ

B1

(
−2ψk

l Uk · Ul + (|∇U |2 + W (U))div Ψ
)

dx + O(ε2).

Here O(ε2) depends on ‖U‖2
H1 and ‖DΨ‖L∞ .

We take in (3.1)

Ψ(x) = ψδ(|x|)x
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with ψδ a cutoff function which is 1 in [0, r − δ] and 0 in [r, ∞), and we let δ → 0 and 
obtain

ˆ

Br

(
(n − 2)|∇U |2 + nW (U)

)
dx = r

ˆ

∂Br

(
|∇U |2 + W (U) − 2|Uν |2

)
dσ,

which gives (3.2). �
Let us consider continuous deformations of the graph of U in the vertical direction

(x, U) �→ (x, U + tϕ(x)U) =: (x, Ut(x))

with ϕ a smooth function with compact support. Notice that these deformations are 
admissible for all t close to 0, and in addition

W (U) = W (Ut).

Then, if U is critical for JN with respect to the family Ut we find

0 =
ˆ

B1

∇U · ∇(ϕU)dx, (3.3)

which means that

U · �U = 0

holds in the distribution sense. We take ϕ(x) = ψδ(|x|) in (3.3), with ψδ a cutoff function 
as in the proof above. We let δ → 0 and obtain that

ˆ

Br

|∇U |2dx =
ˆ

∂Br

U · Uν dσ for a.e. r. (3.4)

Proof of Proposition 3.1. We compute

d

dr

⎛
⎝r−n−1

ˆ

∂Br

|U |2dσ

⎞
⎠ = 2r−n−1

ˆ

∂Br

(
U · Uν − r−1|U |2

)
dσ,

which together with (3.2) and (3.4) give the formula for Φ′(r).
If U is a cone, then Φ(r) is a constant which we denote by Φ(U), and since

ˆ
|∇U |2dx =

ˆ
U · Uνdσ =

ˆ
|U |2dσ,
B1 ∂B1 ∂B1
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we find

Φ(U) =
ˆ

B1

W (U)dx. �

Having established Weiss’ formula, we can now introduce the notion of blow-up cones. 
Let U be a minimizer in Ω and assume U(x0) = 0. The Lipschitz continuity Theorem 2.10
shows that Φ(r) is bounded below, hence it has a limit as r → 0. For a sequence of 
rm → 0, consider the rescalings,

Urm
(x) := U(x0 + rmx)

rm
.

Then according to Theorem 2.10, up to extracting a subsequence, Um → U0 uniformly 
on compact sets of Rn and Φ(rmr) = Φm(r) → Φ0(r). The limit U0 is called a blow-up 
limit, and by our compactness theorem, U0 is a minimizer. The monotonicity of Φ implies 
Φ0(r) is constant, hence U0 is homogeneous of degree 1.

This discussion and the non-degeneracy Lemma 2.14 gives Theorem 1.2.

4. One dimensional minimizers

We show that the minimizing cones to JN in dimension n = 1 are given by

u1 = u2 = .. = uk ≥ uk+1 = .. = uN , k = 1, . . . , N − 1, (4.1)

with uk = uk+1 for x ≤ 0 and uk > uk+1 for x > 0.
More precisely, for k ≤ N − 1, define U0,k as

ui =
(

1
k

− 1
N

)1/2

x+ for i ≤ k, ui = −
(

1
N − k

− 1
N

)1/2

x+ for i > k.

Notice that

|∇U0,k|2 = 1 = W (U0,k), x > 0,

and

Φ(U0,k) = 1,

where we are using the notation

Φ(U) :=
1ˆ

W (U) dx.
−1
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Proposition 4.1. The only minimizing cones U in dimension n = 1 are given by U(x) =
L(x) + U0,k(x), with L(x) = (a · x, . . . , a · x), a ∈ Rn (up to a reflection with respect to 
0). If 

∑
ui = 0 then U = U0,k.

Toward the proof of Proposition 4.1, we establish the next lemmas. First we obtain an 
inequality that relates the values of the slopes and the potential term W near a branching 
point.

Lemma 4.2 (Inwards perturbations). Let U be a minimizer to JN in an interval around 
0 in dimension n = 1. Assume that a number of membranes ui with indices

i ∈ I = {j + 1, .., k},

coincide at 0, and on a small interval (0, δ) to the right of 0 the following two conditions 
hold:

a) ui are linear,
b) the family ui, i ∈ I, is strictly separated from the remaining membranes i.e. uj−1 >

uj, uk > uk+1.
Then, in (0, δ) the slopes of the ui’s satisfy the inequality

∑
i∈I

|∇(ui − uI)|2 ≥ W ({uj , .., uk}), uI := 1
k − j

∑
i∈I

ui.

Proof. After subtracting a linear function and after a dilation we reduce to the case

δ = 1, uI = 0.

Also, after relabeling the membranes we may assume that

I = {1, 2, .., N},

and U minimizes the energy in [0, 1] among all admissible competitors V with the same 
boundary data as U in [0, 1] and with v1 ≤ u1 and vN ≥ uN . These inequalities guarantee 
that V is not interacting with other membranes outside I.

We pick as competitor

Vε(x) :=

⎧⎪⎨
⎪⎩

U( x−ε
1−ε ) if x ∈ [ε, 1],

0 if x ∈ [0, ε],

and find that

JN (Vε) =
1ˆ ( 1

1 − ε
|∇U |2 + (1 − ε)W (U)

)
dx.
0
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The minimality implies

0 ≤ d

dε
JN (Vε)|ε=0 =

1ˆ

0

(|∇U |2 − W (U))dx,

which gives the desired conclusion

|∇U |2 ≥ W (U). �
Next we obtain the Euler-Lagrange equation at branching points where the membranes 

coincide on one side.

Lemma 4.3. In addition to the hypotheses of Lemma 4.2 assume further that the ui

with i ∈ I coincide in [−δ, 0], and the strict separation with respect to the remaining 
membranes holds in [−δ, δ], instead of (0, δ). Then the inequality in Lemma 4.2 becomes 
an equality:

∑
i∈I

|∇(ui − uI)|2 = W ({uj , .., uk}), in (0, δ). (4.2)

Indeed, in the proof above we can obtain the opposite inequality by replacing ε with 
−ε, since the corresponding competitor remains admissible.

The equality (4.2) expresses the equipartition of energy at the branching points. It 
shows that U0,k is the only homogenous of degree 1 minimizer U that satisfies (4.1).

Next we obtain a bound for the jump in slope of the top membrane u1 at a branching 
point.

Lemma 4.4. Let U be a minimizer to JN in (−δ, δ) in dimension n = 1 with

u1 = u2 = .. = uk, for some k ≥ 2.

Assume that
a) u1 is linear in [0, δ) and (−δ, 0], and let a+, respectively a− denote its slopes;
b) uk > uk+1 in (0, δ).
Then

0 ≤ a+ − a− ≤ 1√
k

.

Proof. As above, after subtracting a linear function we may assume that δ = 1 and 
a− = 0. Then a+ ≥ 0 since u1 is subharmonic, according to Proposition 2.4.

The top k membranes vanish to the left of 0, and we can use as an admissible com-
petitor for these functions the same one used in the proof of Lemma 4.2 with ε replaced 
by −ε. Precisely, let
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vε,i := 1
1 + ε

ui(x + ε)χ[−ε,1] if i ≤ k, and vε,i := ui if i > k,

and notice that

JN (Vε) − JN (U) =
1ˆ

−1

(
k∑

i=1
(|∇vε,i|2 − |∇ui|2) + χ{vε,k>uk+1}∩[−ε,0]

)
dx

≤ ε − ε

1 + ε

1ˆ

0

k∑
i=1

|∇ui|2dx,

which, as ε → 0, gives the desired inequality

k(a+)2 ≤ 1. �
We are now ready to provide the proof of Proposition 4.1.

Proof of Proposition 4.1. Let U be a nonzero minimizing cone of average 0 in dimension 
n = 1 and let

a+
1 > a+

2 > ... > a+
l

be the slopes of the membranes on [0, ∞) and denote by k+
1 , .., k+

l their multiplicities 
that is, k+

j is the number of membranes with slope a+
j . Since U has average 0 we have 

a+
1 ≥ 0 ≥ a+

l . Similarly on (−∞, 0] we have slopes −a−
1 , −a−

2 , .., −a−
m with

a−
1 > ... > a−

m, a−
1 ≥ 0 ≥ a−

m,

with multiplicities k−
1 , .., k−

m.
We want to show that either l = 2, m = 1 or l = 1, m = 2. Then Lemma 4.3 implies 

that, up to a rotation, U = U0,k for some k.
By symmetry we may assume that

k+
1 ≤ k−

1 , (4.3)

and we show below that l = 2, m = 1.
We apply Lemma 4.4 to the top k+

1 membranes and obtain

a+
1 + a−

1 ≤
√

1
k+

1
. (4.4)

If l = 1 then, k+
1 = N and therefore k−

1 = N as well. This means l = m = 1 hence U ≡ 0
which contradicts our hypothesis. In conclusion, l ≥ 2.
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Next we apply Lemma 4.2 for the collection of membranes corresponding to the slopes 
a+

1 and a+
2 (we drop the + superscript for simplicity of notation) and obtain

k1(a1 − aI)2 + k2(a2 − aI)2 ≥ 1, aI = k1

k1 + k2
a1 + k2

k1 + k2
a2,

hence

(a1 − a2)2
(

k1
k2

2
(k1 + k2)2 + k2

k2
2

(k2 + k2)2

)
≥ 1,

or

(a1 − a2)2 ≥ 1
k1

+ 1
k2

.

Thus,

a+
1 − a+

2 >

√
1

k+
1

,

which together with (4.4) gives

a+
2 < −a−

1 ≤ 0, (4.5)

and since a+
l ≤ a+

2 , we find

a−
1 + a+

l < 0. (4.6)

We claim that

k+
l < k−

m. (4.7)

Indeed, otherwise k+
l ≥ k−

m and we are back at condition (4.3) after a rotation of 180◦

of the graphs of the membranes. We write (4.6) for this configuration and obtain

−a−
1 − a+

l < 0.

This contradicts (4.6) and the claim (4.7) is proved.
The inequality (4.7) shows that we satisfy condition (4.3) after a reflection of the 

membranes with respect to the x axis, i.e. (u1, .., uN ) �→ (−uN , .., −u1). If l ≥ 3 then we 
may apply (4.5) for this configuration and obtain −a+

2 < 0. This contradicts (4.5).
In conclusion l = 2, and (4.3), (4.7) imply that m = 1.
It remains to show that U0,k is a minimizer. Let V be a perturbation of U which 

coincides with U outside a compact interval that contains the origin, say [−1, 1]. Let ρ
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Fig. 3. A minimizer for N = 3, n = 1.

be such that u1 > 0 ∈ (ρ, 1], u1(ρ) = 0 (and therefore U(ρ) = 0). Then W (V ) ≥ 1 in 
[ρ, 1], hence

JN (V, [−1, 1]) ≥ JN (V̄ , [−1, 1])

where V̄ is the harmonic replacement of V in [ρ, 1], with V̄ extended to be 0 in [−1, ρ]. 
On the other hand, the right hand side is minimized when ρ = 0 as can be seen from 
Remark 4.3. �

If we consider minimality in the more restrictive class of continuous deformations of 
the graph of U in R ×R (which do not change the topology of the junctions), then there 
are other cones in 1D. For example, for N = 3,

u1 = x+, u2 = 0, u3 = −x+,

is a minimizing cone with a triple junction at 0. Notice that the Euler -Lagrange equation 
(4.2) is satisfied. A minimizer in H1 with the same boundary data in [−1, 1] of the 
example above is (see Fig. 3)

u1 = λ

(
x − 1 + 1

λ

)+

, u2 = −1
2u1 + μ

(
x − 1 + 1

2μ

)+

, u3 = −u1 − u2,

λ =
√

2√
3

, μ = 1√
2

.

5. Free boundary regularity near one-dimensional cones

In this section we prove the partial regularity result for the free boundaries Γi, in 
dimension n ≥ 2. For convenience we restate Theorem 1.4 from the Introduction.

Theorem 5.1 (Partial regularity). Let U be a minimizer in B1. The free boundaries Γi’s 
are analytic and disjoint from one another outside a closed set Σ of singular points of 
Hausdorff dimension n − 2, and

Hn−1(Γi ∩ B1/2) ≤ C.
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In order to obtain Theorem 5.1, we first establish a series of lemmas. First we write 
a dimension reduction lemma for minimizers depending on fewer variables.

Lemma 5.2. U(x) is a minimizer for JN in B1 ⊂ Rn if and only if its trivial extension 
in one more variable is a minimizer for JN in B1 × R ⊂ Rn+1.

The proof of this lemma is standard and we omit the details.
Next, we obtain a lower bound of the energy of non trivial cones. Recall that cones 

are 1-homogeneous functions.

Lemma 5.3 (Least energy cones). Let U be a nonzero cone in Rn, with 
∑

ui = 0. Then

Φ(U) ≥ 1
2 |B1|,

with equality if and only if

U = U0,k(x · ν),

for some k < N , and some unit direction ν.

Proof. We prove this by induction on the dimension n. The case n = 1 was addressed 
in the previous section.

If {|U | = 0} does not contain a ray, then W (U) ≥ 1, and Φ(U) ≥ |B1| > 1
2 |B1|. 

If |U | = 0 contains a ray, then we can choose x0 ∈ ∂{|U | > 0} ∩ ∂B1, and by the 
monotonicity formula obtain

Φ(U) = lim
r→∞

Φx0(U, r) ≥ Φx0(U, 0+),

with equality only if U is constant in the x0 direction. Here Φx0(U, 0+) represents the 
limit of the Φ functional centered at x0 and its value coincides with the energy of a 
blow-up cone at x0. This cone is constant in the x0 direction and by the previous lemma 
it is the extension of an n − 1 dimensional cone to Rn. Now the conclusion follows easily 
from the induction hypothesis. �

We state the ε-regularity theorem for our problem.

Proposition 5.4. Assume that U is a minimizer of JN in B1 with

0 ∈ {|U | > 0},
∑

ui = 0,

and

Φ(U, B1) ≤ 1 |B1| + δ,
2
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for some small δ universal. Then, there exists k < N such that Γk ∩ B1/2 is an analytic 
hypersurface and Γi ∩ B1/2 = ∅ if i �= k.

We start by proving the following result.

Lemma 5.5. Assume that U satisfies the hypotheses of Proposition 5.4. There exists k

such that in B3/4 u1 = .. = uk, uk+1 = .. = uN , i.e. Γi ∩ B3/4 = ∅ for all i �= k.

Proof. First we show that there exists a unit direction ν such that in B7/8,

|U − U0,k(x · ν)| ≤ η(δ) with η(δ) → 0 as δ → 0. (5.1)

This follows by compactness from Lemma 5.3. Indeed, if Um is a sequence of minimizers 
in B1 which satisfy the hypotheses with δ = δm → 0, then up to subsequences, Um → Ū

uniformly on compact sets of B7/8 and

0 ∈ ∂{|Ū | > 0}, Φ(Ū , B7/8) = lim Φ(Um, B7/8) ≤ 1
2 |B1|.

Lemma 5.3 implies that Ū is a cone of least energy, i.e. Ū = U0,k(x · ν) for some k, and 
(5.1) is proved.

Conclusion (5.1) holds also for the rescalings Ur(x) = r−1U(xr) with k and ν depend-
ing on r. However, the continuity of the Ur’s implies that k is in fact independent of r, 
provided that we choose η(δ) sufficiently small.

On the other hand (5.1) and the non-degeneracy of |U |, give that {|U | = 0} and the 
half-space x ·ν < 0 are close in the Hausdorff distance sense in B3/4. The same argument 
as above can be applied at any point x0 ∈ ∂{|U | > 0} ∩ B3/4 instead of the origin, and 
the conclusion easily follows. �
Proof of Proposition 5.4. Let us assume that 

∑
ui = 0. Then, by Lemma 5.5, Γi∩B3/4 =

∅ if i �= k, and uk is the minimizer for the scalar Bernoulli problem
ˆ

B3/4

(
nk

n − k
|∇u|2 + χ{u>0}

)
dx,

with sufficiently flat free boundary in B3/4. The result follows from the classical work of 
Alt and Caffarelli [1]. �
Definition 5.6. We say that x0 is a regular point of Γk if, when restricting to the collections 
of membranes that coincide at x0, the corresponding blow-up cone is one-dimensional.

Proof of Theorem 5.1. If at x0 ∈ Γk we have,

ul > ul+1 = ... = um > um+1,
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with l + 1 ≤ k < m, then

Ũ := (ul+1, ..., um),

minimizes the energy locally for the energy Jm−l involving m − l membranes. After 
subtracting the average from Ũ , we reduce to the case Ũ(x0) = 0. If the blow-up cone 
at x0 is one-dimensional, then x0 is a regular point.

Then, by Proposition 5.4, Γk is an analytic surface and Γi = ∅ near x0, with i ∈
{l + 1, ..., m}. Furthermore, Proposition 5.4 implies that if Um → U then Γm,k converges 
to Γk in C1,α sense near x0.

Now the theorem follows from the standard dimension reduction argument of Federer, 
see [10]. We omit the details. �
6. 2 dimensional cones for N = 3 membranes

In this section we study nontrivial cones U which are not one-dimensional. We restrict 
to the case N = 3 membranes in n = 2 dimensions.

We introduce two cones V0 and Vs which turn out to be the only one-homogenous 
functions which minimize the energy locally at points outside the origin.

We use polar coordinates (r, θ), and view sectors as intervals in the variable θ. We 
also use the notation

eθ = (cos θ, sin θ).

Definition 6.1. The cone V0 = (v0,1, v0,2, v0,3) is defined as

v0,1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
2
3 x · e− π

6
, if θ ∈ [−2

3π, 1
6π],

√
1
6 x · e π

6
, if θ ∈ [ 1

6π, 2
3π],

0 otherwise,

v0,3(x) = −v0,1(x1, −x2), v0,2 = −v0,1 − v0,2.

The cone Vs = (vs,1, vs,2, vs,3) is defined as

vs,1(x) = 1√
10

max {|x1|, 2|x2|} ,

vs,3(x) = −vs,1(x2, x1), vs,2 = −vs,1 − vs,3.

(Fig. 4.)
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Fig. 4. The free boundaries for the cones V0 and Vs.

Proposition 6.2. Let N = 3 and U be a cone with 
∑

ui = 0 which minimizes JN locally 
at points on the unit circle ∂B1, and assume that U is not one-dimensional. Then, up 
to rotations U = V0, or U = Vs.

Proof. By the partial regularity Theorem 5.1, the free boundaries Γ1 and Γ2 of U consist 
of at most a finite number of distinct rays. Each ui is linear in the sectors determined 
by these rays, and on ∂B1, the membranes behave as in the 1 dimensional case at the 
points on Γi ∩ ∂B1. More precisely, if at such a point all three membranes coincide, i.e. 
U = 0, then on one side they all coincide and on the other they split with multiplicities 
1 and 2, and slopes 

√
2
3 and 

√
1
6 respectively. If at such a point only two membranes 

coincide, then on one side the two membranes coincide, while on the other they split and 
the slopes have a jump of size ± 1√

2 .
Let S be a sector determined by a connected component of {u1 > u2} which, after a 

rotation, corresponds to an interval (0, θ0) in polar coordinates. Then

u1 = f · x ≥ 0 in S,

for some non-zero vector f . Notice that θ0 ≤ π.
We distinguish 2 cases depending on whether or not u1 vanishes on ∂S.

Case 1: u1 > 0 on ∂S \ {0}.
In this case we show that f bisects the sector S, and θ0 > 2π/3. Moreover, f bisects 

also the sector {u2 = u3} ∩ S.

From the 1 dimensional analysis, in the connected sector {θ ∈ (0, θ1)} ⊂ S where 
u1 > u2 > u3, we have

u2 = (f −
√

2 e π
2
) · x, u3 = (

√
2 e π

2
− 2f) · x.

Notice that θ1 < θ0, since otherwise θ0 = π and we contradict that u1 > 0 on ∂S \ {0}. 
The two linear functions corresponding to u2 and u3 in [0, θ1] intersect on the line

(3f − 2
√

2 e π ) · x = 0, (6.1)

2
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hence the ray {θ = θ1} ⊂ Γ2 is obtained by intersecting this line with S.
The Euler-Lagrange equation on Γ2 implies that

|3f − 2
√

2 e π
2
| =

√
2, (6.2)

i.e. 3√
2f belongs to the unit circle centered at 2e π

2
, which means that the angle between 

f and e π
2

is at most π/6.
Similarly, the equality above is satisfied also by the inner normal eθ0− π

2
to S on the 

other ray of ∂S. Since (6.2) holds for both e π
2

and eθ0− π
2
, it means the vector f makes 

the same angle with these 2 inner directions to S, hence f bisects S. Notice that a vector 
f determines uniquely the two unit directions which satisfy (6.2) and the lines in (6.1)
where the graphs of u2 and u3 intersect. By symmetry, f bisects also the sector where 
{u2 = u3} included in S. Thus any connected sector S of {u1 > u2} for which u1 > 0 on 
∂S \ {0} is uniquely determined by the slope of u1 in that sector.

We remark that the angle between f and e2 cannot be π/6. Otherwise, by (6.1), the 
ray θ = θ1 has the direction of f . This means that the set {u2 = u3} ∩ S consists of a 
single ray which bisects S, and then U cannot be locally minimizing by the 1 dimensional 
analysis.

Case 2: u1 vanishes on the ray θ = 0.
In this case we show that U coincides with a π

6 rotation of V0.

From the 1 dimensional analysis,

u1 =
√

2
3 (x · e π

2
)+, u2 = u3 = −1

2u1,

on a sector near the ray θ = 0. Let {θ ∈ (0, θ1]} be a connected sector in S where 
u2 = u3. We claim that

θ1 < θ0.

Otherwise u2 = u3 = −1
2u1 throughout S, which means that S is a half-space, i.e. 

θ0 = π. Since u1 is subharmonic, and vanishes near the endpoints of the interval [π, 2π]
we conclude that it vanishes in the whole interval, i.e. the formulas above hold in R2 and 
U is one-dimensional, a contradiction.

We remark that u1 > u2 > u3 in the remaining sector θ ∈ (θ1, θ0) of S. Then, in this 
sector we have

u1 =
√

2
3(x · e π

2
)+, u2 = −1

2u1 + 1√
2

(x · e)+, u3 = −1
2u1 − 1√

2
(x · e)+,

with e := eθ1+ π .

2
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The Euler-Lagrange equation at θ = θ0 gives
∣∣∣∣∣32
√

2
3e π

2
− 1√

2
e

∣∣∣∣∣ =
√

2

which means that e = eπ, i.e. θ1 = π/2. Then the ray θ = θ0 is given by the direction of
√

3
2 e + 1

2e π
2
,

along which u1 and u2 intersect, i.e. θ0 = 5π/6.
Notice that the direction θ = θ0 is also the one of the gradient of −u3 in the connected 

sector S′ := (θ1, θ2) where {u2 > u3}. We claim that U vanishes on θ = θ2. Otherwise we 
are in case 1) for −u3 in the sector S′. We apply the conclusions for case 1) and deduce 
that the direction θ0 bisects the angle of S′, and θ2 − θ1 > 2π/3. This is a contradiction 
since θ2 − θ1 = 2(θ0 − θ1) = 2π/3.

Thus we are in case 2) for −u3 and S′ which means that θ2 = θ0 + π/2. In the 
remaining sector θ = [θ2, 2π], u1 (and therefore U) must vanish since it is 0 on the 
boundary and it is subharmonic in the interior. In conclusion U is a π/6 rotation of V0.

If u1 and u3 do not vanish on any ray, then we are in Case 1) for each sector of U , 
and then the connected sectors of {u1 > u2} and {u1 = u2} occur in a periodic pattern 
along the circle. Since θ0 ∈ (2

3π, π), we can only have four such sectors. Then the angle 
between the bisectors of two such consecutive sectors, f for {u1 > u2} and f − 1√

2e π
2

for 
{u1 = u2}, must be −π/2. This together with (6.2) determines f uniquely as

f =
√

2
5 (e0 + 2e π

2
),

and then it follows that U is a rotation of Vs. �
Next we show that we can lower the energy of Vs by using a compact perturbation 

near the origin. Our proof does not use the precise form of Vs but only that it has an axis 
of symmetry. The idea is inspired by [17] where the classification of nonlocal minimal 
cones in two dimensions was established.

Proposition 6.3. Vs is not a minimizer of JN in B1.

Proof. Assume by contradiction that Vs is a minimizer of JN in B1.
We take the domain deformation

x �→ y := Ψ(x) = x + εϕ(|x|)e0, e0 = (1, 0),

with ϕ(|x|) a radial function with compact support in B1, and with ‖εDΨ‖L∞ < 1. 
Then, using the Lipschitz continuity of Vs, we find as in the proof of Lemma 3.2 that
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U(y) := Vs(x(y)),

satisfies

JN (U, B1) = JN (Vs, B1) +
ˆ

B1

L(εDΨ, Vs) + O(ε2|DΨ|2)dx,

with L linear in the first argument. Since Vs is minimizing, it follows that
ˆ

B1

L(εDΨ, Vs)dx = 0,

hence

JN (U, B1) − JN (Vs, B1) ≤ Cε2
ˆ

B1

|∇ϕ|2dx = o(ε2)

provided that we choose the logarithmic cutoff

ϕ(r) := max{log r, log(2ε)}
log(2ε) .

Let

U1 := U(−|x1|, x2), U2 := U(|x1|, x2)

and notice that U1, U2 have the same boundary data as U , hence

JN (Vs, B1) ≤ JN (U1, B1), JN (Vs, B1) ≤ JN (U2, B1)

JN (U1, B1) + JN (U2, B1) = 2JN (U, B1) ≤ 2JN (Vs, B1) + o(ε2),

which gives

JN (U1, B1) ≤ JN (Vs, B1) + o(ε2).

Notice that in B2ε, U is a translation of Vs by the vector εe0, and U1 and U2 are obtained 
by reflecting this translation with respect to the line x1 = 0.

We claim that the minimizer Ū1 with the boundary data of U1 in Bε decreases the 
energy of JN (U1, Bε) by cε2, c > 0. By the scaling of ε−1 factor, this is equivalent to 
prove the claim for ε = 1. This means that, we first translate Vs by e0 and take its values 
in B1 ∩ {x1 < 0}, and then reflect them evenly with respect to {x1 = 0}. We need to 
show that the resulting function is not minimizing JN in B1. Indeed, it suffices to look 
at this function on the x1 axis. On this line we have u1 = u2 > 0, u3 < 0 and at the 
origin u3 is not smooth, therefore it is not a minimizer. �
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Next we prove that V0 is a minimizing cone in R2.

Proposition 6.4. V0 is a minimizer of JN .

First we state a result about the continuity of U near the boundary.

Lemma 6.5. Assume that Ω is a Lipschitz domain and the boundary data of U is Lipschitz. 
Then U ∈ Cα(Ω), for some α > 0.

The proof is standard and follows as in the interior case. We omit the details.

Lemma 6.6. Assume that 0 ∈ ∂Ω and Ω is a conical domain near the origin. If the 
boundary data of U is homogenous of degree one near 0, then the rescalings Ur(x) =
U(rx)/r of U converge on subsequences as r → 0 to a global minimizing cone (defined 
in the conical domain).

This follows from the Weiss monotonicity formula which still applies in this setting. 
We only use Lemma 6.6 when Ω = B+

1 ⊂ R2.

Lemma 6.7. Assume that N = 3, Ω = B+
1 = B1 ∩ {xn > 0}, 

∑
ui = 0, and U vanishes 

on xn = 0. If

max{u1, |u3|} ≤ 1√
6

xn,

then U ≡ 0 in a neighborhood of the origin.

Proof. By Lemma 6.6 and non-degeneracy, it suffices to prove the statement when U is 
a cone. Since u1 ≥ 0 is subharmonic, one-homogenous, and vanishes on xn = 0, it must 
be a linear function in the xn variable. The same is true for u3 and therefore also for 
u2. By dimension reduction, it suffices to show the statement in dimension n = 1. The 
growth hypothesis implies the slopes of u1, u2 and u3 at the origin are strictly less that 
1/

√
6, and they need to vanish by Lemma 4.2. �

Proof of Proposition 6.4. We prove that V0 is a minimizing cone by constructing a min-
imizer U : Ω → R for which Γ1 ∩Γ2 ∩Ω �= ∅. By the results above, V0 is the only possible 
blow-up profile at an intersection point, and it is therefore minimizing.

Let Ω := [−M, M ] × [−1, 1], for some M large to be specified later, and let U be a 
minimizer of JN with the boundary data given by

ϕ(x1)U0,1(x2) + (1 − ϕ(x1))U0,2(x2),

where U0,1, U0,2 are the one-dimensional solutions in the case N = 3, and ϕ(x1) is a 
smooth non-decreasing function which is equal to 0 when x1 ≤ −1 and equal to 1 when 
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x1 ≥ 1. Thus U = 0 on ∂Ω ∩ {x2 ≤ 0}, U �= 0 on the remaining part of the boundary. 
Moreover, since u1, −u3 are subharmonic we have

max{u1, −u3} ≤ 1√
6

(1 + x2),

and by Lemma 6.7 we find that the boundary points (−M, M) × {−1} are interior to 
the coincidence set {|U | = 0}. We have

JN (U, Ω) ≤ (M − 1)(JN (U0,1, [−1, 1]) + JN (U0,2, [−1, 1]) + C,

and since U0,2 is minimizing in one dimension we find

JN (U, Ω ∩ {x1 < −1}) ≥ (M − 1)JN (U0,2, [−1, 1]),

thus

JN (U, Ω ∩ {x1 > 1}) ≤ (M − 1)JN (U0,1, [−1, 1]) + C.

On the other hand for each y ∈ (1, M) for which

‖U(y, ·) − U0,1(·)‖L∞[−1,1] ≥ δ,

we have

JN (U, D) ≥ JN (U0,2(x2), D) + σ(δ), D := [y − δ, y + δ] × [−1, 1],

for some σ(δ) > 0, hence if M = M(δ) is large enough we can find a y ∈ (M/4, M/2)
such that

|U − U0,1(x2)| ≤ δ in R := [y − 1, y + 1] × [−1, 1],

which, by Proposition 5.4, gives that the coincidence set {|U | = 0} has Γ1 as its boundary 
in R, while Γ2 = ∅. The same conclusion holds for some y ∈ (−M/2, −M/4) with the 
roles of Γ1 and Γ2 interchanged.

Now we can conclude that {|U | = 0} has a boundary point in Γ1 ∩ Γ2 ∩ Ω. Indeed, 
otherwise ∂{|U | = 0} ∩ Ω is a smooth curve which locally is in either Γ1 or Γ2 and 
which does not intersect the lines x2 = 1 or x2 = −1 in the region |x1| ≤ M/2. This is 
topologically impossible and we reached a contradiction.

Finally we show that V0 is the unique minimizer with its own boundary data. If U is 
another minimizer with the same energy and boundary data in B1, then U extended by 
V0 outside B1, is a minimizer in any compact subset of Rn. As above, we find that there 
exists x0 ∈ Γ1 ∩ Γ2, and since the tangent cone at x0 has the same energy with the cone 
at infinity we find that U is a cone with vertex at x0, i.e. U = V0. �
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7. Regularity of cones near V0

In this section we assume that we are in n = 2 dimensions. We establish the uniqueness 
of the blow-up cone at a point in Γ1 ∩ Γ2 and obtain the regularity of the two free 
boundaries near such a point.

Theorem 7.1. Assume N = 3 and U minimizes JN in B1. If V0 is the blow-up profile of 
U at 0, then Γ1 and Γ2 are piecewise C1,α curves.

Since V0 is the only possible blow-up profile for Γ1 ∩ Γ2 in two dimensions, we know 
that U is well-approximated by rotations of V0 at all scales. Precisely we may assume 
that for each r ∈ (0, 1], there exists a rotation matrix Or such that

‖U − V0(Orx)‖L∞(Br) ≤ εr, (7.1)

for some ε sufficiently small. Our goal is to show that the value of ε improves in a Cα

fashion with respect to r.
Assume that O1 = I, and set

w1 := 1
ε

(
u1 −

√
2
3 x · e− π

6

)
, defined in {u1 > u2},

w3 := −1
ε

(√
2
3 x · e π

6
+ u3

)
, defined in {u2 > u3}.

We claim that, as ε → 0, the graphs of the functions (w1, w3) converge uniformly on 
compact sets of

B1 \ {0} × R ⊂ R2+1

to the graphs of a limiting pair (w̄1, w̄3) with w̄1 defined in the sector S1 (Fig. 5) given
by

S1 :=
{

(r, θ) ∈ (0, 1) × (−2π

3 ,
π

6 )
}

,

and w̄1 satisfies

�w̄1 = 0 in S1, (7.2)

∂νw̄1 = 0 on
{

r ∈ (0, 1), θ = −2π

3

}
, (7.3)

∂νw̄1 = 1
2∂νw̄3 on

{
r ∈ (0, 1), θ = π

6

}
, (7.4)
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Fig. 5. The sector S1.

while w̄3 is defined in S3 with

S3 :=
{

(r, θ) ∈ (0, 1) × (−π

6 ,
2π

3 )
}

,

and

�w̄3 = 0 in S3, (7.5)

∂νw̄3 = 0 on
{

r ∈ (0, 1), θ = 2π

3

}
, (7.6)

∂νw̄3 = 1
2∂νw̄1 on

{
r ∈ (0, 1), θ = −π

6

}
. (7.7)

Here the functions w̄1, w̄3 are bounded by −1 and 1, and their first derivatives are 
continuous up to the boundary at the points belonging to the lateral sides of the sector. 
The equations imply that they are in fact smooth up to the boundary at these points.

Moreover, w̄1, w̄3 are continuous at 0,

w̄1(0) = w̄3(0) = 0, (7.8)

and the convergence of W = (w1, w3) to W̄ = (w̄1, w̄3) is uniform also in a neighborhood 
of 0.

Indeed, by the results of Section 5, u1 solves a Bernoulli one-phase problem near the 
line θ = −2

3π which is an ε-perturbation of the one-dimensional solution of slope 
√

2/3. 
Now we can apply the results for the scalar one-phase problem in [D], and find that w1
converges on subsequences as ε → 0 to a limiting function w̄1 which satisfies (7.2)-(7.3). 
On the other hand

u1 − u2 = 2u1 + u3 =
√

2
3 (2e− π

6
− e π

6
) · x + ε(2w1 − w3)

solves a Bernoulli one-phase problem near the line θ = π
6 which is an ε-perturbation of a 

one-dimensional solution. The same argument as above gives (7.4). Similarly we obtain 
the equations (7.5)-(7.7) for w̄3.

Finally, from (7.1) we have |Or − Or/2| ≤ Cε, hence |Or − I| ≤ Cε| log r| which means

‖U − V0(x)‖L∞(Br) ≤ Cεr| log r|.
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This implies that

|wi| ≤ C|x| log |x| if |x| ∈ [ε2, 1],

hence w̄i has a Cr| log r| modulus of continuity at 0 and satisfies (7.8).
Next we study the linear system (7.2)-(7.7) and notice that it appears as the Euler-

Lagrange system for the quadratic functional

Q(w1, w3) := 3
2

ˆ

S1\S3

|∇w1|2dx + 3
2

ˆ

S3\S1

|∇w3|2dx

+
ˆ

S1∩S3

|∇w1|2 + |∇w3|2 + |∇(w1 − w3)|2dx,

acting on pairs

(w1, w3) ∈ H1(S1) × H1(S3).

For simplicity of notation we denote

W = (w1, w3), ∇W = (∇w1, ∇w3),

L2(S) := {W | wi ∈ L2(Si)}, H1(S) := {W | wi ∈ H1(Si)},

and define the inner product on L2(S) as

〈W, V 〉 := 3
2

ˆ

S1\S3

w1v1dx + 3
2

ˆ

S3\S1

w3v3dx

+
ˆ

S1∩S3

w1v1 + w3v3 + (w1 − w3)(v1 − v3)dx.

The norm induced by the inner product is equivalent to the standard L2 norm on S. We 
also define 〈∇W, ∇V 〉 as above, by replacing the terms wivj by ∇wi · ∇vj . With this 
notation

Q(W ) = 〈∇W, ∇W 〉.

We consider minimizers of Q which have fixed boundary data on ∂B1 or, in other 
words, we consider harmonic maps induced by 〈·, ·〉. We establish the C1,α regularity of 
minimizers of Q near the origin.

Proposition 7.2. Assume that W ∈ H1(S) is a minimizer of Q among competitors with 
the same boundary data on S ∩ ∂B1. Then W ∈ C1,α0(S) and
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W (x) = W (0) + q(e π
3

· x, −e− π
3

· x) + O(|x|1+α0), q ∈ R,

for some explicit α0 ∈ (0, 1).

The precise formula of α0 is given by

cos(π

3 (1 + α0)) =
√

17 − 3
8 ,

and α0 � 0.36.
First we show that a solution to the system (7.2)-(7.7) which remains bounded near 

the origin minimizes the energy Q.

Lemma 7.3. Assume that W̄ is a bounded solution of (7.2)-(7.7). Then it minimizes the 
energy Q with respect to perturbations in H1

0 (S).

Proof. Indeed, we notice that if V ∈ C1 vanishes near ∂B1 and the origin 0, then

〈∇W̄ , ∇V 〉 = 〈�W̄ , V 〉

+
ˆ

S3∩∂S1

−3
2v3(w̄3)ν + v1(w̄1)ν + v3(w̄3)ν + (v1 − v3)(w̄1 − w̄3)ν dσ

+
ˆ

S1∩∂S3

−3
2v1(w̄1)ν + v3(w̄3)ν + v1(w̄1)ν + (v3 − v1)(w̄3 − w̄1)ν dσ

= 0.

Let W0 be the minimizer of Q in S ∩Br with the same boundary data as W̄ on S ∩∂Br

for some r ∈ (0, 1). We show that W̄ and W0 coincide in Br.
The computation above gives

〈∇(W̄ − W0), ∇V 〉 = 0,

for any V ∈ H1(S) which vanishes on ∂B1 and in a neighborhood of 0.
We choose V = ψ2(W̄ − W0), with ψ a radial cutoff function which is 1 outside Bδ

and vanishes near 0, and obtain the Caccioppoli inequality

〈ψ∇(W̄ − W0), ψ∇(W̄ − W0)〉 ≤ C〈|∇ψ|(W̄ − W0), |∇ψ|(W̄ − W0)〉. (7.9)

Since W̄ − W0 is bounded near the origin and ‖∇ψ‖L2 can be made arbitrarily small, 
we obtain

〈∇(W̄ − W0), ∇(W̄ − W0)〉 = 0,

as δ → 0, which gives the desired conclusion. �
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Theorem 7.1 follows from the estimate of Proposition 7.2 which applies to W̄ .

Proof of Theorem 7.1. Since W̄ (0) = 0 then, for all ρ ≤ 1/2,

‖W̄ − q(e π
3

· x, −e− π
3

· x)‖L∞(Bρ) ≤ Cρ1+α0 ,

with |q| ≤ C, and C universal.
The uniform convergence of the W ’s to W̄ and the inequality above imply

‖U − V0(Oρx)‖L∞(Bρ) ≤ Cρ1+α0ε ≤ ερα,

with Oρ the rotation of angle ε
√

3
2 q, provided that α < α0 and ρ is chosen sufficiently 

small depending on α. By iterating this result we find that U is approximated in a C1,α

fashion by rotations of V0. In particular, there is a limiting rotation O0 such that

‖U − V0(O0x)‖L∞(Br) ≤ Cε r1+α for all r ∈ (0, 1].

This shows that the free boundaries are piecewise C1,α at the origin. The full C1,α

regularity of Γi’s away from the origin follows from the free boundary regularity in the 
one-phase problem applied in the annuli Br \ Br/2, see [1,7]. �

It remains to prove Proposition 7.2.

Proof of Proposition 7.2. We solve the Dirichlet problem for minimizers of Q by the 
method of Fourier series.

We investigate the eigenvalues and eigenfunctions of the corresponding Q operator on 
the unit circle ∂B1. Precisely, let

S ′
i := Si ∩ ∂B1,

and notice that

S ′
1 = (−b, a), S ′

3 = (−a, b),

where a < b denote π
6 and 2π

3 .
We define the corresponding spaces L2(S ′), H1(S ′), and the inner product 〈W, V 〉 as 

above. The eigenfunctions Φk and eigenvalues λk are defined inductively through the 
Rayleigh quotient formula

λk := min
W ∈(span{Φ1,..,Φk−1})⊥

〈∇W, ∇W 〉
〈W, W 〉 ,

and Φk = W is the element of H1(S ′) which has unit norm in L2(S ′), where the minimum 
is realized. Then {Φk}∞

k=1 is an orthonormal basis of L2(S ′).
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The minimizer of the Q functional with boundary data Φk(θ) on ∂B1 is

r
√

λk Φk(θ).

We write the Euler-Lagrange equations for an eigenfunction Φk = W of eigenvalue 
λk = λ and obtain

w′′
1 + λw1 = 0 in (−b, −a) ∪ (−a, a), (7.10)

w′
1(−b)+ = 0,

3
2w′

1(−a)− + w′
3(−a)+ − 2w′

1(−a)+ = 0, w′
1(−a)+ − 2w′

3(−a)+ = 0, (7.11)

together with similar equations for w3. Here w′
1(−a)± denote the left and right limits of 

the derivative of w′
1 at −a. From (7.11) we find

w′
1(−a)− = w′

1(−a)+ = 2w′
3(−a)+,

which means that equation (7.10) holds in the full interval (−b, a). In conclusion

w1(θ) = μ1 cos(
√

λ(θ + b)), w3(θ) = μ3 cos(
√

λ(θ − b)),

and

w′
1(−a) = 2w′

3(−a), w′
3(a) = 2w′

1(a).

This implies that

sin(
√

λ(b − a)) = ±2 sin(
√

λ(b + a))

or

| sin(3t)| = 2| sin(5t)|, t :=
√

λ

6 π. (7.12)

This equation has periodic solutions in t of period π. In the interval [0, π) we have 9 
solutions, two in each interval of length π/5. The first one is t0 = 0, then

t1 = π

6 , t2 ∈ (π

5 ,
π

3 ), t3 ∈ (π

3 ,
2π

5 ) etc.

The solutions can be computed explicitly since after dividing by sin t in (7.12), we end 
up with two quadratic equations in 4 cos(2t)

β2 + 2β − 4 = ±(β + 2), β := 4 cos(2t).
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The corresponding eigenvalues and eigenfunctions are

λ1 = 0, W = (1, 0),

λ2 = 0, W = (0, 1),

λ3 = 1, W = (cos(θ + b), − cos(θ − b)) ,√
λ4 ∈ (6

5 , 2), W =
(

cos
(√

λ4(θ + b)
)

, cos
(√

λ4(θ − b)
))

,

and 
√

λ3 ∈ (2, 12
5 ) etc. The eigenvalues corresponding to t/π ∈ Z have multiplicity 2, 

while the others are simple, and notice that 
√

λk ∼ 3
5k for k large.

If Φ(θ) is the boundary data of W , then we decompose it in L2(S ′) as

Φ =
∑

σkΦk

with 
∑

σ2
k < ∞, and write the solution W in S in polar coordinates as the series

W =
∑

σkr
√

λk Φk(θ),

which converges uniformly in compact intervals of r ∈ [0, 1).
This gives the desired conclusion with

1 + α =
√

λ4,

and

4 cos(π

3
√

λ4) =
√

17 − 3
2 .

We remark that Φ is the trace of a function in H1(S) is equivalent to

Q(W ) = 〈∇W, ∇W 〉 =
∑√

λk σ2
k < ∞. �

8. Regularity for Γ1 ∩ Γ2 in higher dimensions

In this section we prove a version of Theorem 7.1 in arbitrary dimensions. First we 
recall the following definitions.

Definition 8.1. Let U be a minimizer of JN with N = 3. We say that

x0 ∈ Reg(Γ1 ∩ Γ2)

if there exists a blow-up profile at x0 which is a rotation of a two-dimensional cone V0
extended trivially in the remaining variables.
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We say that

x0 ∈ Reg(Γk)

if there exists a blow-up cone x0 ∈ Γk which is one-dimensional.

For convenience we restate Theorems 1.7 and 1.8 from the Introduction which will be 
proved in this section.

Theorem 8.2. Reg(Γ1 ∩ Γ2) is locally a C1,α-smooth manifold of codimension two. Near 
such an intersection point, each of the free boundaries Γ1 and Γ2 consists of two piecewise 
C1,α hypersurfaces which intersect on Reg(Γ1 ∩ Γ2).

As a consequence we obtain the partial regularity result.

Theorem 8.3 (Partial regularity). Let N = 3 and U be a minimizer of JN in B1. Then

∂{|U | > 0} = Reg(Γ1) ∪ Reg(Γ2) ∪ Reg(Γ1 ∩ Γ2) ∪ Σ′,

with Σ′ a closed singular set of Hausdorff dimension n − 3 and

Hn−1(Reg(Γi) ∩ B1/2) ≤ C, Hn−2(Reg(Γ1 ∩ Γ2) ∩ B1/2) ≤ C.

Theorems 8.2 and 8.3 are deduced from the next proposition which will be proved 
later in the section. It states that a minimizer U which is approximated in each ball Br

with r ∈ (0, 1], by a rotation of V0, must be a C1,α deformation of V0.

Proposition 8.4. Let U be a minimizer in B1. Assume that for each r ∈ (0, 1] there exists 
a pair of orthonormal vectors ν1

r , ν2
r such that

‖U − V0(ν1
r · x, ν2

r · x)‖L∞(Br) ≤ εr,

for some ε ≤ ε0(n) small universal. Then there exists ν1
0 , ν2

0 such that

‖U − V0(ν1
0 · x, ν2

0 · x)‖L∞(Br) ≤ Cεr1+α.

A direct consequence of this result is that there are no other cones that are sufficiently 
close to the set of rotations of V0.

Corollary 8.5. Assume that U is a minimal cone and ‖U − V0‖L∞(B1) ≤ ε0. Then U is a 
rotation of V0.

We show that the hypotheses of Proposition 8.4 can be relaxed to require that U is 
approximated by V0 only in B1 and the energy of the blow-up cones at the origin does 
not go below the energy of V0.
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Lemma 8.6. Let U be a minimizer in B1 with 0 ∈ ∂{|U | > 0}. Assume that

‖U − V0‖L∞(B1) ≤ ε, and ΦU (0+) ≥ Φ(V0).

Then the only possible blow-up cones for U at 0 are rotations of V0.

Proof. First we notice that the hypotheses imply that

ΦU (1
2) ≤ Φ(V0) + Cε,

and then

0 ≤ ΦU (r) − Φ(V0) ≤ Cε, ∀r ∈ (0,
1
2). (8.1)

Assume by contradiction that the conclusion does not hold for a sequence Un, and ε =
εn → 0. Then, by Proposition 8.4, we can find appropriate dilations Ũn := r−1

n Un(rnx)
such that

dist(Ũn, V0) = ε0,

where V0 represents the collections of cones obtained by rotations of V0 and the distance 
between Ũn and the elements of V0 is measured in L∞(B1). As n → ∞ we may extract 
a convergent subsequence in L∞(B1) of the Ũn’s to a limiting function Ū . Then Ū must 
be a cone, since its ΦŪ energy is a constant in the radial variable by (8.1). The distance 
from Ū to V0 is ε0, and we contradict Corollary 8.5. �

Next we use the dimension reduction argument to show that the set of free boundary 
points ∂{|U | > 0} whose tangent cones have energy strictly between the one dimensional 
solutions U0,k and the two-dimensional solution V0, has Hausdorff dimension n − 3.

Lemma 8.7. The set

A := {x ∈ ∂{|U | > 0} ∩ B1| ΦU,x(0+) ∈ (Φ(U0,k), Φ(V0))},

has Hausdorff dimension n − 3.

Here ΦU,x(r) denotes the Weiss energy of U in a ball of radius r centered at x, and 
ΦU,x(0+) its limit as r → 0. The continuity of ΦU,x(r) with respect to x, and r fixed, 
shows that

ΦU,x(r) < Φ(V0),

for all x ∈ ∂{|U | > 0} near a point in A and r sufficiently small. Thus, it suffices to 
prove the following lemma.
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Lemma 8.8. Fix δ > 0, and assume that U is a minimizer in B3 and

ΦU,x(r) ≤ Φ(V0) − δ, ∀x ∈ ∂{|U | > 0} ∩ B1, ∀r ≤ 1.

Then

Hn−3+δ(A ∩ B1) = 0.

We remark that A ∩ B1 is a closed set by the regularity result in Proposition 5.4.

Proof. The proof follows the standard dimension reduction argument of Federer [10]. 
Notice that in dimension n = 3 the set A ∩ B1 is discrete by Proposition 5.4, and the 
statement is obvious.

We prove the statement by induction on the dimension n ≥ 3, in two steps. We only 
sketch the main ideas and leave the details to the interested reader.

Step 1: Assume the result holds in dimension n, then it holds for any n +1-dimensional 
cone U with Φ(U) ≤ Φ(V0) − δ.

Step 2: Assume the result holds for cones in dimension n, then it holds for a minimizer 
in dimension n.

For Step 1, assume U is a cone in Rn+1. We take its restriction to a ball Br(x0) with 
x0 ∈ A ∩ ∂B1 and then normalize it to the unit ball after a translation and dilation. 
The resulting function is uniformly-well approximated as r → 0 by a minimizer that is 
constant in the x0-direction, for which the induction hypothesis holds. By compactness, 
this means that, there exists r0(n) > 0 small such that if r ≤ r0 then A ∩ ∂B1 ∩ Br(x0)
can be covered by a finite collection of balls of radii ri and centers on A ∩ ∂B1 with

∑
rn−3+δ

i ≤ 1
2rn−3+δ. (8.2)

Step 1 follows by iterating this result a number of times.
Step 2 is a consequence of the fact that around each point in A, U is well-approximated 

by cones at all small scales, and the conclusion holds for these cones by Step 1. Precisely, 
by compactness, for each x0 ∈ A ∩ B1 there exists δ(x0) > 0 such that if r ≤ δ(x0)
the set A ∩ Br(x0) can be covered by a finite collection of balls of radii ri that satisfy 
inequality (8.2).

Let Ak denote the set of points x0 in A with the property that δ(x0) ≥ 1
k , and notice 

that A ⊂ ∪Ak. On the other hand Hn−3+δ(Ak ∩ B1) = 0 since, as in Step 1, we can 
iterate (8.2) for Ak. Thus, the desired conclusion holds for A as well. �

In view of Lemma 8.6 and Lemma 8.7 we obtain a stronger version of Proposition 8.4
in which the only hypothesis is that U is approximated by V0 in B1.

Proposition 8.9. Assume that U is a minimizer in B1, 0 ∈ ∂{|U | > 0}, and

‖U − V0(x1, x2)‖L∞(B1) ≤ ε0,
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for some ε0 small universal. Then there exist ν1
0 , ν2

0 such that

‖U − V0(ν1
0 · x, ν2

0 · x)‖L∞(Br) ≤ r1+α.

In particular, Γ1 ∩ Γ2 ∩ B1/2 consists only of regular intersection points.

Proof. For each

x ∈ D := {x1 = x2 = 0} ∩ B1/2,

we look at the two dimensional plane generated by the first two coordinates of x. By 
topological considerations in this plane, the set Γ1 ∩ Γ2 contains at least one point x̄ in 
the disk of radius Cε0 around the origin.

Indeed, our hypothesis and Proposition 5.4 imply that in the two-dimensional annulus 
Cε0 ≤ r ≤ 2Cε0 the open sets {u1 > u2} and {u2 > u3} are C1 perturbations of the 
sectors S1 and S3 defined in Section 7. By two-dimensional topology, the boundaries of 
these two open sets must intersect in the disk of radius Cε0.

Since dim(A) ≤ n − 3, we find that

x̄ /∈ A for Hn−2 a.e. x ∈ D,

hence ΦU,x̄(0+) ≥ Φ(V0) and we can apply Proposition 8.4 at x̄.
The conclusion follows since the set of such x’s is dense in D. �
Theorem 8.2 follows easily from Proposition 8.9 and we omit the details.
Regarding Theorem 8.3, we notice that

Σ′ := ∂{|U | > 0} \ (Reg(Γ1) ∪ Reg(Γ2) ∪ Reg(Γ1 ∩ Γ2)) ,

is a closed set according to Proposition 8.9 and Theorem 5.1. The dimension reduction 
argument as in Lemma 8.7 implies that dim(Σ′) ≤ n −3, and rest of Theorem 8.3 follows 
by standard techniques.

It remains to prove Proposition 8.4. The considerations at the beginning the previous 
section remain valid, and they reduce the proof of Proposition 8.4 to the validity of C1,α

estimates for bounded solutions of the elliptic system (7.2)-(7.7).
The rest of the section is devoted to establish Proposition 7.2 in arbitrary dimensions, 

see Proposition 8.10 below.
We introduce some notation. We denote by

x = (x′, x′′), x′ = (x1, x2), x′′ = (x3, .., xn),

(r, θ) the polar coordinates for x′,

S1 := {θ ∈ (−4a, a)} ∩ B1, S3 := {θ ∈ (−a, 4a)} ∩ B1, a := π
,
6
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and recall the definitions of L2(S), H1(S), 〈W, V 〉, 〈∇W, ∇V 〉, and Q from the previous 
section. We establish the C1,α regularity of minimizers of Q.

Proposition 8.10. Assume that W ∈ H1(S) is a minimizer of Q among functions with 
the same trace on ∂B1. Then W ∈ C1,α(S) and

W (x) = W (0) +
(
(qe π

3
, ν′′

1 ) · x, (−qe− π
3
, ν′′

3 ) · x
)

+ O(|x|1+α),

for some α ∈ (0, 1).

As in the previous section, Proposition 8.4 follows from Proposition 8.10 provided 
we show that bounded solutions of the system (7.2)-(7.7) do minimize the energy, as in 
Lemma 7.3 for n = 2.

Lemma 8.11. Assume that W̄ ∈ L∞ solves the system (7.2)-(7.7) in the classical sense 
in the domain

S \ ({x′ = 0} ∪ ∂B1).

Then it minimizes the energy Q with respect to perturbations in H1(S) which vanish 
near ∂B1.

Proof. The proof is essentially the same as the one of Lemma 7.3. However, in order to 
justify the existence of a minimizer W0 with the same boundary data as W̄ on ∂Br we 
need to show first that W̄ ∈ H1(S ∩ Br).

Notice that for any V ∈ C1 that vanishes near {x′ = 0} ∪ ∂B1, we have

〈∇W̄ , ∇V 〉 = 0.

Then the Caccioppoli inequality

〈ϕ∇W̄ , ϕ∇W̄ 〉 ≤ C〈|∇ϕ|W̄ , |∇ϕ|W̄ 〉,

holds if ϕ vanishes near {x′ = 0} ∪ ∂B1. We choose

ϕ(x) = ψ(x′)η(x),

with ψ a radial cutoff function which vanishes near the origin and ψ = 1 when |x′| ≥ δ, 
and η a cutoff function which vanishes near ∂B1. Since W̄ ∈ L∞, it follows that we can 
take ψ ≡ 1 in the limit as δ → 0, i.e.

W̄ ∈ H1(S ∩ Br) for any r < 1.
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We define W0 to be the minimizer of Q in S ∩ Br with the same boundary data as W̄
on ∂Br. Now the proof of Lemma 7.3 applies, by taking ψ = ψ(x′) depending only on 
the variable x′. �

There are several ways to prove Proposition 8.10. Here we take advantage of the 
product structure of the problem and reduce it back to the two-dimensional case. The 
system is invariant under translations in the x′′ variable, and then we can estimate higher 
order derivatives Dβ

x′′W through successive iterations. Then

�W = 0 =⇒ �x′W = −�x′′W,

and the right hand side is well behaved.
We start with some preliminary estimates.

Lemma 8.12. Let W be a minimizer of Q in H1(S). Then,
a) (Caccioppoli inequality) If ϕ ∈ C1

0 (B1) then

〈ϕ∇W, ϕ∇W 〉 ≤ C〈|∇ϕ|W, |∇ϕ|W 〉,

b) W is smooth up to the boundary of S away from ∂B1 ∪ {x′ = 0}, and the Euler-
Lagrange equations (7.2)-(7.7) are satisfied in the classical sense,

c) W ∈ L∞(S ∩ B1/2).

Proof. Part a) is standard and we skip the details.
For part b) we remark that in a ball Bδ(x0) near a point x0 ∈ S1 ∩ ∂S3 the energy 

can be written as

3
2

ˆ

Bδ(x0)

|∇w1|2dx + 1
2

ˆ

Bδ(x0)∩S3

|∇(2w2 − w1)|2dx.

This shows that w1 is harmonic near x0, and 2w2 − w1 can be extended harmonically 
in the whole Bδ(x0) by the even reflection across ∂S3. Hence W and its derivatives can 
be bounded in S ∩ B1/2 away from the codimension two edge {x′ = 0} in terms of the 
L2(S) norm of W .

For part c) we first show that
 

S∩∂Br

|W |2dx, (8.3)

remains bounded for all r small. For this we prove a mean value inequality with respect 
to the L2(S) norm:

〈W (rx), W (rx)〉S∩∂B1 , (8.4)



D. De Silva, O. Savin / Advances in Mathematics 447 (2024) 109682 51
is monotone increasing in r, where 〈·, ·〉S∩∂Br
denotes the inner product induced on the 

sphere ∂Br.
Let ϕ ∈ C1

0 (B1), ϕ ≥ 0, and then

〈∇W, ∇(ϕW )〉 = 0,

or

0 ≤ 〈∇W, ϕ∇W 〉 ≤ 〈−∇ϕ · ∇W, W 〉.

We take ϕ → χBr
and obtain

0 ≤ 〈Wν , W 〉S∩∂Br
.

This means that the derivative in r of the expression in (8.4) is nonnegative, and the 
claim (8.3) is proved.

From (8.3) and part b) applied in S ∩ Br, we deduce that |W | is bounded in B1/2 ∩
S ∩ {x′′ = 0} by a multiple of its L2(S) norm. The conclusion follows by translating the 
origin at the other points in {x′ = 0} ∩ B1/2. �
Lemma 8.13. Assume that W ∈ H1(S) is a minimizer of Q. Then

‖Dβ
x′′W‖L∞(S∩B1/2) ≤ C(β)‖W‖L2(S),

and, for each fixed x′′, the function W (·, x′′) minimizes the two-dimensional energy

〈∇W, ∇W 〉x′ +
ˆ

S1

f1w1dx′ +
ˆ

S3

f3w3dx′,

for some bounded functions f1, f3.

Proof. The discrete differences of W in the x′′-directions are minimizers of Q. By iter-
ating Caccioppoli inequality we obtain that Dβ

x′′W minimizes Q and

‖Dβ
x′′W‖H1(S∩B1/2) ≤ C(β)‖W‖L2(S).

The L∞ bound follows from Lemma 8.12, part c). This means that W (x′, 0) satisfies in 
the two-dimensions

�x′W ∈ L∞,

and the boundary conditions in (7.2)-(7.7) hold in the classical sense on ∂S \ {0}. The 
conclusion follows as in Lemma 7.3 since W ∈ L∞. �
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The results of the previous section imply the C1,α estimates in this inhomogeneous 
setting.

Lemma 8.14. Assume that W ∈ H1(S) is a minimizer of the 2 dimensional energy

〈∇W, ∇W 〉 +
ˆ

S1

f1w1dx +
ˆ

S3

f3w3dx,

for some bounded functions fi. Then W ∈ C1,α(S) and

|W (x) − W (0) + q(e π
3

· x, −e− π
3

· x)| ≤ C(1 + ‖f1‖L∞ + ‖f3‖L∞)‖W‖L2 |x|1+α,

in S ∩ B1/2, for some universal constant C.

Now we can prove the C1,α estimate in arbitrary dimensions.

Proof of Proposition 8.10. By Lemma 8.13 and Lemma 8.14 (applied to W and Dx′′W ) 
we find that

W (x′, 0) = W (0) + q(e π
3

· x′, −e− π
3

· x′) + O(|x′|1+α),

Dx′′W (x′, 0) = (ν′′
1 , ν′′

3 ) + O(|x′|), |D2
x′′W | ≤ C,

which gives the desired conclusion. �
Finally we prove the Schauder estimates in the two-dimensional inhomogeneous set-

ting.

Proof of Lemma 8.14. The proof is standard and uses Campanato iterations. We sketch 
some of the details.

Assume that ‖fi‖L∞ ≤ δ, ‖W‖H1 ≤ δ. It suffices to show inductively in k that for 
each r = ρk there exist linear functions at 0 of the type

Lr =
(
d1 + qe π

3
· x, d3 − qe− π

3
· x
)

,

depending on r which approximate W in Br such that

⎛
⎝  

S∩Br

|W − Lr|2dx

⎞
⎠

1/2

≤ r1+α.

Indeed, the rescaled function

W̃ (x) = 1 (W − Lr)(rx),

r1+α
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satisfies
 

S∩B1

|W̃ |2dx ≤ 1,

and W̃ is a minimizer for a functional as above with

‖f̃i‖L∞ ≤ δr1−α ≤ δ.

The Caccioppoli inequality for W̃ gives

‖W̃‖H1(S∩B1/2) ≤ C.

Let W0 be the minimizer of the Q functional with the same boundary data as W̃ on 
S ∩ ∂B1/2, and notice that

‖W0‖H1(S∩B1/2) ≤ C.

Then in S ∩ B1/2 we have

〈∇(W̃ − W0), ∇(W̃ − W0)〉 = 〈∇W̃ , ∇(W̃ − W0)〉 − 〈∇W̃0, ∇(W̃ − W0)〉

= 1
2

ˆ

S1

f̃1(w̃1 − w0,1)dx + 1
2

ˆ

S3

f̃3(w̃3 − w0,3)dx

≤ Cδ‖W̃ − W0‖
1
2
L2 .

By Poincaré inequality it follows that

‖W̃ − W0‖L2(S∩B1/2) ≤ C ′δ2.

The C1,α0 regularity of W0 (see Proposition 7.2) gives

⎛
⎜⎝  

S∩Bρ

|W0 − L0|2dx

⎞
⎟⎠

1/2

≤ Cρ1+α0 ,

for some linear function L0 at 0. The last two inequalities imply the inductive result for 
W with r = ρk+1 by first choosing ρ sufficiently small depending on α < α0, and then δ
small depending on ρ. �
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