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1 | INTRODUCTION

One fundamental problem in the calculus of variations consists in studying critical points for an
energy functional of the type

T(u, Q) = / (1|Vu|2 +W(u)>dx,
o \2
that is, solutions to its associated semilinear equation
Au=W'(uw),

where W : R — [0, o0) represents a given potential with minimum 0. Heuristically, minimizers
of J tend to concentrate their values near the zeros of W.

Certain classes of potentials have been extensively studied in the literature. One such example
is the double-well potential W(t) = (1 — t2)? and the corresponding Allen-Cahn equation, which
appears in the theory of phase-transitions and minimal surfaces, see [1, 4, 11]. When the poten-
tial W is not of class C? near one of its minimum points, then a minimizer can develop constant
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patches where it can take that value, and this leads to a free boundary problem. Two such poten-
tials were investigated in great detail. The first one is the Lipschitz potential W(t) = t*, which
corresponds to the classical obstacle problem, and we refer the reader to the book of Petrosyan,
Shahgholian and Uraltseva [12] for an introduction to this subject. The second one is the discon-
tinuous potential W(t) = xy-q; with its associated Alt-Caffarelli energy (see [2]), which is known
as the Bernoulli free boundary problem or the two-phase problem. We refer to the book of Caf-
farelli and Salsa [5] for an account of the basic free boundary theory in this setting. These two
important examples are part of the more general family of Alt-Phillips potentials

w() ="y, y €10,2), Au=yu' !,

which in the gradient flow setting are connected to quenching phenomena [9, 13].
Nonnegative minimizers u > 0 of J for these power potentials, together with their free
boundaries

F(u) :=d{u > 0},

were studied by Alt and Phillips in [3]. They showed that F(u) has finite n — 1 Hausdorff measure
and established the regularity of the reduced part of the free boundary.

In this paper, we study the regularity properties of nonnegative minimizers of J and their free
boundaries for potentials of negative powers

W) =t xysop ¥ € (=2,0).

The bound y > —2 is necessary for the existence of functions with bounded energy. To the best
of our knowledge there are no available results in the literature addressing the more degenerate
case of negative power potentials.

The negative power potentials are natural in modeling sharper transitions of densities u
between their zero set and positivity set. With respect to the classical one-phase model, y = 0,
in which the energy penalizes the measure of the set {u > 0} uniformly, in the negative power
setting this penalization is stronger when u is positive and small. This means that minimizers
transition faster from the regions where u ~ 1 to their zero set and are not expected to be Lips-
chitz continuous near the free boundary. Despite this, we show that the free boundaries possess
sufficiently nice regularity properties: They are C'-# surfaces up to a closed singular set of dimen-
sion n — 3, see Theorem 2.3. We also analyze the Gamma convergence of the functionals J when y
tends to —2 and establish the connection between these free boundary problems and the minimal
surface equation, see Theorem 2.4.

The change of sign in the exponent makes the problem more degenerate and the free boundary
condition takes a different form. Some of the difficulties can be seen from a direct analysis of the
one-dimensional case that we sketch below. Consider the ordinary differential equation (ODE)

u' = yu’ ! in (0,8) C{u> 0}, u(0) = 0.
The explicit homogenous solution

uy = % ai= ",
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for an appropriate constant c,,, plays an important role in the analysis. In general, it follows that
u has an expansion of the form

u(t) = at+o(t'*9), ify >0,

u(t) = ¢, t“ + a > * +o(t>**%), ify <o,

with a € R a free parameter. If in addition u minimizes J in [, §], then a = 0 in the case y > 0
anda = \/5 when y = 0. These can be viewed as Neumann conditions at the free boundary point
t = 0 and imply that the first nonzero term in the expansion of u near 0 is given precisely by the
homogenous explicit solution ¢, %, a > 1.

On the other hand when y < 0, all solutions have ¢ t% as the first nonzero term in the expansion.
In this case the minimality condition imposes that the coefficient of the second-order term in the
expansion must vanish, thatis, a = 0. Since & < 1, u’ becomes infinite at 0, and this free boundary
condition cannot be easily detected by integrations by parts or domain variations as in the case of
nonnegative exponents.

In this work, we analyze minimizers by introducing an appropriate notion of viscosity solutions,
and use the method of calibrations in order to handle the singularity of the partial differential
equation (PDE) and of the free boundary condition.

1
‘We remark that, after a change of variable w = u«, the free boundary problem associated to the
minimization of J can be written as a degenerate one-phase problem in the form

_ h(Vw)

Aw in{fw >0}, h(Vw)=0 onF(w),

where h is an explicit quadratic polynomial vanishing on dB,. The sign of & in B; plays an impor-
tant role in the stability of Lipschitz solutions near their free boundaries. The case h > 0 in B;
corresponds to positive power potentials and this problem was analyzed in greater generality in
our previous work [7]. When h < 0 in Bj, it corresponds to negative power potentials, which we
study in this work. The free boundary condition needs to be understood in terms of the second
term expansion near F(w), see Section 7.

The paper is organized as follows. In the next section, we state our main results. In Section 3, we
discuss the existence and optimal regularity of minimizers. In Section 4, we introduce the notion
of viscosity solutions and establish the nondegeneracy of minimizers. In Sections 5 and 6, we
perform a blow-up analysis based on the Weiss Monotonicity formula and on the C# regularity
of flat free boundaries, which is proved in Section 7.

2 | MAIN RESULTS

In this section, we provide the statement of our main results. Since from now on we are only
concerned with negative exponents, we change the notation from the Introduction and denote
the negative exponent of the potential W by —y with y € (0, 2). Precisely let

Li=v ift>o,
W(t) =47 ., r€(0,2), (2.1
0 ift<o,
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we consider the minimization problem for the energy functional
J(u,Q) := / <%|Vu|2 + W(u)) dx, 22)
Q

among all nonnegative u > 0 with a given boundary data ¢ € H'(Q). Whenever it does not create
confusion, the dependence of J on the domain Q is dropped.
The corresponding Euler-Lagrange equation in the set {u > 0} is

Au=—u 0+, (2.3)
which has the explicit homogenous solution

1
uy = co(xH%, a = )%, ¢ = [a(l—a)] 2.

We remark that the problem is invariant under the «-homogenous scaling
uy(x) = 1 %u(Ax),
that is, u, is a minimizer for J in A71Q.

We state our main results below. Positive constants depending only on n,y will be called
universal. We start with existence and regularity of minimizers.

Theorem 2.1 (Existence and optimal regularity). Let Q be a Lipschitz domain. There exists a non-
negative minimizer u of J with boundary data ¢ € H*(Q), ¢ > 0. Moreover, any minimizer is Holder

continuous of exponent a, that is, u € C*(Q).

The second result concerns the nondegeneracy of minimizers around the free boundary
F(u) :=4d{u>0}nQ.

Theorem 2.2. Assume u > 0 is a minimizer of J in B; and 0 € F(u). Then,

cr® < rralaxu < Cr%, Vr<1/2,
Br

with ¢, C universal. Moreover, the a-homogenous rescalings u,; converge on subsequences A,, — 0 to
a global a-homogenous minimizer, that is, a cone.

In Section 6, Theorem 6.3, we show that flat free boundaries are regular. Then the regularity of
F(u) depends on the classification of minimal cones in low dimensions. We establish that minimal
cones are trivial in dimension n = 2 and obtain the following partial regularity result.

Theorem 2.3. Let u be a nonnegative minimizer for J in B. Then,

H"'(FW) N By ) < C(n,y)

and F(u) is locally CF except on a closed singular set ¥, C F(u) of Hausdorff dimension n — 3.
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Finally we obtain a Gamma convergence result for appropriate multiples of the J functional
as y — 2. Let Q be a bounded Lipschitz domain. We equip the space of nonnegative integrable
functions

X :={ueLl(Q),u>0}
with the distance
dx(u,v) 1= |lu—vllp + X0y — Xpsopllor-
Theorem 2.4. Asy — 27, the rescaled J functionals
T =, JwQ), ¢ ==V,
Gamma converge in X to the perimeter function

P(u) = Perg({u > 0}).

Precisely,

a) ifu, > uinX andy, — 2, then liminf Jyn(un) > P(u);
b) given u € X, there exists u,, — u in X such that Iy, (u,) —» P(w).

3 | EXISTENCE, OPTIMAL REGULARITY, AND GAMMA
CONVERGENCE
This section contains the proofs of Theorem 2.1 and Theorem 2.4. The existence of a minimizer
is achieved by standard methods in the calculus of variations, and we only sketch the proof. For
simplicity, we assume Q = B, and, given a boundary data ¢ € H'(B,), ¢ > 0, we set:
A:={u€eH'B) : u>0, u=¢ ondB;}.

Proposition 3.1. There exists a minimizer u € A toJ in B;.
Proof. Let ¢, > 0 be the harmonic replacement of ¢ in B, and set

w = ¢y + (1 —|xD"
Recall that « = 2/(y + 2). Then, since

w <@ =[x

and y € (0,2), we have that J(w) < +o0. Thus, 0 < inf 4, J < +o0. Let u,, € A be a minimizing
sequence. Then, up to extracting a subsequence,

u, —» u weakly in H'(B,), strongly in L?(B,), and almost everywhere in B;.
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Moreover, it is immediate to show that at all points x where u,,(x) — u(x), then
W(@) < lim inf W (w,),
which together with Fatou’s lemma gives that
7@ < limJ(w,),
and the proof is complete. O
Next we prove the optimal regularity result.

Proposition 3.2. u € C“(B,), with norm in B, , bounded by a constant C > 0 depending on

n'9 ||¢I|Hl'

In order to prove Proposition 3.2, we denote by

1/2
a(r) ::rl_“(f |Vu|2dx> ,
B,

the scale-invariant H! seminorm of u in B,. It is in fact enough to obtain the next lemma, as the
desired Proposition 3.2 will then follow by standard Campanato estimates.

Lemma 3.3. There exist constants M, p > 0 (depending on n) such that if a(1) > M, then

a(e) < a(D).
In particular,
a(r)<C, Vr«l,
for some constant C depending on ¢.

Proof. Without loss of generality, after a multiplication by a constant, we can assume a(1) =1
and u minimizes

1o o _
kv 4 )d ,
/Bl (2| ul” +eu™" xgusep ) dx

with € small to be made precise later. Thus, using the competitor w := ¢, + (1 — |x|)* as in the
proof of Proposition 3.1, we conclude that (for C > 0 depending only on n and changing from line
to line),

[Vul?dx < | |Vw|*dx + Ce,
B, B,
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with
/ [Ve,|?dx < 1= / |Vu|? dx. (3.1)
By By
This yields,

|Vul|?>dx S/ |V, |*dx + Ce,
By B,

and using that ¢,, is the harmonic replacement of u,

[V(u — ¢,)|%dx < Ce.
Bl

Thus,

fIVw—¢Mﬁh<Cw”-
By

Since | V¢, |? is subharmonic and it satisfies (3.1), we have that
IVéyl> <C, inBjy,.
Therefore, the last two inequalities lead to
f |Vul’dx < C(ep™ + 1),
B,
and hence
1
a <z,
(o) < 3

as long as p, € = €(p), are sufficiently small.
Now, the scale invariance of the problem implies that

a(er) < 3a(r),
whenever a(r) > M, and the second conclusion in the lemma follows by iteration. O
We also state a simple energy bound for minimizers.
Lemma 3.4. Assume u is a minimizer for J in B,. Then,
J(u, By /5) < Cllull oo (s,))-
Proof. Let p(x) = M[(|x| — %)Jr]“ with M = C||ul|; . so that ¢ > ||u||;~ near B;. Then,

J(u, By ;) < J(u,{p < ud) <J(p.{p <u}) <J(p,B)) < C(M). O
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Next we discuss the one-dimensional case, which is the motivation for our definition of viscosity
solution in the next section.
3.1 | The one-dimensional case
Assume u : [0,8] = R* solves the ODE
u” = —u~*D in (0, 6), and u(0) = 0.
We multiply the equation by ©’ and integrate, and deduce that in (0, §)

2 _
ul2__u y:’u,

14

for some constant u € R. We rewrite the equation as

d -
Cw®) =1,

where

1

N 2 -3

G(s) := / u+=r77 dr.
0 /4
Then,
S
G(s) = \/Z / a2 = B2y L o712y dr,
2 /o 2

hence

G(s) = \/Z(O(Sy/2+1 _ £S3y/2+1> + O(s%/2+),
2 3y +2

We can compute the inverse of G near 0 and, after a simple computation obtain
u(t) = G7H(t) = cot™ + ue >~ + 0(t°), o>2—aqa, (3.2)

with a = 2/(2 + y) and positive constants ¢, c¢;, and o depending only on y.
Assume further that the extension of u by 0 on the negative axis is a minimizer of J in the inter-
val [—6, 8]. Then, we show = 0 and u = u, = ¢,(¢t7)* is the explicit a-homogenous solution.
For this, we compare u with infinitesimal dilations with the same boundary data

uy(t) :=u(d + A(t = 9))

and A close to 1. Then,
5

J(uy,[-6,8]) = /_5 </§1(u')2 + /%yu_}')dt

is minimal when A = 1, which means (u/)?> = (2/y)u~7, and that gives u = 0.
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Alternatively, we could use Cauchy-Schwartz inequality and write

S
I, [=5,81) > (27) 12 / w2 dr,

and the right-hand side depends only on the values of u at the end points. The equality occurs
when (u/)?> = (2/y)u~7, thatis, u = 0.
3.2 | TheT convergenceasy — 2

This last argument based on the Cauchy-Schwartz inequality can be used in higher dimensions
to deduce the convergence result as y — 2.

Proof of Theorem 2.4. We recall that the space of nonnegative integrable functions is denoted by
X={u:Q-[0,0) ueL'(Q)}
and is equipped with the distance
dx(u,v) :=llu = vl + I Xus0; — Xpsollzr-

The proof is similar to the classical Modica-Mortola argument [11] for the Ginzburg-Landau
functional. Notice that by Cauchy-Schwartz inequality

J,w) =1 - g)/ w2\ Vu|dx = / [Vul="/?| dx. (3.3)
Q Q

Tn/

Ifu, —» uinX then u}l_ 25 Xgusoy in L'(Q) and part (a) follows from the lower semicontinuity

of the BV-norm.
For part (b), let 7i be a smooth function that approximates u and let E C R" be a set with smooth
boundary, which approximates {u > 0} in Q (see [10]), in the sense that ||u — @||;1 <€, and

Perg(E) < Perg(fu>0}) +¢,  |Xpna — Xusopllr <é

H" Y (BEN Q) =0, / lu| dx < e.
{u>0\E

For x € Q we let d(x) denote the distance to F when x € E N Q, and extend d(x) = 0 when
x € Q\ E. We take § small, such that

Pero({d > s}) < Perg(E)+¢  for s € [0,c,6%].
Define

w(x) :=cymin{d(x), 5}, v :=w+ ¢(d)i,

RIGHTS LI N His

A 9 “€T0T 0T1T69T1

sdny woy

:sd1y) SUORIPUOL) PUE SWIS] 9 908 “[HZ0T/01/6Z] U0 A1BIqIT QUIUQ Ao[1 A\ “SOHEIQIT ANSIOAIUN BIQUINO) AQ €687 1°SWIA/Z] [ 1°01/10p/WOY Koiav-

0y wod Kajim Kreq|

55U991] SUOWILO)) 9ANEI) 9[qEat|dde o) Aq POUIDAOS SIE SO[OIIE V() 08N JO SN 0] A1eiq] FUIUQ AOJiAL UO


https://londmathsoc.onlinelibrary.wiley.com/action/rightsLink?doi=10.1112%2Fblms.12893&mode=

2758 | DE SILVA and SAVIN

where ¢ is a smooth function with ¢(s) = 0 if s < 8, p(s) = 1 if s > 26. Notice that {w > 0} = F
and

/ |v—u|dx<e+|Q|-||w||Loo+/ |u| + |ii|dx,
Q {0<d<28}

which can be made arbitrarily small provided that first € and then § are chosen sufficiently small.
We have v = w in the set

D :={d <8},
while |v] + |Vv| < C(6,#) in the set Q \ D. If y,, — 2, then
2=y, Q\D) -0,
hence
T, (v, Q) =7, (w,D)+ o(1). (3.4)

The inequality (3.3) is an equality for w in the domain D:
4y
3, @.0)= [ Vw2 = [ perqu > shas
D 0

with a, = (005“)1_Vn/2 — 1asn — oo. In conclusion,
Jyn(w,D) < Perg(E) + € +0(1),

which together with (3.4) gives the desired statement. [l

4 | MINIMIZERS AS VISCOSITY SOLUTIONS

In this section, we consider the following degenerate one-phase (1 > 0) free boundary problem:

Au=—u""*D in{u > 0}nB, 1)
u(xg + tv) = cpt* + o(t>=%) on F(u) :=d{u > 0}n By, '
with t > 0, v the unit normal to F(u) at x,, pointing toward {u > 0}, and
a = L, ¢ = [a(l - oc)]_ﬁ, y€(0,2), ae (1, 1). (4.2)
y+2 2

We start by introducing the notion of viscosity solution to (4.1). As usual, we say that a
continuous function u touches a continuous function ¢ by above (resp. below) at a point x, if

u > ¢ (resp.u < ¢) inaneighborhood of xy, u(xy) = P(x).

Typically, if the inequality is strict (except at x;)), we say that u touches ¢ strictly by above (resp.
below). In our context, with ¢ > 0, when we say that u touches ¢ strictly by above at x,, we mean
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that u > ¢ in a neighborhood B of x,, and u > ¢ (except at x,) in B N {¢ > 0} (and similarly by
below we require the inequality to be strict in a neighborhood of x, intersected {u > 0}).

We now consider the class C* of continuous functions ¢ vanishing on the boundary of a ball
B := Bg(z,) and positive in B, such that ¢(x) = ¢(|x — z,|) in B and ¢ is extended to be zero
outside B. We denote by d(x) := dist(x,dB) for x in B and 0 otherwise. Similarly we can define
the class C~, with ¢ being zero in the ball and positive outside, and d(x) : = dist(x, dB) for x € B¢
and 0 otherwise.

Definition 4.1. We say that a nonnegative continuous function u satisfies (4.1) in the viscosity
sense, if

1) in the set where u > 0, u is C* and satisfies the equation in a classical sense;
2) if x, € F(u) := 8{u > 0} N By, then u cannot touch ¢ € C* (resp. C~) by above (resp. below)
at x,, with

Y(x) 1= cod(x)* + ud(x)*%,
a,cyasin (4.2) and u > 0 (resp u < 0).

Next we show that a barrier as in the definition above can be modified so that it is a subsolution
(supersolution) of the interior equation, and the touching is strict.

Lemma 4.2. Let u be a nonnegative continuous function in By, such that u touches € C* by above
at x, € F(u), and
P 1= cpd(X)* + pd(x)7,
with a, ¢, as in (4.2), and u > 0. Then, u touches ¢ € C* strictly by above at x,,, with
P 1=cod™ + %dz—a +d°, 2—a<o<min{l +a,4—3a}. (4.3)
and for d, > 0 small,
Ap > —¢~ "D in the annulus 0 < d(x) < d,. (4.4)

Notice that, the existence of ¢ is guaranteed by the constraint « € (1/2,1), that is, y € (0, 2).
For this reason, the notion of viscosity solution cannot be extended past y = 2.

Proof. The first part of the claim is obvious after replacing B with a ball of half its radius tangent
at x,, given that u > 0 and d is small. In order to prove (4.4), since ¢ is radially symmetric, we
need to show that for d > 0 sufficiently small,

" _ n_—l 1o _4—(1+y)
¢ -2 > =4I,
Indeed, we need,
coala — Dd*2 + g(z — )1 —a)d~* + o(o — 1)d°2 + 0(d“1) >

u 1 —(r+D
_(Coda)—(y+1) <1 + _d2—2a + _do'—a) )
2¢, Co
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By our choice of ¢, we get

b2 g2 C0O) joa | og) <
2¢cg « Co

12 2==

1
1-— %(1 + y)d2—2a _ + ydo—a + O(d4(1—oc))
0

€
with
_o(1-o0)
Clo) = a(l—a)

The relation between a and y implies the the coefficients of the d*~>* terms are equal, and o >
2 —a implies C(c) > 1 + y. Hence, the desired inequality holds for d small enough, since the
upper boundon o giveso —a <lando — a < 4(1 — a). 1

We can now prove the following optimal regularity statement.

Lemma 4.3. Let u be a viscosity solution to (4.1) in B, and assume F(u) N By # @. Then,
u(x) < Cdist(x, Fw))*, in{u>0}n B, 4.5)

forC =C(n,a) > 0.

Proof. Letx, € {u > 0}N B, ), and letr := dist(x,, F(u)). Consider the rescaling

u(xy +rx
() = M A
which solves (4.1) in By, and let us show
u(0) <M

with M > 0 universal and B; N F(ii) = {X}. Assume by contradiction that #(0) > M, with M to be
made precise later. Notice that,

Ati<0, A@-1)*'>-1 inB,.

Thus, by the mean value inequality for subharmonic functions, we get that

(@—-1"dx > ;M.
Biya

with ¢; depending only on n. Then,

/ fidx >cM,
Bys

and, using @ > 0 is superharmonic, we have @i > ¢,M in B, /2 After iterating this result a few times,
we find

i>cM inB 4,
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with c; depending on d,, and with d,, universal to be specified below. Now, let ¢ be as in Equation
(4.3), with 4 = 1. The computation in Lemma 4.2 proves that

Ap>—¢~*D inB \ B,_g,
for d;, universal. Moreover, if M > 0 is large enough universal,
u>cM>¢ ondB UGB .

and the maximum principle implies @ > ¢ in B, \Bl—do' On the other hand, the two functions
touch at X, which contradicts the definition of viscosity solution. O

Next we show that minimizers to (2.2) are indeed viscosity solutions.
Proposition 4.4. Let u minimize (2.2) in B;. Then, u is a viscosity solution to (4.1).

Proof. The fact that u is continuous and satisfies the first equation in (4.1) in B; N {u > 0} follows
from Proposition 3.2. It remains to show that u satisfies the free boundary condition.

Let us assume that u touches i by above at x, € F(u), with ¢ as in Definition 4.1 and u >
0. Then in view of Lemma 4.2, u touches ¢ strictly by above at x,,, with ¢ defined in (4.3). We
will show that this contradicts the minimality of u, using a calibration argument. For simplicity,
assume that the unit normal to F(u) at x, is e,. For any nonnegative function v, smooth in its
positivity set, we denote by T, its graph in R"*! over the positivity set, and by v,(x) the upward
unit normal to ', at (x, v(x)).

Notice that we can write the energy of u over a domain Q as a surface integral over its positivity
graph in Q, T',(Q), in the following way:

J(u, Q) =/ G(u,v,)do, (4.6)
r,(Q)
with
1 |7//|2
G(s,v) == + W s
6. = 5y W
and

$s>0, [v|=1, v:=0"\ ), VY >0.

Let G(s, y) be the 1-homogeneous extension (in y) of G(s, ). Then,

1 112
v,GGs,9) 1= (2~ 8wy,
Vn+1 2 7}n+1
and the homogeneity and convexity in y imply,
G(p(x), v5(x)) = V(x, $(x)) - v4(x), 4.7)

with

Vy(x, $(x)) 1= V, G((x), v5(x))
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and

G(p(x), v, (x)) = V5 (x, $(x)) - v, (). (4.8)

The vector field V(x, $(x)) is defined on the graph I'y, and we extended in R™*! constantly in
the e, direction and denote it simply by V. This vector field is associated with the graphs of the
translations

$,(x) :=¢(x +te,), teR,

which provide a foliation of a neighborhood of (x,, 0) in R” x R*. In other words, for each given
point X := (x, x,,,) in this set, we identify the element ¢, of the foliation that passes through
it, thatis, x,.,, = ¢, (x) and

V) =V, (X).
Now, set
D = {u(x) < X4 < $(0)}  C R,

with # > 0 chosen in such a way that D is included in the neighborhood of (x,, 0) foliated by the
graphs of the ¢;s. Denote by

D, :=Dni{x,,; >¢}, and T, :=Dn{x,, =¢}

for € > 0 small. Then, by the divergence theorem,

J

and in view of (4.7)-(4.8),

J

From the formula for V, on T, for € small,

divV dX = V-v¢l_da—/ V-vuda—/V-eanx,
T, ND, ,N3D, r

€ €

dideX;/

G@rv)da— [ Guv)do— [ Ve dx
I, N3D, ! .N3D, r

€ r €

1 1,-
V(xa E) €1 = _§|V¢tX |2 + ;¢[Xy <0.
Indeed, we only need to verify that the one variable function of d,

$(d) 1= cod® + gdﬁ +d°,
satisfies:
%Gblz > %45_}', ifd > 0is small.

Since u > 0, we know that ¢ > c,d* while ¢’ > occod“‘l. Hence, by the definition of «, c, (see

(4.2)),

_ _ 2 _ 2 ,_
¢/2 > ozzc(z)dz(“ 1) _ oczcgd ay s azco+7¢ V= Z2¢77,
14

as desired.
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Finally, this implies that, after letting e — 0,

/ divVdX > / G(¢;, v¢,) do — / G(u,v,) do. (4.9
D T4,n3D !

r,néD
Next we show
divV =—- /A ¢1X - ¢t_X(Y+1) <0,

and the left-hand side in the inequality (4.9) is nonpositive, which in view of the definition of G
contradicts the minimality of u (see (4.6)).
To compute div V at a point (zy, $(z,)), let

D, = {0 < p(x) —ep(x) < x,11 < P(x),x € Bs(zy)}

with ¢(z;) > 0 and ¢ a smooth bump function supported on Bs(z,) C {¢ > 0}. Then, by a similar
computation as above,

/ divV dX = / G(¢,vy) do — / G(($ —19), V4_cp) do + O(e?),
D ry r

® $—cp

where we used that if x,,,; = ¢(x) — ep(x) = ¢,(x), then vy_.,(x) = Vg, (x) + O(e) and by the
homogeneity and C? smoothness of G

G(Xpi15 V¢_€¢(x)) = VyG(an, V¢[(x)) . v¢_€(p(x) + 0(e?).

Thus, for € small,

/D¢ divV dX = /Bs(zo) <%|v¢|2 + W(gb))dx

- [ (VG —col + W(o - ep))ax + ()
BE(Z())
= . — &~ r+D 2

E/Ba<zO> Vo Vo —¢ go)dx +0(e?)

:e/ <—A¢ - ¢_(7+1))¢dx +0(e?).
B5(Z0)
We divide by ¢ and let € — 0 and then § — 0. Since |D,| = ¢ [ edx, and D, tends to (z, $(z))),
we conclude that at (z, ¢(z,))
divV = —A¢p — ¢+,
The desired conclusion follows by Equation (4.4). O

Remark 4.5. For the proof of the subsolution property of minimizers, we need a slightly weaker
condition than the one required in Definition 4.1: A minimizer u restricted to each connected
component of {u > 0}, which has x,, on its boundary, cannot touch by below a comparison function
¥ € ¢~ (with u < 0) at x,,.
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Remark 4.6. In view of Proposition 4.4, a minimizer satisfies the estimate (4.5). Notice that unlike
Proposition 3.2, in this estimate the constant C does not depend on the boundary data.

Remark 4.7. A straightforward application of the maximum principle gives that a continuous non-
negative function u that satisfies /\u = —u~*1) in the set {u > 0} has the weak nondegeneracy

property
u(x) > ¢ dist(x, F(u))%,

for some ¢ > 0.
Indeed, if B; C {u > 0},thenu > cin B, /25 with ¢ > 0 universal. For this it is enough to compare
u with the explicit radially symmetric solution of Ap = —¢~+1), which vanishes on dB;.

We now prove a strong nondegeneracy property for minimizers of (2.2), which combined with
Lemma 4.3 implies Theorem 2.2.

Proposition 4.8 (Nondegeneracy). Assume u is a minimizer of (2.2) in B, and 0 € F(u). Then,

maxu > cr, r<1/2.

3B,

We remark that strong nondegeneracy does not follow from the weak nondegeneracy of
Remark 4.7 via a standard iterative argument as in the nonnegative power case [3, 5]. Instead,
we prove the following lemma.

Lemma 4.9. Let u minimize (2.2) in B,. There exists a universal constant § > 0 such that
ifu<dondB, thenu=0inB, .

Proof. We prove the theorem with B, ; instead of B, with d; a small universal constant to be
specified below. Let

¢ ::cod“—dz_“—d", 2—a<o0<4-3a,

with d(x) := dist(x,0B;) when |x| > 1 and 0 otherwise. Then, the computation from Lemma 4.2
shows

Ap <—¢~*D, inBy 4 \ B
We choose d; (§) so that
¢|631+d1 =
Then, since u < § on 9B, +d;>
J(u, {u> ¢} <J(@,{u>¢}) <J($,B14q,) >0, asé—0.
In particular, for o(1) » 0as § — 0,

J(u,By) = o(1). (4.10)
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Since u < § on 9B, 4, the maximum principle implies that u < C in B4 by comparing u with
the radial solution, which has boundary datalon 0B, g, .

We now consider the family of subsolutions ¢;(x) := A"%¢(Ax) whose graphs foliate the
region D :={0 < x,,; <x|x|*} with x = ¢|531+d0' By the same calibration argument as in
Proposition 4.4, we conclude that if u is a minimizer defined in B, 4,

ifu <x|x|*in B4, then u < ¢ in Biid,
and in particular u = 0 in B;. Thus, we have the following dichotomy:
either u = 0in B, or there exists X € B, 4 such that u(x) > x|x|*.

The second alternative, by the optimal regularity Lemma 4.3, implies that there exists 0 < r =
|X| <1+ d, such that B.,.(%) C {u > 0}, for some ¢’ universal. By a dilation of a bounded factor
and a translation, we conclude that for all x, € B, 5

either u = 01in By /4(x,) or |B,(xy) N {u > 0} > ¢|B,(x,)| for some r <1/2.

If for some x, we have that u =0 in By /4(x,), then u =0 in B,/ as desired. Assume by
contradiction the second alternative holds at all x,,. Since u is bounded above,

J(u’ Br(xo)) > Cl |Br(x0)|’
for some c; > 0 universal. We use a finite overlapping cover with these balls and find
J(u,B,) 2 c|By sgl,

which contradicts (4.10) for § small enough. O

Next, we prove a simple lemma, which will be used to obtain Weiss monotonicity formula in
the following section.

Lemma 4.10. Let u be a minimizer to J in By, then u> € C%(B,).

Proof. Let x, € {u>0}n Byjandr 1= dist(xy, F(u)) with F(u) N By, # @. We rescale around
xo,

u(x, + rx)
==

i(x) :

El

and the optimal regularity and Remark 4.7 imply @ ~ 1 in Bj/,. Thus, by elliptic regularity,
u|Va| < Cin By /. Rescaling back we find that

u|Vul(x,) < r**71,
and since a > 1/2 the desired claim follows. [l

We conclude the section with the stability of nondegenerate viscosity solutions under uniform
limits. The proof follows immediately from the definitions and we omit it.
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Proposition 4.11. Let u; be a sequence of nondegenerate viscosity solutions to (4.1) in B,, and u;, —
u uniformly locally in B;. Then, u is a viscosity solution to (4.1) in B;.

5 | COMPACTNESS OF MINIMIZERS
The main result of this section is the following compactness statement.

Proposition 5.1. Let u;, be a sequence of minimizers to (2.2) in B,, which converges uniformly to u
locally in B,. Then, u is a minimizer to (2.2) in B.

Proof. Let v be an admissible competitor with v = u in B; \ B;_s for § > 0 small. We use
Lemma 5.2 below, and call v the interpolation of u; and v such that

Uk =0 in Bl_a’ Uk = uk in Bl \31_5/2.
Then, by the minimality of u; and Lemma 5.2, we get
J(uy, By) < J (v, By) < J(U, Bi_g)5) + J(uy, By \ By_g) +0(1),

with o(1) — 0 as k — oo. Notice that, by Lemma 3.4, J(u;, B;_s /2) are uniformly bounded, and
the hypotheses of Lemma 5.2 apply.
After subtracting J(u, By \ B;_5) from both sides, we deduce that,

J(uy, Bi_5) <J(0,By_5/5) + 0(1).
By the lower semicontinuity of J, we obtain that,
J(u,By_5) <J(,B1_5/5)
Our claim follows by letting & — 0. O

In the next lemma, we interpolate between two functions, which are L? close in an annulus,
without increasing too much the total energy.

Lemma5.2. Let uy, vy be sequencesin H'(B;) and § > 0small. Assume u. — v — 0inL*(By_s,, \
B,_s), ask — oo, and that uy,, v, have uniformly (in k) bounded energy in By_s /> Then, there exists
w, € HY(B,) with

v, IinB
wy 1= k ) 1-§ i
U, inB; \31—6/2
such that
J(U.)k, Bl) < J(uk,Bl_5/2) + J(Uk,Bl \31_5) + 0(1),

witho(1) » 0ask — oo.

Proof. For notational simplicity, in what follows we drop the subscript k.
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Let ¢(s) be a smooth function on R, which is 0 on (—o0, 0] and 1 on [1, +o0), and such that for
¢ > 0 small,

p(s)=s* in[0,c], ¢(s)=1-(1Q-s)% in[l-c,1]. (5.1)

Thus,
1 1
/ (@), / (@7 +(1— ) 7)ds <C.
0 0

For0 < u < %,weset

—ol 3
<0M(s)—co<ﬂ>,

[@ras <<, 52)
R

and obtain

/R(go;y +(1- q"u)_y))({o<¢“<1}ds < Cu. (5.3)

Forallr e [1-6,1— %5], denote by ¢,(x) := ¢,(|x| —r) and define

w, :=pu+1—gp)v. (5.4)
Then,
J(w,,B,) <J(u,B,) +J(v,B,; \E’HM)
+C [ Vg = uP 4 gIul + (= g RIVeR) dx
Br+;,(\Br
[ @ x0T dx
Br+/d Br
Thus,
J(w,, By) <J(u, B, _3,5) +J(v, By \ Bi_s)+
4
/ _ G(r, x)X{r<|x|<r+M}dx’
By_s/2\B1—s
where

G(r,x) :=C(IVe,|*(u — v)* + | Vul* + (1 — ¢,)*| Vu|»)+

((¢ru)_y}({u>0} + ((1 - qu)U)_y)({U>O})-
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We now average in r and use Fubini on the right-hand side, to obtain,

1-35
4 /  J(w,, Bdr < U(u,B,_3,)+J(v,B; \ Bi_y)+
1 4

8 J1-s
4 x|
— / G(r,x)drdx.
6 By 5/2\B1-5 J |x|-n

Using (5.2)-(5.3), and recalling that u = u;, and v = v;, we therefore obtain:

3
4 [138 _
5 /1_5 J(w,,By)dr <(J(uk,B1_%5) +J (v, By \ Bi_s))

+ % (wy, — v)*dx
“ Bi_s/2\B1-s

C _ _
+ T#(](uk’ By_s5/2 \ Bi_5) +J (v, B1_5/2 \ B1_5)).

By choosing first ¢ small and then k large, we obtain the desired statement in view of the
assumption ||u, — v |lz2 = 0ask — oo. O

We conclude with a proposition, which will be needed in the dimension reduction argument
of the next section.

Proposition 5.3. Assume u is constant in the e, direction, that is,
u(xy, ..., x,) = v(xy,...,X,).
Then, u is a minimizer in R" if and only if v is a minimizer in R"~1,
Proof. Assume u is a minimizer in R"” and let w(x,, ..., x,,) be a function, which coincides with

v outside By C R"~1. Then, define i, to be the interpolation between w and v defined in R X By
as

@, = @(|x;| = Pv(xy, ..., x,) + (1 = @(|x;| = )w(xy, ..., Xx,),

with ¢ the function defined in (5.1).
Notice that i, = w if [x;| < r, and u, = v if [x;| > r + 1. From the minimality of u, we find

J(v,Cg) <J(@I,,Cp), Cg :=[—R,R] X By,

provided that r + 1 < R. We integrate the inequality above in r € [R — 2,R — 1] and obtain

R—-1
J(v,Cg) < J(w,Cr_y) + / J(@,, Cg \ Cg_y)dr.
R—2

As in the proof of Lemma 5.2, the integral term above is bounded by a constant depending on v, w
and the universal constants but independent of R. We divide the inequality by R, and let R — o
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to obtain the desired inequality
J(U’ BK) S J(w’ BK)

Conversely, assume that v is a minimizer in R"~!. Let w be a function of n variables, which
coincides with u outside of C. Then,

R
J(W,CR)Z/ J(w(xy, ), Bg)dx,
-R

and by the minimality of v,

R
J(w,Cg) = / J((x,, ..., x,), Bg)dx; = J(u,Cg).
-R

6 | WEISS MONOTONICITY FORMULA AND CONSEQUENCES

In this section, we prove Weiss monotonicity formula [12, 15] for minimizers of the energy
functional J, and derive the partial regularity result Theorem 2.3.

Theorem 6.1. If u is a minimizer to J in By, then

w,(r) = r_”_z(o‘_l)J(u,B,) - ocr_(”_l)_za/ u*do, 0<r<R,
3B,

is increasing in r. Moreover, W, is constant if and only if u is homogeneous of degree a.

Notice that the optimal regularity Lemma 4.3 implies that if 0 € F(u) then W, (r) is bounded
below asr — 0.

Proof. In view of Lemma 4.10, W, (r) is differentiable for a.e. r and by standard computations
d 1 2
_J(u9 Br) = (_lvul + W(u))dx’
dr 3B, 2

while

L3 <r‘("‘1)‘2“/ u2>da = 2r‘”_2“/ (ruu, — au®)do.
dr 3B, 3B,

Assume that these equalities are satisfied at r = 1. Then,

aw
— e = / (l|Vu|2 + W(u))do—(n + 1 + 2a)J(u, B;)
dr 4B, 2

—2a (uu, — au?)do,
B,
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from which we deduce

qu 1 2 0(2 2
— | = = w do+— do — 1+ 2a)J(u,B
P l=1 /631 <2ur + (u)) o+ > /631 u“do —(n+ 1+ 2a)J(u,B,)

+ 1 (u, — au)*do.
2 Jsm,
We claim that

2
I(w) := / <%uf + W) )do+ S | uldo > (n+1+200I(w.B).
dB,

9B,

Indeed let

i(x) := |x|°‘u<|x7|>, X € B,

the a-homogeneous extension of u| 5 . Then,
I(w) = I(@i) = (n + 1 4+ 2a)J (i, B,),

where the last equality follows from the computation above for %Wa which is 0. and our claim
follows from minimality. Thus,

d
EW”(r) >0, ae.r.

The conclusion follows since W, (r) is absolutely continuous in r. Moreover, the computations
above show that W, is constant if and only if

a
u, = —u, fora.e.x,

Y x|

that is, u is homogeneous of degree c. |
Next we study the homogeneous global minimizers in the 2D case.

Proposition 6.2. The homogenous of degree a minimizers of J in dimension n = 2 are rotations of
+\a
co(x)%.

Proof. Letu be a global minimizer to (2.2) in R?, homogeneous of degree . Then, u(r, 6) = r* f(6)
with f a Holder continuous function solving the following ODE in each interval of {f > 0} :

!+ f = _f—(}’+1)‘ (6.1)

Notice that f cannot be positive everywhere as we would contradict the ODE at the minimum
point. Assume that (0, a) is a maximal interval of {f > 0}.

Claim. u = cyxJ in the half-space {x, > 0}.
We multiply the ODE by f’ and integrate, and deduce that in (0, a)

2GRl W =k
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for some constant ¢ € R. We wish to show u = 0, which gives that f is uniquely determined up
to translations, and then the claim follows.

We argue as in Section 3.1, and deduce that f has the same two first terms in the expansion
near 0 (see (3.2)),

f(6) = cy8% + uc,6* % + 0(8°), oc>2—a,

with ¢; > 0 a universal constant. In view of Theorem 4.4 and Remark 4.5, u satisfies the free
boundary condition at e; € F(u). This gives = 0 and the claim is proved.

It remains to rule out the case when u = cy|x,|*. This follows from Proposition 5.3, and the fact
that cy|¢|* is not a minimizer of J in R. O

In the next section, we show that if a viscosity solution is close to the one-dimensional solution,
then its free boundary is C'# (see Proposition 7.2). As a consequence, we have the following result.

Theorem 6.3. Let u be a minimizer of J in B, such that
llu = co(x) L < oy, ).
Then, Fu)N By, isa CUF graph in the x,, direction.

Indeed, from the nondegeneracy property of minimizers, we conclude that u is trapped between
two translations of (x;")* and then Proposition 7.2 of the next section applied to w : = (u/ o)/«
gives the interior C# estimate for F(u).

A standard consequence of the Weiss monotonicity formula together with the compactness of
minimizers is the following energy gap for cones.

Proposition 6.4 (Energy gap). Assume that U is a cone, that is, nonzero homogenous of

degree o minimizer of J, and let U := (x;")* denote the one-dimensional solution. If U is not
one-dimensional, then

W(U) = W(U,) +6,

for some § > 0 universal depending only on n and y.
At this point, we have all the ingredients to perform the dimension reduction argument of Fed-
erer [8]. The next results follow from the standard techniques in free boundaries and we omit the

proofs (see [6] for more details).

Theorem 6.5. Let u be a minimizer for J in B,. Then,
H"(F(u) N By ;) < C(n,y)

and F(u) is locally C'-# except on a closed singular set =, C F(u) of Hausdorff dimension n — 3.
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7 | IMPROVEMENT OF FLATNESS

In this section, we show that viscosity solutions to our problem that are sufficiently close to a 1D
solution have C# free boundaries. We follow the same strategy as in our previous work [7], which
includes the case of positive powers.

After a change of variables, we rewrite the equation in the form

h(Vw
Aw = h(Vw)
w
Precisely, we denote
_1

w:i=c, “Ua,

so that u = cyw®. The equation for w is
coaw* *(w A w+ (a = D|Vw|*) = —co_(”l)w_“(’”“),

and using (4.2)

Aw=>1-a)

IVwi -1 _. h(Vw)' 7.0

w

Here, h is a radial quadratic function, which vanishes on dBj, it is negative in B; and positive
outside B; and

Vh(w) = —sw, if wedB;, s:=2a-1)e(-1,0). (7.2)
Notice that (7.1) remains invariant under the rescaling

W(x) = w(:x).

In view of the viscosity definition for u, we find that w satisfies (7.1) with the following free
boundary condition on d{w > 0}:

Definition 7.1. We say that w : Q — R™ satisfies (7.1) in the viscosity sense, if w is C*® and
satisfies the equation in the set {w > 0} N Q and, if x, € F(w) := d{w > 0} N Q, then w cannot
touch ¢ € C* (resp. C™) by above (resp. below) at x,, with

P(x) 1= d(x) + pd(x)* 7,
aasin (4.2)and pu > 0 (resp u < 0).
Notice that
3—-2a=1-s5>1.
Proposition 7.2. Assume that w is a viscosity solution of (7.1) in By, and

x,—e)" <w<(x, +e)t, 0 € F(w),
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forsome € < €,(y, n) small, universal. Then, there exists r universal such that
€ 4 € 4 .
(x-v—zr) <w<(x-v+§r) in B,,

for some unit direction v, |v| = 1 and |v —e¢,| < Ce.

The strategy is to show that the rescaled function

w-—Xx
W= n (7.3)
€
is well approximated by a viscosity solution of the linearized equation
Ago+s& =0, inB,
Xn (7.4)

3
F@:O on {x, = 0}.

. =+ L . . .
We recall the definition from [7] that ¢ : B, — Risa viscosity solution of the equation above if

a) @ is continuous up to the boundary,
b) ¢ satisfies the equation above in Bl+ in the classical sense,
¢) @ cannot be touched by below (above) at a point on {x,, = 0} N B; by a test function

q(x) :=a|x’—y’|2+b+px,1,l_s, a,beR,y e R,
with p > 0(p <0.)
In [7] we proved the following C1-° estimate for solutions of (7.4), see Theorem 7.2 in [7].
Theorem 7.3. Assume that ¢ is a solution of (7.4), and s > —1. Then,
lp(x) — p(0) —a" - x| < Cllpll = |x['*7,

with C large, o > 0 small, depending only on n and s.

In order to prove the convergence of the rescalings i to a solution of (7.4) we first establish a
Harnack-type inequality for v in the set {w > 0}.

Lemma 7.4. Assume that w is a viscosity solution in B; and
x,ta—e<w<(x,+a+e)t, forsomea,|lal <1/10.
If
1
w=x,+a at x,==e (7.5)

2"
then

w>x,+ta+(c—1e inB),.
Similarly, if

1
w<x,+a at Xo = 5en:
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then
w<(x, +a+(1=c))" inBy,.

Proof. After a translation, we may assume for simplicity that a = € and w > x,, in B;.

Since w is trapped between two flat solutions x,, and x, + 2¢, which solve the same Equa-
tion (7.1), we find that the interior estimates and the Harnack inequality (7.6) below continue
to hold for the difference between w and x,, (see [14]). Alternatively, if x,, > % for some o > 0

small depending on n and s to be specified later, then w is bounded below by c(o) thus (see (7.3))
| Al = ke, + Vi) < C@IVB| in fx, > Tpn{iVeol < 2},

Then, according to Lemma 3.8 in [7] we find |VW| < C(0) in {x,, > o} N B, /4- In particular if we
are in the situation (7.5), then w(x,) > 1, and we can apply Harnack inequality for i > 0
1

w2x,+cl0) in {x'|<zIx{o<x, <

: : (7.6)

=

This proves the conclusion in B; ;, N {x,, > o}, and it remains to prove that a similar inequality
can be extended near x,, = 0. Toward this aim we compare w with an explicit subsolution ¥ that
we construct below.

Let u > 0 be a small universal constant, and denote by B := B 1 (ien) the ball of radius i
HE
centered at #ieen. Also, let d(x) denote the distance from x to the boundary of the ball B when

X € B, and extend d(x) = 0 outside B. In the cylinder
€ i= '] < 3xlx,l <}
we compare w and translations of
W =d + pe(d' ™ + AdP),

for some f in the interval 1 — s < § < min{l — 25, 2}. The constant A is large universal, chosen
such that ¥ is a subsolution to Equation (7.1). Indeed,

AW = ,ue<(1 — ) (=s)d™5 + BB — 1)Ad5—2)

ol (1+pe—9)d+ pteAﬁdﬁ‘1>
d

eu -
> eu((l —5)(=8)-d7 " + BB - 1DAAP + @)
while, by (7.2),
|Vh(z)| = (—=s)(|z| = 1) + O((|z| — 1)*),

and ¥ > d implies

VD) (e L= 9d7 + ABdF!

7 - +O((ue)’d™>71),
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Thus, if d € (0, 2), then

_hV®)

INFR ue<6(ﬁ 14 9)AdP 2+ @)

+O((ue)’d™>)

>0,

provided that A is chosen large depending on n and s, and ¢ is sufficiently small. Notice also that by
construction, W satisfies the viscosity subsolution property of Definition 7.1 on the free boundary
0B.

Next we check that on the boundary of C where either |x'| = % or x, = o, we have

w > W(x + %en). 71.7)

Indeed,
€
d < (xn - %lx’lz)-‘—’
and in the set ¥ > 0 where |x/| = % |x,| < o we have

€ , €
¥x, - '%|x’|2 + ,ue(xrll_5 + Axf) <Xx,— ’;Lz,

provided that o is chosen sufficiently small. This implies that

+
n <w9

€
P(x + %en) <x
on the boundary of C where |x'| = 1/2.
When 0 < x,, < 20, we use d < x,, and obtain

€
¥ < x, +eu(x, +Ax,€) <x, +c(o)e — ';—2,

provided that u is chosen small, depending on c(c). Thus, on the part of the boundary of C where
X, = g, we use (7.6) and obtain ¥(x + ’3‘—;en) < w, which proves the claim (7.7). By comparing w
with a continuous family of translations ¥(x + te,,), with ¢ < % we conclude that the inequality
(7.7) holds also in the interior of C. This implies the desired inequality in a neighborhood of the

origin, which gives the conclusion of the lemma. O

Proof of Proposition 7.2. Assume that for a sequence of ¢, — 0 and w, the conclusion does not
hold for some r universal, to be made precise later. By applying Lemma 7.4 repeatedly, we conclude
that, after passing to a subsequence, the graphs of

Wi — Xy

Wy, 1=
k €
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defined in {w, > 0}, converge uniformly on compact sets to the graph of a Holder limiting function
w defined in §1+, and

and
Vh(e,) P _ _ Pn

g(ekame,p) g —s— ask - oo,
n xl’l
we find that  solves the linear equation
Wy, . +
AW+s— =0 in B/, (7.8)
X

n

in the viscosity sense.

Claim. w satisfies the boundary condition of (7.4) on {x,, = 0}.
Assume by contradiction that, say for simplicity w is touched by below at 0 by

1-s

—alx'|* + px}

for some constants a, p > 0. After, relabeling p/2 by p, and a/2 by a, we may assume that w is
touched strictly by below at 0 by the function

q(x) := —a(]x'|? —Axﬁ) + pxrll_s, p >0,

with § in the interval 1 — s < § < min{l — 2s, 2}, and A is large such that q is a subsolution of
Equation (7.8) (notice that x}l_s is a solution of (7.8)).
We construct the function ¥

W =d+epd™ +ecaAd”,

where, as in Lemma 7.4, d = d(x) is the distance from x to the boundary of the ball B =
B 1 (=—e,) of radius —— and center ——e,,. The same computation as in Lemma 7.4 shows that ¥
Zea 2ea 2ea 2¢ea

is a subsolution to Equation (7.1). Moreover, using that

d = (x, —ealx'[>)* + O(e?),

we find that

- ¥—x
P.= T in {¥>0}
€

converges uniformly to g(x) as € — 0. Since g(x) touches strictly by below w at the origin, and
w; converge uniformly to w, we conclude that a small e, -translation of the graph W restricted

to {¥ > 0} (with € = ¢;) must touch by below the graph of wy, at a point x; — 0. We reached a
contradiction since @ is a strict subsolution, and the claim is proved.
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Next we apply Theorem 7.3 to w0 and conclude that

R
[Ww—a x| < in B,

r
8
for some r > 0 universal depending only on n and s. This implies

+
<xn +e(a - x' - 2)) <wp <(x, +e(a -x' + £))+ in B

r

e, +epa’
|en +€ka,|
contradiction. O

holds for large k. Then, the conclusion is satisfied for w; with v, = and we reached a
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