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Abstract
Wedevelop the free boundary regularity for nonnegative
minimizers of the Alt–Phillips functional for negative
power potentials

∫Ω

(
1

2
|∇𝑢|2 + 𝑢𝛾𝜒{𝑢>0}

)
𝑑𝑥, 𝛾 ∈ (−2, 0),

and establish a Γ-convergence result of the rescaled
energies to the perimeter functional as 𝛾 → −2.
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1 INTRODUCTION

One fundamental problem in the calculus of variations consists in studying critical points for an
energy functional of the type

𝐽(𝑢,Ω) = ∫Ω

(
1

2
|∇𝑢|2 +𝑊(𝑢)

)
𝑑𝑥,

that is, solutions to its associated semilinear equation

△𝑢 = 𝑊′(𝑢),

where𝑊 ∶ ℝ → [0,∞) represents a given potential with minimum 0. Heuristically, minimizers
of 𝐽 tend to concentrate their values near the zeros of𝑊.
Certain classes of potentials have been extensively studied in the literature. One such example

is the double-well potential𝑊(𝑡) = (1 − 𝑡2)2 and the corresponding Allen–Cahn equation, which
appears in the theory of phase-transitions and minimal surfaces, see [1, 4, 11]. When the poten-
tial𝑊 is not of class 𝐶2 near one of its minimum points, then a minimizer can develop constant

© 2023 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.

Bull. London Math. Soc. 2023;55:2749–2777. wileyonlinelibrary.com/journal/blms 2749

mailto:desilva@math.columbia.edu
https://wileyonlinelibrary.com/journal/blms


2750 DE SILVA and SAVIN

patches where it can take that value, and this leads to a free boundary problem. Two such poten-
tials were investigated in great detail. The first one is the Lipschitz potential 𝑊(𝑡) = 𝑡+, which
corresponds to the classical obstacle problem, and we refer the reader to the book of Petrosyan,
Shahgholian and Uraltseva [12] for an introduction to this subject. The second one is the discon-
tinuous potential𝑊(𝑡) = 𝜒{𝑡>0} with its associated Alt–Caffarelli energy (see [2]), which is known
as the Bernoulli free boundary problem or the two-phase problem. We refer to the book of Caf-
farelli and Salsa [5] for an account of the basic free boundary theory in this setting. These two
important examples are part of the more general family of Alt–Phillips potentials

𝑊(𝑡) = (𝑡+)𝛾, 𝛾 ∈ [0, 2), △𝑢 = 𝛾𝑢𝛾−1,

which in the gradient flow setting are connected to quenching phenomena [9, 13].
Nonnegative minimizers 𝑢 ⩾ 0 of 𝐽 for these power potentials, together with their free

boundaries

𝐹(𝑢) ∶= 𝜕{𝑢 > 0},

were studied by Alt and Phillips in [3]. They showed that 𝐹(𝑢) has finite 𝑛 − 1Hausdorff measure
and established the regularity of the reduced part of the free boundary.
In this paper, we study the regularity properties of nonnegative minimizers of 𝐽 and their free

boundaries for potentials of negative powers

𝑊(𝑡) = 𝑡𝛾𝜒{𝑡>0}, 𝛾 ∈ (−2, 0).

The bound 𝛾 > −2 is necessary for the existence of functions with bounded energy. To the best
of our knowledge there are no available results in the literature addressing the more degenerate
case of negative power potentials.
The negative power potentials are natural in modeling sharper transitions of densities 𝑢

between their zero set and positivity set. With respect to the classical one-phase model, 𝛾 = 0,
in which the energy penalizes the measure of the set {𝑢 > 0} uniformly, in the negative power
setting this penalization is stronger when 𝑢 is positive and small. This means that minimizers
transition faster from the regions where 𝑢 ∼ 1 to their zero set and are not expected to be Lips-
chitz continuous near the free boundary. Despite this, we show that the free boundaries possess
sufficiently nice regularity properties: They are 𝐶1,𝛽 surfaces up to a closed singular set of dimen-
sion 𝑛 − 3, see Theorem 2.3. We also analyze the Gamma convergence of the functionals 𝐽 when 𝛾

tends to−2 and establish the connection between these free boundary problems and the minimal
surface equation, see Theorem 2.4.
The change of sign in the exponent makes the problemmore degenerate and the free boundary

condition takes a different form. Some of the difficulties can be seen from a direct analysis of the
one-dimensional case that we sketch below. Consider the ordinary differential equation (ODE)

𝑢′′ = 𝛾𝑢𝛾−1 in (0, 𝛿) ⊂ {𝑢 > 0}, 𝑢(0) = 0.

The explicit homogenous solution

𝑢0 = 𝑐𝛾𝑡
𝛼, 𝛼 ∶=

2

2 − 𝛾
,
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NEGATIVE POWER POTENTIALS 2751

for an appropriate constant 𝑐𝛾, plays an important role in the analysis. In general, it follows that
𝑢 has an expansion of the form

𝑢(𝑡) = 𝑎 𝑡 + 𝑜(𝑡1+𝛿), if 𝛾 ⩾ 0,

𝑢(𝑡) = 𝑐𝛾𝑡
𝛼 + 𝑎 𝑡2−𝛼 + 𝑜(𝑡2−𝛼+𝛿), if 𝛾 < 0,

with 𝑎 ∈ ℝ a free parameter. If in addition 𝑢 minimizes 𝐽 in [−𝛿, 𝛿], then 𝑎 = 0 in the case 𝛾 > 0

and 𝑎 =
√
2when 𝛾 = 0. These can be viewed as Neumann conditions at the free boundary point

𝑡 = 0 and imply that the first nonzero term in the expansion of 𝑢 near 0 is given precisely by the
homogenous explicit solution 𝑐𝛾𝑡

𝛼, 𝛼 ⩾ 1.
On the other handwhen 𝛾 < 0, all solutions have 𝑐𝛾𝑡𝛼 as the first nonzero term in the expansion.

In this case the minimality condition imposes that the coefficient of the second-order term in the
expansionmust vanish, that is, 𝑎 = 0. Since 𝛼 < 1, 𝑢′ becomes infinite at 0, and this free boundary
condition cannot be easily detected by integrations by parts or domain variations as in the case of
nonnegative exponents.
In thiswork,we analyzeminimizers by introducing an appropriate notion of viscosity solutions,

and use the method of calibrations in order to handle the singularity of the partial differential
equation (PDE) and of the free boundary condition.
We remark that, after a change of variable𝑤 = 𝑢

1
𝛼 , the free boundary problem associated to the

minimization of 𝐽 can be written as a degenerate one-phase problem in the form

△𝑤 =
ℎ(∇𝑤)

𝑤
in {𝑤 > 0}, ℎ(∇𝑤) = 0 on 𝐹(𝑤),

where ℎ is an explicit quadratic polynomial vanishing on 𝜕𝐵1. The sign of ℎ in 𝐵1 plays an impor-
tant role in the stability of Lipschitz solutions near their free boundaries. The case ℎ > 0 in 𝐵1

corresponds to positive power potentials and this problem was analyzed in greater generality in
our previous work [7]. When ℎ < 0 in 𝐵1, it corresponds to negative power potentials, which we
study in this work. The free boundary condition needs to be understood in terms of the second
term expansion near 𝐹(𝑤), see Section 7.
The paper is organized as follows. In the next section, we state ourmain results. In Section 3, we

discuss the existence and optimal regularity of minimizers. In Section 4, we introduce the notion
of viscosity solutions and establish the nondegeneracy of minimizers. In Sections 5 and 6, we
perform a blow-up analysis based on the Weiss Monotonicity formula and on the 𝐶1,𝛽 regularity
of flat free boundaries, which is proved in Section 7.

2 MAIN RESULTS

In this section, we provide the statement of our main results. Since from now on we are only
concerned with negative exponents, we change the notation from the Introduction and denote
the negative exponent of the potential𝑊 by −𝛾 with 𝛾 ∈ (0, 2). Precisely let

𝑊(𝑡) ∶=

{
1

𝛾
𝑡−𝛾 if 𝑡 > 0,

0 if 𝑡 ⩽ 0,
, 𝛾 ∈ (0, 2), (2.1)
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2752 DE SILVA and SAVIN

we consider the minimization problem for the energy functional

𝐽(𝑢,Ω) ∶= ∫Ω

(
1

2
|∇𝑢|2 +𝑊(𝑢)

)
𝑑𝑥, (2.2)

among all nonnegative 𝑢 ⩾ 0with a given boundary data 𝜙 ∈ 𝐻1(Ω). Whenever it does not create
confusion, the dependence of 𝐽 on the domain Ω is dropped.
The corresponding Euler–Lagrange equation in the set {𝑢 > 0} is

△𝑢 = −𝑢−(𝛾+1), (2.3)

which has the explicit homogenous solution

𝑢0 = 𝑐0(𝑥
+
𝑛 )

𝛼, 𝛼 ∶=
2

𝛾 + 2
, 𝑐0 ∶= [𝛼(1 − 𝛼)]

− 1
𝛾+2 .

We remark that the problem is invariant under the 𝛼-homogenous scaling

𝑢𝜆(𝑥) = 𝜆−𝛼𝑢(𝜆𝑥),

that is, 𝑢𝜆 is a minimizer for 𝐽 in 𝜆−1Ω.
We state our main results below. Positive constants depending only on 𝑛, 𝛾 will be called

universal. We start with existence and regularity of minimizers.

Theorem 2.1 (Existence and optimal regularity). LetΩ be a Lipschitz domain. There exists a non-
negative minimizer 𝑢 of 𝐽 with boundary data 𝜑 ∈ 𝐻1(Ω), 𝜑 ⩾ 0. Moreover, anyminimizer is Hölder
continuous of exponent 𝛼, that is, 𝑢 ∈ 𝐶𝛼(Ω).

The second result concerns the nondegeneracy of minimizers around the free boundary
𝐹(𝑢) ∶= 𝜕{𝑢 > 0} ∩ Ω.

Theorem 2.2. Assume 𝑢 ⩾ 0 is a minimizer of 𝐽 in 𝐵1 and 0 ∈ 𝐹(𝑢). Then,

𝑐𝑟𝛼 ⩽ max
𝜕𝐵𝑟

𝑢 ⩽ 𝐶𝑟𝛼, ∀𝑟 ⩽ 1∕2,

with 𝑐, 𝐶 universal. Moreover, the 𝛼-homogenous rescalings 𝑢𝜆 converge on subsequences 𝜆𝑛 → 0 to
a global 𝛼-homogenous minimizer, that is, a cone.

In Section 6, Theorem 6.3, we show that flat free boundaries are regular. Then the regularity of
𝐹(𝑢) depends on the classification ofminimal cones in lowdimensions.We establish thatminimal
cones are trivial in dimension 𝑛 = 2 and obtain the following partial regularity result.

Theorem 2.3. Let 𝑢 be a nonnegative minimizer for 𝐽 in 𝐵1. Then,

𝑛−1(𝐹(𝑢) ∩ 𝐵1∕2) ⩽ 𝐶(𝑛, 𝛾)

and 𝐹(𝑢) is locally 𝐶1,𝛽 except on a closed singular set Σ𝑢 ⊂ 𝐹(𝑢) of Hausdorff dimension 𝑛 − 3.
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Finally we obtain a Gamma convergence result for appropriate multiples of the 𝐽 functional
as 𝛾 → 2. Let Ω be a bounded Lipschitz domain. We equip the space of nonnegative integrable
functions

𝑋 ∶= {𝑢 ∈ 𝐿1(Ω), 𝑢 ⩾ 0}

with the distance

𝑑𝑋(𝑢, 𝑣) ∶= ‖𝑢 − 𝑣‖𝐿1 + ‖𝜒{𝑢>0} − 𝜒{𝑣>0}‖𝐿1 .
Theorem 2.4. As 𝛾 → 2−, the rescaled 𝐽 functionals

𝛾(𝑢) ∶= 𝑐𝛾 𝐽(𝑢,Ω), 𝑐𝛾 ∶= (1 −
𝛾

2
)
√
𝛾∕2,

Gamma converge in 𝑋 to the perimeter function

(𝑢) = 𝑃𝑒𝑟Ω({𝑢 > 0}).

Precisely,

a) if 𝑢𝑛 → 𝑢 in 𝑋 and 𝛾𝑛 → 2, then lim inf 𝛾𝑛
(𝑢𝑛) ⩾ (𝑢);

b) given 𝑢 ∈ 𝑋, there exists 𝑢𝑛 → 𝑢 in 𝑋 such that 𝛾𝑛
(𝑢𝑛) → (𝑢).

3 EXISTENCE, OPTIMAL REGULARITY, AND GAMMA
CONVERGENCE

This section contains the proofs of Theorem 2.1 and Theorem 2.4. The existence of a minimizer
is achieved by standard methods in the calculus of variations, and we only sketch the proof. For
simplicity, we assume Ω = 𝐵1 and, given a boundary data 𝜙 ∈ 𝐻1(𝐵1), 𝜙 ⩾ 0, we set:

 ∶= {𝑢 ∈ 𝐻1(𝐵) ∶ 𝑢 ⩾ 0, 𝑢 = 𝜙 on 𝜕𝐵1}.

Proposition 3.1. There exists a minimizer 𝑢 ∈  to 𝐽 in 𝐵1.

Proof. Let 𝜙ℎ ⩾ 0 be the harmonic replacement of 𝜙 in 𝐵1 and set

𝑤 ∶= 𝜙ℎ + (1 − |𝑥|)𝛼.
Recall that 𝛼 = 2∕(𝛾 + 2). Then, since

𝑤−𝛾 ⩽ (1 − |𝑥|)−𝛾𝛼,
and 𝛾 ∈ (0, 2), we have that 𝐽(𝑤) < +∞. Thus, 0 ⩽ inf 𝐽 < +∞. Let 𝑢𝑛 ∈  be a minimizing
sequence. Then, up to extracting a subsequence,

𝑢𝑛 → 𝑢̄ weakly in 𝐻1(𝐵1), strongly in 𝐿2(𝐵1), and almost everywhere in 𝐵1.
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Moreover, it is immediate to show that at all points 𝑥 where 𝑢𝑛(𝑥) → 𝑢(𝑥), then

𝑊(𝑢̄) ⩽ lim inf
𝑛→∞

𝑊(𝑢𝑛),

which together with Fatou’s lemma gives that

𝐽(𝑢̄) ⩽ lim
𝑛

𝐽(𝑢𝑛),

and the proof is complete. □

Next we prove the optimal regularity result.

Proposition 3.2. 𝑢 ∈ 𝐶𝛼(𝐵1), with norm in 𝐵1∕2 bounded by a constant 𝐶 > 0 depending on
𝑛, ‖𝜙‖𝐻1 .

In order to prove Proposition 3.2, we denote by

𝑎(𝑟) ∶= 𝑟1−𝛼
(
⨏𝐵𝑟

|∇𝑢|2𝑑𝑥)1∕2

,

the scale-invariant 𝐻1 seminorm of 𝑢 in 𝐵𝑟. It is in fact enough to obtain the next lemma, as the
desired Proposition 3.2 will then follow by standard Campanato estimates.

Lemma 3.3. There exist constants𝑀,𝜌 > 0 (depending on 𝑛) such that if 𝑎(1) ⩾ 𝑀, then

𝑎(𝜌) ⩽
1

2
𝑎(1).

In particular,

𝑎(𝑟) ⩽ 𝐶, ∀𝑟 ⩽ 1,

for some constant 𝐶 depending on 𝜙.

Proof. Without loss of generality, after a multiplication by a constant, we can assume 𝑎(1) = 1

and 𝑢minimizes

∫𝐵1

(
1

2
|∇𝑢|2 + 𝜖𝑢−𝛾𝜒{𝑢>0}

)
𝑑𝑥,

with 𝜖 small to be made precise later. Thus, using the competitor 𝑤 ∶= 𝜙ℎ + 𝜖(1 − |𝑥|)𝛼 as in the
proof of Proposition 3.1, we conclude that (for 𝐶 > 0 depending only on 𝑛 and changing from line
to line),

∫𝐵1

|∇𝑢|2𝑑𝑥 ⩽ ∫𝐵1

|∇𝑤|2𝑑𝑥 + 𝐶𝜖,
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with

∫𝐵1

|∇𝜙ℎ|2𝑑𝑥 ⩽ 1 = ∫𝐵1

|∇𝑢|2 𝑑𝑥. (3.1)

This yields,

∫𝐵1

|∇𝑢|2𝑑𝑥 ⩽ ∫𝐵1

|∇𝜙ℎ|2𝑑𝑥 + 𝐶𝜖,

and using that 𝜙ℎ is the harmonic replacement of 𝑢,

∫𝐵1

|∇(𝑢 − 𝜙ℎ)|2𝑑𝑥 ⩽ 𝐶𝜖.

Thus,

⨏𝐵𝜌

|∇(𝑢 − 𝜙ℎ)|2𝑑𝑥 ⩽ 𝐶𝜖𝜌−𝑛.

Since |∇𝜙ℎ|2 is subharmonic and it satisfies (3.1), we have that
|∇𝜙ℎ|2 ⩽ 𝐶, in 𝐵3∕4.

Therefore, the last two inequalities lead to

⨏𝐵𝜌

|∇𝑢|2𝑑𝑥 ⩽ 𝐶(𝜖𝜌−𝑛 + 1),

and hence

𝑎(𝜌) ⩽
1

2
,

as long as 𝜌, 𝜖 = 𝜖(𝜌), are sufficiently small.
Now, the scale invariance of the problem implies that

𝑎(𝜌𝑟) ⩽
1

2
𝑎(𝑟),

whenever 𝑎(𝑟) ⩾ 𝑀, and the second conclusion in the lemma follows by iteration. □

We also state a simple energy bound for minimizers.

Lemma 3.4. Assume 𝑢 is a minimizer for 𝐽 in 𝐵1. Then,

𝐽(𝑢, 𝐵1∕2) ⩽ 𝐶(‖𝑢‖𝐿∞(𝐵1)
).

Proof. Let 𝜑(𝑥) = 𝑀[(|𝑥| − 1

2
)
+
]𝛼 with𝑀 = 𝐶‖𝑢‖𝐿∞ so that 𝜑 > ‖𝑢‖𝐿∞ near 𝜕𝐵1. Then,

𝐽(𝑢, 𝐵1∕2) ⩽ 𝐽(𝑢, {𝜑 ⩽ 𝑢}) ⩽ 𝐽(𝜑, {𝜑 ⩽ 𝑢}) ⩽ 𝐽(𝜑, 𝐵1) ⩽ 𝐶(𝑀). □
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Nextwe discuss the one-dimensional case,which is themotivation for our definition of viscosity
solution in the next section.

3.1 The one-dimensional case

Assume 𝑢 ∶ [0, 𝛿] → ℝ+ solves the ODE

𝑢′′ = −𝑢−(𝛾+1) in (0, 𝛿), and 𝑢(0) = 0.

We multiply the equation by 𝑢′ and integrate, and deduce that in (0, 𝛿)

𝑢′2 −
2

𝛾
𝑢−𝛾 = 𝜇,

for some constant 𝜇 ∈ ℝ. We rewrite the equation as

𝑑

𝑑𝑡
𝐺(𝑢(𝑡)) = 1,

where

𝐺(𝑠) ∶= ∫
𝑠

0

(
𝜇 +

2

𝛾
𝑟−𝛾

)−1
2

𝑑𝑟.

Then,

𝐺(𝑠) =

√
𝛾

2 ∫
𝑠

0

(𝑟𝛾∕2 −
𝜇𝛾

2
𝑟3𝛾∕2) + 𝑂(𝑟5𝛾∕2) 𝑑𝑟,

hence

𝐺(𝑠) =

√
𝛾

2

(
𝛼𝑠𝛾∕2+1 −

𝜇𝛾

3𝛾 + 2
𝑠3𝛾∕2+1

)
+ 𝑂(𝑠5𝛾∕2+1).

We can compute the inverse of 𝐺 near 0 and, after a simple computation obtain

𝑢(𝑡) = 𝐺−1(𝑡) = 𝑐0𝑡
𝛼 + 𝜇𝑐1𝑡

2−𝛼 + 𝑂(𝑡𝜎), 𝜎 > 2 − 𝛼, (3.2)

with 𝛼 = 2∕(2 + 𝛾) and positive constants 𝑐0, 𝑐1, and 𝜎 depending only on 𝛾.
Assume further that the extension of 𝑢 by 0 on the negative axis is a minimizer of 𝐽 in the inter-

val [−𝛿, 𝛿]. Then, we show 𝜇 = 0 and 𝑢 = 𝑢0 = 𝑐0(𝑡
+)𝛼 is the explicit 𝛼-homogenous solution.

For this, we compare 𝑢 with infinitesimal dilations with the same boundary data

𝑢𝜆(𝑡) ∶= 𝑢(𝛿 + 𝜆(𝑡 − 𝛿))

and 𝜆 close to 1. Then,

𝐽(𝑢𝜆, [−𝛿, 𝛿]) = ∫
𝛿

−𝛿

(
𝜆

2
(𝑢′)2 +

1

𝜆𝛾
𝑢−𝛾

)
𝑑𝑡

is minimal when 𝜆 = 1, which means (𝑢′)2 = (2∕𝛾)𝑢−𝛾, and that gives 𝜇 = 0.
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Alternatively, we could use Cauchy–Schwartz inequality and write

𝐽(𝑢, [−𝛿, 𝛿]) ⩾ (2𝛾)−1∕2 ∫
𝛿

−𝛿

𝑢−𝛾∕2𝑢′𝑑𝑡,

and the right-hand side depends only on the values of 𝑢 at the end points. The equality occurs
when (𝑢′)2 = (2∕𝛾)𝑢−𝛾, that is, 𝜇 = 0.

3.2 The 𝚪 convergence as 𝜸 → 𝟐

This last argument based on the Cauchy–Schwartz inequality can be used in higher dimensions
to deduce the convergence result as 𝛾 → 2.

Proof of Theorem 2.4. We recall that the space of nonnegative integrable functions is denoted by

𝑋 = {𝑢 ∶ Ω → [0,∞)| 𝑢 ∈ 𝐿1(Ω)},

and is equipped with the distance

𝑑𝑋(𝑢, 𝑣) ∶= ‖𝑢 − 𝑣‖𝐿1 + ‖𝜒{𝑢>0} − 𝜒{𝑣>0}‖𝐿1 .
The proof is similar to the classical Modica–Mortola argument [11] for the Ginzburg–Landau
functional. Notice that by Cauchy–Schwartz inequality

𝛾(𝑢) ⩾ (1 −
𝛾

2
)∫Ω

𝑢−𝛾∕2|∇𝑢|𝑑𝑥 = ∫Ω

|∇𝑢1−𝛾∕2|𝑑𝑥. (3.3)

If 𝑢𝑛 → 𝑢 in𝑋 then 𝑢
1−𝛾𝑛∕2
𝑛 → 𝜒{𝑢>0} in 𝐿1(Ω) and part (a) follows from the lower semicontinuity

of the 𝐵𝑉-norm.
For part (b), let 𝑢̃ be a smooth function that approximates 𝑢 and let𝐸 ⊂ ℝ𝑛 be a set with smooth

boundary, which approximates {𝑢 > 0} in Ω (see [10]), in the sense that ‖𝑢 − 𝑢̃‖𝐿1 ⩽ 𝜖, and

𝑃𝑒𝑟Ω(𝐸) ⩽ 𝑃𝑒𝑟Ω({𝑢 > 0}) + 𝜖, ‖𝜒𝐸∩Ω − 𝜒{𝑢>0}‖𝐿1 ⩽ 𝜖,

𝑛−1(𝜕𝐸 ∩ 𝜕Ω) = 0, ∫{𝑢>0}⧵𝐸

|𝑢|𝑑𝑥 ⩽ 𝜖.

For 𝑥 ∈ Ω we let 𝑑(𝑥) denote the distance to 𝜕𝐸 when 𝑥 ∈ 𝐸 ∩ Ω, and extend 𝑑(𝑥) = 0 when
𝑥 ∈ Ω ⧵ 𝐸. We take 𝛿 small, such that

𝑃𝑒𝑟Ω({𝑑 > 𝑠}) ⩽ 𝑃𝑒𝑟Ω(𝐸) + 𝜖 for 𝑠 ∈ [0, 𝑐0𝛿
𝛼].

Define

𝑤(𝑥) ∶= 𝑐0 min{𝑑(𝑥), 𝛿}𝛼, 𝑣 ∶= 𝑤 + 𝜑(𝑑)𝑢̃,
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2758 DE SILVA and SAVIN

where 𝜑 is a smooth function with 𝜑(𝑠) = 0 if 𝑠 ⩽ 𝛿, 𝜑(𝑠) = 1 if 𝑠 ⩾ 2𝛿. Notice that {𝑤 > 0} = 𝐸

and

∫Ω

|𝑣 − 𝑢|𝑑𝑥 ⩽ 𝜖 + |Ω| ⋅ ‖𝑤‖𝐿∞ + ∫{0<𝑑<2𝛿}

|𝑢| + |𝑢̃|𝑑𝑥,
which can be made arbitrarily small provided that first 𝜖 and then 𝛿 are chosen sufficiently small.
We have 𝑣 = 𝑤 in the set

𝐷 ∶= {𝑑 < 𝛿},

while |𝑣| + |∇𝑣| ⩽ 𝐶(𝛿, 𝑢̃) in the set Ω ⧵ 𝐷. If 𝛾𝑛 → 2, then

(2 − 𝛾𝑛)𝐽(𝑣,Ω ⧵ 𝐷) → 0,

hence

𝛾𝑛
(𝑣,Ω) = 𝛾𝑛

(𝑤, 𝐷) + 𝑜(1). (3.4)

The inequality (3.3) is an equality for 𝑤 in the domain 𝐷:

𝛾𝑛
(𝑤, 𝐷) = ∫𝐷

|∇𝑤1−𝛾𝑛∕2| = ∫
𝑎𝛾

0

𝑃𝑒𝑟({𝑤1−𝛾𝑛∕2 > 𝑠})𝑑𝑠

with 𝑎𝛾 = (𝑐0𝛿
𝛼)1−𝛾𝑛∕2 → 1 as 𝑛 → ∞. In conclusion,

𝛾𝑛
(𝑤, 𝐷) ⩽ 𝑃𝑒𝑟Ω(𝐸) + 𝜖 + 𝑜(1),

which together with (3.4) gives the desired statement. □

4 MINIMIZERS AS VISCOSITY SOLUTIONS

In this section, we consider the following degenerate one-phase (𝑢 ⩾ 0) free boundary problem:{
Δ𝑢 = −𝑢−(𝛾+1) in {𝑢 > 0} ∩ 𝐵1,

𝑢(𝑥0 + 𝑡𝜈) = 𝑐0𝑡
𝛼 + 𝑜(𝑡2−𝛼) on 𝐹(𝑢) ∶= 𝜕{𝑢 > 0} ∩ 𝐵1,

(4.1)

with 𝑡 ⩾ 0, 𝜈 the unit normal to 𝐹(𝑢) at 𝑥0 pointing toward {𝑢 > 0}, and

𝛼 ∶=
2

𝛾 + 2
, 𝑐0 ∶= [𝛼(1 − 𝛼)]

− 1
𝛾+2 , 𝛾 ∈ (0, 2), 𝛼 ∈ (

1

2
, 1). (4.2)

We start by introducing the notion of viscosity solution to (4.1). As usual, we say that a
continuous function 𝑢 touches a continuous function 𝜙 by above (resp. below) at a point 𝑥0 if

𝑢 ⩾ 𝜙 (resp. 𝑢 ⩽ 𝜙) in a neighborhood of 𝑥0, 𝑢(𝑥0) = 𝜙(𝑥0).

Typically, if the inequality is strict (except at 𝑥0), we say that 𝑢 touches 𝜙 strictly by above (resp.
below). In our context, with 𝜙 ⩾ 0, when we say that 𝑢 touches 𝜙 strictly by above at 𝑥0, we mean
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that 𝑢 ⩾ 𝜙 in a neighborhood 𝐵 of 𝑥0 and 𝑢 > 𝜙 (except at 𝑥0) in 𝐵 ∩ {𝜙 > 0} (and similarly by
below we require the inequality to be strict in a neighborhood of 𝑥0 intersected {𝑢 > 0}).
We now consider the class + of continuous functions 𝜙 vanishing on the boundary of a ball

𝐵 ∶= 𝐵𝑅(𝑧0) and positive in 𝐵, such that 𝜙(𝑥) = 𝜙(|𝑥 − 𝑧0|) in 𝐵 and 𝜙 is extended to be zero
outside 𝐵. We denote by 𝑑(𝑥) ∶= 𝑑𝑖𝑠𝑡(𝑥, 𝜕𝐵) for 𝑥 in 𝐵 and 0 otherwise. Similarly we can define
the class −, with 𝜙 being zero in the ball and positive outside, and 𝑑(𝑥) ∶= 𝑑𝑖𝑠𝑡(𝑥, 𝜕𝐵) for 𝑥 ∈ 𝐵𝑐

and 0 otherwise.

Definition 4.1. We say that a nonnegative continuous function 𝑢 satisfies (4.1) in the viscosity
sense, if

1) in the set where 𝑢 > 0, 𝑢 is 𝐶∞ and satisfies the equation in a classical sense;
2) if 𝑥0 ∈ 𝐹(𝑢) ∶= 𝜕{𝑢 > 0} ∩ 𝐵1, then 𝑢 cannot touch 𝜓 ∈ + (resp. −) by above (resp. below)

at 𝑥0, with

𝜓(𝑥) ∶= 𝑐0𝑑(𝑥)
𝛼 + 𝜇 𝑑(𝑥)2−𝛼,

𝛼, 𝑐0 as in (4.2) and 𝜇 > 0 (resp 𝜇 < 0).

Next we show that a barrier as in the definition above can bemodified so that it is a subsolution
(supersolution) of the interior equation, and the touching is strict.

Lemma 4.2. Let 𝑢 be a nonnegative continuous function in𝐵1, such that 𝑢 touches𝜓 ∈ + by above
at 𝑥0 ∈ 𝐹(𝑢), and

𝜓 ∶= 𝑐0𝑑(𝑥)
𝛼 + 𝜇 𝑑(𝑥)2−𝛼,

with 𝛼, 𝑐0 as in (4.2), and 𝜇 > 0. Then, 𝑢 touches 𝜙 ∈ + strictly by above at 𝑥0, with

𝜙 ∶= 𝑐0𝑑
𝛼 +

𝜇

2
𝑑2−𝛼 + 𝑑𝜎, 2 − 𝛼 < 𝜎 < min{1 + 𝛼, 4 − 3𝛼}. (4.3)

and for 𝑑0 > 0 small,

Δ𝜙 > −𝜙−(𝛾+1), in the annulus 0 < 𝑑(𝑥) < 𝑑0. (4.4)

Notice that, the existence of 𝜎 is guaranteed by the constraint 𝛼 ∈ (1∕2, 1), that is, 𝛾 ∈ (0, 2).
For this reason, the notion of viscosity solution cannot be extended past 𝛾 = 2.

Proof. The first part of the claim is obvious after replacing 𝐵 with a ball of half its radius tangent
at 𝑥0, given that 𝜇 > 0 and 𝑑 is small. In order to prove (4.4), since 𝜙 is radially symmetric, we
need to show that for 𝑑 > 0 sufficiently small,

𝜙′′ −
𝑛 − 1

𝑅 − 𝑑
𝜙′ > −𝜙−(1+𝛾).

Indeed, we need,

𝑐0𝛼(𝛼 − 1)𝑑𝛼−2 +
𝜇

2
(2 − 𝛼)(1 − 𝛼)𝑑−𝛼 + 𝜎(𝜎 − 1)𝑑𝜎−2 + 𝑂(𝑑𝛼−1) >

−(𝑐0𝑑
𝛼)−(𝛾+1)

(
1 +

𝜇

2𝑐0
𝑑2−2𝛼 +

1

𝑐0
𝑑𝜎−𝛼

)−(𝛾+1)

.
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2760 DE SILVA and SAVIN

By our choice of 𝑐0, we get

1 −
𝜇

2𝑐0

2 − 𝛼

𝛼
𝑑2−2𝛼 −

𝐶(𝜎)

𝑐0
𝑑𝜎−𝛼 + 𝑂(𝑑) <

1 −
𝜇

2𝑐0
(1 + 𝛾)𝑑2−2𝛼 −

1 + 𝛾

𝑐0
𝑑𝜎−𝛼 + 𝑂(𝑑4(1−𝛼))

with

𝐶(𝜎) =
𝜎(1 − 𝜎)

𝛼(1 − 𝛼)
.

The relation between 𝛼 and 𝛾 implies the the coefficients of the 𝑑2−2𝛼 terms are equal, and 𝜎 >

2 − 𝛼 implies 𝐶(𝜎) > 1 + 𝛾. Hence, the desired inequality holds for 𝑑 small enough, since the
upper bound on 𝜎 gives 𝜎 − 𝛼 < 1 and 𝜎 − 𝛼 < 4(1 − 𝛼). □

We can now prove the following optimal regularity statement.

Lemma 4.3. Let 𝑢 be a viscosity solution to (4.1) in 𝐵1 and assume 𝐹(𝑢) ∩ 𝐵1∕2 ≠ ∅. Then,

𝑢(𝑥) ⩽ 𝐶𝑑𝑖𝑠𝑡(𝑥, 𝐹(𝑢))𝛼, in {𝑢 > 0} ∩ 𝐵1∕2, (4.5)

for 𝐶 = 𝐶(𝑛, 𝛼) > 0.

Proof. Let 𝑥0 ∈ {𝑢 > 0} ∩ 𝐵1∕2 and let 𝑟 ∶= 𝑑𝑖𝑠𝑡(𝑥0, 𝐹(𝑢)). Consider the rescaling

𝑢̃(𝑥) ∶=
𝑢(𝑥0 + 𝑟𝑥)

𝑟𝛼
,

which solves (4.1) in 𝐵1, and let us show

𝑢̃(0) ⩽ 𝑀

with𝑀 > 0 universal and 𝐵1 ∩ 𝐹(𝑢̃) = {𝑥̄}. Assume by contradiction that 𝑢̃(0) > 𝑀, with𝑀 to be
made precise later. Notice that,

Δ𝑢̃ ⩽ 0, Δ(𝑢̃ − 1)+ ⩾ −1 in 𝐵1.

Thus, by the mean value inequality for subharmonic functions, we get that

∫𝐵1∕2

(𝑢̃ − 1)+ 𝑑𝑥 ⩾ 𝑐1𝑀.

with 𝑐1 depending only on 𝑛. Then,

∫𝐵1∕2

𝑢̃ 𝑑𝑥 ⩾ 𝑐1𝑀,

and, using 𝑢̃ ⩾ 0 is superharmonic, we have 𝑢̃ ⩾ 𝑐2𝑀 in𝐵1∕2. After iterating this result a few times,
we find

𝑢̃ ⩾ 𝑐3𝑀 in 𝐵1−𝑑0
,
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with 𝑐3 depending on 𝑑0 and with 𝑑0 universal to be specified below. Now, let 𝜙 be as in Equation
(4.3), with 𝜇 = 1. The computation in Lemma 4.2 proves that

Δ𝜙 > −𝜙−(𝛾+1) in 𝐵1 ⧵ 𝐵1−𝑑0
,

for 𝑑0 universal. Moreover, if𝑀 > 0 is large enough universal,

𝑢 ⩾ 𝑐3𝑀 ⩾ 𝜙 on 𝜕𝐵1 ∪ 𝜕𝐵1−𝑑0
.

and the maximum principle implies 𝑢̃ ⩾ 𝜙 in 𝐵1 ⧵ 𝐵1−𝑑0
. On the other hand, the two functions

touch at 𝑥̄, which contradicts the definition of viscosity solution. □

Next we show that minimizers to (2.2) are indeed viscosity solutions.

Proposition 4.4. Let 𝑢minimize (2.2) in 𝐵1. Then, 𝑢 is a viscosity solution to (4.1).

Proof. The fact that 𝑢 is continuous and satisfies the first equation in (4.1) in 𝐵1 ∩ {𝑢 > 0} follows
from Proposition 3.2. It remains to show that 𝑢 satisfies the free boundary condition.
Let us assume that 𝑢 touches 𝜓 by above at 𝑥0 ∈ 𝐹(𝑢), with 𝜓 as in Definition 4.1 and 𝜇 >

0. Then in view of Lemma 4.2, 𝑢 touches 𝜙 strictly by above at 𝑥0, with 𝜙 defined in (4.3). We
will show that this contradicts the minimality of 𝑢, using a calibration argument. For simplicity,
assume that the unit normal to 𝐹(𝑢) at 𝑥0 is 𝑒𝑛. For any nonnegative function 𝑣, smooth in its
positivity set, we denote by Γ𝑣 its graph in ℝ𝑛+1 over the positivity set, and by 𝜈𝑣(𝑥) the upward
unit normal to Γ𝑣 at (𝑥, 𝑣(𝑥)).
Notice that we can write the energy of 𝑢 over a domainΩ as a surface integral over its positivity

graph in Ω, Γ𝑢(Ω), in the following way:

𝐽(𝑢,Ω) = ∫Γ𝑢(Ω)

𝐺(𝑢, 𝜈𝑢)𝑑𝜎, (4.6)

with

𝐺(𝑠, 𝜈) ∶=
1

2

|𝜈′|2
𝜈𝑛+1

+𝑊(𝑠)𝜈𝑛+1,

and

𝑠 > 0, |𝜈| = 1, 𝜈 ∶= ⟨𝜈′, 𝜈𝑛+1⟩, 𝜈𝑛+1 > 0.

Let 𝐺(𝑠, 𝑦) be the 1-homogeneous extension (in 𝑦) of 𝐺(𝑠, 𝜈). Then,

∇𝑦𝐺(𝑠, 𝜈) ∶= ⟨ 𝜈′

𝜈𝑛+1
, −

1

2

|𝜈′|2
𝜈2
𝑛+1

+𝑊(𝑠)⟩,
and the homogeneity and convexity in 𝑦 imply,

𝐺(𝜙(𝑥), 𝜈𝜙(𝑥)) = 𝑉𝜙(𝑥, 𝜙(𝑥)) ⋅ 𝜈𝜙(𝑥), (4.7)

with

𝑉𝜙(𝑥, 𝜙(𝑥)) ∶= ∇𝑦𝐺(𝜙(𝑥), 𝜈𝜙(𝑥))

 14692120, 2023, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12893 by C

olum
bia U

niversity Libraries, W
iley O

nline Library on [29/10/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://londmathsoc.onlinelibrary.wiley.com/action/rightsLink?doi=10.1112%2Fblms.12893&mode=


2762 DE SILVA and SAVIN

and

𝐺(𝜙(𝑥), 𝜈𝑢(𝑥)) ⩾ 𝑉𝜙(𝑥, 𝜙(𝑥)) ⋅ 𝜈𝑢(𝑥). (4.8)

The vector field 𝑉𝜙(𝑥, 𝜙(𝑥)) is defined on the graph Γ𝜙, and we extended in ℝ𝑛+1 constantly in
the 𝑒𝑛 direction and denote it simply by 𝑉. This vector field is associated with the graphs of the
translations

𝜙𝑡(𝑥) ∶= 𝜙(𝑥 + 𝑡𝑒𝑛), 𝑡 ∈ ℝ,

which provide a foliation of a neighborhood of (𝑥0, 0) in ℝ𝑛 × ℝ+. In other words, for each given
point 𝑋 ∶= (𝑥, 𝑥𝑛+1) in this set, we identify the element 𝜙𝑡𝑋

of the foliation that passes through
it, that is, 𝑥𝑛+1 = 𝜙𝑡𝑋

(𝑥) and

𝑉(𝑋) = 𝑉𝜙𝑡𝑋
(𝑋).

Now, set

𝐷 ∶= {𝑢(𝑥) < 𝑥𝑛+1 < 𝜙𝑡(𝑥)} ⊂ ℝ𝑛+1,

with 𝑡 > 0 chosen in such a way that 𝐷 is included in the neighborhood of (𝑥0, 0) foliated by the
graphs of the 𝜙𝑡s. Denote by

𝐷𝜖 ∶= 𝐷 ∩ {𝑥𝑛+1 > 𝜖}, and Γ𝜖 ∶= 𝐷 ∩ {𝑥𝑛+1 = 𝜖},

for 𝜖 > 0 small. Then, by the divergence theorem,

∫𝐷𝜖

𝑑𝑖𝑣 𝑉 𝑑𝑋 = ∫Γ𝜙𝑡
∩𝜕𝐷𝜖

𝑉 ⋅ 𝜈𝜙𝑡 𝑑𝜎 − ∫Γ𝑢∩𝜕𝐷𝜖

𝑉 ⋅ 𝜈𝑢 𝑑𝜎 − ∫Γ𝜖

𝑉 ⋅ 𝑒𝑛+1 𝑑𝑥,

and in view of (4.7)–(4.8),

∫𝐷𝜖

𝑑𝑖𝑣 𝑉 𝑑𝑋 ⩾ ∫Γ𝜙𝑡
∩𝜕𝐷𝜖

𝐺(𝜙𝑡, 𝜈𝜙𝑡 ) 𝑑𝜎 − ∫Γ𝑢∩𝜕𝐷𝜖

𝐺(𝑢, 𝜈𝑢) 𝑑𝜎 − ∫Γ𝜖

𝑉 ⋅ 𝑒𝑛+1 𝑑𝑥.

From the formula for 𝑉, on Γ𝜖, for 𝜖 small,

𝑉(𝑥, 𝜖) ⋅ 𝑒𝑛+1 = −
1

2
|∇𝜙𝑡𝑋

|2 + 1

𝛾
𝜙
−𝛾
𝑡𝑋

⩽ 0.

Indeed, we only need to verify that the one variable function of 𝑑,

𝜙(𝑑) ∶= 𝑐0𝑑
𝛼 +

𝜇

2
𝑑𝛽 + 𝑑𝜎,

satisfies:
1

2
𝜙′2 ⩾

1

𝛾
𝜙−𝛾, if 𝑑 > 0 is small.

Since 𝜇 > 0, we know that 𝜙 ⩾ 𝑐0𝑑
𝛼 while 𝜙′ ⩾ 𝛼𝑐0𝑑

𝛼−1. Hence, by the definition of 𝛼, 𝑐0 (see
(4.2)),

𝜙′2 ⩾ 𝛼2𝑐20𝑑
2(𝛼−1) = 𝛼2𝑐20𝑑

−𝛼𝛾 ⩾ 𝛼2𝑐
2+𝛾
0

𝜙−𝛾 =
2

𝛾
𝜙−𝛾,

as desired.
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Finally, this implies that, after letting 𝜖 → 0,

∫𝐷

𝑑𝑖𝑣 𝑉 𝑑𝑋 ⩾ ∫Γ𝜙𝑡
∩𝜕𝐷

𝐺(𝜙𝑡, 𝜈𝜙𝑡 ) 𝑑𝜎 − ∫Γ𝑢∩𝜕𝐷

𝐺(𝑢, 𝜈𝑢) 𝑑𝜎. (4.9)

Next we show

𝑑𝑖𝑣 𝑉 = −△ 𝜙𝑡𝑋
− 𝜙

−(𝛾+1)
𝑡𝑋

< 0,

and the left-hand side in the inequality (4.9) is nonpositive, which in view of the definition of 𝐺
contradicts the minimality of 𝑢 (see (4.6)).
To compute 𝑑𝑖𝑣 𝑉 at a point (𝑧0, 𝜙(𝑧0)), let

𝐷𝜑 ∶= {0 < 𝜙(𝑥) − 𝜖𝜑(𝑥) < 𝑥𝑛+1 < 𝜙(𝑥), 𝑥 ∈ 𝐵𝛿(𝑧0)}

with 𝜑(𝑧0) > 0 and 𝜑 a smooth bump function supported on 𝐵𝛿(𝑧0) ⊂ {𝜑 > 0}. Then, by a similar
computation as above,

∫𝐷𝜑

𝑑𝑖𝑣 𝑉 𝑑𝑋 = ∫Γ𝜙

𝐺(𝜙, 𝜈𝜙) 𝑑𝜎 − ∫Γ𝜙−𝜖𝜑

𝐺((𝜙 − 𝜂𝜑), 𝜈𝜙−𝜖𝜑) 𝑑𝜎 + 𝑂(𝜖2),

where we used that if 𝑥𝑛+1 = 𝜙(𝑥) − 𝜖𝜑(𝑥) = 𝜙𝑡(𝑥), then 𝜈𝜙−𝜖𝜑(𝑥) = 𝜈𝜙𝑡 (𝑥) + 𝑂(𝜖) and by the
homogeneity and 𝐶2 smoothness of 𝐺

𝐺(𝑥𝑛+1, 𝜈𝜙−𝜖𝜑(𝑥)) = ∇𝑦𝐺(𝑥𝑛+1, 𝜈𝜙𝑡 (𝑥)) ⋅ 𝜈𝜙−𝜖𝜑(𝑥) + 𝑂(𝜖2).

Thus, for 𝜖 small,

∫𝐷𝜑

𝑑𝑖𝑣 𝑉 𝑑𝑋 =∫𝐵𝛿(𝑧0)

(
1

2
|∇𝜙|2 +𝑊(𝜙)

)
𝑑𝑥

− ∫𝐵𝛿(𝑧0)

(
1

2
|∇(𝜙 − 𝜖𝜑|2 +𝑊(𝜙 − 𝜖𝜑)

)
𝑑𝑥 + 𝑂(𝜖2)

=𝜖 ∫𝐵𝛿(𝑧0)

(
∇𝜙 ⋅∇𝜑 − 𝜙−(𝛾+1)𝜑

)
𝑑𝑥 + 𝑂(𝜖2)

=𝜖 ∫𝐵𝛿(𝑧0)

(
−Δ𝜙 − 𝜙−(𝛾+1)

)
𝜑𝑑𝑥 + 𝑂(𝜖2).

We divide by 𝜖 and let 𝜖 → 0 and then 𝛿 → 0. Since |𝐷𝜑| = 𝜖 ∫ 𝜑𝑑𝑥, and 𝐷𝜑 tends to (𝑧0, 𝜙(𝑧0)),
we conclude that at (𝑧0, 𝜙(𝑧0))

𝑑𝑖𝑣 𝑉 = −Δ𝜙 − 𝜙−(𝛾+1).

The desired conclusion follows by Equation (4.4). □

Remark 4.5. For the proof of the subsolution property of minimizers, we need a slightly weaker
condition than the one required in Definition 4.1: A minimizer 𝑢 restricted to each connected
component of {𝑢 > 0}, whichhas𝑥0 on its boundary, cannot touch by belowa comparison function
𝜓 ∈ − (with 𝜇 < 0) at 𝑥0.
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2764 DE SILVA and SAVIN

Remark 4.6. In view of Proposition 4.4, a minimizer satisfies the estimate (4.5). Notice that unlike
Proposition 3.2, in this estimate the constant 𝐶 does not depend on the boundary data.

Remark 4.7. A straightforward application of themaximumprinciple gives that a continuous non-
negative function 𝑢 that satisfies△𝑢 = −𝑢−(𝛾+1) in the set {𝑢 > 0} has the weak nondegeneracy
property

𝑢(𝑥) ⩾ 𝑐 𝑑𝑖𝑠𝑡(𝑥, 𝐹(𝑢))𝛼,

for some 𝑐 > 0.
Indeed, if𝐵1 ⊂ {𝑢 > 0}, then 𝑢 ⩾ 𝑐 in𝐵1∕2, with 𝑐 > 0 universal. For this it is enough to compare

𝑢 with the explicit radially symmetric solution of Δ𝜙 = −𝜙−(𝛾+1), which vanishes on 𝜕𝐵1.

We now prove a strong nondegeneracy property for minimizers of (2.2), which combined with
Lemma 4.3 implies Theorem 2.2.

Proposition 4.8 (Nondegeneracy). Assume 𝑢 is a minimizer of (2.2) in 𝐵1 and 0 ∈ 𝐹(𝑢). Then,

max
𝜕𝐵𝑟

𝑢 ⩾ 𝑐𝑟𝛼, 𝑟 ⩽ 1∕2.

We remark that strong nondegeneracy does not follow from the weak nondegeneracy of
Remark 4.7 via a standard iterative argument as in the nonnegative power case [3, 5]. Instead,
we prove the following lemma.

Lemma 4.9. Let 𝑢minimize (2.2) in 𝐵2. There exists a universal constant 𝛿 > 0 such that

if 𝑢 ⩽ 𝛿 on 𝜕𝐵1 then 𝑢 ≡ 0 in 𝐵1∕8.

Proof. We prove the theorem with 𝐵1+𝑑1
instead of 𝐵1, with 𝑑1 a small universal constant to be

specified below. Let

𝜙 ∶= 𝑐0𝑑
𝛼 − 𝑑2−𝛼 − 𝑑𝜎, 2 − 𝛼 < 𝜎 < 4 − 3𝛼,

with 𝑑(𝑥) ∶= 𝑑𝑖𝑠𝑡(𝑥, 𝜕𝐵1)when |𝑥| ⩾ 1 and 0 otherwise. Then, the computation from Lemma 4.2
shows

Δ𝜙 < −𝜙−(𝛾+1), in 𝐵1+𝑑0
⧵ 𝐵̄1.

We choose 𝑑1(𝛿) so that

𝜙|𝜕𝐵1+𝑑1
= 𝛿.

Then, since 𝑢 ⩽ 𝛿 on 𝜕𝐵1+𝑑1
,

𝐽(𝑢, {𝑢 > 𝜙}) ⩽ 𝐽(𝜙, {𝑢 > 𝜙}) ⩽ 𝐽(𝜙, 𝐵1+𝑑1
) → 0, as 𝛿 → 0.

In particular, for 𝑜(1) → 0 as 𝛿 → 0,

𝐽(𝑢, 𝐵1) = 𝑜(1). (4.10)
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NEGATIVE POWER POTENTIALS 2765

Since 𝑢 ⩽ 𝛿 on 𝜕𝐵1+𝑑1
, the maximum principle implies that 𝑢 ⩽ 𝐶 in 𝐵1+𝑑1

by comparing 𝑢 with
the radial solution, which has boundary data 1 on 𝜕𝐵1+𝑑1

.
We now consider the family of subsolutions 𝜙𝜆(𝑥) ∶= 𝜆−𝛼𝜙(𝜆𝑥) whose graphs foliate the

region 𝐷 ∶= {0 ⩽ 𝑥𝑛+1 ⩽ 𝜅|𝑥|𝛼} with 𝜅 = 𝜙|𝜕𝐵1+𝑑0
. By the same calibration argument as in

Proposition 4.4, we conclude that if 𝑢 is a minimizer defined in 𝐵1+𝑑0
,

if 𝑢 ⩽ 𝜅|𝑥|𝛼 in 𝐵1+𝑑0
then 𝑢 ⩽ 𝜙 in 𝐵1+𝑑0

,

and in particular 𝑢 ≡ 0 in 𝐵1. Thus, we have the following dichotomy:

either 𝑢 ≡ 0 in 𝐵1 or there exists 𝑥̄ ∈ 𝐵1+𝑑0
such that 𝑢(𝑥̄) > 𝜅|𝑥̄|𝛼.

The second alternative, by the optimal regularity Lemma 4.3, implies that there exists 0 < 𝑟 =|𝑥̄| < 1 + 𝑑0 such that 𝐵𝑐′𝑟(𝑥̄) ⊂ {𝑢 > 0}, for some 𝑐′ universal. By a dilation of a bounded factor
and a translation, we conclude that for all 𝑥0 ∈ 𝐵1∕8

either 𝑢 ≡ 0 in 𝐵1∕4(𝑥0) or |𝐵𝑟(𝑥0) ∩ {𝑢 > 0}| ⩾ 𝑐|𝐵𝑟(𝑥0)| for some 𝑟 ⩽ 1∕2.

If for some 𝑥0 we have that 𝑢 ≡ 0 in 𝐵1∕4(𝑥0), then 𝑢 ≡ 0 in 𝐵1∕8 as desired. Assume by
contradiction the second alternative holds at all 𝑥0. Since 𝑢 is bounded above,

𝐽(𝑢, 𝐵𝑟(𝑥0)) ⩾ 𝑐1|𝐵𝑟(𝑥0)|,
for some 𝑐1 > 0 universal. We use a finite overlapping cover with these balls and find

𝐽(𝑢, 𝐵1) ⩾ 𝑐|𝐵1∕8|,
which contradicts (4.10) for 𝛿 small enough. □

Next, we prove a simple lemma, which will be used to obtain Weiss monotonicity formula in
the following section.

Lemma 4.10. Let 𝑢 be a minimizer to 𝐽 in 𝐵1, then 𝑢2 ∈ 𝐶0,1(𝐵1).

Proof. Let 𝑥0 ∈ {𝑢 > 0} ∩ 𝐵1∕2 and 𝑟 ∶= 𝑑𝑖𝑠𝑡(𝑥0, 𝐹(𝑢)) with 𝐹(𝑢) ∩ 𝐵1∕2 ≠ ∅. We rescale around
𝑥0,

𝑢̃(𝑥) ∶=
𝑢(𝑥0 + 𝑟𝑥)

𝑟𝛼
,

and the optimal regularity and Remark 4.7 imply 𝑢̃ ∼ 1 in 𝐵3∕4. Thus, by elliptic regularity,
𝑢̃|∇𝑢̃| ⩽ 𝐶 in 𝐵1∕2. Rescaling back we find that

𝑢|∇𝑢|(𝑥0) ⩽ 𝑟2𝛼−1,

and since 𝛼 > 1∕2 the desired claim follows. □

We conclude the section with the stability of nondegenerate viscosity solutions under uniform
limits. The proof follows immediately from the definitions and we omit it.
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2766 DE SILVA and SAVIN

Proposition 4.11. Let 𝑢𝑘 be a sequence of nondegenerate viscosity solutions to (4.1) in 𝐵1, and 𝑢𝑘 →

𝑢 uniformly locally in 𝐵1. Then, 𝑢 is a viscosity solution to (4.1) in 𝐵1.

5 COMPACTNESS OFMINIMIZERS

The main result of this section is the following compactness statement.

Proposition 5.1. Let 𝑢𝑘 be a sequence of minimizers to (2.2) in 𝐵1, which converges uniformly to 𝑢
locally in 𝐵1. Then, 𝑢 is a minimizer to (2.2) in 𝐵1.

Proof. Let 𝑣 be an admissible competitor with 𝑣 = 𝑢 in 𝐵1 ⧵ 𝐵̄1−𝛿 for 𝛿 > 0 small. We use
Lemma 5.2 below, and call 𝑣𝑘 the interpolation of 𝑢𝑘 and 𝑣 such that

𝑣𝑘 = 𝑣 in 𝐵1−𝛿, 𝑣𝑘 = 𝑢𝑘 in 𝐵1 ⧵ 𝐵̄1−𝛿∕2.

Then, by the minimality of 𝑢𝑘 and Lemma 5.2, we get

𝐽(𝑢𝑘, 𝐵1) ⩽ 𝐽(𝑣𝑘, 𝐵1) ⩽ 𝐽(𝑣, 𝐵1−𝛿∕2) + 𝐽(𝑢𝑘, 𝐵1 ⧵ 𝐵̄1−𝛿) + 𝑜(1),

with 𝑜(1) → 0 as 𝑘 → ∞. Notice that, by Lemma 3.4, 𝐽(𝑢𝑘, 𝐵1−𝛿∕2) are uniformly bounded, and
the hypotheses of Lemma 5.2 apply.
After subtracting 𝐽(𝑢𝑘, 𝐵1 ⧵ 𝐵̄1−𝛿) from both sides, we deduce that,

𝐽(𝑢𝑘, 𝐵1−𝛿) ⩽ 𝐽(𝑣, 𝐵1−𝛿∕2) + 𝑜(1).

By the lower semicontinuity of 𝐽, we obtain that,

𝐽(𝑢, 𝐵1−𝛿) ⩽ 𝐽(𝑣, 𝐵1−𝛿∕2).

Our claim follows by letting 𝛿 → 0. □

In the next lemma, we interpolate between two functions, which are 𝐿2 close in an annulus,
without increasing too much the total energy.

Lemma5.2. Let𝑢𝑘, 𝑣𝑘 be sequences in𝐻1(𝐵1)and 𝛿 > 0 small. Assume𝑢𝑘 − 𝑣𝑘 → 0 in𝐿2(𝐵1−𝛿∕2 ⧵

𝐵̄1−𝛿), as 𝑘 → ∞, and that 𝑢𝑘, 𝑣𝑘 have uniformly (in 𝑘) bounded energy in 𝐵1−𝛿∕2. Then, there exists
𝑤𝑘 ∈ 𝐻1(𝐵1) with

𝑤𝑘 ∶=

{
𝑣𝑘 in 𝐵1−𝛿

𝑢𝑘 in 𝐵1 ⧵ 𝐵̄1−𝛿∕2

such that

𝐽(𝑤𝑘, 𝐵1) ⩽ 𝐽(𝑢𝑘, 𝐵1−𝛿∕2) + 𝐽(𝑣𝑘, 𝐵1 ⧵ 𝐵̄1−𝛿) + 𝑜(1),

with 𝑜(1) → 0 as 𝑘 → ∞.

Proof. For notational simplicity, in what follows we drop the subscript 𝑘.
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NEGATIVE POWER POTENTIALS 2767

Let 𝜑(𝑠) be a smooth function on ℝ, which is 0 on (−∞, 0] and 1 on [1, +∞), and such that for
𝑐 > 0 small,

𝜑(𝑠) = 𝑠𝛼 in [0, c], 𝜑(𝑠) = 1 − (1 − 𝑠)𝛼, in [1 − 𝑐, 1]. (5.1)

Thus,

∫
1

0

(𝜑′)2𝑑𝑠, ∫
1

0

(𝜑−𝛾 + (1 − 𝜑)−𝛾)𝑑𝑠 ⩽ 𝐶.

For 0 < 𝜇 < 𝛿

4
, we set

𝜑𝜇(𝑠) = 𝜑

(
𝑠

𝜇

)
,

and obtain

∫ℝ

(𝜑′
𝜇)

2𝑑𝑠 ⩽
𝐶

𝜇
, (5.2)

∫ℝ

(𝜑
−𝛾
𝜇 + (1 − 𝜑𝜇)

−𝛾)𝜒{0<𝜑𝜇<1}
𝑑𝑠 ⩽ 𝐶𝜇. (5.3)

For all 𝑟 ∈ [1 − 𝛿, 1 − 3

4
𝛿], denote by 𝜑𝑟(𝑥) ∶= 𝜑𝜇(|𝑥| − 𝑟) and define

𝑤𝑟 ∶= 𝜑𝑟𝑢 + (1 − 𝜑𝑟)𝑣. (5.4)

Then,

𝐽(𝑤𝑟, 𝐵1) ⩽𝐽(𝑢, 𝐵𝑟) + 𝐽(𝑣, 𝐵1 ⧵ 𝐵̄𝑟+𝜇)

+𝐶 ∫𝐵𝑟+𝜇⧵𝐵̄𝑟

(|∇𝜑𝑟|2(𝑢 − 𝑣)2 + 𝜑2
𝑟 |∇𝑢|2 + (1 − 𝜑𝑟)

2|∇𝑣|2) 𝑑𝑥
+∫𝐵𝑟+𝜇⧵𝐵̄𝑟

((𝜑𝑟𝑢)
−𝛾𝜒{𝑢>0} + ((1 − 𝜑𝑟)𝑣)

−𝛾𝜒{𝑣>0}) 𝑑𝑥.

Thus,

𝐽(𝑤𝑟, 𝐵1) ⩽𝐽(𝑢, 𝐵1− 3
4
𝛿
) + 𝐽(𝑣, 𝐵1 ⧵ 𝐵̄1−𝛿)+

∫𝐵1−𝛿∕2⧵𝐵̄1−𝛿

𝐺(𝑟, 𝑥)𝜒{𝑟<|𝑥|<𝑟+𝜇}𝑑𝑥,
where

𝐺(𝑟, 𝑥) ∶=𝐶(|∇𝜑𝑟|2(𝑢 − 𝑣)2 + 𝜑2
𝑟 |∇𝑢|2 + (1 − 𝜑𝑟)

2|∇𝑣|2)+
((𝜑𝑟𝑢)

−𝛾𝜒{𝑢>0} + ((1 − 𝜑𝑟)𝑣)
−𝛾𝜒{𝑣>0}).
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2768 DE SILVA and SAVIN

We now average in 𝑟 and use Fubini on the right-hand side, to obtain,

4

𝛿 ∫
1− 3

4
𝛿

1−𝛿

𝐽(𝑤𝑟, 𝐵1)𝑑𝑟 ⩽ (𝐽(𝑢, 𝐵
1− 3

4
𝛿
) + 𝐽(𝑣, 𝐵1 ⧵ 𝐵̄1−𝛿))+

4

𝛿 ∫𝐵1−𝛿∕2⧵𝐵̄1−𝛿
∫

|𝑥|
|𝑥|−𝜇 𝐺(𝑟, 𝑥)𝑑𝑟𝑑𝑥.

Using (5.2)–(5.3), and recalling that 𝑢 = 𝑢𝑘 and 𝑣 = 𝑣𝑘, we therefore obtain:

4

𝛿 ∫
1− 3

4
𝛿

1−𝛿

𝐽(𝑤𝑟, 𝐵1)𝑑𝑟 ⩽(𝐽(𝑢𝑘, 𝐵1− 3
4
𝛿
) + 𝐽(𝑣𝑘, 𝐵1 ⧵ 𝐵̄1−𝛿))

+
𝐶

𝜇𝛿 ∫𝐵1−𝛿∕2⧵𝐵̄1−𝛿

(𝑢𝑘 − 𝑣𝑘)
2𝑑𝑥

+
𝐶𝜇

𝛿
(𝐽(𝑢𝑘, 𝐵1−𝛿∕2 ⧵ 𝐵̄1−𝛿) + 𝐽(𝑣𝑘, 𝐵1−𝛿∕2 ⧵ 𝐵̄1−𝛿)).

By choosing first 𝜇 small and then 𝑘 large, we obtain the desired statement in view of the
assumption ‖𝑢𝑘 − 𝑣𝑘‖𝐿2 → 0 as 𝑘 → ∞. □

We conclude with a proposition, which will be needed in the dimension reduction argument
of the next section.

Proposition 5.3. Assume 𝑢 is constant in the 𝑒1 direction, that is,

𝑢(𝑥1, … , 𝑥𝑛) = 𝑣(𝑥2, … , 𝑥𝑛).

Then, 𝑢 is a minimizer in ℝ𝑛 if and only if 𝑣 is a minimizer in ℝ𝑛−1.

Proof. Assume 𝑢 is a minimizer in ℝ𝑛 and let 𝑤(𝑥2, … , 𝑥𝑛) be a function, which coincides with
𝑣 outside 𝐵𝐾 ⊂ ℝ𝑛−1. Then, define 𝑢̃𝑟 to be the interpolation between 𝑤 and 𝑣 defined in ℝ × 𝐵𝐾

as

𝑢̃𝑟 ∶= 𝜑(|𝑥1| − 𝑟)𝑣(𝑥2, … , 𝑥𝑛) + (1 − 𝜑(|𝑥1| − 𝑟))𝑤(𝑥2, … , 𝑥𝑛),

with 𝜑 the function defined in (5.1).
Notice that 𝑢̃𝑟 = 𝑤 if |𝑥1| < 𝑟, and 𝑢𝑟 = 𝑣 if |𝑥1| > 𝑟 + 1. From the minimality of 𝑢, we find

𝐽(𝑣,𝑅) ⩽ 𝐽(𝑢̃𝑟,𝑅), 𝑅 ∶= [−𝑅, 𝑅] × 𝐵𝐾,

provided that 𝑟 + 1 ⩽ 𝑅. We integrate the inequality above in 𝑟 ∈ [𝑅 − 2, 𝑅 − 1] and obtain

𝐽(𝑣,𝑅) ⩽ 𝐽(𝑤,𝑅−2) + ∫
𝑅−1

𝑅−2

𝐽(𝑢̃𝑟,𝑅 ⧵ 𝑅−2)𝑑𝑟.

As in the proof of Lemma 5.2, the integral term above is bounded by a constant depending on 𝑣,𝑤
and the universal constants but independent of 𝑅. We divide the inequality by 𝑅, and let 𝑅 → ∞
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NEGATIVE POWER POTENTIALS 2769

to obtain the desired inequality

𝐽(𝑣, 𝐵𝐾) ⩽ 𝐽(𝑤, 𝐵𝐾).

Conversely, assume that 𝑣 is a minimizer in ℝ𝑛−1. Let 𝑤 be a function of 𝑛 variables, which
coincides with 𝑢 outside of 𝑅. Then,

𝐽(𝑤,𝑅) ⩾ ∫
𝑅

−𝑅

𝐽(𝑤(𝑥1, ⋅), 𝐵𝐾)𝑑𝑥1,

and by the minimality of 𝑣,

𝐽(𝑤,𝑅) ⩾ ∫
𝑅

−𝑅

𝐽(𝑣(𝑥2, … , 𝑥𝑛), 𝐵𝐾)𝑑𝑥1 = 𝐽(𝑢,𝑅). □

6 WEISS MONOTONICITY FORMULA AND CONSEQUENCES

In this section, we prove Weiss monotonicity formula [12, 15] for minimizers of the energy
functional 𝐽, and derive the partial regularity result Theorem 2.3.

Theorem 6.1. If 𝑢 is a minimizer to 𝐽 in 𝐵𝑅, then

𝑊𝑢(𝑟) ∶= 𝑟−𝑛−2(𝛼−1)𝐽(𝑢, 𝐵𝑟) − 𝛼𝑟−(𝑛−1)−2𝛼 ∫𝜕𝐵𝑟

𝑢2𝑑𝜎, 0 < 𝑟 ⩽ 𝑅,

is increasing in 𝑟. Moreover,𝑊𝑢 is constant if and only if 𝑢 is homogeneous of degree 𝛼.

Notice that the optimal regularity Lemma 4.3 implies that if 0 ∈ 𝐹(𝑢) then𝑊𝑢(𝑟) is bounded
below as 𝑟 → 0.

Proof. In view of Lemma 4.10,𝑊𝑢(𝑟) is differentiable for a.e. 𝑟 and by standard computations

𝑑

𝑑𝑟
𝐽(𝑢, 𝐵𝑟) = ∫𝜕𝐵𝑟

(
1

2
|∇𝑢|2 +𝑊(𝑢))𝑑𝑥,

while

𝑑

𝑑𝑟

(
𝑟−(𝑛−1)−2𝛼 ∫𝜕𝐵𝑟

𝑢2

)
𝑑𝜎 = 2𝑟−𝑛−2𝛼 ∫𝜕𝐵𝑟

(𝑟𝑢𝑢𝜈 − 𝛼𝑢2)𝑑𝜎.

Assume that these equalities are satisfied at 𝑟 = 1. Then,

𝑑𝑊𝑢

𝑑𝑟
|𝑟=1 = ∫𝜕𝐵1

(
1

2
|∇𝑢|2 +𝑊(𝑢))𝑑𝜎−(𝑛 + 1 + 2𝛼)𝐽(𝑢, 𝐵1)

− 2𝛼 ∫𝜕𝐵1

(𝑢𝑢𝜈 − 𝛼𝑢2)𝑑𝜎,
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2770 DE SILVA and SAVIN

from which we deduce

𝑑𝑊𝑢

𝑑𝑟
|𝑟=1 = ∫𝜕𝐵1

(
1

2
𝑢2
𝜏 +𝑊(𝑢)

)
𝑑𝜎+

𝛼2

2 ∫𝜕𝐵1

𝑢2𝑑𝜎 − (𝑛 + 1 + 2𝛼)𝐽(𝑢, 𝐵1)

+
1

2 ∫𝜕𝐵1

(𝑢𝜈 − 𝛼𝑢)2𝑑𝜎.

We claim that

𝐼(𝑢) ∶= ∫𝜕𝐵1

(
1

2
𝑢2
𝜏 +𝑊(𝑢)

)
𝑑𝜎 +

𝛼2

2 ∫𝜕𝐵1

𝑢2𝑑𝜎 ⩾ (𝑛 + 1 + 2𝛼)𝐽(𝑢, 𝐵1).

Indeed let

𝑢̃(𝑥) ∶= |𝑥|𝛼𝑢( 𝑥|𝑥|
)
, 𝑥 ∈ 𝐵1

the 𝛼-homogeneous extension of 𝑢|𝜕𝐵1
. Then,

𝐼(𝑢) = 𝐼(𝑢̃) = (𝑛 + 1 + 2𝛼)𝐽(𝑢̃, 𝐵1),

where the last equality follows from the computation above for 𝑑

𝑑𝑟
𝑊𝑢̃ which is 0. and our claim

follows from minimality. Thus,

𝑑

𝑑𝑟
𝑊𝑢(𝑟) ⩾ 0, a.e. 𝑟.

The conclusion follows since 𝑊𝑢(𝑟) is absolutely continuous in 𝑟. Moreover, the computations
above show that𝑊𝑢 is constant if and only if

𝑢𝜈 =
𝛼|𝑥|𝑢, for a.e. 𝑥,

that is, 𝑢 is homogeneous of degree 𝛼. □

Next we study the homogeneous global minimizers in the 2D case.

Proposition 6.2. The homogenous of degree 𝛼 minimizers of 𝐽 in dimension 𝑛 = 2 are rotations of
𝑐0(𝑥

+
1
)𝛼 .

Proof. Let 𝑢 be a globalminimizer to (2.2) inℝ2, homogeneous of degree 𝛼. Then, 𝑢(𝑟, 𝜃) = 𝑟𝛼𝑓(𝜃)

with 𝑓 a Hölder continuous function solving the following ODE in each interval of {𝑓 > 0} ∶

𝑓′′ + 𝛼2𝑓 = −𝑓−(𝛾+1). (6.1)

Notice that 𝑓 cannot be positive everywhere as we would contradict the ODE at the minimum
point. Assume that (0, 𝑎) is a maximal interval of {𝑓 > 0}.

Claim. 𝑢 = 𝑐0𝑥
𝛼
2
in the half-space {𝑥2 ⩾ 0}.

We multiply the ODE by 𝑓′ and integrate, and deduce that in (0, 𝑎)

1

2
(𝑓′2 + 𝛼2𝑓2) −𝑊(𝑓) = 𝜇,
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NEGATIVE POWER POTENTIALS 2771

for some constant 𝜇 ∈ ℝ. We wish to show 𝜇 = 0, which gives that 𝑓 is uniquely determined up
to translations, and then the claim follows.
We argue as in Section 3.1, and deduce that 𝑓 has the same two first terms in the expansion

near 0 (see (3.2)),

𝑓(𝜃) = 𝑐0𝜃
𝛼 + 𝜇𝑐1𝜃

2−𝛼 + 𝑂(𝜃𝜎), 𝜎 > 2 − 𝛼,

with 𝑐1 > 0 a universal constant. In view of Theorem 4.4 and Remark 4.5, 𝑢 satisfies the free
boundary condition at 𝑒1 ∈ 𝐹(𝑢). This gives 𝜇 = 0 and the claim is proved.

It remains to rule out the case when 𝑢 = 𝑐0|𝑥2|𝛼. This follows from Proposition 5.3, and the fact
that 𝑐0|𝑡|𝛼 is not a minimizer of 𝐽 in ℝ. □

In the next section, we show that if a viscosity solution is close to the one-dimensional solution,
then its free boundary is𝐶1,𝛽 (see Proposition 7.2). As a consequence, we have the following result.

Theorem 6.3. Let 𝑢 be a minimizer of 𝐽 in 𝐵1 such that

‖𝑢 − 𝑐0(𝑥
+
𝑛 )

𝛼‖𝐿∞ ⩽ 𝜖0(𝛾, 𝑛).

Then, 𝐹(𝑢) ∩ 𝐵1∕2 is a 𝐶1,𝛽 graph in the 𝑥𝑛 direction.

Indeed, from the nondegeneracy property ofminimizers, we conclude that𝑢 is trapped between
two translations of (𝑥+

𝑛 )
𝛼 and then Proposition 7.2 of the next section applied to 𝑤 ∶= (𝑢∕𝑐0)

1∕𝛼

gives the interior 𝐶1,𝛽 estimate for 𝐹(𝑢).
A standard consequence of the Weiss monotonicity formula together with the compactness of

minimizers is the following energy gap for cones.

Proposition 6.4 (Energy gap). Assume that 𝑈 is a cone, that is, nonzero homogenous of
degree 𝛼 minimizer of 𝐽, and let 𝑈0 ∶= (𝑥+

𝑛 )
𝛼 denote the one-dimensional solution. If 𝑈 is not

one-dimensional, then

𝑊(𝑈) ⩾ 𝑊(𝑈0) + 𝛿,

for some 𝛿 > 0 universal depending only on 𝑛 and 𝛾.

At this point, we have all the ingredients to perform the dimension reduction argument of Fed-
erer [8]. The next results follow from the standard techniques in free boundaries and we omit the
proofs (see [6] for more details).

Theorem 6.5. Let 𝑢 be a minimizer for 𝐽 in 𝐵1. Then,

𝑛−1(𝐹(𝑢) ∩ 𝐵1∕2) ⩽ 𝐶(𝑛, 𝛾)

and 𝐹(𝑢) is locally 𝐶1,𝛽 except on a closed singular set Σ𝑢 ⊂ 𝐹(𝑢) of Hausdorff dimension 𝑛 − 3.
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2772 DE SILVA and SAVIN

7 IMPROVEMENT OF FLATNESS

In this section, we show that viscosity solutions to our problem that are sufficiently close to a 1D
solution have𝐶1,𝛽 free boundaries.We follow the same strategy as in our previous work [7], which
includes the case of positive powers.
After a change of variables, we rewrite the equation in the form

△𝑤 =
ℎ(∇𝑤)

𝑤
.

Precisely, we denote

𝑤 ∶= 𝑐
− 1

𝛼

0
𝑢

1
𝛼 ,

so that 𝑢 = 𝑐0𝑤
𝛼. The equation for 𝑤 is

𝑐0𝛼𝑤
𝛼−2

(
𝑤 △ 𝑤 + (𝛼 − 1)|∇𝑤|2) = −𝑐

−(𝛾+1)
0

𝑤−𝛼(𝛾+1),

and using (4.2)

△𝑤 = (1 − 𝛼)
|∇𝑤|2 − 1

𝑤
=∶

ℎ(∇𝑤)

𝑤
. (7.1)

Here, ℎ is a radial quadratic function, which vanishes on 𝜕𝐵1, it is negative in 𝐵1 and positive
outside 𝐵1 and

∇ℎ(𝜔) = −𝑠 𝜔, if 𝜔 ∈ 𝜕𝐵1, 𝑠 ∶= 2(𝛼 − 1) ∈ (−1, 0). (7.2)

Notice that (7.1) remains invariant under the rescaling

𝑤̃(𝑥) =
𝑤(𝑟𝑥)

𝑟
.

In view of the viscosity definition for 𝑢, we find that 𝑤 satisfies (7.1) with the following free
boundary condition on 𝜕{𝑤 > 0}:

Definition 7.1. We say that 𝑤 ∶ Ω → ℝ+ satisfies (7.1) in the viscosity sense, if 𝑤 is 𝐶∞ and
satisfies the equation in the set {𝑤 > 0} ∩ Ω and, if 𝑥0 ∈ 𝐹(𝑤) ∶= 𝜕{𝑤 > 0} ∩ Ω, then 𝑤 cannot
touch 𝜓 ∈ + (resp. −) by above (resp. below) at 𝑥0, with

𝜓(𝑥) ∶= 𝑑(𝑥) + 𝜇 𝑑(𝑥)3−2𝛼,

𝛼 as in (4.2) and 𝜇 > 0 (resp 𝜇 < 0).

Notice that

3 − 2𝛼 = 1 − 𝑠 > 1.

Proposition 7.2. Assume that 𝑤 is a viscosity solution of (7.1) in 𝐵1, and

(𝑥𝑛 − 𝜖)+ ⩽ 𝑤 ⩽ (𝑥𝑛 + 𝜖)+, 0 ∈ 𝐹(𝑤),
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for some 𝜖 ⩽ 𝜖0(𝛾, 𝑛) small, universal. Then, there exists 𝑟 universal such that

(𝑥 ⋅ 𝜈 −
𝜖

2
𝑟)+ ⩽ 𝑤 ⩽ (𝑥 ⋅ 𝜈 +

𝜖

2
𝑟)+ in 𝐵𝑟,

for some unit direction 𝜈, |𝜈| = 1 and |𝜈 − 𝑒𝑛| ⩽ 𝐶𝜖.

The strategy is to show that the rescaled function

𝑤̃ =
𝑤 − 𝑥𝑛

𝜖
(7.3)

is well approximated by a viscosity solution of the linearized equation

⎧⎪⎨⎪⎩
Δ𝜑 + 𝑠

𝜑𝑛

𝑥𝑛
= 0, in 𝐵+

1
,

𝜕

𝜕𝑥1−𝑠𝑛

𝜑 = 0 on {𝑥𝑛 = 0}.
(7.4)

We recall the definition from [7] that 𝜑 ∶ 𝐵
+

1 → ℝ is a viscosity solution of the equation above if

a) 𝜑 is continuous up to the boundary,
b) 𝜑 satisfies the equation above in 𝐵+

1
in the classical sense,

c) 𝜑 cannot be touched by below (above) at a point on {𝑥𝑛 = 0} ∩ 𝐵1 by a test function

𝑞(𝑥) ∶= 𝑎|𝑥′ − 𝑦′|2 + 𝑏 + 𝑝𝑥1−𝑠
𝑛 , 𝑎, 𝑏 ∈ ℝ, 𝑦′ ∈ ℝ𝑛−1,

with 𝑝 > 0 (𝑝 < 0.)

In [7] we proved the following 𝐶1,𝜎 estimate for solutions of (7.4), see Theorem 7.2 in [7].

Theorem 7.3. Assume that 𝜑 is a solution of (7.4), and 𝑠 > −1. Then,

|𝜑(𝑥) − 𝜑(0) − 𝑎′ ⋅ 𝑥′| ⩽ 𝐶‖𝜑‖𝐿∞ |𝑥|1+𝜎,
with 𝐶 large, 𝜎 > 0 small, depending only on 𝑛 and 𝑠.

In order to prove the convergence of the rescalings 𝑤̃ to a solution of (7.4) we first establish a
Harnack-type inequality for 𝑤̃ in the set {𝑤 > 0}.

Lemma 7.4. Assume that 𝑤 is a viscosity solution in 𝐵1 and

𝑥𝑛 + 𝑎 − 𝜖 ⩽ 𝑤 ⩽ (𝑥𝑛 + 𝑎 + 𝜖)+, for some 𝑎, |𝑎| ⩽ 1∕10.
If

𝑤 ⩾ 𝑥𝑛 + 𝑎 at 𝑥0 =
1

2
𝑒𝑛, (7.5)

then
𝑤 ⩾ 𝑥𝑛 + 𝑎 + (𝑐 − 1)𝜖 in 𝐵1∕2.

Similarly, if

𝑤 ⩽ 𝑥𝑛 + 𝑎 at 𝑥0 =
1

2
𝑒𝑛,
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then

𝑤 ⩽ (𝑥𝑛 + 𝑎 + (1 − 𝑐)𝜖)+ in 𝐵1∕2.

Proof. After a translation, we may assume for simplicity that 𝑎 = 𝜖 and 𝑤 ⩾ 𝑥𝑛 in 𝐵1.
Since 𝑤 is trapped between two flat solutions 𝑥𝑛 and 𝑥𝑛 + 2𝜖, which solve the same Equa-

tion (7.1), we find that the interior estimates and the Harnack inequality (7.6) below continue
to hold for the difference between 𝑤 and 𝑥𝑛 (see [14]). Alternatively, if 𝑥𝑛 ⩾

𝜎

2
, for some 𝜎 > 0

small depending on 𝑛 and 𝑠 to be specified later, then𝑤 is bounded below by 𝑐(𝜎) thus (see (7.3))

|△ 𝑤̃| = 1

𝜖𝑤
|ℎ(𝑒𝑛 + 𝜖∇𝑤̃)| ⩽ 𝐶(𝜎)|∇𝑤̃| in {𝑥𝑛 ⩾

𝜎

2
} ∩ {|∇𝑤̃| ⩽ 1

𝜖
}.

Then, according to Lemma 3.8 in [7] we find |∇𝑤̃| ⩽ 𝐶(𝜎) in {𝑥𝑛 ⩾ 𝜎} ∩ 𝐵3∕4. In particular if we
are in the situation (7.5), then 𝑤̃(𝑥0) ⩾ 1, and we can apply Harnack inequality for 𝑤̃ ⩾ 0

𝑤 ⩾ 𝑥𝑛 + 𝑐(𝜎)𝜖 in {|𝑥′| ⩽ 1

2
} × {𝜎 ⩽ 𝑥𝑛 ⩽

1

2
}. (7.6)

This proves the conclusion in 𝐵1∕2 ∩ {𝑥𝑛 ⩾ 𝜎}, and it remains to prove that a similar inequality
can be extended near 𝑥𝑛 = 0. Toward this aim we compare 𝑤 with an explicit subsolution Ψ that
we construct below.
Let 𝜇 > 0 be a small universal constant, and denote by 𝐵 ∶= 𝐵 1

𝜇𝜖

( 1

𝜇𝜖
𝑒𝑛) the ball of radius

1

𝜇𝜖

centered at 1

𝜇𝜖
𝑒𝑛. Also, let 𝑑(𝑥) denote the distance from 𝑥 to the boundary of the ball 𝐵 when

𝑥 ∈ 𝐵, and extend 𝑑(𝑥) = 0 outside 𝐵. In the cylinder

 ∶= {|𝑥′| ⩽ 1

2
} × {|𝑥𝑛| ⩽ 𝜎},

we compare 𝑤 and translations of

Ψ = 𝑑 + 𝜇𝜖(𝑑1−𝑠 + 𝐴𝑑𝛽),

for some 𝛽 in the interval 1 − 𝑠 < 𝛽 ⩽ min{1 − 2𝑠, 2}. The constant 𝐴 is large universal, chosen
such that Ψ is a subsolution to Equation (7.1). Indeed,

△Ψ = 𝜇𝜖
(
(1 − 𝑠)(−𝑠)𝑑−𝑠−1 + 𝛽(𝛽 − 1)𝐴𝑑𝛽−2

)
−

𝑛 − 1
1

𝜖𝜇
− 𝑑

(
1 + 𝜇𝜖(1 − 𝑠)𝑑−𝑠 + 𝜇𝜖𝐴𝛽𝑑𝛽−1

)

⩾ 𝜖𝜇

(
(1 − 𝑠)(−𝑠) ⋅ 𝑑−𝑠−1 + 𝛽(𝛽 − 1)𝐴𝑑𝛽−2 +

2(𝑛 − 1)

𝑠

)
,

while, by (7.2),

|∇ℎ(𝑧)| = (−𝑠)(|𝑧| − 1) + 𝑂((|𝑧| − 1)2),

and Ψ ⩾ 𝑑 implies

ℎ(∇Ψ)

Ψ
⩽ (−𝑠)𝜇𝜖

(1 − 𝑠)𝑑−𝑠 + 𝐴𝛽𝑑𝛽−1

𝑑
+ 𝑂((𝜇𝜖)2𝑑−2𝑠−1).

 14692120, 2023, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12893 by C

olum
bia U

niversity Libraries, W
iley O

nline Library on [29/10/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://londmathsoc.onlinelibrary.wiley.com/action/rightsLink?doi=10.1112%2Fblms.12893&mode=


NEGATIVE POWER POTENTIALS 2775

Thus, if 𝑑 ∈ (0, 2), then

△Ψ −
ℎ(∇Ψ)

Ψ
⩾ 𝜇𝜖

(
𝛽(𝛽 − 1 + 𝑠)𝐴𝑑𝛽−2 +

2(𝑛 − 1)

𝑠

)
+ 𝑂((𝜇𝜖)2𝑑−2𝑠−1)

> 0,

provided that𝐴 is chosen large depending on𝑛 and 𝑠, and 𝜖 is sufficiently small. Notice also that by
construction, Ψ satisfies the viscosity subsolution property of Definition 7.1 on the free boundary
𝜕𝐵.
Next we check that on the boundary of  where either |𝑥′| = 1

2
or 𝑥𝑛 = 𝜎, we have

𝑤 ⩾ Ψ(𝑥 +
𝜇𝜖

32
𝑒𝑛). (7.7)

Indeed,

𝑑 ⩽ (𝑥𝑛 −
𝜇𝜖

4
|𝑥′|2)+,

and in the set Ψ > 0 where |𝑥′| = 1

2
, |𝑥𝑛| ⩽ 𝜎 we have

Ψ ⩽ 𝑥𝑛 −
𝜇𝜖

4
|𝑥′|2 + 𝜇𝜖(𝑥1−𝑠

𝑛 + 𝐴𝑥
𝛽
𝑛) ⩽ 𝑥𝑛 −

𝜇𝜖

32
,

provided that 𝜎 is chosen sufficiently small. This implies that

Ψ(𝑥 +
𝜇𝜖

32
𝑒𝑛) ⩽ 𝑥+

𝑛 ⩽ 𝑤,

on the boundary of  where |𝑥′| = 1∕2.
When 0 ⩽ 𝑥𝑛 ⩽ 2𝜎, we use 𝑑 ⩽ 𝑥𝑛 and obtain

Ψ ⩽ 𝑥𝑛 + 𝜖𝜇(𝑥𝑛 + 𝐴𝑥
𝛽
𝑛) ⩽ 𝑥𝑛 + 𝑐(𝜎)𝜖 −

𝜇𝜖

32
,

provided that 𝜇 is chosen small, depending on 𝑐(𝜎). Thus, on the part of the boundary of  where
𝑥𝑛 = 𝜎, we use (7.6) and obtain Ψ(𝑥 +

𝜇𝜖

32
𝑒𝑛) ⩽ 𝑤, which proves the claim (7.7). By comparing 𝑤

with a continuous family of translations Ψ(𝑥 + 𝑡𝑒𝑛), with 𝑡 ⩽
𝜇𝜖

32
, we conclude that the inequality

(7.7) holds also in the interior of . This implies the desired inequality in a neighborhood of the
origin, which gives the conclusion of the lemma. □

Proof of Proposition 7.2. Assume that for a sequence of 𝜖𝑘 → 0 and 𝑤𝑘 the conclusion does not
hold for some 𝑟 universal, to bemade precise later. By applying Lemma7.4 repeatedly,we conclude
that, after passing to a subsequence, the graphs of

𝑤̃𝑘 ∶=
𝑤𝑘 − 𝑥𝑛

𝜖𝑘
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defined in {𝑤𝑘 > 0}, converge uniformly on compact sets to the graph of aHölder limiting function
𝑤̄ defined in 𝐵

+

1 , and

|𝑤̄| ⩽ 1 𝑤̄(0) = 0,

since |𝑤̃𝑘| ⩽ 1, 𝑤̃𝑘(0) = 0. The function 𝑤̃𝑘 solves the equation

△𝑤𝑘 =
1

𝜖𝑘

ℎ(𝑒𝑛 + 𝜖𝑘∇𝑤̃𝑘)

𝑥𝑛 + 𝜖𝑘𝑤̃𝑘

∶= g(𝜖𝑘, 𝑥𝑛, 𝑤̃𝑘, ∇𝑤̃𝑘)

and

g(𝜖𝑘, 𝑥𝑛, 𝑧, 𝑝) →
∇ℎ(𝑒𝑛) ⋅ 𝑝

𝑥𝑛
= −𝑠

𝑝𝑛

𝑥𝑛
as 𝑘 → ∞,

we find that 𝑤̄ solves the linear equation

△𝑤̄ + 𝑠
𝑤̄𝑛

𝑥𝑛
= 0 in 𝐵+

1
, (7.8)

in the viscosity sense.

Claim. 𝑤̄ satisfies the boundary condition of (7.4) on {𝑥𝑛 = 0}.
Assume by contradiction that, say for simplicity 𝑤̄ is touched by below at 0 by

−𝑎|𝑥′|2 + 𝑝𝑥1−𝑠
𝑛

for some constants 𝑎, 𝑝 > 0. After, relabeling 𝑝∕2 by 𝑝, and 𝑎∕2 by 𝑎, we may assume that 𝑤 is
touched strictly by below at 0 by the function

𝑞(𝑥) ∶= −𝑎(|𝑥′|2 − 𝐴𝑥
𝛽
𝑛) + 𝑝𝑥1−𝑠

𝑛 , 𝑝 > 0,

with 𝛽 in the interval 1 − 𝑠 < 𝛽 < min{1 − 2𝑠, 2}, and 𝐴 is large such that 𝑞 is a subsolution of
Equation (7.8) (notice that 𝑥1−𝑠

𝑛 is a solution of (7.8)).
We construct the function Ψ

Ψ = 𝑑 + 𝜖𝑝𝑑1−𝑠 + 𝜖𝑎𝐴𝑑𝛽,

where, as in Lemma 7.4, 𝑑 = 𝑑(𝑥) is the distance from 𝑥 to the boundary of the ball 𝐵 =

𝐵 1
2𝜖𝑎

( 1

2𝜖𝑎
𝑒𝑛) of radius

1

2𝜖𝑎
and center 1

2𝜖𝑎
𝑒𝑛. The same computation as in Lemma 7.4 shows that Ψ

is a subsolution to Equation (7.1). Moreover, using that

𝑑 = (𝑥𝑛 − 𝜖𝑎|𝑥′|2)+ + 𝑂(𝜖2),

we find that

Ψ̃ ∶=
Ψ − 𝑥𝑛

𝜖
in {Ψ > 0},

converges uniformly to 𝑞(𝑥) as 𝜖 → 0. Since 𝑞(𝑥) touches strictly by below 𝑤̄ at the origin, and
𝑤𝑘 converge uniformly to 𝑤̄, we conclude that a small 𝑒𝑛-translation of the graph Ψ restricted
to {Ψ > 0} (with 𝜖 = 𝜖𝑘) must touch by below the graph of 𝑤𝑘 at a point 𝑥𝑘 → 0. We reached a
contradiction since Φ is a strict subsolution, and the claim is proved.
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Next we apply Theorem 7.3 to 𝑤̄ and conclude that

|𝑤̄ − 𝑎′ ⋅ 𝑥′| ⩽ 𝑟

8
in 𝐵

+

𝑟 ,

for some 𝑟 > 0 universal depending only on 𝑛 and 𝑠. This implies(
𝑥𝑛 + 𝜖𝑘(𝑎

′ ⋅ 𝑥′ −
𝑟

4
)
)+

⩽ 𝑤𝑘 ⩽ (𝑥𝑛 + 𝜖𝑘(𝑎
′ ⋅ 𝑥′ +

𝑟

4
))+ in 𝐵

+

𝑟 ,

holds for large 𝑘. Then, the conclusion is satisfied for 𝑤𝑘 with 𝜈𝑘 =
𝑒𝑛+𝜖𝑘𝑎

′|𝑒𝑛+𝜖𝑘𝑎′| and we reached a
contradiction. □
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