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Free boundary regularity in the multiple
membrane problem in the plane

By Ovidiu Savin at New York and Hui Yu at Singapore

Abstract. We study the regularity of free boundaries in the multiple elastic membrane
problem in the plane. We prove the uniqueness of blow-ups, and that the free boundaries are
C 11°2_curves near a regular intersection point.

1. Introduction

Given a positive integer N, the N-membrane problem describes the shapes of N elastic
membranes under external forces. The membranes cannot penetrate each other, but they can
coincide in a priori unknown regions, giving rise to (N — 1) free boundaries. The N -membrane
problem can be viewed as a coupled system of (N — 1) obstacle problems with interacting free
boundaries. It is the natural extension of the obstacle problem (which corresponds to the case
N = 2) to the vector valued case, and can be referred to as the vectorial obstacle problem.

Mathematically, given a domain & C R¢, some positive constants {wy Yk=1,2,...N»>and
bounded functions { fx }x=1,2,.... 5, We study the minimizer of the following convex functional

1
(1.1) (ul,uz,.--,MN)H/SZZwk(EIVuklz-l-fkuk) dx
over the class of functions with prescribed data on 0€2, and subject to the constraint
(1.2) Uy > Uy >--->upy in 2.

The function f; represents the force acting on the kth membrane, whose height is described
by the unknown u. Each wy represents the weight of the kth membrane.

Since the membranes cannot penetrate each other, the functions {uy} are well ordered
inside the domain. This leads to the constraint (1.2). On the other hand, consecutive membranes
can come in contact with each other. Between the contact region {uy = uy1} and the non-
contact region {uy > U1}, we have the kth free boundary

Ty i= o{ug > up41)-
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We consider the case of constant force terms that satisfy a non-degeneracy condition specific
in obstacle-type problems

fi>fa>-> fn.

The Euler-Lagrange equation is given in the form of the variational inequality
(1.3) wi(v;i —u;)Au; < wi(vi —u;) fi,

which holds for all v € H!(Q) that satisfy the constraint (1.2). Since the convex set defined
by (1.2) is invariant under addition of the same function and multiplication by the same positive
number, we have further

(1.4) Nowitu =Y wifi. Y owidui =Y wufi.

Existence and uniqueness of the minimizer were established by Chipot and Vergara-
Caffarelli [3]. They also proved that solutions are Ckl);a (2) for all @ € (0,1). We obtained
the optimal C!-regularity of solutions and then performed a blow-up analysis in Savin and
Yu [8].

The case when N = 2 corresponds to the classical obstacle problem. Concerning this
problem, there is a large literature, see, for instance, [1,2,4,6,7,13]. For the case when N = 3,
the free boundary regularity was investigated recently in [9]. The nontrivial analysis occurs near
the points where the two free boundaries intersect. Exploiting a maximum principle satisfied by
the pair (11, —u3) which is specific to N = 3 membranes, we obtained the sharp logarithmic
rate of blow-up. With this, we established the C !"°¢-regularity of the free boundaries near
regular intersections, and the uniqueness of certain types of blow-up profiles.

In this work, we extend these results in the physical dimension d = 2 to an arbitrary
number of membranes N, and to all possible blow-up profiles. For arbitrary N, the setting
is much more complicated as the complexity of the problem grows exponentially with N.
Nevertheless, we are able to prove uniqueness of blow-ups as well as sharp free boundary reg-
ularity near a regular intersection point. A consequence of our results is that the free boundaries
intersect tangentially if the corresponding coincidence sets have positive densities at the inter-
section point. This is one of the interesting features of the problem: the (N — 1) degrees of
freedom of the problem do not usually match the degrees of freedom of the free boundaries
when they intersect!

Uniqueness of blow-ups is a central problem in the regularity theory, and it is usually
achieved through a differential inequality known as the log-epiperimetric inequality of the type

iW(u,r) < —cW(u,r)Y, y<2.
dr

Here W represents the functional that appears in the (Weiss) monotonicity formula, trans-
lated so that it tends to 0 as r — 0. For cones with smooth cross sections and when W has
analytic structure, a general method to establish the log-epiperimetric inequality is based on
the Lojasiewicz—Simon inequality. The method was developed by L. Simon [12] in the setting
of minimal surfaces. However, this strategy does not seem to apply in obstacle type problems
as the constraint (1.2) is polyhedral. The log-epiperimetric inequality in the standard obsta-
cle problem was established by Colombo-Spolaor-Velichkov [4] by making use of the Fourier
decomposition of the traces of u on dB;. The same authors extended their results to cones of
even frequency for the thin obstacle problem [5].
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Recently in [10, 11], we proposed an ad-hoc strategy to establish the uniqueness of cer-
tain blow-up cones in obstacle-type problems, which is inspired by our work for N = 3. This
is based on introducing approximate solutions, modeled by solutions of the linearized problem.
These approximate solutions are so that they minimize the error of the right-hand side in the
Euler—Lagrange equation, and are used to approximate the dyadic rescalings of the actual solu-
tion u. Their construction usually involves solving appropriate obstacle problems on dB;. The
fact that the error cannot be improved reduces to a non-orthogonality condition, which often is
given in the form of a nontrivial algebraic statement. The strategy is the following.

Assume the solution u is within an ¢ error of an approximate solution v in By. Then we
need to show that in a smaller ball B, either u has a 5-rescaled error with respect to another
approximate solution w (which would give a geometric convergence rate for the rescalings of

u), or the energy of u in B, decayed at least an €2 amount, i.e.,

Wu,p) < W(u,1) —ce?.

This dichotomy is a consequence of the fact that v is “the least error” approximation among
functions which project in the same point on the tangent space given by the linearized equation.
Then we establish an inequality of the type W(u, 1) < ¢! T# for some p > 0, which together
with the inequality above gives a discrete version of the log-epiperimetric inequality and leads
to the uniqueness of blow-up limits.

In the present work, we follow the same strategy. An important point is that in dimension
d = 2 all cones are classified, and this plays a key role in the algebra involved, see Section 4.
The construction of approximate solutions relies on the solvability of the global problem in one
dimension, which we investigate in Section 3. Throughout the paper we use the bold face letter
notation for vectors, say

u= (Ug,...,un).

Before we introduce our results a few simplifications are in order. We may assume that
all N free boundaries pass through the origin,

0€ﬂr,~,

since an intersection point involving fewer free boundaries can be reduced locally to the same
problem with fewer membranes. Also, after subtracting the average from all u;, we may
assume that the average of the functions u and f is O (see (1.4)):

Zwk“k =0, Zwkfk =0.

In [8], we showed that the quadratic rescalings
u,(x) 1= r2u(rx)

converge on subsequences as r — 0 to a 2-homogeneous solution p, i.e., a cone. Moreover, in
dimension d = 2, we classified the family €, of cones as extensions of one-dimensional cones
to two dimensions (see next section for more details).

We state the main results.

Theorem 1.1. Assume that d = 2 and p € €, is a blow-up limit for u at the origin.
Then p is unique and
u(x) = p(x) + O(|x[*(—log |x|) ™).
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Among the two-dimensional cones, the one of least energy is given by rotations of

1
Po(x2) := E(X;)zf,

which represents the situation when all coincidence sets are given by the same half-plane. If pg
appears as a blow-up limit at the origin, then we say that 0 is a regular intersection point for
the free boundaries I';. Near these points, the free boundaries enjoy the following regularity:

Theorem 1.2. Assume d = 2 and
lu—po| <eo in B

for a constant gy depends on N, f and w. Then each T; is a C "'°2-curve in By ».

The paper is structured as follows. In Section 2, we introduce the notations, and collect
some general facts about the maximum principle and the optimal regularity of solutions. In
Section 3, we study the global one-dimensional problem which is crucial to our analysis. In
Sections 4 and 5, we prove Theorem 1.1 for those nondegenerate cones (connected cones) p
for which all their coincidence sets have nonempty interiors. In Section 6 we prove Theorem 1.1
for all other degenerate cones. Finally, in Section 7 we prove Theorem 1.2.

We conclude the introduction with a game theoretical interpretation of the N-membrane
problem. Suppose there are N players Pq,..., Py which hold N tickets 1,2,..., N and a
token that moves on a lattice in 2. Each round the token moves randomly to an neighboring
vertex and the players can interchange their tickets according to the following rule: the player
with the ticket 1 can choose any ticket he wishes, after that the player with the ticket 2 can
choose from the remaining N — 1 tickets and so on. Moreover, in order for a player to hold
onto the ticket 1 for one round he needs to pay the amount f7, and for the ticket 2 the amount
f2, etc. When the token exits the domain, the payoff for the ticket k holder is given by the
boundary data ¢. If all players optimize their strategies then the solution uj, to the discrete
N-membrane problem (with weights w; = 1) represents the expected payoff of the player
holding the ticket k, while the coincidence sets give the optimal strategies on the exchange of
tickets.

2. Notation and preliminaries
In this section we introduce the notations used through the paper, and collect some basic

properties of solutions to the N-membrane problem, such as optimal regularity, maximum
principle and introduce the cones in one and two dimensions.

Notation.
cu= (uy,...,un).
e 1=(1,1,...,1).

e u>vmeans u; > v; foralli.

For I C {1,..., N}, uy denotes the average of u; withi € I:

2.1 =y Zwiw~”i‘
I %Y

iel
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e P denotes the collection of one-dimensional cones, see Definition 2.2.
e P¢ C P are the connected one-dimensional cones, see Definition 2.2.
* B(p) is the space associated to the branches p € ¢, see Definition 3.1.

* h(x,b) is the global one-dimensional solution with linear asymptotics givenby b € B(p),
see Definition 3.2.

* T € B(p) is generated by the 1-translation, see Definition 3.1.

* e(b) is the error function, see Definition 3.3.

* p(x,b) the approximate solution generated by b, see Definition 4.1.

* p(x,bg,by), see Definition 4.2.

e 8(r,p, ¢), see Definition 4.3.

e W(u,r) the Weiss functional, see Section 5.

* px € P\ P denotes a degenerate one-dimensional cone.

e p. € P€ are the connected one-dimensional cones which make p+, see Section 6.
e §(r,px.¢), see Definition 6.1.

e og-connected, see Definition 6.2.

» We denote by ¢;, C; constants depending on N, d, f, , and call them universal constants.

If & is a function with Ah = const, then u — i1 solves the N-membrane problem with
forces f — (Ah)1, see (1.3)—(1.4). Thus, without loss of generality we assume throughout that

the functions f have average 0
> oifi =0,
and by (1.4), Y w;u; is harmonic.
Often we subtract the average of the u; from each function so that we reduce to the case
> wiju; = 0. When this holds we say that u solves problem Py.

Definition 2.1. We say that u solves problem Py if it is a solution to the N -membrane
problem and also Y w;u; = 0.

The Euler—Lagrange equation gives that in an open region where / membranes coincide
Um < Um+1 = Um+2 =+ = Upm4] < U441, the common function uy,, 41 satisfies

Aumyr = f1, T =m+1,... ., m+1},

i.e., the force acting on each of the / membranes in this coincidence region is the average of
the / forces f;.

Optimal regularity. Existence and uniqueness of solutions in H1(S2) follows easily
from the standard methods in the calculus of variations. The optimal C 1! regularity of solu-
tions was obtained in [8]. We sketch the proof for completeness. We show that u; € Ckl)’c1
and

(2.2) Aui= Y fapdape Ajk={wj1 <uj = =up <upyrh.

j=izk
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Lipschitz regularity. Ifv € H'(B;) in another solution, then by adding the variational
inequalities (1.3) for u and v we find

a),-(v,- — ul-)A(v,- — ul-) >0 = A(a)i(v,- — ui)z) >0,
hence Y w; (v; — u;)? is subharmonic. This shows that

[V —ullLe(s,) = Clv—uli2s)-
Taking v to be a translation of u, we obtain

[Vullpe (s, ,,) < ClIVullp2eg,)-
C 11 regularity. We start with the following lemma.

Lemma 2.1. Assume u solves the N -membrane problem in By. Then
(2.3) | Aum| < CIf],
(2.4) lallcri(s,,,) = Clullzeecs,) + If]).

Proof.  'We use induction on N. The case N = 1 is trivial.

For N > 1, after subtracting the average, we may assume that > w;u; = 0, and say also
that |f| = 1. We start with (2.3).

The set where all membranes coincide is

K:={u; =0:foralli} ={u; = un}.

Inequality (1.3) implies Auy < f1, Auy > fn,hence A(u; —upny) < f1 — fn. This means
that w := u; —upy > 0, satisfies Aw < C in Q and, by the induction hypothesis, |Aw| < C
in the set {w > 0} = Q \ K. This shows that w solves a scalar obstacle problem with right-
hand side bounded in L°°, which implies the standard quadratic growth away from its zero

set
w(x) < Cd(x, K)?,

where d(x, K) denotes the distance from x to the set K. Then |u1|, [un| < w satisfy the same
inequality, and it holds for all other |u;,|. This shows |Au,,| < C on K in the viscosity sense,
while outside K the inequality holds (in the viscosity sense) by the induction hypothesis. In
conclusion, (2.3) is proved.

As a consequence, Uy — Um+1 > 0 solves an obstacle problem with an L°° right-hand
side, and it satisfies the standard quadratic growth behavior

(2.5) Um — Umt1 < Cd(x, T)® in{um > Umy1}.

Next we prove (2.4) by showing that each function u,, admits a tangent paraboloid by
above/below of opening 1 + |[u||zc. For simplicity we prove this at the origin.

Let r > 0 denote the radius of the smallest ball around the origin B, which intersects
all free boundaries I';. Notice that in B, the problem decouples into two multi-membranes
problems involving fewer membranes than N .

Ifr > %, then we can apply the induction hypothesis in B, and get the desired conclusion
in By/,. If r € (0, %), then by (2.5) we conclude that 1, — up+1 < C(r? + |x|?) for all m.
Since the average of the functions u is 0, we find

um| < Cr? + |x[?).
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In B, we may apply again the induction hypothesis (for the rescaling @). Then we conclude
that u,, admits a global tangent polynomial of opening C by above/below at the origin (outside
B, we use the inequality above).

Finally, if = 0, we obtain as above |u,,| < C|x|*> which gives again the desired esti-
mate. |

Remark 2.1. Lemma 2.1 implies (2.2) by considering Lebesgue points for A where
u is twice differentiable. If we assume that f satisfies the nondegenerate condition

fi>fa>> fn,

then the right-hand side for A (1, — U, +1) is positive, and we obtain also the quadratic growth
by below

max (Um — Um+1) = cr? ifxg € Tp,
B (x0)

for some ¢ > 0 universal.

Maximum principle. The maximum principle takes the following form in the setting
of the N-membrane problem.

Lemma 2.2 (Maximum principle). If u and v are two solutions withu > v on 0%, then
u > vin Q. Moreover, if uj (xo) = vi(xo) for some xog € 2, then u; = v;.

Proof. Let I C{l,..., N} be the set of indices m for which u,,(xo) = u;(xo) and
similarly define J the set of membranes that coincide with v at xo. We have max I > max J,
min / > min J. Then the average function u;ny (see (2.1)) satisfies

Aurng < fins

in a neighborhood of x¢, since we may perturb the membranes u,, with m € I N J upwards
by a positive function ep, ¢ € C5°(By(x¢)) and keep satisfying the constraint (1.2). Similarly,

Aving = finJ.

Since uyny > vins and they coincide at xg, we find that they coincide in B (xo). O
One-dimensional and two-dimensional cones.

Definition 2.2. We denote the space of one-dimensional cones by #:
P = {p : p is a homogeneous of degree 2 solution, and 0 = (| 't }.

We denote by &€ the solutions p € J which are nontrivially connected in the sense that each
coincidence set Ay, := {u; = Um—+1} is a half-line (or equivalently has nonempty interior),

PC={peP:intA,, #@forallm < N —1}.

There are 3V~ elements in &, since there are three options for each of the coincidence
sets Ayt (—00, 0], {0}, [0, 00), and there are 2N =1 elements in P°.
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A particular solution in € is pg which has the components p; = %(xJF)Z. It turns out
that pg and its reflection po(—x) are the least energy solutions among all p € .

In [8] we showed that the space of two-dimensional cones €, is generated by one-dimen-
sional cones in the following way. If p € ¢, then its two-dimensional extension coincides
with p(x2) up to rotations.

Ifpx € P\ P€ (i.e., adegenerate cone), then we first decompose px as a union of m > 2
connected cones in P€. Each of these cones is extended to two dimensions, and then modified
by a harmonic function and an angle of rotation, see Section 6 for more details.

A convergence lemma. We state a lemma about sequences and the convergence of
series, which we use in the main result. In out setting w, will represent the Weiss energy of u

in the ball of radius pV, while &, the rescaled error between u and an approximate solution.

Lemma 2.3. Let wy, and &, be two sequences of real numbers between 0 and 1. Suppose

that s
wp+1 < Coey,
and either
En
Wpt1 < Wy and  epqq = 5
or
W41 < Wy —csﬁ and &e,41 = Ceyp.
Then
2.6) S en < Mk

n>k

for some M depending only on c, C, Cy.

Proof. 'We only sketch the proof (see [11] for more details). The sequence

/
an :=wn+cs%

4
satisfies ay4+1 < an — csﬁ < ap — Ca; which implies a, < Cn~3. The conclusion follows

by adding the inequalities
en < Clan —an+1)%~ U

3. The one-dimensional problem

In this section, we study the N-membrane problem in one dimension. For each cone
p € P¢ and vector b associated to the branches of p, we show that there is a unique global
solution with linear asymptotics given by bx at £00. We also introduce the error function e(b),
which plays an important role in the study of approximate solutions in general dimensions.

In the one-dimensional problem, each component of the solution is piecewise quadratic,
and the difference between consecutive membranes is convex. This means that the coincidence
set {U;; = Um+1} is an interval. Recall that &€ represents the connected one-dimensional
cones, see Definition 2.2. If p € L€, then the graphs of all the components of p consists of
(N + 1) disjoint half quadratics starting at the origin, i.e., a(x)? or a(x™)2. This is because
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any two consecutive graphs of the p; have precisely a half quadratic in common. We call
these disjoint quadratics the branches of p. The right branches of p are the graphs over [0, c0)
and the left branches the ones over (—oo, 0]. The condition ) | w; p; = 0 implies that the right
(respectively left) branches average to 0 when counting their weights and multiplicities.

We associate a real number by, to each of the branches of p with the compatibility con-
dition that the average of these numbers on the right (respectively left) branches equals 0. The
collection of these by is denoted by b € B(p).

Definition 3.1. For each p € ¢, the space B(p) consists of vectors
b= (by.by.....by.bY.....b¥),
with the property that ) w;b;” = ) w; bl-'" =0 and

b =b; if pi = pit+1on(—00,0],

bi+ = bl.t_l if p; = pi+1 on [0, c0).

Clearly, B(p) C R?¥ is an (N — 1)-dimensional linear subspace.
We want to solve the N-membrane problem after perturbing the branches of a solution
p € ¢ by xb.

Proposition 3.1. Given b € B(p), there exists a unique solution u to problem Py in R
which satisfies
u; = pi + bij:xjE +o(lx]) asx — £oo,

where b; = bl.jE is the number associated to the branch of p;.

Proof.  We first show the existence.

We solve the problem in the interval [—R, R] with boundary data u; = p; + b;x and
obtain a solution uR, and then let R — oo0. We need some uniform estimates.

Let M > max |b;], and let ¢y be the first value as we decrease ¢ for which the inequality

p+(+Mx)1>uR on[-R,+R]

fails. When ¢ = f¢, we need to replace > with > above and equality holds at some xo for some
i-component.
Notice that o > 0 which follows from the inequality written at x = 0 and

Za)iui = Za)ipi =0.

The left-hand side is a solution to our problem in each interval (—R,0), (0, R) and by the
strong maximum principle it follows that the first contact point must be xo = 0, since at the
end points £ R we have strict inequality by the choice of M.

We claim that g < CM? with C a universal constant. We choose K = §~ ' M with § > 0
the universal constant from Lemma 3.1 below, and then define v as the translation of u

v:=u® = (1 + MK)1.

We have
p>v in[-K, K]
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and

vi (0) = —MK = p;(0) — §K>.
By Lemma 3.1 (rescaled) we find v(0) > —K?1 which means u]R (0) > to + MK — K? and
the claim follows from ) w;u Z.R(O) = (. A symmetric argument gives

p+(CM?+ M|x)1>uR >p—(CM? + M|x|)1.

Since uiRJrl — uiR has to grow quadratically away from the free boundary, it follows that if

pi = pi+1 say on [0, 00), then ulR = ul.R_|_1 on [CM, R) for some C universal. In particular,
u l.R and p; + b; x have the same constant as second derivative on [CM, R). Their difference is
at most CM? as at the end points of the interval. As R — oo we can extract a subsequence
which converges uniformly on each compact set and has the asymptotic expansion required.
For the uniqueness, we argue as above and obtain that u; has the same second derivative
as p; + b;x in aneighborhood of co (or —oo) and therefore they must differ by a constant. Thus
if v is another solution, Y w; (u; — v,-)2 is convex and bounded and therefore it is a constant. In
particular, V(u; — v;) = 0 for each i, thus u; — v; is constant for each i. Since the branches of
u and v are connected we find that these constants are independent of i, and since their average

is 0, they all must be 0. O
We give a quantified version of the strong maximum principle for solutions near p € €.

Lemma 3.1. Let p € P€ and let v be a solution of our problem (not necessarily of
average 0) with p > v in [—1, 1], v; (0) > =8 for some i. Then v;(0) > —1 for all j, provided
that § is sufficiently small.

Proof. The inequality is clear if j <i. It suffices to show that the collection of the
graphs of the v; with j > 7 are all connected in the strip {|x| < ¢} for some ¢ small. Assume
not, and them let / > i be the last membrane connected to v; in [—c, ¢]. Then vy, ..., v; are
uniformly bounded in [—c, c], and solve the /-membrane problem in [—c, c]. By compactness
(for fixed /), as § — 0 we obtain a limiting solution v of the /-membrane problem which is
below (p1, ..., p;) and with v; (0) = p;(0) = 0. Since [ < N, it follows that (pq,..., p;) is
a strict supersolution to the /-membrane problem, and we contradict the maximum principle
between p and v. m|

Definition 3.2. Given p € &€ and b € B(p), we denote by
h(x,b)

the unique solution u from Proposition 3.1 to problem Py which has linear coefficients b in its
asymptotic expansion at 00

u; = pi +bix +o(lx]) asx — Foo.

Remark 3.1. Notice that p(x + 1) has linear coefficients t; := % in its expansion
at +00. Hence if b = s, then
h(x,st) = p(x + s),
or more generally
h(x,b + st) = h(x + s,b).



Savin and Yu, The N -membrane problem 119

With this and the fact that the linear perturbation keeps the contact situation unchanged
outside an interval of length C ||b||, we have the following.

Lemma 3.2. The function h(x,b) is homogeneous of degree 2 in the variables x and b,
and is CV1 and piecewise quadratic in the x-variable. Moreover,

hi = pi +bix + O(Ib]]?),
and outside the interval [—-C ||b||, C ||b||] we have
hi = pi + bix + e,

with e; a constant which depends only on the branch.

Definition 3.3. We refer to the function b — e which maps B(p) to B(p) as the error
Jfunction (which is a homogeneous of degree 2 map).

It turns out that h(x, b) is C 1! in the b-variable as well. The proof of this fact is technical
and can be skipped on a first reading.

Lemma 3.3. The function h(x,b) is piecewise quadratic and of class C' in both
variables x and b. In particular, the error map e(b) is piecewise quadratic in b.

Proof.  Each solution u to problem Py which is asymptotic to p at infinity, in the sense
that R~2u(Rx) — p must be of the form h(x, b) and is uniquely determined by b.

On the other hand each such solution is also uniquely determined by the location of the
free boundaries I';. For example ©; and u; coincide on the side of I'; where their correspond-
ing branches agree and they must differ on the other side of I'y. So if we know the locations
of all the I';, 1 <i < N — 1, then we know in each of the corresponding subintervals deter-
mined by the I'; which membranes coincide, and thus the second derivatives of all the u; are
uniquely determined. In other words if we arrange the free boundary points in increasing order
Iy, < Ty, < Tiy_,,then each u} is determined on the interval [I';,, T';; ] by the permutation
w={i1,...,in—1} of {1,2,..., N — 1}. We can then integrate these second derivatives and
construct a solution u to problem P with free boundaries I';. Since the graphs of all the mem-
branes are connected, the solution u is unique up to a linear function. We explain more in detail
how to construct u inductively in the following way.

Assume that the top membrane p; of p is free on the left and has the common branch with
p> on the right. Then we construct 1 on the left of I'y as %(x — F1)2 and then on the right
of I'; we need to add to this quadratic a linear combination of terms [(x — I';)*]? according to
values of u/l/ on the subintervals [I'; s T ; +1] to the right of I'y. Then we construct u, as equal
to u1 on the right side of I'; and on then on the left of I'; we need to adjust it by adding to u; a
linear combination of terms [(x — I';)~]? according to the values of u’ on the subintervals to
the left of I';. Then we define u3 as equal to u, on the side of I', where the branches of p, and
p3 coincide, and modify it on the other side of I'; according to the values of u%. We continue
this process till u . By construction,

Up Z Uz =+ ZUN

(since u% > u% 1 Which is a consequence of non-degeneracy), and the Euler-Lagrange equa-
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tions are satisfied, hence u is a solution of problem P with the given free boundaries I'y. By
construction, each u; is of the form

3.1) wi =y e = TO¥P + pg [ = T 7%,
k

where the coefficients Ml:cti are determined only by the permutation 7z. We obtain a solution to
Py after subtracting their total average from each one of them. The corrected u; have the same
form as above. The corresponding vector b for this solution is obtained from the asymptotic
expansion of the u; at 00, which means that b is a linear combination of the I'; with coeffi-
cients depending on the ;Ll.ik. Since b is uniquely determined by the I'; it follows that the map
(I'y,....,Tny—1) — b is an invertible linear map on each open region of RN¥—1 where the I
do not change the order. This linear map depends only on the permutation 7z and in each such
region [ is a linear function of b.

We view the function constructed above as a function of N variables u(x,I') = p(x,b),
and notice that u(x, I') is purely quadratic in its variable in each of the N'! convex polyhedral
regions determined by the relative orders between the variables x, I'1, ..., 'y —1. In each such
region I' = A;b for an invertible linear map A, . Thus, when viewed as a function of (x, b),
u is still purely quadratic in its variables in the corresponding N ! polyhedral convex regions in
the (x, b)-variables.

It suffices to show that the normal derivatives of the quadratic polynomials on each
side of a common (N — 1)-dimensional face between two adjacent regions coincide. Then
Cl > D(Zx,b)p > C1 except on a set of dimension N — 2, and this inequality can then be
extended by continuity on the remaining lower-dimensional set as well.

Let us consider a point (xg,bg) on a common (N — 1)-dimensional face between two
regions. Let ug(x) = p(x, bg) be the corresponding solution for by and let T'¢ be the free
boundary vector associated with ug. In the (x, I')-variables, a common (N — 1)-dimensional
face between two regions corresponds to the case when two of the N coordinates of (x,T)
coincide and all the others are different.

Case 1: x¢ coincides with I'g . As we let x vary near xo and keep I'¢ fixed, the
derivatives of uy match at I'g x since ug is a C L1 function. This means that the directional
derivative with respect to the x-direction at (xg, bg) agree. This direction is transversal to the
face x = Iy (since [ is linear in b near (xg, bg)) and the conclusion follows.

Case 2: Ty = I'g,; for some k <. We study the behavior of the solution u as we
vary I in an e-neighborhood near I' .

If ug x (T k) > ug,;(I'g,7), then there is no change in the topology of the graph of u as
we vary I'. This means that the right-hand sides for u” in the subintervals determined by I' are
not affected when I'y and I'; cross each other. The coefficients ;Lli/ in (3.1) remain the same on
either side of I'y = I'; and the two polynomials coincide.

Next we assume that ug (o x) = u9(Io,), and denote by Z € R? the point on the
graph of ug where kth and /th membranes coincide. We prove our claim by extending the
solution given by (3.1) when I'; < I'; to a whole e-neighborhood of bg and then show that it
differs from the exact solution by at most C&2.

Let v(x, b) denote the right-hand side of (3.1) corresponding to the permutation = with
'y < Iy, where [’y are viewed as linear functions of b. When 'y (b) < I';(b), then v is the
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solution to problem Py (with asymptote b). However, when 'y > I'7, then v might fail to solve
our problem near Z. We collect hear the properties of v in this case:

(1) By construction, v is a C L1 function and v” is constant in each of the N subintervals
defined by I'.

(2) [T —To| = O(¢) and |v —up| = O(e) on any compact interval.

(3) The quadratic polynomial expressions in (x, b) that define v in the open subintervals of I"
remain constant as we exchange the order of [y and I';, except for the ones in the interval
between I'; and I';. Outside this interval the membranes of v that coincide when I'y < I
continue to coincide, and their right-hand sides remain constant. In particular, v has the
vector b in its asymptotic expansion at o0, and its average is 0 away from [, I'x].

(4) In a neighborhood of the interval [I';, ['t], for the membranes v; for those i for which
Z does not belong to the graph of the i th membrane of ug, their polynomial expressions
remain constant. Indeed, for such i, 1/ has no discontinuity at I'y or I'; thus ,u;’;c = WUip
and ,u;; = i;;, and the orders of the I'y, I'; do not affect the polynomial expressions
for v;.

(5) Let J denote the indexes of the membranes of ug which pass through Z. If j € J and u
is a solution near ug, then near I'y ;. we have

Uj if j <k,
Uj = qup4y iftk+1<j<lI,
ul+1 1f]2]+1

The same equalities hold if we replace u by v. Indeed, by (3) the equalities hold in this
neighborhood outside the interval [I';, ['t]. They hold also inside this interval which is
a consequence of the fact that the difference between two v; is a C L1 function with
constant second derivative.

Thus there are three different profiles for the functions v; with j € J which do not satisfy
the correct Euler-Lagrange in [[';, T'x]. These three profiles are connected either at Ty or Iy,
since by (3) vy = vg41 and v;41 = vy either to the left of I'; or the right of I'y. The three
profiles are uniformly C 1>! thus they differ by at most C¢? in this interval.

We remark that the v; with j € J (the three profiles) might not be monotone with respect
to j. However, outside a C e-neighborhood of [I'7, ;] they become ordered with respect to j
due to the non-degeneracy condition that holds outside this interval.

Now we prove that |v — p(x,b)| < Ce?. Let to be the first value as we decrease t for
which the inequality p + ¢ > v, fails. Since p and v have the same asymptotic expansion
at oo, and v is a solution except on the interval [I';, I't] for the v; with j € J, it follows
that there exists x¢ in this interval for which v;(xo) = p;(x¢) + to. Since all v; and all p; are
connected in this interval and are uniformly C 11 it follows that [v; — (p; + 19)| < C&? for all
j € J in an g-neighborhood of the interval [I';, I';]. However, outside this neighborhood both
graphs of v and p solve problem P (with the same asymptotic expansion at £00), hence this
inequality can be extended everywhere. Now |fg| < Ce? is a consequence of the null average
of v and p outside [I';, I't]. |
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4. Approximate solutions

In this section we define the class of the approximate solutions p(x,b) in R? which are
perturbations of the one-dimensional profile p(x,) with p € #€, and collect some of their prop-
erties. We establish the algebraic statement that the error in the Euler—Lagrange equation cannot
be improved further unless p(x, b) is a rotation of p, see Lemma 4.3. In Corollary 4.2, we obtain
the convergence of the rescaled errors between u and an approximate solution p(x, b).

We begin with the definition of the approximate solution p(x, b).

Definition 4.1. Given p € ¢ and b € B(p), we denote by

Clearly p(x, b) is a homogeneous of degree 2 function in its variables.

Lemma 4.1. The function v(x) := p(x, b) satisfies the following:

(a) It solves the Euler-Lagrange equations with error C ||b||2. Precisely, we have v € C 11,
V1 > -+ > vy and in an open region where v; > v;y1 and Vi > V41 we have

|Avy — fi]| < CIb]?> withl ={i +1,....k}.

(b) We have
Vi (x) = pi(x2) + bix1xa + 0(|b|2x%),

and in the cone {|x3| > C|bl||x1|} with C large universal,
Avi = Ap; +2ei(b) X (x>0} + 2€i (=b) X {x, <0}

where e(b) is the error function defined in Definition 3.3.

Proof. By definition, v solves the Euler—Lagrange equations in the x»-variable hence
Avy — f1 = Ox x, VI
Using the homogeneity of h we find
vi1 = 2h —2th; + t?hy;,

where h and its derivatives are evaluated at the point (7, |§_:|b) with ¢ := Ii_?l
Moreover, by Lemma 3.2, the right-hand side is constant in each of the four connected
regions of the set {|x2| > C|b]||x1|} \ {¥1 = 0} and equals

vi1 = 2e(b) x(x, >0} + 2e(=b) x(x, <0} o
Definition 4.2. Similarly we may define the more general class of functions
p(x,bo,b1) = h(x2,bg + x1b1).

When by = 0, we are in the situation of Definition 4.1 and then use the simpler notation
p(x,by) for p(x,0,b;) as before.
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We give the corresponding lemma for this more general class of solutions.

Lemma 4.2. The function v(x) := p(x, bg, b1) satisfies the following:

(a) It solves the Euler—Lagrange equations with error C ||b||?. Precisely, we have v € C 11,
V1 > -+ > vy and in an open region where v; > Vi1 and Vi > V41 we have

|Avy — fi| < C|by)> withI ={i +1,...,k)}.

(b) We have
vi (X) = pi(x2) + boixz + b1ix1xa + O(|bg|> + [b1|*x?).

Proof. The proof is the same as above, and follows from | D?h| < C (see Lemma 3.3)
and Lemma 3.2. m|

Lemma 4.3. We have e(b) = e(—b) if and only if b = st for some s € R, where T is
defined in Definition 3.1.

Notice that b = st is equivalent to p(x, b) = p(x2 + sx1).
As a consequence of the homogeneity of e we can quantify the difference between e(b)
and e(—b) in terms of the distance from b to the line of direction <.

Corollary 4.1. There exists a strictly increasing continuous function

p:10,2] = [0,00) with p(0) =0

eb) —e(-b)| _ (. (b =
W > p(dlst(m, :I:m)) forallb # 0.

such that

Since e(b) is piecewise quadratic in b, it follows that p(s) > cs2.

Proof of Lemma 4.3.  One implication is trivial.

Due to the homogeneity of e it suffices to assume that e(b) = e(—b) and ||b|| < § for
some small § universal. Let l"l.Jr denote the free boundaries for the one-dimensional solution
h(z,b) and I';” the free boundaries of h(z, —b). We want to show that all Fi+ coincide and that
r-=-T

By the lemma above, the function v(x) := p(x, b) is a solution to problem P with an

error C$2, in the sense that
(D) veCll v > > vy,

(2) the free boundaries of v are given by the rays x, = Fl.+x1 in{x; > 0} and xo = —I'; x;
in {x; <0},
(3) in each of the sectors determined by these rays, the component v; solves the equation

Av; = gy with g7 a constant, and |g; — f7| < C§?, where I is the set of j for which
v; = v; in that sector.

Notice that e(b) = e(—b) is equivalent to the statement that the corresponding right-
hand sides gy agree on either side of the x;-axis on the two sectors that contain the positive
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respectively negative xp-axis. Also, if § is chosen small, then the non-degeneracy condition
holds for the right-hand sides g, i.e., Av; > Avy if v; > vi. Now we can argue as in the
classification of homogeneous solutions in two dimensions to conclude that all free boundaries
coincide with a single line passing through the origin, which gives the desired conclusion. We
provide the details.

We denote by (r, ) the polar coordinates in R%. Recall the following elementary lemma
from [8]:

Lemma 4.4. Assume w is homogeneous of degree 2 and defined in the angle 6 € [0, «]
withw =0, Vw =0ontherays =0,0 = a. If

Aw=¢ >0

and ¢ is a step function which is nondecreasing in [0, y|, and nonincreasing in [y, ] for some
y, then
o> .

Moreover, if o = 7, then ¢ must be constant.

We restrict our attention to the values of v; on the unit circle 0 B1. We know that each
two consecutive membranes v; and v; 41 are connected (agree) at least on an open interval that
contains either (0, 1) or (0, —1), and they do not agree on the whole circle.

We focus on those intervals / C 0B; where {vg > vgy1} and vg = vg4; at the end
points and in addition Avy is constant in /.

Claim. FEach such interval has length greater than or equal to .

Indeed, we look at a minimal such interval and we apply Lemma 4.4 to the difference

Wi = Vg — Vk+1,

which vanishes of order two at the end points of /. Moreover,

Awg = @ =8k —8k+1 >0 onl,

The minimality of / implies that the nested sets {vg 41 = Vg4, } are connected (intervals) in 7,
and therefore wy, ¢y satisfy the hypotheses of Lemma 4.4.

The claim implies that {v; > vy} consists of exactly one interval /1 of length at least
7. In the cone generated by [/, the function v; coincides with a quadratic polynomial Q.
Denote by v this polynomial Q in the complement of the angle generated by /1. Here we can
apply one more time the argument of the claim above by using the function W; := v; — v and
conclude that also the complement has length at least = on the unit circle.

In conclusion, /7 consists exactly of a half-circle. Lemma 4.4 gives in addition that Av,
is in fact constant on /; and its complement. This in turn implies that v, and v3 either coincide
or are disjoint in each of these two intervals. By arguing as above with v, and v3 instead of v
and vy, we find that also Avs must be constant in each of these two intervals, which gives that
{v3 = v4} is either I} or its complement. We can argue like this inductively and reach that all
the free boundaries must coincide. O
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Definition 4.3. Given p € &€, we say that a solution u to problem Py is e-approximated
in B, and write
uedp,e)

if, after a rotation around the origin, u satisfies
[u—p(-,b)| < er? in B,

for some b € B(p) with |b| < Se2 , with § a small universal constant (to be made precise later).

Lemma 4.5. Assume that
4.1) ued(l,p,e).
Then in B3;4 we have T; C {|x2| < C \/e} for all i, and
4.2) |A@; — pi(-,b))| <8¢ in {|x2| = C/e} N Byy4.

Proof. Any two consecutive membranes, say #; and u; 41, coincide on one side of this
strip {|x2| < C /¢} and are separated on the opposite side, depending on whether the mem-
branes p; and p;41 of the one-dimensional solution p € £¢ coincide to the right or left of
the origin.

Indeed, assume that p; = p; 4 to the left of the origin, and then

pi(x.b) — piy1(x,b) = c[(x2 — Clxib])*]?

and
pi(x,b) = pi+1(x,b) if xo < —C|x1b|.

The bound |b| < §+/¢ from Definition 4.3 and (4.1) implies that
ui >ujyr  in By N{xy > C/e}

and
|[ui —ujy1] <2e in By N{xp > C«/E}

The claim
T; C{lx2| <CVel N By_c sz

follows since u; and u; ;1 separate quadratically away from their free boundary I;.
As a consequence we find that in {|x2| > C /e} N B34,

Aup = Api(x2)) = f1 in{|x2] = C e},

and, by Lemma 4.1,
|A(ui — pi(-.b))| < C|b|* < C8%e < §e,

provided ¢ is sufficiently small. |

Lemma 4.6. Assume thatu € 8(1,p, ). Then in By,

lu—p(-,b)| < Ce(lxz| + Ve)*

for some o > 0 small, universal.
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Proof. We pick apoint Z = (z,0), |z] < % on the xp-axis. It suffices to show by induc-
tion that for k > 0,

lui — pi(-,b)| < e :=e(1—c)* in B, (Z), rp:=pFT!,

as long as r; > C’\/e, where p, ¢ are small, universal constant.
Assume the induction hypothesis holds for k and suppose that p has at least two branches
on the right (in the x,-direction). We denote by ¥ := Z + %rk e>, and we claim that if

4.3) uj(Y) > p;j(¥Y,b) forsome j,
then
4.4) uj — pi(-.b) > (¢c — e in By (Z), foralli.
By Lemma 4.5, we know that
|A@ui — pi(-.b))| <8 < 8egri® in{|xz] = C/e) N By (2),

and
ul_pl(7b)2_8k inBrk(Z)7

by the induction hypothesis. We prove (4.4) by comparing u with an explicit subsolution v in
the rectangle

Tk
R = {|x1 —z| < 7} x {|x2| < 4pri}.
The Harnack inequality and (4.3) imply that
4.5) uj —pj(-,b) > (co—1)gx onodR N {xy = 4pry}

for some c¢o = co(p) universal. This inequality holds for all other membranes which coincide
with u; in the region {x, > C \/¢}. We denote by J these indexes / for which u;(Y) = u; (Y),
and remark that J depends only on the branch configuration of p. We let t € B(p) be defined
ast; = Oforall i, and

o 1 ifi € J,
! —u  otherwise.

The constant x> 0 is chosen such that the average of all the tl.+ equals 0, so that t € B(p).
We define the barrier (see Definition 4.2)

v(x) := p(x2,d,b) + (Clst(%) - Sk)l,

where

1
(4.6) d:= clskrk_lt, q(x):= %()Q +2p) + x% — Ex%,

and ¢ is small, depending on the constant c¢g above. The polynomial ¢ and the constant p are
chosen such that Ag = 1,

1 .
“4.7) q -+ t,'x;L >y = E,up in By,
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and on the boundary of the rescaled rectangle

1
Roi={lil = 3 ool = 4p)
we have
q+ t,~x;r < —c2 onodRg\{x2 =4p}, foralli,
and
(4.8) q+tixy <—co ondRy ifi ¢ J.

We check that u > v on dR, and v is a subsolution to problem P.
By Lemma 4.2, p(x, d, b) solves problem P with an error

C|b|2 <C8%s <8< 88krk_2,

and since Ag = 1, it follows that v is a subsolution to problem P if § is sufficiently small
(8 <c).
Notice that ex 1~ 2 is increasing with k, and when ry ~ C’./e, then

exri s < Ce* <8 provided that £ < £9(6).

Thus,
Cld)? < Cairk_2 < e, and C|b|2xf < ey,
and by Lemmas 4.2 (b),
4.9) |pi(x.d,b) = pi(x,b) — crexrg x5 | < 38ex in B, (Z).

Using inequalities (4.8) of ¢ on 0Ry, we obtain that
vi < pi(-,b) +ex(38 —cica—1) < pi(x,b) —er <u; onoR ifi ¢ J,

and
v; < pi(x,b) —er <u; onoR\ {x, =4prr}, foralli.

Finally, on 0R N {x, = 4pri} andi € J we have by (4.5),
vi = pi(x,b) + (C(u, p)er — Deg = ui,

provided that ¢ is chosen small so that C (i, p)c1 < co.
In conclusion, u > v on 0R, and the inequality holds in the whole R by the maximum
principle. In particular, by (4.7) in By,

u; >v; > pi(-,b) + (=38 +cica — Deg > pi(-,b) + (¢ — 1)eg. O

Corollary 4.2. If u, € 8(1,p,em), for a sequence of €, — 0, then, up to a subse-
quence, each of the rescaled error functions

-1
converges uniformly in By, to a limit w; that satisfies

lwjlle <1, w; =0 onxy =0,
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and
|Aw;| <8 away from {x, = 0}.

More precisely, Aw; is constant in each quadrant
Aw; = —=2ej(b) x(x,>0y — 2¢; (=b) x(x, <0y in{x2 <0} U {x2 > 0},
where b € B(p) is the limit of

_1
b:= lim &,°b,, |b| <.
m—0oQ0

Proof. The convergence to a limit w; as above follows directly from Lemmas 4.5
and 4.6. The second part is a consequence of

1
2
b | < 88k

(see Definition 4.3), and Lemma 4.1 (b), after recalling that the function e(b) is homogeneous
of degree 2 in b (see Definition 3.3). D

5. Weiss monotonicity

In this section we establish the upper bound for the Weiss energy in Lemma 5.1 and the
main dichotomy result Proposition 5.1, which give Theorem 1.1 in the case of nondegenerate
cones.

We denote
1
By [ T (vl + foue)
(w,r):=r . Wk 2| Ul + frug ) dx

and
F(u,r):= r_(”+3)/ Za)kui do.
B,

The Weiss functional is
W, r):= E(a,r)— F(u,r).

We compute

d 1
EW(H’ r) = p(n+2) /BB,. Zwk (§|Vuk|2 + frur — 2r_1ukuk,,, + 4r_2u,2€) dx

—(m+2)r YE@,r)

2 )2 2
= =42 / 3 %(uk - —uk) do+ 22 (Equy, 1) — Eu,r)
OB, 2 ’ r r

2 2
> _(n+2)/ % - — d
>r - E 5 | ey = Uk o,

where uj, denotes the homogeneous of degree 2 extension of the boundary data of u on 9B,
and in the last inequality we used the minimality of u for the energy E in B,.
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Lemma 5.1. Assume thatu € $(1,p, ¢). Then

W(u. 1) < W(p) + Ce2.

Proof. We denote by v := p(-,b) and we prove the following inequalities:
(5.1) W, 3) < W(v) + Ce?
and
(5.2) W(v) < W(p) + Ce2.
In order to obtain (5.1) we write
v=u+ew, |w <1

By Lemmas 4.5 and 4.6, we know that outside the strip {|x2| < C /¢} each component wy
satisfies | Awy| < &, hence

(5.3) VW] < C(lx2| + ve)*™ in{|x2| = CVe} N By
Inside the strip, the C 1! norm of wy is bounded by Cs™!, hence
(5.4) IVw| < Ce™2 in{|x2| < CVe} N Bya.
Then, with r = %, we write
Wv.r) = W, r) + &2r" 21 + er" 21,

with

Wk 2 -1 2
I :=/ — | Vwg|“dx —r / wrw;y do,
B, Z 2 0B, Z k
2
I :=/ > o (Vug - Vg +fkwk)dx—/ Zwk;”kwk do
B, 0B,
2
=/ Za)k(fk—Auk)wk dx—l—/ Za)k(uk,v__uk)wk do
B, 0B, r
2
. — = do.
> 8/63r2wk( Wg,v + rwk)wk o

In the last inequality we used (see (1.3))

(5.5) Yok (fi — Aug)wy = 0,

and that v is homogeneous of degree 2. From (5.3)—(5.4) we infer that I, > —Ce. Since
I; > —C, we conclude that (5.1) holds.
For the second inequality (5.2) we argue similarly. We denote

p=v+g,
for some g that satisfies (see Lemma 4.1 (b))

lg| < C+/e in By, lg| < Ce in{|xz] < C4/e} N By.
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We have
W(p) = W() + I3

with

1
I3 := /B > ox (Vvk Vi + §|ng|2 + fkgk) dx — /a3 > o Quegk + g3) do
1 1

1
= / > o (fk — Avg — EAgk)gk dx,
B

where we have used that v and g are homogeneous of degree 2.
We estimate the last integral. When x belongs to the strip {|x2| < C 4/}, then
E C’

1
lgk| < Ce and | fx — Avg — EAgk

while outside the strip we have (see Lemma 4.1 (a) and Lemma 4.5)

3
‘Zwk(fk - Avk)gk‘ <Ce2, |[Agg|=e.

Thus |I3] < ng, and (5.2) is proved. m]

Proposition 5.1. Assume thatu € §(1,p, ¢), with ¢ < &g. Then either

&
8 b ?_
ves(ons)

ueS(p.p.Ce) and W(u,p) < W(u, 1) —ce.

or

Moreover, if vi and v,, denote the approximate solutions of the type p(-,b) in By respectively
By, then
Vi = VpllLe(B,) < Ce.

Here p, g9, ¢ (small) and C (large) denote universal constants.

Proof. We remark that the first conclusion of the second alternative u € §(p, p, Ce¢) is
obvious, by taking C = p~2.

We prove the statement by compactness. We fix p = %, C = p2, and assume that
there exists a sequence of u,, by, &, — 0 for which the conclusion does not hold with
Cm = % — 0. By Corollary 4.2 we may extract a subsequence of the rescaled errors

Wm 1= 8;11 (upm —p(-.bm))

which converges uniformly in By, (and in C !

1oc(B1/2 \ {x2 = 0})) to a limit function w which
satisfies

w; =0 on{x; =0}

and
ij — —2ej (b)X{x1>O} — 2ej(—b))({xl<0} in {)Cz < 0} U {xz > 0},
where b € B(p) is the limit of

_1
b:= lim &,°by,, [b| <§.
m—00
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Since

1
_ _ d
e 2 (W, 1) — W(upy, p)) = 8m2/ EW(uma rydr
o

2
—(n+2) wk( 2 )

> r — Wk — — Wi | do,

Lo 0 (B o

we may take m — oo and conclude that w is homogeneous of degree 2 in By, (first in
B1/2 \ B, by the inequality above, and then in By, by unique continuation). This implies
that e(b) = e(—b) and by Lemma 4.3 we conclude that

(5.6) b =st forsomes € [-C§, C§].
Moreover,
e 2 + —
wj =YXy + ([j X{xx>0y T 1 X{x2<0})X1X2,

with y; = —e;(b), and
ly| = le(b)| < C|b|> < C§* < 3.

Moreover, since the average of w; is 0, we have t € B(p), |t| < C. Using Lemma 4.1 (b), we
find that

P(-. by + emt) = p(-.bp) + emwW — 5mx§3/ + 0((|bm|2 + [bpm + 8mt|2)x%)’

hence

m

e
(5.7) [ — P(- . by + mt)] < em(8 + C8?)p? < sz in B,.

We cannot yet conclude that u,, € §(p, p, %), and reach a contradiction since we do not know

that ]

2
b + Emt| < 5(%’") .

We achieve this after a rotation of coordinates. We use (5.6) and write

1

and find (see Definition 3.1)

1
p(x. by + emt) = h(x2, x167,(s7 + dp))
1 1
=h(x2 + emsX1, X16mdm).

Denote by (v1, y2) the new coordinates in the rotated system

1 1
1= (1 + ems?) Hx1 —e2sx2),  y2 = (1 + ems®) L(xa + e25x1),

and notice that

1

1 1 1
X2 + EmSX1 = Y2+ 0(8m32|y|)» X1€mldm = y18r2ndm + O(ems|yl).
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Thus, since h is homogeneous of degree 2 and has bounded second derivatives,

1
(5.8) P(X. b + emt) = h(y2 + O(ems®[¥]), y1emdm + O(ems|y]))
1
= h(y2, y1£mdm) + O(ems|y|?)
1

= p(y, Sgadm) + O(SmS|J’|2)-
The error term is bounded by (see (5.6))

&
|0ems|yP)] < C8em|y|* < Tm|)’|2

provided that § is chosen small. Also, for all large m,

1

1 2

and by (5.7) we conclude u,, € 8(p, p, 87”’), which is a contradiction. O

Theorem 5.1. Assume that d = 2 and p € P€ is a blow-up limit for u at the origin.
Then p is unique and
u(x) = p(x2) + O(|x[*(—log |x)7H).

Proof. The theorem follows from Lemma 5.1, Proposition 5.1 and Lemma 2.3. We omit
the details. o

6. The degenerate cones

In this section we prove Theorem 1.1 for degenerate two-dimensional cones. The main
ideas are similar to the ones of the previous section, however the convergence of the rescaled
errors is much more delicate in this case. Also the compactness argument is more involved due
to the geometry of singular cones.

We consider one-dimensional cones which do not belong to ¢, and their two-dimen-
sional analogues. Fix such a one-dimensional cone

p« € P\ P€.

We can decompose p« as a union of m > 2 cones in P€ as follows.
Let ki < ky < --- < ky;—1 be the indices k with trivial coincidence sets, i.e.,

{p*,k = P*,k-H} = {0}.

The consecutive membranes in each of the m groups { pu k;» Pxk;+1+- - - » Px k4 —1) are con-
nected nontrivially on a half-line. After subtracting the average g«,; (a quadratic polynomial)
from each group we define the corresponding vector

pl* = (p*,ki_l'i‘l’ O] P*,kl—) - (‘]*,i’CI*,i’ .. ,Q*,i) : R - Rki_ki_l7

and p’, is a connected cone for the k; — k;—; membranes. Thus we can write px as a union of
m connected cones

6.1 P+ = (P + gx1l.....PY + qeml), Pl € PC.
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The analogue cones in two dimensions corresponding to ps« have the form

(6.2) p=0p +ql ....p" +gml),

with ¢; quadratic polynomials such that

A _q*z’ Za)k%—o

and with p’ obtained from p’, after a rotation. Here p’, represents the trivial extension from one
to two dimensions while the angle of rotation depends on i. The polynomials ¢; and rotations
p' are constrained by the condition pj > Pk+1 which must hold for all k£ > 1. This condition
needs to be checked only for consecutive membranes belonging to different connected groups,
i.e., when k is one of the k;, since it is clearly satisfied within each connected group.

When p € €, is a two-dimensional cone extension of px as in (6.2), we write

p € P(p«)-

For such a cone p, the free boundaries

[y :=0pk > pr+1)

with k;_; < k < k; coincide with a single line, the line of the rotation of p’ (whenever p’,
consists of at least two membranes). When k = k; then the free boundary [’y is the same as
the coincidence set { px = px+1}, and we show that it is either the origin, one ray, or two rays
passing through the origin. We make this more precise.

Lemma 6.1. The set T'y; consists of at most two rays that make an angle strictly greater
than %
2

Proof. Lemma 4.4 which implies that in each half-plane where A py, is constant (or
where A py; 11 18 constant), the coincidence set cannot contain two distinct rays, unless they
coincide with the boundary of the half-plane and both A py;, A pg, 1 are constant on either
side of the line.

This proves that there are at most two rays in I'y,.

Next we denote by ¢; the multiplicity 1 parts of pg, and pg; 41:

Pr; = o1 +ail(x v e = 92 —aal(x - v2) 1A
with ¢; homogeneous quadratic polynomials, and the constants a; > 0. Moreover, by non-
degeneracy

Apr = fi; > Jri+1 = Lga.
The coincidence rays are the ones along which ¢, — ¢; is tangent by below to the piecewise

quadratic function
ar[(x-v)*P + azf(x - v2)T]? = 0.

If there are two coincidence rays, then they must belong to the two different components of
{¢2 — @1 > 0}. The conclusion follows since ¢, — ¢ is a strictly superharmonic homogeneous
quadratic polynomial. m]

We prove Theorem 5.1 for the degenerate cones.
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Theorem 6.1. Assume thatd = 2 and p € P (px) is a blow-up limit for u at the origin.
Then p is unique and

u(x) := p(x) + O(|x[>(~log|x))™H).

The strategy of proof is the same as in Sections 3 and 4. First we introduce a family of
approximate solutions near cones p € J# (p«) similar to Definition 4.3. In this case, an approx-
imate solution v consists of a collection of vector-functions v as in Section 3, with each of
them approximating a connected group of p. More precisely, v has the form

(6.3) v=(v,....v"), Vg > vy forallk, Zwkvk =0,
v =p (o) + gl b < e,
with g; quadratic polynomials with
Agi=ql; Y orgi =0

and p’ (-, b;) represents an g-approximation of a rotation of the connected one-dimensional
cone p’,, as in Definition 4.1.
We make precise the definition of the solutions u which can be approximated by such v.

Definition 6.1. Given a one-dimensional cone px as in (6.1), we say that a solution u to
problem Py is e-approximated in B, by ps« and write

ue 8, px¢)
if there exists an admissible v as in (6.3) above such that
lu—v| <er? inB,, |b; | 558%,
with 6 a small universal constant (to be made precise later).

By definition, v € C!>! is homogeneous of degree 2, and the coincidence set between
consecutive connected groups, i.e., {vxy = vi4;} with k = k; has empty interior in R2, since
A(vg — Vg4+1) = ¢ > 0. Moreover, on the unit circle this difference grows quadratically away
from its minimum points, hence the set where vy and vg 4 are ¢ close to each other in By

Dy = {vg — vk41 < 2¢} N By

is included in a C ﬁ—neighborhood of at most two rays passing through the origin. The upper
bound on the number of rays follows by compactness, since v must converge to an element
p € P(px)ase — 0.

By Lemma 4.1 (a), v satisfies the Euler-Lagrange equations with §e-error

|Avy — f1] < C8%¢ < 8.

Moreover, if v; denotes the unit direction of rotation for p, so thalt p'(-.,b;) is the e-approx-
imation of p’, (x - v;), then, by Lemma 4.1 (b), in By N{|x-v;| > €2} we have

(6.4) AV = g + AP, +26(0i) (4 50y + 26(=b) 111 <0y
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If a solution u is e-approximated by v in Bj, then in B1 cod the coincidence sets for u
and v agree away from the set ‘
(6.5) p®:= | Dg | Jlx-vil < Ce),

k=k; i

. L o .
with D} and v; as above. The set D® lies in a Ce2-neighborhood of a finite number of rays.
As a consequence, we have the analogue of Lemma 4.5 in our setting.

Lemma 6.2. Assume that u € 8(1,p«, €) is e-approximated by v in By. Then in B34
we have 'y, C D? for all k, and

(6.6) |[A(ug —vg)| < 8e in Byjy \ De.
In the next lemma we establish a Hélder modulus of continuity for the rescaled differ-
ences YUk,
&

Lemmfl 6.3. Assumeu € 8(1,px, ¢) is e-approximated by v in By. Fix z € B34\ By)4,
andr € [Ce2,c]. We have

wi — 2er® <up < wg +2er® in By(z), forsomea >0,

with w an admissible function in B, (z) obtained from v by appropriate translating constants Cj,
(depending on r and z),

Wk = Vg + k. Wi > Wiy forallk.
Moreover, if By (z) intersects {x - v;} = 0, then the constants (i are all equal when k belongs

to the ith group k € {ki—1 + 1,...,k;}.

We postpone the proof of Lemma 6.3 to the end of this section. As a consequence we
obtain the following version of Corollary 4.2 in our setting. The difference is that, in the limit,
the rescaled errors must agree along the direction of rotation for each of the connected groups
of the limiting cone p.

Corollary 6.1. If u,, € S(1,p«,&m) are ey-approximated by vy, for a sequence of
em — 0, then, up to a subsequence, v, — p € P (px«) and each of the rescaled error functions

Em' (m,j = Vm,j)
converges uniformly on compact sets of By, \ {0} to a continuous limit w; that satisfies
|willLe <1, wj =w; oni{x-v; =0} whenever j,l € {ki—1+1,....k;},

where v; is the direction of rotation for p'.

Another consequence of Lemma 6.3 is that the corresponding version of Lemma 5.1
holds in the degenerate setting.

Lemma 6.4. Assume thatu € 8(1, p«, €). Then

W(u. 1) < W(p) + Ce2.
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Proof. First we remark that W(p) is the same for all p € £ (px).
The quantity
J(w) = / 1a)(|Vw|2 + fw)dx —/ ow? do
B 2 3B,

remains invariant if we replace w by w + ¢ with ¢ a homogeneous of degree 2 harmonic
polynomial (here f and w are constants). This follows easily after applying the mean value
property for ¢ and then by integration by parts.

From (6.2), we see that each of the connected groups p’ + ¢;1 that form p, is obtained
from i th connected group of the trivial extension of p* to two dimensions, after a rotation and
the addition of a homogeneous of degree 2 harmonic polynomial. The remark above implies

W(p) = W(p*).
The proof follows from Lemma 5.1 since t inequalities (5.1)—(5.2), i.e.,

(6.7) W, $) < W(v) 4+ Cé?
and
(6.8) W(v) < W(p) + Cs2,

continue to hold, where v is the e-approximation of u given in Definition 6.1.

Indeed, for (6.7) we only used that e~1|V (uy — vg)| is integrable on 0Bj/, which, as in
Section 4, is a consequence of Lemmas 6.2 and 6.3.

The second inequality can be reduced to the one from Section 4 for each of the connected
groups. Recall that the ith connected groups of v, and p are given by

pi(',b,’) +¢g;1 and pi + gil.
We claim that

P P 3
(6.9) W) = Wp) =) W@ (b)) - W)= Ce,
i
where W' denotes the Weiss energy corresponding to the ith connected group

o 1 .
Wh(w') = Z (/ wk(—|Vwk|2 + fk’wk) dx —/ a)kw,% dc),
B 2 9B,

ki_1<k<k;
with fk’ := fx — Ag;. The equality in (6.9) follows easily from the identity
Jw+q)—Jw+q)=J(w)—J(v) —/ o(Ag)(w —v)dx,
B,

which holds for any homogeneous quadratic polynomial g. O

We are in a position to prove the corresponding version of Proposition 5.1 for degenerate
cones Px.

Proposition 6.1. Assume thatu € 8(1, p«, €), with ¢ < g¢. Then either

ue S(p,p*,g)

ue 8(p,px.Ce) and W, p) < W(u,1)—ce?.

or
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Proof.  As before we prove the statement by compactness.
We fix p = %, C = ,0_2, and assume that there exists a sequence of Uy, Vi, €5, — 0 for
1

which the conclusion does not hold with ¢, = - — 0.

By Corollary 6.1 we may extract a subsequence
Vm = P € £(Px).

and rescaled errors
Wm = 8;11 (Wn — Vi)
which converge uniformly of compact sets of By, \ {0} to a limit function w.
Denote by v; the direction of rotation for the ith connected cone p* of p, and by [y, the

coincidence set {px = pg+1} for k = k;, which by Lemma 6.1 consists of at most two rays
that form an obtuse angle. The sets D¢ defined in (6.5) converge in the Hausdorff distance to

the collection of rays
D= Iy, | Jx-vi =0},
i

and the convergence of wy, to w is in Ckl)C (B2 \ D?). As in the proof of Proposition 5.1, the
inequality
W(um’ 1) - W(um’ p) = Cm82

m

implies that the limit w is homogeneous of degree 2 in (B, — Bp) \ DY, hence in B; 72\ By
by continuity.

Claim. [fk belongs to the ith connected group J; = {ki—1 + 1,...,k;i}, then

wr =w; oni{x-v; =0} foralk,j e J;,

Wk
(6.10) AU)JI- =0, wy, = Wy,
k; ZJ,- wj
and on each half space determined by the line x - v; = 0,
(6.11) Aw; = —2e; (bi)X{x~vl.J->0} —2e; (_bi)x{x~vf-<0}’
where b’ € B(p') is the limit of
. _1 . .
b’ := lim &,°bl,, |b']| <.
m—00

Proof of Claim. Notice that
AMm,L <fL= AUm,L’ L:={j < kj},

which implies that
Awy, <0.

On the other hand outside any small neighborhood of I'y;, pr, > pk,;+1 which implies the
same inequality for the membranes of u,,. This means that the inequality above is an equality,
which gives

Awp =0 outside I'y;.
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Since wy, is homogeneous of degree two and I'x, consists of at most two rays that form an
angle different than Z, we conclude that w;, must be a harmonic quadratic polynomial. This
implies (6.10).

Equality (6.11) follows in By /5 \ DO by equation (6.4). In fact, it can only fail on the rays
[g,_, U I'k; along which the i th connected group can interact with the i — 1 respectively i + 1
groups. Indeed, in a compact set outside these rays the graphs of uy with k € J; are discon-
nected from the ones with k ¢ J;, and we are in the situation of Section 4. More precisely, we
only need to check (6.11) for those indices j € J; and near the rays for which the membrane
pj 1s either tangent to pg, 41 OF pg;_,-

It remains to show that if the membrane p; is tangent to py, 1, then Aw; carries no
singular part on I'y; whenever I'x. is not included in x - v; = 0. Pick such a ray

EeFki\{xmi:O}

and let J/ C J; denote those indices j in the ith group for which p; = p, along £. Since £ is
away from the line x - v; = 0, we conclude that p; = py. in a neighborhood of £. Using that
Vm, Uy, are small perturbations of p, we find that in an open neighborhood U of £ N (B \ B)),

Vi = vk, uj =uy, if jeJl.
In particular, in this neighborhood w; = wy, if j € J/, hence
Aw; = Awyr  in U.
l

If J/ = J;, then Aw; =0 by (6.10) which shows that Aw; has no singular part on £. If
J! # Ji, then there is strict separation in U between the membranes p; with j € J/ and
J € L\ J/. This separation holds also for the membranes of u,,, and v,,, hence

Nty p\g7 = JL\J}>
and since v, is an approximate solution with §&,, error, we find that
- .
|AwL\Ji/| <§ inU.

Using that wy, is harmonic, we find |Aw Ji/| < C$4. This shows that Aw; has no singular part
on ¢ if j € J/, and the claim is proved. o

Now we can argue as in the end of the proof of Proposition 5.1. The claim implies that
e(b’) = e(—b'), hence, by Lemma 4.3,

b’ = s;t° forsomes; € [—C§, C4,
and 7' as in Definition 3.1. Moreover, for jelJi,
e . X 2 + — X 1
wj =q; +yj(x-v)” + (Zj X{xv>0} T l; X{x-v,;<0})(x Vi) (x - vi),

with y; = —e; (b)), gi =w J; @ harmonic quadratic polynomial, and the components tj?t form
avector t' € B(p'). Since |y| < C§2, we infer that

|u£n — [pi (x,bfn + 8mti) + (¢i +emgi)l]] < C528mp2 in Byy \ B,.
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. 1
As in (5.8), we can rotate the axis v; of p’ by an angle ~ &3, and rewrite

. . . . 1. .

p'(x,b, + emt’) = p' (X, epd,) + Oem|x|?), d, — 0,

with X representing the coordinates in the rotated system of coordinates. Thus
(6.12) lul, =¥ | < C8emp® in Bap\ B,

with 1
Vin =P (% emdy,) + i + Emdi.

We do not know yet that the family V is admissible since the inequality Uy, x > Uy, k41 might
fail slightly when k = k; near I'y,. By (6.12), this inequality can fail by at most C & |x 2. We
can modify each group of V,, by a harmonic quadratic polynomial of size §¢&,,, and construct
an admissible approximate solution v,. Indeed, assume that V,ln, el Vin_l were constructed.
Then we can add C;d8e,,h; (x) to all membranes of Vﬁn with 4; a harmonic quadratic polyno-
mial which is negative on I'y, \ {0}, which exists in view of Lemma 6.1. We can choose C;
sufficiently large to guarantee that v/, lies below v/, After constructing V,,, we can subtract
its average (a harmonic polynomial) from all of its components, so that )  wg Uy, x = 0. In

conclusion, (6.12) implies that
lul, — V! | < C'8emp® in By \ By,

with v, satisfying the admissible conditions (6.3) with &5, replaced by &;,/2.
Finally, since v,, solves the system with error 8¢, it follows by maximum principle that
the inequality above can be extended to B, after relabeling the constant C’. Thus

. . £
lul, — ¥ | < C"8emp? < Tmpz in Bp,
provided § is chosen small. We obtain u,, € 8 (px, p, &»/2) and reached a contradiction. 0O

The remaining of the section is devoted to the proof of Lemma 6.3 which relies on a
version of the Harnack inequality for one-dimensional membranes.

Lemma 6.5. Assume that u > v are one-dimensional solutions to the N membrane
problem in [—1, 1] and
Uk (0) < vi(0) + o, for some k and o > 0.

Then
U <vp +Co in[—1,1]

for some C depending only on N, and the weights w;.

Proof.  'We prove the statement by induction on the cardinality of the complement of the
set of indices / defined as
I:={j:u;(0) <v;(0)+a}.
Precisely, we show that there exists a constant C(]/|) depending only on the cardinality |/ | of
the set / such thatin [—1, 1],
uj <vj +C(|I|)o forall j € I.

If|/| = N,then! = {1,...,N}.Wehavev;(0) + o > uy(0) > v7(0) and since u; — vy >0
is harmonic in [—1, 1], we conclude that u; < v; + 20 which gives the desired conclusion.
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Assume that |/| < N, and denote I = {jo,..., jo + m}.Let (a, b) be the largest interval
containing 0 on which the inequalities

Ujo—1 > Ujo  and  Vjotm > Vjo+m+1

hold. Notice that the origin is interior to this interval, since otherwise either jo—1 or jo+m +1
would belong to / as well.

Assume that |a| < |b| and say that u,—1(a) = uj,(a).

In the interval (a,b) the same argument as above applies. Indeed, in this interval the
membranes u;, and respectively v;, with j € I, can be perturbed upwards, and respectively
downwards. We find Auy < f; < Avy hence u; — vy > 01is a concave function in (a, b). We
conclude that

(6.13) uj <v; +Cyo inja,lal], forallj € l.
In particular, at x = a we have
U = Uy < Vg1 + Cro v + Cio, k= jo—1.

We can apply the induction hypothesis on the largest interval L, centered at @ which is included
in [—1, 1] with & = C;0, and then the corresponding set of indices / contains / and jy — 1.
We find that

(6.14) uj <vj +Cyo inlL, forallj el U/{jo—1}.

If L, contains the origin, then we can apply one more time the induction hypothesis at the
origin and obtain the desired conclusion in the whole interval [—1, 1]. Otherwise, inequality
(6.13) is valid in [a, b] after relabeling Cy if necessary. We can argue as above at the other end
point b and obtain a similar inequality as (6.14) in the largest interval L; C [—1, 1] centered
atb. Since [—1, 1] is covered by L, [a, b] and Lj, we obtain the inductive conclusion for /. O

We introduce the notion of o-connectedness in B, C R” for membranes whose collec-
tion of o-neighborhood of their graphs form a connected set.

Definition 6.2. We say that the membranes v; and v;4,, are o-connected in B, if we
can find points x; € B, with j + 1 <i < j + m such that v;_1(x;) < v;(x;) + 0.

Remark 6.1. After relabeling the constant C, the conclusion of Lemma 6.5 holds for
all indices j < k for which u; is o-connected to uy in the half-interval

23
I =|—%,=
2°2
or j > k for which v; is o-connected to vy in /.
An equivalent statement is the following.

Corollary 6.2. Assume that u > v are one-dimensional solutions to the N membrane
problem in [—1, 1] and

ur(l) > v (1) + o forsomek and o > 0.
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Then
uj >vj+co inl

forall j <k for which v; is co-connected to vy in I, and all j > k for which uy is co-con-
nected to uy in I. Here c = C ™! depends only on N and w;.

We now consider the case when u is defined in the cylindrical domain

R = B/C,, x [-1,1] € R",

with Cy, a large constant that depends only on n and v is one-dimensional and

(6.15) v solves the Euler—Lagrange equation in [—1, 1] with a ¢go-error,

for some ¢y sufficiently small.

Lemma 6.6. Assume that u is a solution in R and v satisfies (6.15) and
u(x’, x,) > v(xn) in R,
and
up(x'. 1) > vi(l) + o forsomel € [—1,1].

for some o < og universal. Then
1
uj >vj +coo in Eﬁ

forall j € Ji which consists of the indices j such that
(a) either j <k and v; is coo-connected to vy in I,

(b) or j > k and the coincidence sets {Vy = Vg41}, {Vk+1 = Vk42}.-..,1Vj—1 = v} have
length more than % inl.

Remark 6.2. Notice that the collection of functions v; when j ¢ Jx and v; 4 coo
when j € Ji, which bounds u; by below, is admissible in %!R

Proof. We assume first that / = 1 and then explain how to deduce the more general
statement from this case.

Let w be the one-dimensional solution in [—1, 1] with the boundary data given by v.

We compare w with v & coo (|x|> — 1)1 in [—1, 1] and find

(6.16) lwj —vj| < coo forall j.
In particular, w; are 3coo-connected in / if j < k and j € Ji.
Let w be the one-dimensional solution with boundary data w at —1 and
_ w; (1) if j >k,
wi(l) =3 " L
max{w; (1), wg(1) + 0o} if j <k.

Clearly,
|wj —wj| <o in[-1,1], forall j,

which together with (6.16) and o < 0¢ implies that the w; are O-connected in [ if j > k
and j € Jg.
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By Corollary 6.2 applied to w, w, we can find ¢; = ¢1 (N, w;) such that
(6.17) w; > w; +4c10 > v; +3cio inl, forall j € Ji,

provided we choose ¢g < c.
Next we compare u with the subsolution

W+ cro(x2 —4C, 72X — D1

in R and obtain
uj > Ww; —2ci0 iniR, forall j,

which, by (6.17), gives the conclusion u; > v; + cio forall j € Ji.

It suffices to check the claim on 0R. On OR \ {x, = 1} the test function is below v and
therefore below u. This inequality holds also on 0R N {x, = 1} by hypothesis. This completes
the case [ = 1.

Next we discuss the case when [ is arbitrary. The same proof applies if |/| > %. In the
case when, say / € [0, %), then the arguments above show that an inequality of the form

3 3 3
Uk (X/’_Z) > Vg (_Z) +cjo iflx’] < ZCn,

holds for the index j = k at —%. Again we may repeat that proof above with I = —% and

G = c}0, and obtain the conclusion by choosing c¢o much smaller if necessary. O

We provide a version of Lemma 6.6 when v is a homogeneous of degree 2 approximate
solution in a rectangular domain in polar coordinates R, C R? defined as

(6.18) Re={r0): 0] <z, |r—1]<Ct} witht < 10.

Lemma 6.7. Assume that u is a solution to the N-membrane problem in R, and v is
a CY1 homogeneous of degree 2 function which solves the Euler—Lagrange equation in R
with coot=2 error. If u > v in Ry, and uy > vy + o|x|? ona ray Ry N {0 =1}, then

2 .
uj > v +coolx|” in Ry

forall j € Jy for which either j < k and v; is coo-connected to vy, or j > k and the coin-
cidence sets {vg = Vk41}, {Vk41 = Vk42} ... {Vj—1 = v;} have length more than {5 in the
interval § € [-3, 5].

The proof of Lemma 6.7 follows as the one of Lemma 6.6 after we establish a version of
the one-dimensional lemma, Lemma 6.5, on the unit circle. We omit the details but point out
some of the changes in this setting.

We consider functions v on small intervals [—7, t] on the unit circle which solve the
N -membrane problem for the operator —dgg — 4 which is positive definite if ¢ < 7. Then the
homogeneous 2 extension of v solves the N-membrane problem in the corresponding sector
in R2. The energy corresponding to the new operator has the form

p 1
/ > ox (§|v,;|2 — 202 + fkvk) do
—p



Savin and Yu, The N -membrane problem 143

and the existence of solutions follows in the same way as before. The proof of Lemma 6.5 is
identical since the following Harnack inequality continues to hold:

dgow + 4w <0andw >0 = w < Cw(0) in [z, 7].

We are ready to prove Lemma 6.3 by comparing u with appropriate translations of v that are
homogeneous of degree 2, and make use of Lemma 6.7 above.

Proof of Lemma 6.3.  Assume for simplicity that z = %el, and choose p universal such
that (see (6.18)) R4pr C Br(e1).

We prove by induction on m > 0 that in B,(z) with r = ¢p™, for some ¢ small to be
specified later, as long as r > Ce2 we have

(6.19) v + G X <ur < v+ G5 X120 G = G E 8y Em = 8(1— )",

for some ¢ > 0 small universal, and constants {x ,, for which vy + §k,m|x|2 is admissible.
Moreover, i , are all equal when k belongs to the ith group k € {k;—1 +1,...,k;} and

(6.20) the line {x - v; } = O intersects B, (z).

Notice that our hypothesis [u — v| < ¢ implies that { ,, € [-16¢, 16¢].

When m = 0, we can take {x o = 0 by hypothesis.

Assume the induction hypothesis holds for r = r,,. We want to show that (6.19) holds in
B, (z) for some constants é,ic with

Gom <& <& <G & & <=0, — CGm)

and vy + & ,f |x|? are admissible, and with f;‘;cﬂ = 513: whenever condition (6.20) holds for By;.
We define {x ,+1 as the averages of & ,f and the conclusion follows for m + 1.
We pick a unit direction v close to the direction e of z

[v—e1] < pr

such that a c¢r-neighborhood of the ray of direcltion v does not intersect the set D¢ (defined in
(6.5)) in B, (z). This is possible since r > Ce2. Assume that at %f), Uy is closer to the upper
bound in (6.19), i.e.,

(6.21) uk(%ﬁ) > (k4 e + sm)|x|2)(%1_)).
By Lemma 6.2, outside D?,
|AGug = 0k + G X2 < 82 + 2/85 | < 40 < Copr 2.
By the Harnack inequality applied to the difference
up — (Vi + S lx) = 0

we find that (6.21) can be extended to

Uk = Vi + Gl X1+ em = v + (G + Em)|x[?
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for some ¢’ universal on the whole ray
Byja(z) N{tv it > 0},

provided that ¢ is sufficiently small. Now we can apply Lemma 6.7 to uj(x) (in fact the
quadratic rescalings 4u (%)) and vg + Z,;m|x|2 in Rgpr with 0 := ¢’ep, since the error for
the approximate solutions is bounded by

40 < Cepr 2 < coo (8pr) ™2,

and obtain
uj = vj + (G, + " em)lx|?,

in By, (z) for all j € Ji, for some ¢ small, universal. As in Remark 6.2, the righthand sides
correspond to an admissible family in B, (z). Moreover, they change by the same amount on
a set of indices j that belong to an ith group {k;—1 + 1, ..., k;} for which {x - v;} intersects

B,r(z), since in this case the coincidence sets {v;—1 = v, } cover more than %0 of the interval

0 € [—4pr, 4pr] on the unit circle 0 By. This means that we can choose & ,zt accordingly in B,
and the lemma is proved. D

7. Regular intersection points

In this section we study the regularity of the free boundaries for solutions u that stay
close to the blow-up cone

1
Po(x) 1= 5 (!,
and prove Theorem 1.2 which we recall.
Theorem 7.1. Assume d = 2 and
[u—po| <eo in Bj.

Then each T; is a C V¢ curve in By /2-

We prove Theorem 7.1 by induction on the number of membranes N . One of the technical
points is that we need a lower bound for the Weiss energy, see Lemma 7.7, which is not obvious
since we no longer assume 0 € (| I;.

Similar to Definition 4.3, we approximate solutions u by the slightly more general func-
tions from Definition 4.2

p(x,bo,b1) =h(x2,bo + x1b1). b; € B(po).
Proposition 7.1. Assume that a solution u to problem Py satisfies
(7.1) lu—p(-.bo.by)| <er® in By,
for some b; € B(po) with |bg| < sér, bi| < 28¢2. Then

& .
(7.2) [u—p(-,bo, D) < S(pr)* in By
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with b} € B(po) and
(7.3) |b6 —bo| < Coer, |b,1 —by| < Cope.

The constant Cy depends only on the dimension d = 2, p < po universal, § < §(p) depending
on p, and € < go(8, p) sufficiently small.

After rescaling it suffices to prove the proposition for r = 1. First we estimate the change
in h(x, b) as we vary b.

Lemma 7.1. We have
lh(x,b + d) — (h(x,b) + xd)| < C|d|(|b| + |d])

Proof. By the homogeneity of h we may assume that [b| + |d| = 1. Then by Lemma 3.2
we know that the left-hand side is constant when x is outside the interval [—C, C]. So it suffices
to prove the inequality when |x| < C. Now the inequality follows from the Lipschitz continuity
of h in its second variable. ]

Next we establish in the context of Proposition 7.1 the estimate for the rescaled error
of u — p in terms of the distance to the x;-axis, as we did in Lemma 4.6.

Lemma 7.2. Assume that u satisfies (7.1) withr = 1. Then in By,

lu—p(-,bo,b1)| < Ce(|x2] + V)%,

for some o > 0 small, universal.

Proof. The proof is essentially the same with the one of Lemma 4.6, after replacing
p(-,b) by p(-,bg,b1). A few comments are in order.

First we remark that the approximate solution solves the Euler—Lagrange equations with
error C |by|? < 8¢ as before, and is not affected by the presence of by, see Lemma 4.2.

The comparison function v in B, (Z) is defined as before

x—Z
v(x) 1= p(x2,bo +d.by1) + (6’18k61( . ) - Sk)l»
k
with d, g as in (4.6). Inequality (4.9) is then replaced by

C .
(7.4) [p(x,bo +d.b1) — p(x,bg. b)) — x2d| < o/ in By (2),
1

and the rest of the proof remains the same, by choosing C; sufficiently large depending on the
other constants ¢1, ¢ and p. We no longer use Lemma 4.2 to establish (7.4), but Lemma 7.2
above with b = by + x1bq. Then |b| < 28% and, since |d| < Cekrk_1 and r; > Cl’e%, the
left-hand side in (7.4) is bounded by

o C
C828krk1 < ng' O
1



146 Savin and Yu, The N-membrane problem

Remark 7.1. As a consequence of Lemma 7.2 and of the quadratic separation of con-
secutive membranes from their common free boundary, we find that in B/, the free boundaries
Ii(u) ofulieinaeg? >+ -neighborhood of the corresponding free boundaries of the approximate
solution

p(x,bo,b1) = h(x2,bo + x1by).

In particular, I'; (u) lie in an C 88%—neighborhood of the free boundaries x, = [';(bg) of the
exact solution p(x, bg, 0) = h(x2, by). 1

Assume that the free boundaries of h(x3, by) separate of order 2, i.e., there exists an
. 1 1 . .
interval [a — coe2,a + coe2] for some ¢ small, which does not intersect the I'; (bg), but at
least one of these points falls to the left of this interval and at least one to the right. Assume
8 K cg is sufficiently small. Then the free boundaries I'; (u) do not intersect the strip

c
S = {|xz—a| <?08 }

and the N-membrane problem decouples into several multi-membrane problems in By,
involving fewer membranes.

Indeed, for each set of indices j € J for which u; agree in the strip S, we replace u; by
u y to the right of the strip (we think x5 is the horizontal direction). If there are Jy, ..., J; such
sets, then we obtain a multi-membrane problem involving /-membranes. The free boundaries
of the new problem coincide with the free boundaries of u that were on the left of the strip S.
On the other hand, for each set J, u; — u s solves a multi-membrane problem which has I'; (u)
with j € J as free boundaries, which lie to the right of the strip S. The same decoupling
procedure can be performed to the approximate solution p(x, bg,b;), hence the decoupled
multi-membrane problems in By, are still e-approximated by corresponding functions of the

type p(-,bo, b1).

=

Also Lemma 7.2 implies the uniform convergence of the rescaled errors.

1 1
Corollary 7.1.  If |w,, — p(-,bJ . bT")| < &y in By, with |b{| < e, [b]'| < 28ep, for
a sequence of e, — 0, then, up to a subsequence, each of the rescaled error functions

-1
&m (Um,j — pj(-.bg" . bT))
converges uniformly in By, to a limit w; that satisfies
[wjllLee <1, wi =0 onx,=0

and
|Aw;| <8 away from {x2 = 0}.

Proof of Proposition 7.1. The rescaled error functions

e (uj — pj(-.bo.b1))

are well approximated in By /, by continuous functions w; which vanish on x> < 0 and satisfy
|Aw;| < §in {x2 > 0}. Denote by do, d; € B(po) as

dy ;= 0x,wj(0), do; =0, di; =mxwj(0). dp; =0
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Then |d;| < Cop, and
lw—x2(do + x1d1)| < Co(p® +8) in B,

for a constant Cy that depends only on the dimension d = 2. If p < pg universal, and § < §(p)
depending on p, then the right-hand side is less than i 0.
By Lemma 7.1,

p(x,bo + edo, by + edy) — p(x,bg,b1) = exa2(do + x1d1) + 0(8%),

and we obtain the desired result by choosing by, = bg + edo, b} = by + ed;. ]

Remark 7.2. Assume that in B; we satisfy (7.1) and in addition by = 0. We have the
following dichotomy depending on the size of dg in the proof above.
(a) If

(7.5) |d0| < C(po) =:C1

then we may choose by, = 0 and satisfy the conclusion
& .
u=p(-,0.b))[ = 5p5 in Byy,  [b} —bu| = Coe.

Moreover, a similar analysis as in Proposition 5.1 can be performed. If b;/ §e7 is at
distance at most o (with o small universal) away from the line {st : s € R}, then, as in the
last part of the proof of Proposition 5.1, after a rotation of coordinates as in (5.8) we may reduce
to the case when b satisfies the improved bound |b;| < %88%. Then u € 8(po, po. 5) and the
approximate solutions vy, v, lfor u in By respectively By, satisfy [vi —v,,| < Ce.

Assume now that by /8e2 is at distance greater than % o away from the line {st|s € R}.
Then in the proof of Proposition 7.1, by Corollary 4.1, the right-hand side of Aw is constant
in each quadrant in {x, > O} but has a discontinuity jump greater than c (8, jt9) > 0 across
{x1 = 0}. This implies that w cannot be homogeneous of degree 2 in the annulus By, \ By/4
which, as in Proposition 5.1 implies the energy inequality

(7.6) W(ll, pO) = W(ll, 1) - C823

for some ¢ small depending on § and ¢.
(b) If |[dg| > c1, then we satisfy the conclusion

ju—p(-.bo. b <ep inB,. [|by| = cre,

for some small p;, provided that § is chosen small, depending on py.

Next we show that when we end up in situation (b), then the N-membrane problem
near the origin can be reduced to one involving fewer membranes. For this we need to iterate
Proposition 7.1 from scale 1 to scale ez, Precisely, let us assume that, as a starting point we
have

[u—p(-.bo.b1)| < epi in By,

with

ol <=, |by] < 8e2.

N ™
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We can iterate the proposition with r = pf* till r ~ £2 and obtain

(7.7) |u—p(~,l_)0,l_)1)| <er? in By, withr =8%,
with

(7.8) [bo —bo| <2Copre.  |by —by| < Cllogele

(in the last step of the iteration we applied the proposition for some p € [p1, p%]). Here p; is
chosen small such that 4Cpp; < c¢1 < 1 (see (7.5)) and throughout the iteration the inequalities

bo| <. |by| <282

are satisfied. Moreover, if |bg| > c¢1¢ then |l_)0| > %‘g.
We rescale (7.7) to the unit ball and obtain that

lr2u(rx) —p(x,r 'bo.by)| <& ifxeBy, r= £z

If 0 belongs to one of the free boundaries of u, say 0 € I';,, and |bg| > c;¢, then we are in
the setting of Remark 7.1. Precisely, we find that in By, r 1T}, is the free boundary of a solu-
tion %, to a multiple membrane problem involving fewer membranes, which satisfies back
hypothesis (7.1) with the same value of ¢. We summarize the above discussion in the next
lemma.

Lemma 7.3. Assume thatu € 8(1,po, €) for some & < gy, iLe.,
lu—p(-.0.by))| <& inBy |by| < 3e,

and 0 € T, (w), for some iy. Then one of the following alternative hold:

(a) We have
3 .
lu—p(-,0,b))| < 5,08 in Byy, |y —b1| < Coe,

(b) We have
1
Lio N By C{lxa| = Ce2r} ifre [8%,1],

1 . L~ . .
When r = €2, T, is a free boundary to a solution u to the multiple membrane problem in B,
involving fewer membranes than N. Moreover, U satisfies

[§—p(-.bo.b1)| <2er2 in By, |bo|l < (26)2r, |by| < 8(2¢)2.

Also 0 ¢ (T;.

Alternative (b) reduces the situation to one involving fewer membranes.
It remains to investigate alternative (a). While u improves at a C2% rate as we zoom
in B,,, the bound on the size of by can deteriorate. Part (a) implies that

(7.9) uec 8(pg,po.&’) withe =¢+ C(8)8%.

As we iterate part (a) we want to show that the approximating polynomials converge. It
suffices to prove the following lemma.
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Lemma 7.4. Assume that the hypothesis of Lemma 7.3 hold and u satisfies alternative
(a). Then either (al) or (a2) below hold:

(al) We have

(7.10) ue S(po,po, g)

(a2) We have
(7.11) ue 8(po.po.2¢) and W(po) + ce2 < W(u, po) < W(u, 1) — ce?.

In both cases |V1 — Vpo|Loo(B,) < Ce, where Vi, vy, denote the approximate solutions for u in
B1 respectively Bp,.

The lemma is essentially included in Proposition 5.1 except the crucial lower bound
on W(u, pg). The statement that W(pg) < W(u, pg) allows one to prove the convergence of
> &g as in Section 4. The inequality follows easily when 0 € () I'; by the Weiss monotonicity
formula and the fact that pg is the least energy solution. However, for the general case we need
to establish a lower bound on the energy of approximate solutions the type

W(p(-,b)) > W(po) — Ce?.

First we establish the opposite inequality in (5.1) of Lemma 5.1.

Lemma 7.5. Assume that u € §(1,po, €) is e-approximated in By by v :=p(-,b).
Then
W, r) > W(v) — C(r)e?.

Proof. The proof is essentially the same as (5.1) in Lemma 5.1 after reverting the roles
of u and v. We write u = v + ew, with |w| < 1. Then we write

W, r) = W(v,r) 4+ 2" 21 + er" 21,

with

Wk 2 -1 2
gl ::/ — | Vw|“dx —r / wrw; do,
25 2k

2
I, .= / Za)k(Vvk-Vwk+fkwk)dx—/ Za)k;vkwk do
B, 0B,

:/B Zwk(fk — Avg)wg dx.

Now we use the fact that v is a solution in the x,-variable and find (see (1.3))
Wk (fie — Oxpx, Vi) wi = 0.
Since |0x, x, Vx| < 8¢, we find
wr(fx — Av)wg = ok (fk — Oxax, Vi) Wk — C0x,x, v | = —Ce,

which together with /; > —C gives the desired conclusion. o
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In the next lemma we show that each p(-,b) e-approximates at leat one solution for
which all the free boundaries intersect at the origin.

Lemma 7.6. Given a vector b € B(pg) with |b| < 8%8, there exists uy € S(1, po, €)
with 0 € (\I'; which is e-approximated in By by p(-,b).

Proof. For each solution u we associate the vector z € R”~! given by

zj := dist(0, I') X quy =u; 113 (0) — v (i — ui+1)(0) X {u; >u; 413 (0)-

The quadratic growth of u; — u; 41 away from its zero set implies that u — z(u) is a continuous
map, and 0 € ['; (u) if and only if z; = 0. Moreover, if we consider the solutions h(x3, bg) with
free boundaries x, = I'j(by), then the corresponding z; satisfies

Zi e
Ti(bo) =

For any I' € R”~! with |I"| < ¢’ we associate the corresponding vector bo(I") € B(po)
for which /(x2,bg) has free boundaries I'. Recall from Section 2 that T" — bo(T") is a bi-
Lipschitz map. We choose ¢’ small universal such that |bg| < %

We consider the solutions ur in B; with boundary data p(x, ebo(I"), b). We claim that
one of these functions satisfies the conditions of the lemma.

Notice that since p(x, ebg, b) solves the Euler-Lagrange equations with error 5 we know

that

(7.12) ¢ =<

lur — p(x, ebg,b)| <8¢ in By.
On the other hand, by Lemma 7.1,

P(x. cho, b) = p(x, b) + exbo + O(e?),
which imply that ur is e-approximated in By by p(-, b).
If § is sufficiently small, then
lur — p(x, ebg,b)| < ep in Bp,.
and the arguments before Lemma 7.3 applies. In particular, the free boundaries of the rescaling
ir(x) :=r 2ur(rx) withr = £2

are in Byjp ina C 88%—neighborhood of the free boundaries of h(x,, rbg) for some bg that
satisfies
[bo —bo| < 2Cop1,

(see Remark 7.1 and equations (7.7)—(7.8) with by, bo replaced by ebg and El_)o).

Thus the free boundaries of ur are in a ¢(py, 8)8%—neighborhood of the free boundaries
of h(x,, e%bo) with ¢(p1,8) — 0 as p1,6 — 0.

This means that the vector .

yr :=¢& 2z(ur)

associated to the rescaled solution ur above is in a ¢(pj, §)-neighborhood of the vector
zr := z(h(x3, by))

corresponding to h(xz, bg).
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We can find the desired solution to yr = 0 by a standard topological argument. Indeed,
by (7.12) we know that I" - zp ~ |T'|> hence I -z > ¢; > 0 when || = ¢/. Then " - yr > 0
when I' € 0B, provided that c¢1(p1,d) is sufficiently small. This implies that we can find
I' € B, such that yr = 0. O

As a corollary of Lemma 7.6 we obtain by (5.1) that if |b| < 88%, then

(7.13) Wp(-.b) = W(ub, %) _C = Wipo) - C2,

where uy, is the solution provided by Lemma 7.6.

The lower bound on W(p(-, b)) can be improved when b/§ £7 is at distance greater than
o away from the line {s7 : s € R}. For this we apply inductively Proposition 7.1 from scale 1
to scale r = ¢2 to the function uy, of Lemma 7.6. Notice that we cannot end up in alternative (b)

of Remark 7.2 (or Lemma 7.3) since 0 € () I';. The iteration requires mg ~ |log ¢| steps and

Ko

the distance from the corresponding sequence of by to the st-line remains greater than

throughout. From Remark 7.2 (a) we obtain that (see (7.6))
W(po) < W(ap, o) < W(ay, po) — (m — 1)ce?,
hence
W (uy. po) = W(po) + c|logele”.
Then, by the first inequality in (7.13) we find
(7.14) W(p(-,b)) = W(po) + cllogels>.

In the next lemma we show that the right-hand side can be improved further, and obtain the
reversed inequality to (5.2) in Lemma 5.1.
Lemma 7.7. We have
3
W(p(-.b)) = W(po) + ce>

if b/ 8e7 is at distance greater than Lo away from the line {st : s € R}.

Proof. We claim that if v := p(-,b), with b = e2d for some d with |d| < 1, then
(7.15) W(v) = e2g(d) + O(£2),

for some continuous function g(d). Inequality (7.14) implies that if d is at distance greater than
Siug away from the line {s7 : s € R}, then g(d) > 0 and the lemma easily follows. It remains
to prove the claim (7.15).

Since v is homogeneous of degree 2, we find

1
W(v) = / (vifi — —viAv,-)a),- dx.
B, 2

Using the same formula for pg and that

(vi A po,i — po,i Avi)w; dx =0,
B,

we get

1 1
W(v) — W(po) = / (vi — Po,z‘)(fi — = Av; — —Apo,i)wi dx.
B 2 2
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We split the integral on the right-hand side into three angular regions:
1 1 1
Ay = {|XZ| §C82|X1|}, Ay = {X2 >C82|X1|}, Az = {X2 <C82|X1|}.

In A3, v =po = 0 and the integral is 0. We show that the integrals in A; N By and A> N By
have the same form as the right-hand side of (7.15).
In A, N By, this follows easily from Lemma 4.1 which gives

1
vi — po,i =€2dix1x2 + O(¢)

and | |

Jfi— EAUI' - EAPO,Z' = —e(e; (d)X{x1>0} +e; (_d)X{x1<0})-
In A1 N By we use that |v|, |po| < Ce, and we replace ghe integral in A; N By by the integral
in Tg := A N {|x1]| < 1} since their difference is O(e2). Also we may replace our function
by

1 1
we = (v; — PO,i)(fi — 56221}1' — EAPO,i)wi

which differs from the original function by O(e?), and we integrate them in a domain of
1 . . . . .

measure ~ £2. However, the function w, is obtained from w; by the quadratic rescaling in
. 1 .

the second variable wg(x1, x2) = ewi(x1, x2/€2) which means that

/wgdxzs’/ wy dx.
& Tl

The claim follows since the right-hand side depends (continuously) only on d. O

NIw

Proof of Lemma 7.4. We distinguish two cases as in Remark 7.2 (a) depending on the
case whether or not by /8¢2, with by as in Lemma 7.3, is g close to the st-line. If b1/88%
is ;o close to this line, then we already showed in Remark 7.2 that alternative (7.10) holds.
Otherwise the alternative (7.11) holds since, by Lemma 7.5 and Lemma 7.7

W(u. po) = W(p(-.b)) — Ce* > W(po) + ce?. 0
The proof of Theorem 7.1 follows from the following lemma.

Lemma 7.8. Assume that O € I';, and for some ¢ < gg small, and withr = 1,
1 1
(7.16) lu—p(-,bo.by)| <er? inB,, forsomel|bg|<eZr, |bi|<8e2.
. e . 1
Then there exists a unit direction v with |v — ez| < Ce2 such that

Tio C {|x-v] < Clx|(s72 + [log|x[) "},

Proof.  'We prove the statement by induction depending on the number N of membranes.
We iterate Proposition 7.1 in Bp(r)n as long as the hypotheses are satisfied. We want to
show that
Tig N By C {lx-v| < Cpf,"(s_% —i—m)_l}.

We distinguish two cases.
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Case 1: |bg| = 3Cpe. We apply Proposition 7.1 by keeping ¢ fixed through the iteration
(by replacing 5 by ¢ in (7.2)). Denote by b{}', b]" the corresponding vectors in Bp(r)n, and we
stop the iteration when

by’ > e%pg’.
By (7.3), throughout the iteration |bg — bj'| < 2Coe (provided that pg is chosen small) hence
the iteration stops when
rm = p§ ~ [bole™% = 7.

Then we end up in the situation of alternative (b) in Lemma 7.3 with r = r,,. We may apply the

induction hypothesis in B, (with ¢ replaced by 2¢) to the problem involving fewer membranes,
and reach the desired result.

Case 2: |bg| < 3Cpe. We may replace by by 0 and ¢ into Ce. After relabeling ¢ we
reduce to the situation u € §(1, p, ¢) of Lemma 7.3.

We iterate Lemmas 7.3 and 7.4 accordingly in Bm.

We discuss the estimates as long as we remain in alternative (a). By Lemma 7.4, we obtain
that u € 8(p{', p. em) for a sequence &;,, and the approximating solutions v, := p(-,b7")
satisfy |V — Vim+1llLooBy) < Cém.

Moreover, up to the last value of m, m = mg (possibly infinite) for which alternative (a2)
applies, we know that

3
Wm = W(u, pg') — W(po) > cep  forallm < my,

3
hence since, by Lemma 5.1, w,, < Ce¢z, we find that for some ¢y, c’1 small

. Ay = Wy + 26‘18,211 > 0.

_1 _1
This implies thata,,3 ; > a,,” + ¢, hence

_1
am < (ag > +c(m—k)™>, m < mo.
. 3 2
Using that ag ~ €2, a,, ~ &3, we find
_1 2
em <C(e72 +m)™ ",

This inequality remains valid if we replace mg by m1 > mo with m denoting the first value
of m (possibly infinite) for which alternative (b) holds, since by (al), the values of &, decay
geometrically when m goes from m g to m. We find

mi .
Zem <C(e 2 4+k)yL
k

This implies that
IV = Vellzoo(py < Ce™2 + k)71 ifk <m <my.

Then the angle between the rotation directions v,, and vy of v,,, v; satisfy the same inequality,
and we can use the inequality
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to deduce that
T, N B, C {|x-vm1| < Cr(e_% +k)_1} if r > plg,k < mj.

By Lemma 7.3 (b), the inclusion holds also when
1
Po ' =T = empg

mi

1
with k replaced by m1. In the ball of radius &5, oy ' We can apply the induction hypothesis to
obtain that

1 _ 1
Lip N By C{lx 0| < Cr(em? + m—my) 1} ifr=pl' <&z po '

1
for some direction v with |V — v,,,| < Céey;,. We obtain the desired conclusion with unit
direction given by v since

L 1
em, < C(e72 +my) L O
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