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Free boundary regularity in the multiple
membrane problem in the plane

By Ovidiu Savin at New York and Hui Yu at Singapore

Abstract. We study the regularity of free boundaries in the multiple elastic membrane
problem in the plane. We prove the uniqueness of blow-ups, and that the free boundaries are
C 1;log-curves near a regular intersection point.

1. Introduction

Given a positive integer N , the N -membrane problem describes the shapes of N elastic
membranes under external forces. The membranes cannot penetrate each other, but they can
coincide in a priori unknown regions, giving rise to .N � 1/ free boundaries. The N -membrane
problem can be viewed as a coupled system of .N � 1/ obstacle problems with interacting free
boundaries. It is the natural extension of the obstacle problem (which corresponds to the case
N D 2) to the vector valued case, and can be referred to as the vectorial obstacle problem.

Mathematically, given a domain � � Rd , some positive constants ¹!kºkD1;2;:::;N , and
bounded functions ¹fkºkD1;2;:::;N , we study the minimizer of the following convex functional

(1.1) .u1; u2; : : : ; uN / 7!

Z
�

X
!k

�
1

2
jrukj

2
C fkuk

�
dx

over the class of functions with prescribed data on 𝜕�, and subject to the constraint

(1.2) u1 � u2 � � � � � uN in �.

The function fk represents the force acting on the kth membrane, whose height is described
by the unknown uk . Each !k represents the weight of the kth membrane.

Since the membranes cannot penetrate each other, the functions ¹ukº are well ordered
inside the domain. This leads to the constraint (1.2). On the other hand, consecutive membranes
can come in contact with each other. Between the contact region ¹uk D ukC1º and the non-
contact region ¹uk > ukC1º, we have the kth free boundary

�k WD 𝜕¹uk > ukC1º:
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We consider the case of constant force terms that satisfy a non-degeneracy condition specific
in obstacle-type problems

f1 > f2 > � � � > fN :

The Euler–Lagrange equation is given in the form of the variational inequality

(1.3) !i .vi � ui /4ui � !i .vi � ui /fi ;

which holds for all v 2 H 1.�/ that satisfy the constraint (1.2). Since the convex set defined
by (1.2) is invariant under addition of the same function and multiplication by the same positive
number, we have further

(1.4)
X

!i4ui D

X
!ifi ;

X
!iui4ui D

X
!iuifi :

Existence and uniqueness of the minimizer were established by Chipot and Vergara-
Caffarelli [3]. They also proved that solutions are C

1;˛
loc .�/ for all ˛ 2 .0; 1/. We obtained

the optimal C 1;1-regularity of solutions and then performed a blow-up analysis in Savin and
Yu [8].

The case when N D 2 corresponds to the classical obstacle problem. Concerning this
problem, there is a large literature, see, for instance, [1,2,4,6,7,13]. For the case when N D 3,
the free boundary regularity was investigated recently in [9]. The nontrivial analysis occurs near
the points where the two free boundaries intersect. Exploiting a maximum principle satisfied by
the pair .u1;�u3/ which is specific to N D 3 membranes, we obtained the sharp logarithmic
rate of blow-up. With this, we established the C 1;log-regularity of the free boundaries near
regular intersections, and the uniqueness of certain types of blow-up profiles.

In this work, we extend these results in the physical dimension d D 2 to an arbitrary
number of membranes N , and to all possible blow-up profiles. For arbitrary N , the setting
is much more complicated as the complexity of the problem grows exponentially with N .
Nevertheless, we are able to prove uniqueness of blow-ups as well as sharp free boundary reg-
ularity near a regular intersection point. A consequence of our results is that the free boundaries
intersect tangentially if the corresponding coincidence sets have positive densities at the inter-
section point. This is one of the interesting features of the problem: the .N � 1/ degrees of
freedom of the problem do not usually match the degrees of freedom of the free boundaries
when they intersect!

Uniqueness of blow-ups is a central problem in the regularity theory, and it is usually
achieved through a differential inequality known as the log-epiperimetric inequality of the type

d

dr
W.u; r/ � �cW.u; r/
 ; 
 < 2:

Here W represents the functional that appears in the (Weiss) monotonicity formula, trans-
lated so that it tends to 0 as r ! 0. For cones with smooth cross sections and when W has
analytic structure, a general method to establish the log-epiperimetric inequality is based on
the Lojasiewicz–Simon inequality. The method was developed by L. Simon [12] in the setting
of minimal surfaces. However, this strategy does not seem to apply in obstacle type problems
as the constraint (1.2) is polyhedral. The log-epiperimetric inequality in the standard obsta-
cle problem was established by Colombo-Spolaor-Velichkov [4] by making use of the Fourier
decomposition of the traces of u on 𝜕Br . The same authors extended their results to cones of
even frequency for the thin obstacle problem [5].
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Recently in [10, 11], we proposed an ad-hoc strategy to establish the uniqueness of cer-
tain blow-up cones in obstacle-type problems, which is inspired by our work for N D 3. This
is based on introducing approximate solutions, modeled by solutions of the linearized problem.
These approximate solutions are so that they minimize the error of the right-hand side in the
Euler–Lagrange equation, and are used to approximate the dyadic rescalings of the actual solu-
tion u. Their construction usually involves solving appropriate obstacle problems on 𝜕B1. The
fact that the error cannot be improved reduces to a non-orthogonality condition, which often is
given in the form of a nontrivial algebraic statement. The strategy is the following.

Assume the solution u is within an " error of an approximate solution v in B1. Then we
need to show that in a smaller ball B�, either u has a "

2
-rescaled error with respect to another

approximate solution w (which would give a geometric convergence rate for the rescalings of
u), or the energy of u in B� decayed at least an "2 amount, i.e.,

W.u; �/ � W.u; 1/ � c"2:

This dichotomy is a consequence of the fact that v is “the least error” approximation among
functions which project in the same point on the tangent space given by the linearized equation.
Then we establish an inequality of the type W.u; 1/ � "1C� for some � > 0, which together
with the inequality above gives a discrete version of the log-epiperimetric inequality and leads
to the uniqueness of blow-up limits.

In the present work, we follow the same strategy. An important point is that in dimension
d D 2 all cones are classified, and this plays a key role in the algebra involved, see Section 4.
The construction of approximate solutions relies on the solvability of the global problem in one
dimension, which we investigate in Section 3. Throughout the paper we use the bold face letter
notation for vectors, say

u D .u1; : : : ; uN /:

Before we introduce our results a few simplifications are in order. We may assume that
all N free boundaries pass through the origin,

0 2

\
�i ;

since an intersection point involving fewer free boundaries can be reduced locally to the same
problem with fewer membranes. Also, after subtracting the average from all uk , we may
assume that the average of the functions u and f is 0 (see (1.4)):X

!kuk D 0;
X

!kfk D 0:

In [8], we showed that the quadratic rescalings

ur.x/ WD r�2u.rx/

converge on subsequences as r ! 0 to a 2-homogeneous solution p, i.e., a cone. Moreover, in
dimension d D 2, we classified the family C2 of cones as extensions of one-dimensional cones
to two dimensions (see next section for more details).

We state the main results.

Theorem 1.1. Assume that d D 2 and p 2 C2 is a blow-up limit for u at the origin.
Then p is unique and

u.x/ D p.x/ C O.jxj2.� log jxj/�1/:
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Among the two-dimensional cones, the one of least energy is given by rotations of

p0.x2/ WD
1

2
.xC

2 /2f;

which represents the situation when all coincidence sets are given by the same half-plane. If p0

appears as a blow-up limit at the origin, then we say that 0 is a regular intersection point for
the free boundaries �i . Near these points, the free boundaries enjoy the following regularity:

Theorem 1.2. Assume d D 2 and

ju � p0j � "0 in B1

for a constant "0 depends on N; f and !. Then each �i is a C 1;log-curve in B1=2.

The paper is structured as follows. In Section 2, we introduce the notations, and collect
some general facts about the maximum principle and the optimal regularity of solutions. In
Section 3, we study the global one-dimensional problem which is crucial to our analysis. In
Sections 4 and 5, we prove Theorem 1.1 for those nondegenerate cones (connected cones) p
for which all their coincidence sets have nonempty interiors. In Section 6 we prove Theorem 1.1
for all other degenerate cones. Finally, in Section 7 we prove Theorem 1.2.

We conclude the introduction with a game theoretical interpretation of the N -membrane
problem. Suppose there are N players P1; : : : ; PN which hold N tickets 1; 2; : : : ; N and a
token that moves on a lattice in �. Each round the token moves randomly to an neighboring
vertex and the players can interchange their tickets according to the following rule: the player
with the ticket 1 can choose any ticket he wishes, after that the player with the ticket 2 can
choose from the remaining N � 1 tickets and so on. Moreover, in order for a player to hold
onto the ticket 1 for one round he needs to pay the amount f1, and for the ticket 2 the amount
f2, etc. When the token exits the domain, the payoff for the ticket k holder is given by the
boundary data 'k . If all players optimize their strategies then the solution uk to the discrete
N -membrane problem (with weights !k D 1) represents the expected payoff of the player
holding the ticket k, while the coincidence sets give the optimal strategies on the exchange of
tickets.

2. Notation and preliminaries

In this section we introduce the notations used through the paper, and collect some basic
properties of solutions to the N -membrane problem, such as optimal regularity, maximum
principle and introduce the cones in one and two dimensions.

Notation.
� u D .u1; : : : ; uN /.
� 1 D .1; 1; : : : ; 1/.
� u � v means ui � vi for all i .
� For I � ¹1; : : : ; N º, uI denotes the average of ui with i 2 I :

(2.1) uI WD

X
i2I

!iP
I !j

ui :
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� P denotes the collection of one-dimensional cones, see Definition 2.2.

� P c � P are the connected one-dimensional cones, see Definition 2.2.

� B.p/ is the space associated to the branches p 2 P c , see Definition 3.1.

� h.x; b/ is the global one-dimensional solution with linear asymptotics given by b 2 B.p/,
see Definition 3.2.

� � 2 B.p/ is generated by the 1-translation, see Definition 3.1.

� e.b/ is the error function, see Definition 3.3.

� p.x; b/ the approximate solution generated by b, see Definition 4.1.

� p.x; b0; b1/, see Definition 4.2.

� S.r; p; "/, see Definition 4.3.

� W.u; r/ the Weiss functional, see Section 5.

� p� 2 P n P c denotes a degenerate one-dimensional cone.

� pi
� 2 P c are the connected one-dimensional cones which make p�, see Section 6.

� S.r; p�; "/, see Definition 6.1.

� � -connected, see Definition 6.2.

� We denote by ci , Ci constants depending on N , d , f, !, and call them universal constants.

If h is a function with 4h D const, then u � h1 solves the N -membrane problem with
forces f � .4h/1, see (1.3)–(1.4). Thus, without loss of generality we assume throughout that
the functions f have average 0 X

!ifi D 0;

and by (1.4),
P

!iui is harmonic.
Often we subtract the average of the ui from each function so that we reduce to the caseP

!iui D 0. When this holds we say that u solves problem P0.

Definition 2.1. We say that u solves problem P0 if it is a solution to the N -membrane
problem and also

P
!iui D 0.

The Euler–Lagrange equation gives that in an open region where l membranes coincide
um < umC1 D umC2 D � � � D umCl < umClC1, the common function umC1 satisfies

4umC1 D fI ; I WD ¹m C 1; : : : ; m C lº;

i.e., the force acting on each of the l membranes in this coincidence region is the average of
the l forces fi .

Optimal regularity. Existence and uniqueness of solutions in H 1.�/ follows easily
from the standard methods in the calculus of variations. The optimal C 1;1 regularity of solu-
tions was obtained in [8]. We sketch the proof for completeness. We show that ui 2 C

1;1
loc

and

(2.2) 4ui D

X
j�i�k

fAjk
�Ajk

; Ajk WD ¹uj�1 < uj D � � � D uk < ukC1º:
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Lipschitz regularity. If v 2 H 1.B1/ in another solution, then by adding the variational
inequalities (1.3) for u and v we find

!i .vi � ui /4.vi � ui / � 0 H) 4.!i .vi � ui /
2/ � 0;

hence
P

!i .vi � ui /
2 is subharmonic. This shows that

kv � ukL1.B1=2/ � Ckv � ukL2.B1/:

Taking v to be a translation of u, we obtain

krukL1.B1=2/ � CkrukL2.B1/:

C 1;1 regularity. We start with the following lemma.

Lemma 2.1. Assume u solves the N -membrane problem in B1. Then

j4umj � C jfj;(2.3)

kukC 1;1.B1=2/ � C.kukL1.B1/ C jfj/:(2.4)

Proof. We use induction on N . The case N D 1 is trivial.
For N > 1, after subtracting the average, we may assume that

P
!iui D 0, and say also

that jfj D 1. We start with (2.3).
The set where all membranes coincide is

K WD ¹ui D 0 W for all iº D ¹u1 D uN º:

Inequality (1.3) implies 4u1 � f1, 4uN � fN , hence 4.u1 � uN / � f1 � fN . This means
that w WD u1 � uN � 0, satisfies 4w � C in � and, by the induction hypothesis, j4wj � C

in the set ¹w > 0º D � n K. This shows that w solves a scalar obstacle problem with right-
hand side bounded in L1, which implies the standard quadratic growth away from its zero
set

w.x/ � Cd.x; K/2;

where d.x; K/ denotes the distance from x to the set K. Then ju1j; juN j � w satisfy the same
inequality, and it holds for all other jumj. This shows j4umj � C on K in the viscosity sense,
while outside K the inequality holds (in the viscosity sense) by the induction hypothesis. In
conclusion, (2.3) is proved.

As a consequence, um � umC1 � 0 solves an obstacle problem with an L1 right-hand
side, and it satisfies the standard quadratic growth behavior

(2.5) um � umC1 � Cd.x; �k/2 in ¹um > umC1º:

Next we prove (2.4) by showing that each function um admits a tangent paraboloid by
above/below of opening 1 C kukL1 . For simplicity we prove this at the origin.

Let r � 0 denote the radius of the smallest ball around the origin Br which intersects
all free boundaries �i . Notice that in Br the problem decouples into two multi-membranes
problems involving fewer membranes than N .

If r �
3
4

, then we can apply the induction hypothesis in Br and get the desired conclusion
in B1=2. If r 2 .0; 3

4
/, then by (2.5) we conclude that um � umC1 � C.r2 C jxj2/ for all m.

Since the average of the functions u is 0, we find

jumj � C.r2
C jxj2/:
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In Br we may apply again the induction hypothesis (for the rescaling u.rx/

r2 ). Then we conclude
that um admits a global tangent polynomial of opening C by above/below at the origin (outside
Br we use the inequality above).

Finally, if r D 0, we obtain as above jumj � C jxj2 which gives again the desired esti-
mate.

Remark 2.1. Lemma 2.1 implies (2.2) by considering Lebesgue points for Ajk where
u is twice differentiable. If we assume that f satisfies the nondegenerate condition

f1 > f2 > � � � > fN ;

then the right-hand side for 4.um � umC1/ is positive, and we obtain also the quadratic growth
by below

max
Br .x0/

.um � umC1/ � cr2 if x0 2 �m,

for some c > 0 universal.

Maximum principle. The maximum principle takes the following form in the setting
of the N -membrane problem.

Lemma 2.2 (Maximum principle). If u and v are two solutions with u � v on 𝜕�, then
u � v in �. Moreover, if ui .x0/ D vi .x0/ for some x0 2 �, then ui D vi .

Proof. Let I � ¹1; : : : ; N º be the set of indices m for which um.x0/ D ui .x0/ and
similarly define J the set of membranes that coincide with v at x0. We have max I � max J ,
min I � min J . Then the average function uI\J (see (2.1)) satisfies

4uI\J � fI\J

in a neighborhood of x0, since we may perturb the membranes um with m 2 I \ J upwards
by a positive function "', ' 2 C1

0 .Br.x0// and keep satisfying the constraint (1.2). Similarly,

4vI\J � fI\J :

Since uI\J � vI\J and they coincide at x0, we find that they coincide in Br.x0/.

One-dimensional and two-dimensional cones.

Definition 2.2. We denote the space of one-dimensional cones by P :

P D ¹p W p is a homogeneous of degree 2 solution, and 0 D
T

�kº:

We denote by P c the solutions p 2 P which are nontrivially connected in the sense that each
coincidence set ƒm WD ¹um D umC1º is a half-line (or equivalently has nonempty interior),

P c
D ¹p 2 P W int ƒm ¤ ; for all m � N � 1º:

There are 3N�1 elements in P , since there are three options for each of the coincidence
sets ƒm: .�1; 0�, ¹0º, Œ0;1/, and there are 2N�1 elements in P c .
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A particular solution in P c is p0 which has the components pi D
fi

2
.xC/2. It turns out

that p0 and its reflection p0.�x/ are the least energy solutions among all p 2 P .
In [8] we showed that the space of two-dimensional cones C2 is generated by one-dimen-

sional cones in the following way. If p 2 P c , then its two-dimensional extension coincides
with p.x2/ up to rotations.

If p� 2 P n P c (i.e., a degenerate cone), then we first decompose p� as a union of m � 2

connected cones in P c . Each of these cones is extended to two dimensions, and then modified
by a harmonic function and an angle of rotation, see Section 6 for more details.

A convergence lemma. We state a lemma about sequences and the convergence of
series, which we use in the main result. In out setting wn will represent the Weiss energy of u

in the ball of radius �N , while "n the rescaled error between u and an approximate solution.

Lemma 2.3. Let wn and "n be two sequences of real numbers between 0 and 1. Suppose
that

wnC1 � C0"
3
2
n ;

and either
wnC1 � wn and "nC1 D

"n

2
;

or
wnC1 � wn � c"2

n and "nC1 D C "n:

Then

(2.6)
X
n�k

"n � M k�1

for some M depending only on c, C , C0.

Proof. We only sketch the proof (see [11] for more details). The sequence

an WD wn C c0"2
n

satisfies anC1 � an � c"2
n � an � Ca

4
3
n which implies an � C n�3. The conclusion follows

by adding the inequalities
"n � C.an � anC1/

1
2 :

3. The one-dimensional problem

In this section, we study the N -membrane problem in one dimension. For each cone
p 2 P c and vector b associated to the branches of p, we show that there is a unique global
solution with linear asymptotics given by bx at ˙1. We also introduce the error function e.b/,
which plays an important role in the study of approximate solutions in general dimensions.

In the one-dimensional problem, each component of the solution is piecewise quadratic,
and the difference between consecutive membranes is convex. This means that the coincidence
set ¹um D umC1º is an interval. Recall that P c represents the connected one-dimensional
cones, see Definition 2.2. If p 2 P c , then the graphs of all the components of p consists of
.N C 1/ disjoint half quadratics starting at the origin, i.e., a.xC/2 or a.x�/2. This is because
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any two consecutive graphs of the pi have precisely a half quadratic in common. We call
these disjoint quadratics the branches of p. The right branches of p are the graphs over Œ0;1/

and the left branches the ones over .�1; 0�. The condition
P

!ipi D 0 implies that the right
(respectively left) branches average to 0 when counting their weights and multiplicities.

We associate a real number bk to each of the branches of p with the compatibility con-
dition that the average of these numbers on the right (respectively left) branches equals 0. The
collection of these bk is denoted by b 2 B.p/.

Definition 3.1. For each p 2 P c , the space B.p/ consists of vectors

b D .b�
1 ; b�

2 ; : : : ; b�
N ; bC

1 ; : : : ; bC

N /;

with the property that
P

!ib
�
i D

P
!ib

C
i D 0 and

b�
i D b�

iC1 if pi D piC1 on .�1; 0�,

bC
i D bC

iC1 if pi D piC1 on Œ0;1/.

Clearly, B.p/ � R2N is an .N � 1/-dimensional linear subspace.
We want to solve the N -membrane problem after perturbing the branches of a solution

p 2 P c by xb.

Proposition 3.1. Given b 2 B.p/, there exists a unique solution u to problem P0 in R
which satisfies

ui D pi C b˙
i x˙

C o.jxj/ as x ! ˙1;

where bi D b˙
i is the number associated to the branch of pi .

Proof. We first show the existence.
We solve the problem in the interval Œ�R; R� with boundary data ui D pi C bix and

obtain a solution uR, and then let R ! 1. We need some uniform estimates.
Let M > max jbi j, and let t0 be the first value as we decrease t for which the inequality

p C .t C M jxj/1 > uR on Œ�R;CR�

fails. When t D t0, we need to replace > with � above and equality holds at some x0 for some
i -component.

Notice that t0 � 0 which follows from the inequality written at x D 0 andX
!iui D

X
!ipi D 0:

The left-hand side is a solution to our problem in each interval .�R; 0/, .0; R/ and by the
strong maximum principle it follows that the first contact point must be x0 D 0, since at the
end points ˙R we have strict inequality by the choice of M .

We claim that t0 � CM 2 with C a universal constant. We choose K D ı�1M with ı > 0

the universal constant from Lemma 3.1 below, and then define v as the translation of u

v WD uR
� .t0 C MK/1:

We have
p � v in Œ�K; K�
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and
vi .0/ D �MK D pi .0/ � ıK2:

By Lemma 3.1 (rescaled) we find v.0/ � �K21 which means uR
j .0/ � t0 C MK � K2 and

the claim follows from
P

!iu
R
i .0/ D 0. A symmetric argument gives

p C .CM 2
C M jxj/1 � uR

� p � .CM 2
C M jxj/1:

Since uR
iC1 � uR

i has to grow quadratically away from the free boundary, it follows that if
pi D piC1 say on Œ0;1/, then uR

i D uR
iC1 on ŒCM; R/ for some C universal. In particular,

uR
i and pi C bix have the same constant as second derivative on ŒCM; R/. Their difference is

at most CM 2 as at the end points of the interval. As R ! 1 we can extract a subsequence
which converges uniformly on each compact set and has the asymptotic expansion required.

For the uniqueness, we argue as above and obtain that ui has the same second derivative
as pi C bix in a neighborhood of 1 (or �1) and therefore they must differ by a constant. Thus
if v is another solution,

P
!i .ui � vi /

2 is convex and bounded and therefore it is a constant. In
particular, r.ui � vi / D 0 for each i , thus ui � vi is constant for each i . Since the branches of
u and v are connected we find that these constants are independent of i , and since their average
is 0, they all must be 0.

We give a quantified version of the strong maximum principle for solutions near p 2 P c.

Lemma 3.1. Let p 2 P c and let v be a solution of our problem (not necessarily of
average 0) with p � v in Œ�1; 1�, vi .0/ � �ı for some i . Then vj .0/ � �1 for all j , provided
that ı is sufficiently small.

Proof. The inequality is clear if j � i . It suffices to show that the collection of the
graphs of the vj with j � i are all connected in the strip ¹jxj � cº for some c small. Assume
not, and them let l � i be the last membrane connected to vi in Œ�c; c�. Then v1; : : : ; vl are
uniformly bounded in Œ�c; c�, and solve the l-membrane problem in Œ�c; c�. By compactness
(for fixed l), as ı ! 0 we obtain a limiting solution zv of the l-membrane problem which is
below .p1; : : : ; pl/ and with zvi .0/ D pi .0/ D 0. Since l < N , it follows that .p1; : : : ; pl/ is
a strict supersolution to the l-membrane problem, and we contradict the maximum principle
between p and zv.

Definition 3.2. Given p 2 P c and b 2 B.p/, we denote by

h.x; b/

the unique solution u from Proposition 3.1 to problem P0 which has linear coefficients b in its
asymptotic expansion at ˙1

ui D pi C bix C o.jxj/ as x ! ˙1:

Remark 3.1. Notice that p.x C 1/ has linear coefficients �i WD
p0

i

x
in its expansion

at ˙1. Hence if b D s�, then
h.x; s�/ D p.x C s/;

or more generally
h.x; b C s�/ D h.x C s; b/:



Savin and Yu, The N -membrane problem 119

With this and the fact that the linear perturbation keeps the contact situation unchanged
outside an interval of length Ckbk, we have the following.

Lemma 3.2. The function h.x; b/ is homogeneous of degree 2 in the variables x and b,
and is C 1;1 and piecewise quadratic in the x-variable. Moreover,

hi D pi C bix C O.kbk2/;

and outside the interval Œ�Ckbk; Ckbk� we have

hi D pi C bix C ei ;

with ei a constant which depends only on the branch.

Definition 3.3. We refer to the function b 7! e which maps B.p/ to B.p/ as the error
function (which is a homogeneous of degree 2 map).

It turns out that h.x; b/ is C 1;1 in the b-variable as well. The proof of this fact is technical
and can be skipped on a first reading.

Lemma 3.3. The function h.x; b/ is piecewise quadratic and of class C 1;1 in both
variables x and b. In particular, the error map e.b/ is piecewise quadratic in b.

Proof. Each solution u to problem P0 which is asymptotic to p at infinity, in the sense
that R�2u.Rx/ ! p must be of the form h.x; b/ and is uniquely determined by b.

On the other hand each such solution is also uniquely determined by the location of the
free boundaries �i . For example u1 and u2 coincide on the side of �1 where their correspond-
ing branches agree and they must differ on the other side of �1. So if we know the locations
of all the �i , 1 � i � N � 1, then we know in each of the corresponding subintervals deter-
mined by the �i which membranes coincide, and thus the second derivatives of all the ui are
uniquely determined. In other words if we arrange the free boundary points in increasing order
�i1

� �i2
� �iN�1

, then each u00
k

is determined on the interval Œ�ij ; �ijC1
� by the permutation

� D ¹i1; : : : ; iN�1º of ¹1; 2; : : : ; N � 1º. We can then integrate these second derivatives and
construct a solution u to problem P with free boundaries �i . Since the graphs of all the mem-
branes are connected, the solution u is unique up to a linear function. We explain more in detail
how to construct u inductively in the following way.

Assume that the top membrane p1 of p is free on the left and has the common branch with
p2 on the right. Then we construct u1 on the left of �1 as f1

2
.x � �1/2 and then on the right

of �1 we need to add to this quadratic a linear combination of terms Œ.x � �k/C�2 according to
values of u00

1 on the subintervals Œ�ij ; �ijC1
� to the right of �1. Then we construct u2 as equal

to u1 on the right side of �1 and on then on the left of �1 we need to adjust it by adding to u1 a
linear combination of terms Œ.x � �k/��2 according to the values of u00

2 on the subintervals to
the left of �1. Then we define u3 as equal to u2 on the side of �2 where the branches of p2 and
p3 coincide, and modify it on the other side of �2 according to the values of u00

3. We continue
this process till uN . By construction,

u1 � u2 � � � � � uN

(since u00
k
� u00

kC1
which is a consequence of non-degeneracy), and the Euler–Lagrange equa-
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tions are satisfied, hence u is a solution of problem P with the given free boundaries �k . By
construction, each ui is of the form

(3.1) ui D

X
k

�C

ki
Œ.x � �k/C�2 C ��

ki Œ.x � �k/��2;

where the coefficients �˙
ki

are determined only by the permutation � . We obtain a solution to
P0 after subtracting their total average from each one of them. The corrected ui have the same
form as above. The corresponding vector b for this solution is obtained from the asymptotic
expansion of the ui at ˙1, which means that b is a linear combination of the �i with coeffi-
cients depending on the �˙

ik
. Since b is uniquely determined by the �i it follows that the map

.�1; : : : ; �N�1/ 7! b is an invertible linear map on each open region of RN�1 where the �i

do not change the order. This linear map depends only on the permutation � and in each such
region �k is a linear function of b.

We view the function constructed above as a function of N variables u.x; �/ D p.x; b/,
and notice that u.x; �/ is purely quadratic in its variable in each of the N Š convex polyhedral
regions determined by the relative orders between the variables x, �1; : : : ; �N�1. In each such
region � D A�b for an invertible linear map A� . Thus, when viewed as a function of .x; b/,
u is still purely quadratic in its variables in the corresponding N Š polyhedral convex regions in
the .x; b/-variables.

It suffices to show that the normal derivatives of the quadratic polynomials on each
side of a common .N � 1/-dimensional face between two adjacent regions coincide. Then
CI � D2

.x;b/
p � CI except on a set of dimension N � 2, and this inequality can then be

extended by continuity on the remaining lower-dimensional set as well.
Let us consider a point .x0; b0/ on a common .N � 1/-dimensional face between two

regions. Let u0.x/ D p.x; b0/ be the corresponding solution for b0 and let �0 be the free
boundary vector associated with u0. In the .x; �/-variables, a common .N � 1/-dimensional
face between two regions corresponds to the case when two of the N coordinates of .x; �/

coincide and all the others are different.

Case 1: x0 coincides with �0;k. As we let x vary near x0 and keep �0 fixed, the
derivatives of u0 match at �0;k since u0 is a C 1;1 function. This means that the directional
derivative with respect to the x-direction at .x0; b0/ agree. This direction is transversal to the
face x D �k (since �k is linear in b near .x0; b0/) and the conclusion follows.

Case 2: �0;k D �0;l for some k < l . We study the behavior of the solution u as we
vary � in an "-neighborhood near �0.

If u0;k.�0;k/ > u0;l.�0;l/, then there is no change in the topology of the graph of u as
we vary � . This means that the right-hand sides for u00 in the subintervals determined by � are
not affected when �k and �l cross each other. The coefficients �˙

ij in (3.1) remain the same on
either side of �k D �l and the two polynomials coincide.

Next we assume that u0;k.�0;k/ D u0;l.�0;l/, and denote by Z 2 R2 the point on the
graph of u0 where kth and l th membranes coincide. We prove our claim by extending the
solution given by (3.1) when �k � �l to a whole "-neighborhood of b0 and then show that it
differs from the exact solution by at most C "2.

Let v.x; b/ denote the right-hand side of (3.1) corresponding to the permutation � with
�k < �l , where �k are viewed as linear functions of b. When �k.b/ � �l.b/, then v is the
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solution to problem P0 (with asymptote b). However, when �k > �l , then v might fail to solve
our problem near Z. We collect hear the properties of v in this case:

(1) By construction, v is a C 1;1 function and v00 is constant in each of the N subintervals
defined by � .

(2) j� � �0j D O."/ and jv � u0j D O."/ on any compact interval.

(3) The quadratic polynomial expressions in .x; b/ that define v in the open subintervals of �

remain constant as we exchange the order of �k and �l , except for the ones in the interval
between �l and �k . Outside this interval the membranes of v that coincide when �k � �l

continue to coincide, and their right-hand sides remain constant. In particular, v has the
vector b in its asymptotic expansion at ˙1, and its average is 0 away from Œ�l ; �k�.

(4) In a neighborhood of the interval Œ�l ; �k�, for the membranes vi for those i for which
Z does not belong to the graph of the i th membrane of u0, their polynomial expressions
remain constant. Indeed, for such i , u00

i has no discontinuity at �k or �l thus �C

ik
D ��

ik

and �C

il
D ��

il
, and the orders of the �k , �l do not affect the polynomial expressions

for vi .

(5) Let J denote the indexes of the membranes of u0 which pass through Z. If j 2 J and u
is a solution near u0, then near �0;k we have

uj D

8̂<̂
:

uk if j � k;

ukC1 if k C 1 � j � l ;

ulC1 if j � l C 1:

The same equalities hold if we replace u by v. Indeed, by (3) the equalities hold in this
neighborhood outside the interval Œ�l ; �k�. They hold also inside this interval which is
a consequence of the fact that the difference between two vj is a C 1;1 function with
constant second derivative.

Thus there are three different profiles for the functions vj with j 2 J which do not satisfy
the correct Euler–Lagrange in Œ�l ; �k�. These three profiles are connected either at �k or �l ,
since by (3) vk D vkC1 and vlC1 D vl either to the left of �l or the right of �k . The three
profiles are uniformly C 1;1 thus they differ by at most C "2 in this interval.

We remark that the vj with j 2 J (the three profiles) might not be monotone with respect
to j . However, outside a C "-neighborhood of Œ�l ; �k� they become ordered with respect to j

due to the non-degeneracy condition that holds outside this interval.

Now we prove that jv � p.x; b/j � C "2. Let t0 be the first value as we decrease t for
which the inequality p C t > v, fails. Since p and v have the same asymptotic expansion
at ˙1, and v is a solution except on the interval Œ�l ; �k� for the vj with j 2 J , it follows
that there exists x0 in this interval for which vj .x0/ D pj .x0/ C t0. Since all vj and all pj are
connected in this interval and are uniformly C 1;1 it follows that jvj � .pj C t0/j � C "2 for all
j 2 J in an "-neighborhood of the interval Œ�l ; �k�. However, outside this neighborhood both
graphs of v and p solve problem P (with the same asymptotic expansion at ˙1), hence this
inequality can be extended everywhere. Now jt0j � C "2 is a consequence of the null average
of v and p outside Œ�l ; �k�.



122 Savin and Yu, The N -membrane problem

4. Approximate solutions

In this section we define the class of the approximate solutions p.x; b/ in R2 which are
perturbations of the one-dimensional profile p.x2/ with p 2 P c , and collect some of their prop-
erties. We establish the algebraic statement that the error in the Euler–Lagrange equation cannot
be improved further unless p.x; b/ is a rotation of p, see Lemma 4.3. In Corollary 4.2, we obtain
the convergence of the rescaled errors between u and an approximate solution p.x; b/.

We begin with the definition of the approximate solution p.x; b/.

Definition 4.1. Given p 2 P c and b 2 B.p/, we denote by

p.x; b/ D h.x2; x1b/:

Clearly p.x; b/ is a homogeneous of degree 2 function in its variables.

Lemma 4.1. The function v.x/ WD p.x; b/ satisfies the following:

(a) It solves the Euler–Lagrange equations with error Ckbk2. Precisely, we have v 2 C 1;1,
v1 � � � � � vN and in an open region where vi > viC1 and vk > vkC1 we have

j4vI � fI j � C jbj2 with I D ¹i C 1; : : : ; kº:

(b) We have
vi .x/ D pi .x2/ C bix1x2 C O.jbj2x2

1/;

and in the cone ¹jx2j � Ckbkjx1jº with C large universal,

4vi D 4pi C 2ei .b/�¹x1�0º C 2ei .�b/�¹x1�0º;

where e.b/ is the error function defined in Definition 3.3.

Proof. By definition, v solves the Euler–Lagrange equations in the x2-variable hence

4vI � fI D 𝜕x1x1
vI :

Using the homogeneity of h we find

v11 D 2h � 2tht C t2ht t ;

where h and its derivatives are evaluated at the point .t; x1

jx1j
b/ with t WD x2

jx1j
.

Moreover, by Lemma 3.2, the right-hand side is constant in each of the four connected
regions of the set ¹jx2j > Ckbkjx1jº n ¹x1 D 0º and equals

v11 D 2e.b/�¹x1�0º C 2e.�b/�¹x1�0º:

Definition 4.2. Similarly we may define the more general class of functions

p.x; b0; b1/ D h.x2; b0 C x1b1/:

When b0 D 0, we are in the situation of Definition 4.1 and then use the simpler notation
p.x; b1/ for p.x; 0; b1/ as before.
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We give the corresponding lemma for this more general class of solutions.

Lemma 4.2. The function v.x/ WD p.x; b0; b1/ satisfies the following:

(a) It solves the Euler–Lagrange equations with error Ckbk2. Precisely, we have v 2 C 1;1,
v1 � � � � � vN and in an open region where vi > viC1 and vk > vkC1 we have

j4vI � fI j � C jb1j
2 with I D ¹i C 1; : : : ; kº:

(b) We have
vi .x/ D pi .x2/ C b0;ix2 C b1;ix1x2 C O.jb0j

2
C jb1j

2x2
1/:

Proof. The proof is the same as above, and follows from jD2hj � C (see Lemma 3.3)
and Lemma 3.2.

Lemma 4.3. We have e.b/ D e.�b/ if and only if b D s� for some s 2 R, where � is
defined in Definition 3.1.

Notice that b D s� is equivalent to p.x; b/ D p.x2 C sx1/.
As a consequence of the homogeneity of e we can quantify the difference between e.b/

and e.�b/ in terms of the distance from b to the line of direction � .

Corollary 4.1. There exists a strictly increasing continuous function

� W Œ0; 2� ! Œ0;1/ with �.0/ D 0

such that
je.b/ � e.�b/j

kbk2
� �

�
dist

�
b
kbk

;˙
�

k�k

��
for all b ¤ 0:

Since e.b/ is piecewise quadratic in b, it follows that �.s/ � cs2.

Proof of Lemma 4.3. One implication is trivial.
Due to the homogeneity of e it suffices to assume that e.b/ D e.�b/ and kbk � ı for

some small ı universal. Let �C
i denote the free boundaries for the one-dimensional solution

h.t; b/ and ��
i the free boundaries of h.t;�b/. We want to show that all �C

i coincide and that
��

i D ��C
i .

By the lemma above, the function v.x/ WD p.x; b/ is a solution to problem P with an
error Cı2, in the sense that

(1) v 2 C 1;1, v1 � � � � � vN ,

(2) the free boundaries of v are given by the rays x2 D �C
i x1 in ¹x1 > 0º and x2 D ���

i x1

in ¹x1 < 0º,

(3) in each of the sectors determined by these rays, the component vi solves the equation
4vi D gI with gI a constant, and jgI � fI j � Cı2, where I is the set of j for which
vj D vi in that sector.

Notice that e.b/ D e.�b/ is equivalent to the statement that the corresponding right-
hand sides gI agree on either side of the x2-axis on the two sectors that contain the positive
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respectively negative x2-axis. Also, if ı is chosen small, then the non-degeneracy condition
holds for the right-hand sides g, i.e., 4vi > 4vk if vi > vk . Now we can argue as in the
classification of homogeneous solutions in two dimensions to conclude that all free boundaries
coincide with a single line passing through the origin, which gives the desired conclusion. We
provide the details.

We denote by .r; �/ the polar coordinates in R2. Recall the following elementary lemma
from [8]:

Lemma 4.4. Assume w is homogeneous of degree 2 and defined in the angle � 2 Œ0; ˛�

with w D 0, rw D 0 on the rays � D 0, � D ˛. If

4w D ' � 0

and ' is a step function which is nondecreasing in Œ0; 
�, and nonincreasing in Œ
; ˛� for some

 , then

˛ � �:

Moreover, if ˛ D � , then ' must be constant.

We restrict our attention to the values of vi on the unit circle 𝜕B1. We know that each
two consecutive membranes vi and viC1 are connected (agree) at least on an open interval that
contains either .0; 1/ or .0;�1/, and they do not agree on the whole circle.

We focus on those intervals I � 𝜕B1 where ¹vk > vkC1º and vk D vkC1 at the end
points and in addition 4vk is constant in I .

Claim. Each such interval has length greater than or equal to � .

Indeed, we look at a minimal such interval and we apply Lemma 4.4 to the difference

wk WD vk � vkC1;

which vanishes of order two at the end points of I . Moreover,

4wk D 'k WD gk � gkC1 > 0 on I ,

The minimality of I implies that the nested sets ¹vkC1 D vkCmº are connected (intervals) in I ,
and therefore wk , 'k satisfy the hypotheses of Lemma 4.4.

The claim implies that ¹v1 > v2º consists of exactly one interval I1 of length at least
� . In the cone generated by I1, the function v1 coincides with a quadratic polynomial Q.
Denote by zv1 this polynomial Q in the complement of the angle generated by I1. Here we can
apply one more time the argument of the claim above by using the function zw1 WD zv1 � v2 and
conclude that also the complement has length at least � on the unit circle.

In conclusion, I1 consists exactly of a half-circle. Lemma 4.4 gives in addition that 4v2

is in fact constant on I1 and its complement. This in turn implies that v2 and v3 either coincide
or are disjoint in each of these two intervals. By arguing as above with v2 and v3 instead of v1

and v2, we find that also 4v3 must be constant in each of these two intervals, which gives that
¹v3 D v4º is either I1 or its complement. We can argue like this inductively and reach that all
the free boundaries must coincide.
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Definition 4.3. Given p 2 P c , we say that a solution u to problem P0 is "-approximated
in Br and write

u 2 S.r; p; "/

if, after a rotation around the origin, u satisfies

ju � p. � ; b/j � "r2 in Br

for some b 2 B.p/ with jbj � ı"
1
2 , with ı a small universal constant (to be made precise later).

Lemma 4.5. Assume that

(4.1) u 2 S.1; p; "/:

Then in B3=4 we have �i � ¹jx2j � C
p

"º for all i , and

(4.2) j4.ui � pi . � ; b//j � ı" in ¹jx2j � C
p

"º \ B3=4:

Proof. Any two consecutive membranes, say ui and uiC1, coincide on one side of this
strip ¹jx2j � C

p
"º and are separated on the opposite side, depending on whether the mem-

branes pi and piC1 of the one-dimensional solution p 2 P c coincide to the right or left of
the origin.

Indeed, assume that pi D piC1 to the left of the origin, and then

pi .x; b/ � piC1.x; b/ � cŒ.x2 � C jx1bj/C�2

and
pi .x; b/ D piC1.x; b/ if x2 � �C jx1bj:

The bound jbj � ı
p

" from Definition 4.3 and (4.1) implies that

ui > uiC1 in B1 \ ¹x2 � C
p

"º

and
jui � uiC1j � 2" in B1 \ ¹x2 � C

p
"º:

The claim
�i � ¹jx2j � C

p
"º \ B1�C

p
"

follows since ui and uiC1 separate quadratically away from their free boundary �i .
As a consequence we find that in ¹jx2j � C

p
"º \ B3=4,

4ui D 4.pi .x2// D fI in ¹jx2j � C
p

"º;

and, by Lemma 4.1,
j4.ui � pi . � ; b//j � C jbj2 � Cı2" � ı";

provided ı is sufficiently small.

Lemma 4.6. Assume that u 2 S.1; p; "/. Then in B1=2,

ju � p. � ; b/j � C ".jx2j C
p

"/˛

for some ˛ > 0 small, universal.
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Proof. We pick a point Z D .z; 0/, jzj � 1
2

on the x1-axis. It suffices to show by induc-
tion that for k � 0,

jui � pi . � ; b/j � "k WD ".1 � c/k in Brk
.Z/; rk WD �kC1;

as long as rk � C 0
p

", where �, c are small, universal constant.
Assume the induction hypothesis holds for k and suppose that p has at least two branches

on the right (in the x2-direction). We denote by Y WD Z C
1
2
rke2, and we claim that if

(4.3) uj .Y / � pj .Y; b/ for some j ,

then

(4.4) ui � pi . � ; b/ � .c � 1/"k in B�rk
.Z/; for all i:

By Lemma 4.5, we know that

j4.ui � pi . � ; b//j � ı" � ı"kr�2
k in ¹jx2j � C

p
"º \ Brk

.Z/;

and
ui � pi . � ; b/ � �"k in Brk

.Z/;

by the induction hypothesis. We prove (4.4) by comparing u with an explicit subsolution v in
the rectangle

R WD

²
jx1 � zj �

rk

2

³
� ¹jx2j � 4�rkº:

The Harnack inequality and (4.3) imply that

(4.5) uj � pj . � ; b/ � .c0 � 1/"k on 𝜕R \ ¹x2 D 4�rkº

for some c0 D c0.�/ universal. This inequality holds for all other membranes which coincide
with uj in the region ¹x2 � C

p
"º. We denote by J these indexes l for which ul.Y / D uj .Y /,

and remark that J depends only on the branch configuration of p. We let t 2 B.p/ be defined
as t�i D 0 for all i , and

tCi D

´
1 if i 2 J ,

�� otherwise.

The constant � > 0 is chosen such that the average of all the tCi equals 0, so that t 2 B.p/.
We define the barrier (see Definition 4.2)

v.x/ WD p.x2; d; b/ C

�
c1"kq

�
x � Z

rk

�
� "k

�
1;

where

(4.6) d WD c1"kr�1
k t; q.x/ WD

�

2
.x2 C 2�/ C x2

2 �
1

2
x2

1 ;

and c1 is small, depending on the constant c0 above. The polynomial q and the constant � are
chosen such that 4q D 1,

(4.7) q C tix
C
2 � c2 WD

1

2
�� in B�,
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and on the boundary of the rescaled rectangle

R0 WD

²
jx1j �

1

2

³
� ¹jx2j � 4�º;

we have
q C tix

C
2 � �c2 on 𝜕R0 n ¹x2 D 4�º; for all i;

and

(4.8) q C tix
C
2 � �c2 on 𝜕R0 if i … J:

We check that u � v on 𝜕R, and v is a subsolution to problem P .
By Lemma 4.2, p.x; d; b/ solves problem P with an error

C jbj2 � Cı2" � ı" � ı"kr�2
k ;

and since 4q D 1, it follows that v is a subsolution to problem P if ı is sufficiently small
(ı � c1).

Notice that "kr�2
k

is increasing with k, and when rk � C 0
p

", then

"kr�2
k � C "˛

� ı2 provided that " � "0.ı/:

Thus,
C jdj2 � C "2

kr�2
k � ı"k and C jbj2x2

1 � ı"k;

and by Lemmas 4.2 (b),

(4.9) jpi .x; d; b/ � pi .x; b/ � c1"kr�1
k tix

C
2 j � 3ı"k in Brk

.Z/:

Using inequalities (4.8) of q on 𝜕R0, we obtain that

vi � pi . � ; b/ C "k.3ı � c1c2 � 1/ � pi .x; b/ � "k � ui on 𝜕R if i … J;

and
vi � pi .x; b/ � "k � ui on 𝜕R n ¹x2 D 4�rkº; for all i:

Finally, on 𝜕R \ ¹x2 D 4�rkº and i 2 J we have by (4.5),

vi � pi .x; b/ C .C.�; �/c1 � 1/"k � ui ;

provided that c1 is chosen small so that C.�; �/c1 � c0.
In conclusion, u � v on 𝜕R, and the inequality holds in the whole R by the maximum

principle. In particular, by (4.7) in B�rk

ui � vi � pi . � ; b/ C .�3ı C c1c2 � 1/"k � pi . � ; b/ C .c � 1/"k :

Corollary 4.2. If um 2 S.1; p; "m/, for a sequence of "m ! 0, then, up to a subse-
quence, each of the rescaled error functions

"�1
m .um;j � pj . � ; bm//

converges uniformly in B1=2 to a limit wj that satisfies

kwj kL1 � 1; wj D 0 on x2 D 0,
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and
j4wj j � ı away from ¹x2 D 0º.

More precisely, 4wj is constant in each quadrant

4wj D �2ej .b/�¹x1>0º � 2ej .�b/�¹x1<0º in ¹x2 < 0º [ ¹x2 > 0º,

where b 2 B.p/ is the limit of

b WD lim
m!1

"
� 1

2
m bm; jbj � ı:

Proof. The convergence to a limit wj as above follows directly from Lemmas 4.5
and 4.6. The second part is a consequence of

jbkj � ı"
1
2

k

(see Definition 4.3), and Lemma 4.1 (b), after recalling that the function e.b/ is homogeneous
of degree 2 in b (see Definition 3.3).

5. Weiss monotonicity

In this section we establish the upper bound for the Weiss energy in Lemma 5.1 and the
main dichotomy result Proposition 5.1, which give Theorem 1.1 in the case of nondegenerate
cones.

We denote

E.u; r/ WD r�.nC2/

Z
Br

X
!k

�
1

2
jrukj

2
C fkuk

�
dx

and
F.u; r/ WD r�.nC3/

Z
𝜕Br

X
!ku2

k d�:

The Weiss functional is
W.u; r/ WD E.u; r/ � F.u; r/:

We compute

d

dr
W.u; r/ D r�.nC2/

Z
𝜕Br

X
!k

�
1

2
jrukj

2
C fkuk � 2r�1ukuk;� C 4r�2u2

k

�
dx

� .n C 2/r�1E.u; r/

D r�.nC2/

Z
𝜕Br

X !k

2

�
uk;� �

2

r
uk

�2

d� C
n C 2

r
.E.uh; r/ � E.u; r//

� r�.nC2/

Z
𝜕Br

X !k

2

�
uk;� �

2

r
uk

�2

d�;

where uh denotes the homogeneous of degree 2 extension of the boundary data of u on 𝜕Br ,
and in the last inequality we used the minimality of u for the energy E in Br .
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Lemma 5.1. Assume that u 2 S.1; p; "/. Then

W.u; 1
2
/ � W.p/ C C "

3
2 :

Proof. We denote by v WD p. � ; b/ and we prove the following inequalities:

(5.1) W.u; 1
2
/ � W.v/ C C "2

and

(5.2) W.v/ � W.p/ C C "
3
2 :

In order to obtain (5.1) we write

v D u C "w; jwj � 1:

By Lemmas 4.5 and 4.6, we know that outside the strip ¹jx2j � C
p

"º each component wk

satisfies j4wkj � ı, hence

(5.3) jrwj � C.jx2j C
p

"/˛�1 in ¹jx2j � C
p

"º \ B1=2:

Inside the strip, the C 1;1 norm of wk is bounded by C "�1, hence

(5.4) jrwj � C "�
1
2 in ¹jx2j � C

p
"º \ B1=2:

Then, with r D
1
2

, we write

W.v; r/ D W.u; r/ C "2rn�2I1 C "rn�2I2;

with

I1 WD

Z
Br

X !k

2
jrwkj

2 dx � r�1

Z
𝜕Br

X
!kw2

k d�;

I2 WD

Z
Br

X
!k.ruk � rwk C fkwk/ dx �

Z
𝜕Br

X
!k

2

r
ukwk d�

D

Z
Br

X
!k.fk �4uk/wk dx C

Z
𝜕Br

X
!k

�
uk;� �

2

r
uk

�
wk d�

� "

Z
𝜕Br

X
!k

�
�wk;� C

2

r
wk

�
wk d�:

In the last inequality we used (see (1.3))

(5.5)
X

!k.fk �4uk/wk � 0;

and that v is homogeneous of degree 2. From (5.3)–(5.4) we infer that I2 � �C ". Since
I1 � �C , we conclude that (5.1) holds.

For the second inequality (5.2) we argue similarly. We denote

p D v C g;

for some g that satisfies (see Lemma 4.1 (b))

jgj � C
p

" in B1, jgj � C " in ¹jx2j � C
p

"º \ B1.
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We have
W.p/ D W.v/ C I3

with

I3 WD

Z
B1

X
!k

�
rvk � rgk C

1

2
jrgkj

2
C fkgk

�
dx �

Z
𝜕B1

X
!k .2vkgk C g2

k/ d�

D

Z
B1

X
!k

�
fk �4vk �

1

2
4gk

�
gk dx;

where we have used that v and g are homogeneous of degree 2.
We estimate the last integral. When x belongs to the strip ¹jx2j � C

p
"º, then

jgkj � C " and
ˇ̌̌̌
fk �4vk �

1

2
4gk

ˇ̌̌̌
� C;

while outside the strip we have (see Lemma 4.1 (a) and Lemma 4.5)ˇ̌̌X
!k.fk �4vk/gk

ˇ̌̌
� C "

3
2 ; j4gkj � ":

Thus jI3j � C "
3
2 , and (5.2) is proved.

Proposition 5.1. Assume that u 2 S.1; p; "/, with " � "0. Then either

u 2 S

�
�; p;

"

2

�
or

u 2 S.�; p; C "/ and W.u; �/ � W.u; 1/ � c"2:

Moreover, if v1 and v� denote the approximate solutions of the type p. � ; b/ in B1 respectively
B�, then

kv1 � v�kL1.B1/ � C ":

Here �, "0, c (small) and C (large) denote universal constants.

Proof. We remark that the first conclusion of the second alternative u 2 S.�; p; C "/ is
obvious, by taking C D ��2.

We prove the statement by compactness. We fix � D
1
4

, C D ��2, and assume that
there exists a sequence of um, bm, "m ! 0 for which the conclusion does not hold with
cm D

1
m

! 0. By Corollary 4.2 we may extract a subsequence of the rescaled errors

wm WD "�1
m .um � p. � ; bm//

which converges uniformly in B1=2 (and in C 1
loc.B1=2 n ¹x2 D 0º/) to a limit function w which

satisfies
wj D 0 on ¹x2 D 0º

and
4wj D �2ej .b/�¹x1>0º � 2ej .�b/�¹x1<0º in ¹x2 < 0º [ ¹x2 > 0º,

where b 2 B.p/ is the limit of

b WD lim
m!1

"
� 1

2
m bm; jbj � ı:
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Since

"�2
m .W.um; 1/ � W.um; �// D "�2

m

Z 1

�

d

dr
W.um; r/ dr

�

Z
B1nB�

r�.nC2/
X !k

2

�
𝜕�wm;k �

2

r
wm;k

�2

d�;

we may take m ! 1 and conclude that w is homogeneous of degree 2 in B1=2 (first in
B1=2 n B� by the inequality above, and then in B1=2 by unique continuation). This implies
that e.b/ D e.�b/ and by Lemma 4.3 we conclude that

(5.6) b D s� for some s 2 Œ�Cı; Cı�:

Moreover,
wj WD 
j x2

2 C
�
tCj �¹x2>0º C t�j �¹x2<0º

�
x1x2;

with 
j D �ej .b/, and
j
j D je.b/j � C jbj2 � Cı2

� ı:

Moreover, since the average of wj is 0, we have t 2 B.p/, jtj � C . Using Lemma 4.1 (b), we
find that

p. � ; bm C "mt/ D p. � ; bm/ C "mw � "mx2
2
 C O

�
.jbmj

2
C jbm C "mtj2/x2

1

�
;

hence

(5.7) jum � p. � ; bm C "mt/j � "m.ı C Cı2/�2
�

"m

4
�2 in B�:

We cannot yet conclude that um 2 S.�; p; "m

2
/, and reach a contradiction since we do not know

that

jbm C "mtj � ı

�
"m

2

� 1
2

:

We achieve this after a rotation of coordinates. We use (5.6) and write

bm C "mt D "
1
2
m.s� C dm/ with dm ! 0;

and find (see Definition 3.1)

p.x; bm C "mt/ D h.x2; x1"
1
2
m.s� C dm//

D h.x2 C "
1
2
msx1; x1"

1
2
mdm/:

Denote by .y1; y2/ the new coordinates in the rotated system

y1 WD .1 C "ms2/�1.x1 � "
1
2
msx2/; y2 WD .1 C "ms2/�1.x2 C "

1
2
msx1/;

and notice that

x2 C "
1
2
msx1 D y2 C O."ms2

jyj/; x1"
1
2
mdm D y1"

1
2
mdm C O."msjyj/:
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Thus, since h is homogeneous of degree 2 and has bounded second derivatives,

p.x; bm C "mt/ D h.y2 C O."ms2
jyj/; y1"

1
2
mdm C O."msjyj//

D h.y2; y1"
1
2
mdm/ C O."msjyj2/

D p.y; "
1
2
mdm/ C O."msjyj2/:

(5.8)

The error term is bounded by (see (5.6))

jO."msjyj2/j � Cı"mjyj2 �
"m

4
jyj2

provided that ı is chosen small. Also, for all large m,

j"
1
2
mdmj � ı

�
"m

2

� 1
2

;

and by (5.7) we conclude um 2 S.�; p; "m

2
/, which is a contradiction.

Theorem 5.1. Assume that d D 2 and p 2 P c is a blow-up limit for u at the origin.
Then p is unique and

u.x/ D p.x2/ C O.jxj2.� log jxj/�1/:

Proof. The theorem follows from Lemma 5.1, Proposition 5.1 and Lemma 2.3. We omit
the details.

6. The degenerate cones

In this section we prove Theorem 1.1 for degenerate two-dimensional cones. The main
ideas are similar to the ones of the previous section, however the convergence of the rescaled
errors is much more delicate in this case. Also the compactness argument is more involved due
to the geometry of singular cones.

We consider one-dimensional cones which do not belong to P c , and their two-dimen-
sional analogues. Fix such a one-dimensional cone

p� 2 P n P c :

We can decompose p� as a union of m � 2 cones in P c as follows.
Let k1 < k2 < � � � < km�1 be the indices k with trivial coincidence sets, i.e.,

¹p�;k D p�;kC1º D ¹0º:

The consecutive membranes in each of the m groups ¹p�;ki
; p�;kiC1; : : : ; p�;kiC1�1º are con-

nected nontrivially on a half-line. After subtracting the average q�;i (a quadratic polynomial)
from each group we define the corresponding vector

pi
� WD .p�;ki�1C1; : : : ; p�;ki

/ � .q�;i ; q�;i ; : : : ; q�;i / W R ! Rki�ki�1 ;

and pi
� is a connected cone for the ki � ki�1 membranes. Thus we can write p� as a union of

m connected cones

(6.1) p� D .p1
� C q�;11; : : : ; pm

� C q�;m1/; pi
� 2 P c :
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The analogue cones in two dimensions corresponding to p� have the form

(6.2) p D .p1
C q11; : : : ; pm

C qm1/;

with qi quadratic polynomials such that

4qi D q00
�;i ;

X
!kqi D 0;

and with pi obtained from pi
� after a rotation. Here pi

� represents the trivial extension from one
to two dimensions while the angle of rotation depends on i . The polynomials qi and rotations
pi are constrained by the condition pk � pkC1 which must hold for all k � 1. This condition
needs to be checked only for consecutive membranes belonging to different connected groups,
i.e., when k is one of the ki , since it is clearly satisfied within each connected group.

When p 2 C2 is a two-dimensional cone extension of p� as in (6.2), we write

p 2 P .p�/:

For such a cone p, the free boundaries

�k WD 𝜕¹pk > pkC1º

with ki�1 < k < ki coincide with a single line, the line of the rotation of pi
� (whenever pi

�

consists of at least two membranes). When k D ki then the free boundary �k is the same as
the coincidence set ¹pk D pkC1º, and we show that it is either the origin, one ray, or two rays
passing through the origin. We make this more precise.

Lemma 6.1. The set �ki
consists of at most two rays that make an angle strictly greater

than �
2

.

Proof. Lemma 4.4 which implies that in each half-plane where 4pki
is constant (or

where 4pkiC1 is constant), the coincidence set cannot contain two distinct rays, unless they
coincide with the boundary of the half-plane and both 4pki

, 4pkiC1 are constant on either
side of the line.

This proves that there are at most two rays in �ki
.

Next we denote by 'j the multiplicity 1 parts of pki
and pkiC1:

pki
D '1 C a1Œ.x � �1/C�2; pkiC1 D '2 � a2Œ.x � �2/C�2;

with 'j homogeneous quadratic polynomials, and the constants aj � 0. Moreover, by non-
degeneracy

4'1 D fki
> fkiC1 D 4'2:

The coincidence rays are the ones along which '2 � '1 is tangent by below to the piecewise
quadratic function

a1Œ.x � �1/C�2 C a2Œ.x � �2/C�2 � 0:

If there are two coincidence rays, then they must belong to the two different components of
¹'2 � '1 > 0º. The conclusion follows since '2 � '1 is a strictly superharmonic homogeneous
quadratic polynomial.

We prove Theorem 5.1 for the degenerate cones.
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Theorem 6.1. Assume that d D 2 and p 2 P .p�/ is a blow-up limit for u at the origin.
Then p is unique and

u.x/ WD p.x/ C O.jxj2.� log jxj/�1/:

The strategy of proof is the same as in Sections 3 and 4. First we introduce a family of
approximate solutions near cones p 2 P .p�/ similar to Definition 4.3. In this case, an approx-
imate solution v consists of a collection of vector-functions vi as in Section 3, with each of
them approximating a connected group of p. More precisely, v has the form

v D .v1; : : : ; vm/; vk � vkC1 for all k;
X

!kvk D 0;

vi
D pi .x; bi / C qi 1; jbi j � ı"

1
2 ;

(6.3)

with qi quadratic polynomials with

4qi D q00
�;i ;

X
!kqi D 0

and pi . � ; bi / represents an "-approximation of a rotation of the connected one-dimensional
cone pi

�, as in Definition 4.1.
We make precise the definition of the solutions u which can be approximated by such v.

Definition 6.1. Given a one-dimensional cone p� as in (6.1), we say that a solution u to
problem P0 is "-approximated in Br by p� and write

u 2 S.r; p�; "/

if there exists an admissible v as in (6.3) above such that

ju � vj � "r2 in Br ; jbi j � ı"
1
2 ;

with ı a small universal constant (to be made precise later).

By definition, v 2 C 1;1 is homogeneous of degree 2, and the coincidence set between
consecutive connected groups, i.e., ¹vk D vkC1º with k D ki has empty interior in R2, since
4.vk � vkC1/ � c > 0. Moreover, on the unit circle this difference grows quadratically away
from its minimum points, hence the set where vk and vkC1 are " close to each other in B1

D"
k WD ¹vk � vkC1 � 2"º \ B1

is included in a C "
1
2 -neighborhood of at most two rays passing through the origin. The upper

bound on the number of rays follows by compactness, since v must converge to an element
p 2 P .p�/ as " ! 0.

By Lemma 4.1 (a), v satisfies the Euler–Lagrange equations with ı"-error

j4vI � fI j � Cı2" � ı":

Moreover, if �i denotes the unit direction of rotation for pi , so that pi . � ; bi / is the "-approx-
imation of pi

�.x � �i /, then, by Lemma 4.1 (b), in B1 \¹jx ��i j � "
1
2 º we have

(6.4) 4vi
D q00

�;i C4pi
� C 2e.bi /�¹x��?

i
�0º C 2e.�bi /�¹x��?

i
�0º:
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If a solution u is "-approximated by v in B1, then in B
1�C "

1
2

the coincidence sets for u
and v agree away from the set

(6.5) D"
WD

[
kDki

D"
k

[
i

¹jx � �i j � C "
1
2 º;

with D"
k

and �i as above. The set D" lies in a C "
1
2 -neighborhood of a finite number of rays.

As a consequence, we have the analogue of Lemma 4.5 in our setting.

Lemma 6.2. Assume that u 2 S.1; p�; "/ is "-approximated by v in B1. Then in B3=4

we have �k � D" for all k, and

(6.6) j4.uk � vk/j � ı" in B3=4 n D":

In the next lemma we establish a Hölder modulus of continuity for the rescaled differ-
ences uk�vk

"
.

Lemma 6.3. Assume u2S.1; p�; "/ is "-approximated by v in B1. Fix z 2B3=4 nB1=4,
and r 2 ŒC "

1
2 ; c�. We have

wk � 2"r˛
� uk � wk C 2"r˛ in Br.z/, for some ˛ > 0,

with w an admissible function in Br.z/ obtained from v by appropriate translating constants �k

(depending on r and z),

wk WD vk C �k; wk � wkC1 for all k:

Moreover, if Br.z/ intersects ¹x � �iº D 0, then the constants �k are all equal when k belongs
to the i th group k 2 ¹ki�1 C 1; : : : ; kiº.

We postpone the proof of Lemma 6.3 to the end of this section. As a consequence we
obtain the following version of Corollary 4.2 in our setting. The difference is that, in the limit,
the rescaled errors must agree along the direction of rotation for each of the connected groups
of the limiting cone p.

Corollary 6.1. If um 2 S.1; p�; "m/ are "m-approximated by vm for a sequence of
"m ! 0, then, up to a subsequence, vm ! p 2 P .p�/ and each of the rescaled error functions

"�1
m .um;j � vm;j /

converges uniformly on compact sets of B1=2 n ¹0º to a continuous limit wj that satisfies

kwj kL1 � 1; wj D wl on ¹x � �i D 0º whenever j; l 2 ¹ki�1 C 1; : : : ; kiº;

where �i is the direction of rotation for pi .

Another consequence of Lemma 6.3 is that the corresponding version of Lemma 5.1
holds in the degenerate setting.

Lemma 6.4. Assume that u 2 S.1; p�; "/. Then

W.u; 1
2
/ � W.p/ C C "

3
2 :
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Proof. First we remark that W.p/ is the same for all p 2 P .p�/.
The quantity

J.w/ D

Z
B1

1

2
!.jrwj

2
C f w/ dx �

Z
𝜕B1

!w2 d�

remains invariant if we replace w by w C q with q a homogeneous of degree 2 harmonic
polynomial (here f and ! are constants). This follows easily after applying the mean value
property for q and then by integration by parts.

From (6.2), we see that each of the connected groups pi C qi 1 that form p, is obtained
from i th connected group of the trivial extension of p� to two dimensions, after a rotation and
the addition of a homogeneous of degree 2 harmonic polynomial. The remark above implies
W.p/ D W.p�/.

The proof follows from Lemma 5.1 since t inequalities (5.1)–(5.2), i.e.,

(6.7) W.u; 1
2
/ � W.v/ C C "2

and

(6.8) W.v/ � W.p/ C C "
3
2 ;

continue to hold, where v is the "-approximation of u given in Definition 6.1.
Indeed, for (6.7) we only used that "�1jr.uk � vk/j is integrable on 𝜕B1=2 which, as in

Section 4, is a consequence of Lemmas 6.2 and 6.3.
The second inequality can be reduced to the one from Section 4 for each of the connected

groups. Recall that the i th connected groups of v, and p are given by

pi . � ; bi / C qi 1 and pi
C qi 1:

We claim that

(6.9) W.v/ � W.p/ D
X

i

W i .pi . � ; bi // � W i .pi / � C "
3
2 ;

where W i denotes the Weiss energy corresponding to the i th connected group

W i .wi / WD
X

ki�1<k�ki

�Z
B1

!k

�
1

2
jrwkj

2
C f i

k wk

�
dx �

Z
𝜕B1

!kw2
k d�

�
;

with f i
k
WD fk �4qi . The equality in (6.9) follows easily from the identity

J.w C q/ � J.v C q/ D J.w/ � J.v/ �

Z
B1

!.4q/.w � v/ dx;

which holds for any homogeneous quadratic polynomial q.

We are in a position to prove the corresponding version of Proposition 5.1 for degenerate
cones p�.

Proposition 6.1. Assume that u 2 S.1; p�; "/, with " � "0. Then either

u 2 S

�
�; p�;

"

2

�
or

u 2 S.�; p�; C "/ and W.u; �/ � W.u; 1/ � c"2:
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Proof. As before we prove the statement by compactness.
We fix � D

1
4

, C D ��2, and assume that there exists a sequence of um, vm, "m ! 0 for
which the conclusion does not hold with cm D

1
m

! 0.
By Corollary 6.1 we may extract a subsequence

vm ! p 2 P .p�/;

and rescaled errors
wm WD "�1

m .um � vm/

which converge uniformly of compact sets of B1=2 n ¹0º to a limit function w.
Denote by �i the direction of rotation for the i th connected cone pi of p, and by �ki

the
coincidence set ¹pk D pkC1º for k D ki , which by Lemma 6.1 consists of at most two rays
that form an obtuse angle. The sets D" defined in (6.5) converge in the Hausdorff distance to
the collection of rays

D0
WD

[
�ki

[
i

¹x � �i D 0º;

and the convergence of wm to w is in C 1
loc.B1=2 n D0/. As in the proof of Proposition 5.1, the

inequality
W.um; 1/ � W.um; �/ � cm"2

m

implies that the limit w is homogeneous of degree 2 in .B1=2 � B�/ n D0, hence in B1=2 n B�

by continuity.

Claim. If k belongs to the i th connected group Ji WD ¹ki�1 C 1; : : : ; kiº, then

wk D wl on ¹x � �i D 0º for all k; j 2 Ji ;

4wJi
D 0; wJi

WD

X
k2Ji

!kP
Ji

!j
wk;(6.10)

and on each half space determined by the line x � �i D 0,

(6.11) 4wj D �2ej .bi /�
¹x��?

i
>0º � 2ej .�bi /�

¹x��?
i

<0º;

where bi 2 B.pi / is the limit of

bi
WD lim

m!1
"
� 1

2
m bi

m; jbi
j � ı:

Proof of Claim. Notice that

4um;L � fL D 4vm;L; L WD ¹j � kj º;

which implies that
4wL � 0:

On the other hand outside any small neighborhood of �ki
, pki

> pkiC1 which implies the
same inequality for the membranes of um. This means that the inequality above is an equality,
which gives

4wL D 0 outside �ki
.
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Since wL is homogeneous of degree two and �ki
consists of at most two rays that form an

angle different than �
2

, we conclude that wL must be a harmonic quadratic polynomial. This
implies (6.10).

Equality (6.11) follows in B1=2 n D0 by equation (6.4). In fact, it can only fail on the rays
�ki�1

[ �ki
along which the i th connected group can interact with the i � 1 respectively i C 1

groups. Indeed, in a compact set outside these rays the graphs of uk with k 2 Ji are discon-
nected from the ones with k … Ji , and we are in the situation of Section 4. More precisely, we
only need to check (6.11) for those indices j 2 Ji and near the rays for which the membrane
pj is either tangent to pkiC1 or pki�1

.
It remains to show that if the membrane pj is tangent to pkiC1, then 4wj carries no

singular part on �ki
whenever �ki

is not included in x � �i D 0. Pick such a ray

` 2 �ki
n ¹x � �i D 0º

and let J 0
i � Ji denote those indices j in the i th group for which pj D pki

along `. Since ` is
away from the line x � �i D 0, we conclude that pj D pki

in a neighborhood of `. Using that
vm, um are small perturbations of p, we find that in an open neighborhood U of ` \ .B1 n B�/,

vj D vki
; uj D uki

if j 2 J 0
i :

In particular, in this neighborhood wj D wki
if j 2 J 0

i , hence

4wj D 4wJ 0
i

in U:

If J 0
i D Ji , then 4wj D 0 by (6.10) which shows that 4wj has no singular part on `. If

J 0
i ¤ Ji , then there is strict separation in U between the membranes pj with j 2 J 0

i and
j 2 L n J 0

i . This separation holds also for the membranes of um, and vm, hence

4um;LnJ 0
i
D fLnJ 0

i
;

and since vm is an approximate solution with ı"m error, we find that

j4wLnJ 0
i
j � ı in U.

Using that wL is harmonic, we find j4wJ 0
i
j � Cı. This shows that 4wj has no singular part

on ` if j 2 J 0
i , and the claim is proved.

Now we can argue as in the end of the proof of Proposition 5.1. The claim implies that
e.bi / D e.�bi /, hence, by Lemma 4.3,

bi
D si�

i for some si 2 Œ�Cı; Cı�;

and � i as in Definition 3.1. Moreover, for j 2 Ji ,

wj WD Nqi C 
j .x � �/2
C .tCj �¹x��>0º C t�j �¹x��i <0º/.x � �i /.x � �?

i /;

with 
j D �ej .bi /, Nqi D wJi
a harmonic quadratic polynomial, and the components t˙j form

a vector ti 2 B.pi /. Since j
 j � Cı2, we infer that

jui
m � Œpi .x; bi

m C "mti / C .qi C "m Nqi /1�j � Cı2"m�2 in B2� n B�.
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As in (5.8), we can rotate the axis �i of pi by an angle � "
1
2
m and rewrite

pi .x; bi
m C "mti / D pi .zx; "

1
2
mdi

m/ C O.ı"mjxj2/; di
m ! 0;

with zx representing the coordinates in the rotated system of coordinates. Thus

(6.12) jui
m � zvi

mj � Cı"m�2 in B2� n B�,

with
zvi

m WD pi .zx; "
1
2
mdi

m/ C qi C "m Nqi :

We do not know yet that the family zv is admissible since the inequality zvm;k � zvm;kC1 might
fail slightly when k D ki near �ki

. By (6.12), this inequality can fail by at most Cı"mjxj2. We
can modify each group of zvm by a harmonic quadratic polynomial of size ı"m, and construct
an admissible approximate solution Nvm. Indeed, assume that Nv1

m; : : : ; Nvi�1
m were constructed.

Then we can add Ciı"mhi .x/ to all membranes of zvi
m with hi a harmonic quadratic polyno-

mial which is negative on �ki
n ¹0º, which exists in view of Lemma 6.1. We can choose Ci

sufficiently large to guarantee that Nvi
m lies below Nvi�1

m . After constructing Nvm, we can subtract
its average (a harmonic polynomial) from all of its components, so that

P
!k Nvm;k D 0. In

conclusion, (6.12) implies that

jui
m � Nvi

mj � C 0ı"m�2 in B2� n B�,

with Nvm satisfying the admissible conditions (6.3) with "m replaced by "m=2.
Finally, since Nvm solves the system with error ı"m, it follows by maximum principle that

the inequality above can be extended to B� after relabeling the constant C 0. Thus

jui
m � Nvi

mj � C 00ı"m�2
�

"m

2
�2 in B�,

provided ı is chosen small. We obtain um 2 S.p�; �; "m=2/ and reached a contradiction.

The remaining of the section is devoted to the proof of Lemma 6.3 which relies on a
version of the Harnack inequality for one-dimensional membranes.

Lemma 6.5. Assume that u � v are one-dimensional solutions to the N membrane
problem in Œ�1; 1� and

uk.0/ � vk.0/ C � , for some k and � � 0.

Then
uk � vk C C� in Œ�1; 1�

for some C depending only on N , and the weights !i .

Proof. We prove the statement by induction on the cardinality of the complement of the
set of indices I defined as

I WD ¹j W uj .0/ � vj .0/ C aº:

Precisely, we show that there exists a constant C.jI j/ depending only on the cardinality jI j of
the set I such that in Œ�1; 1�,

uj � vj C C.jI j/� for all j 2 I:

If jI j D N , then I D ¹1; : : : ; N º. We have vI .0/ C � � uI .0/ � vI .0/ and since uI � vI � 0

is harmonic in Œ�1; 1�, we conclude that uI � vI C 2� which gives the desired conclusion.
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Assume that jI j < N , and denote I D ¹j0; : : : ; j0 C mº. Let .a; b/ be the largest interval
containing 0 on which the inequalities

uj0�1 > uj0
and vj0Cm > vj0CmC1

hold. Notice that the origin is interior to this interval, since otherwise either j0�1 or j0CmC1

would belong to I as well.
Assume that jaj � jbj and say that uj0�1.a/ D uj0

.a/.
In the interval .a; b/ the same argument as above applies. Indeed, in this interval the

membranes uj , and respectively vj , with j 2 I , can be perturbed upwards, and respectively
downwards. We find 4uI � fI � 4vI hence uI � vI � 0 is a concave function in .a; b/. We
conclude that

(6.13) uj � vj C C1� in Œa; jaj�; for all j 2 I:

In particular, at x D a we have

uk D ukC1 � vkC1 C C1� � vk C C1�; k D j0 � 1:

We can apply the induction hypothesis on the largest interval La centered at a which is included
in Œ�1; 1� with z� D C1� , and then the corresponding set of indices zI contains I and j0 � 1.
We find that

(6.14) uj � vj C C2� in La for all j 2 I [ ¹j0 � 1º:

If La contains the origin, then we can apply one more time the induction hypothesis at the
origin and obtain the desired conclusion in the whole interval Œ�1; 1�. Otherwise, inequality
(6.13) is valid in Œa; b� after relabeling C1 if necessary. We can argue as above at the other end
point b and obtain a similar inequality as (6.14) in the largest interval Lb � Œ�1; 1� centered
at b. Since Œ�1; 1� is covered by La, Œa; b� and Lb , we obtain the inductive conclusion for I .

We introduce the notion of � -connectedness in Br � Rn for membranes whose collec-
tion of � -neighborhood of their graphs form a connected set.

Definition 6.2. We say that the membranes vj and vjCm are � -connected in Br if we
can find points xi 2 Br with j C 1 � i � j C m such that vi�1.xi / � vi .xi / C � .

Remark 6.1. After relabeling the constant C , the conclusion of Lemma 6.5 holds for
all indices j � k for which uj is � -connected to uk in the half-interval

I WD

�
�

1

2
;
1

2

�
or j � k for which vj is � -connected to vk in I .

An equivalent statement is the following.

Corollary 6.2. Assume that u � v are one-dimensional solutions to the N membrane
problem in Œ�1; 1� and

uk.1/ � vk.1/ C � for some k and � � 0.
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Then
uj � vj C c� in I

for all j � k for which vj is c� -connected to vk in I , and all j � k for which uk is c� -con-
nected to uk in I . Here c D C�1 depends only on N and !i .

We now consider the case when u is defined in the cylindrical domain

R WD B 0
Cn

� Œ�1; 1� � Rn;

with Cn a large constant that depends only on n and v is one-dimensional and

(6.15) v solves the Euler–Lagrange equation in Œ�1; 1� with a c0� -error,

for some c0 sufficiently small.

Lemma 6.6. Assume that u is a solution in R and v satisfies (6.15) and

u.x0; xn/ � v.xn/ in R;

and
uk.x0; l/ � vk.l/ C � for some l 2 Œ�1; 1�:

for some � � �0 universal. Then

uj � vj C c0� in
1

2
R;

for all j 2 Jk which consists of the indices j such that

(a) either j � k and vj is c0� -connected to vk in I ,

(b) or j > k and the coincidence sets ¹vk D vkC1º, ¹vkC1 D vkC2º; : : : ; ¹vj�1 D vj º have
length more than 1

10
in I .

Remark 6.2. Notice that the collection of functions vj when j … Jk and vj C c0�

when j 2 Jk , which bounds uj by below, is admissible in 1
2
R.

Proof. We assume first that l D 1 and then explain how to deduce the more general
statement from this case.

Let w be the one-dimensional solution in Œ�1; 1� with the boundary data given by v.
We compare w with v ˙ c0�.jxj2 � 1/1 in Œ�1; 1� and find

(6.16) jwj � vj j � c0� for all j:

In particular, wj are 3c0� -connected in I if j � k and j 2 Jk .
Let Nw be the one-dimensional solution with boundary data w at �1 and

Nwj .1/ D

´
wj .1/ if j > k;

max¹wj .1/; wk.1/ C �º if j � k.

Clearly,
j Nwj � wj j � � in Œ�1; 1�; for all j;

which together with (6.16) and � � �0 implies that the Nwj are 0-connected in I if j > k

and j 2 Jk .
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By Corollary 6.2 applied to Nw, w, we can find c1 D c1.N; !i / such that

(6.17) Nwj � wj C 4c1� � vj C 3c1� in I; for all j 2 Jk;

provided we choose c0 � c1.
Next we compare u with the subsolution

Nw C c1�.x2
n � 4C�2

n jx0
j
2
� 1/1

in R and obtain
uj � Nwj � 2c1� in 1

2
R; for all j;

which, by (6.17), gives the conclusion uj � vj C c1� for all j 2 Jk .
It suffices to check the claim on 𝜕R. On 𝜕R n ¹xn D 1º the test function is below v and

therefore below u. This inequality holds also on 𝜕R \ ¹xn D 1º by hypothesis. This completes
the case l D 1.

Next we discuss the case when l is arbitrary. The same proof applies if jl j � 3
4

. In the
case when, say l 2 Œ0; 3

4
/, then the arguments above show that an inequality of the form

uk

�
x0;�

3

4

�
� vk

�
�

3

4

�
C c01� ifjx0

j �
3

4
Cn;

holds for the index j D k at �3
4

. Again we may repeat that proof above with zl D �
3
4

and
z� D c01� , and obtain the conclusion by choosing c0 much smaller if necessary.

We provide a version of Lemma 6.6 when v is a homogeneous of degree 2 approximate
solution in a rectangular domain in polar coordinates R� � R2 defined as

(6.18) R� WD ¹.r; �/ W j� j � �; jr � 1j � C�º with � < �0:

Lemma 6.7. Assume that u is a solution to the N -membrane problem in R� , and v is
a C 1;1 homogeneous of degree 2 function which solves the Euler–Lagrange equation in R�

with c0���2 error. If u � v in R� , and uk � vk C � jxj2 on a ray R� \ ¹� D lº, then

uj � vj C c0� jxj2 in R�=2

for all j 2 Jk for which either j � k and vj is c0� -connected to vk , or j > k and the coin-
cidence sets ¹vk D vkC1º, ¹vkC1 D vkC2º; : : : ; ¹vj�1 D vj º have length more than �

10
in the

interval � 2 Œ� �
2
; �

2
�.

The proof of Lemma 6.7 follows as the one of Lemma 6.6 after we establish a version of
the one-dimensional lemma, Lemma 6.5, on the unit circle. We omit the details but point out
some of the changes in this setting.

We consider functions v on small intervals Œ��; �� on the unit circle which solve the
N -membrane problem for the operator �𝜕�� � 4 which is positive definite if � < �

4
. Then the

homogeneous 2 extension of v solves the N -membrane problem in the corresponding sector
in R2. The energy corresponding to the new operator has the formZ �

��

X
!k

�
1

2
jv0

kj
2
� 2v2

k C fkvk

�
d�
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and the existence of solutions follows in the same way as before. The proof of Lemma 6.5 is
identical since the following Harnack inequality continues to hold:

𝜕��w C 4w � 0 and w � 0 H) w � C w.0/ in Œ��; ��:

We are ready to prove Lemma 6.3 by comparing u with appropriate translations of v that are
homogeneous of degree 2, and make use of Lemma 6.7 above.

Proof of Lemma 6.3. Assume for simplicity that z D
1
2
e1, and choose � universal such

that (see (6.18)) R4�r � Br.e1/.
We prove by induction on m � 0 that in Br.z/ with r D Nc�m, for some Nc small to be

specified later, as long as r � C "
1
2 we have

(6.19) vk C ��k;mjxj2 � uk � vk C �C
k;m

jxj2; �˙k;m D �k;m ˙ "m; "m WD 8.1 � c/m";

for some c > 0 small universal, and constants �k;m for which vk C �k;mjxj2 is admissible.
Moreover, �k;m are all equal when k belongs to the i th group k 2 ¹ki�1 C 1; : : : ; kiº and

(6.20) the line ¹x � �iº D 0 intersects Br.z/.

Notice that our hypothesis ju � vj � " implies that �k;m 2 Œ�16"; 16"�.
When m D 0, we can take �k;0 D 0 by hypothesis.
Assume the induction hypothesis holds for r D rm. We want to show that (6.19) holds in

B�r.z/ for some constants �˙
k

with

��k;m � ��k � �C
k

� �C
k;m

; �C
k

� ��k � .1 � c/.�C
k;m

� ��k;m/;

and vk C �˙
k
jxj2 are admissible, and with �˙

kC1
D �˙

k
whenever condition (6.20) holds for B�r .

We define �k;mC1 as the averages of �˙
k

and the conclusion follows for m C 1.
We pick a unit direction N� close to the direction e1 of z

j N� � e1j � �r

such that a cr-neighborhood of the ray of direction N� does not intersect the set D" (defined in
(6.5)) in Br.z/. This is possible since r � C "

1
2 . Assume that at 1

2
N�, uk is closer to the upper

bound in (6.19), i.e.,

(6.21) uk.
1

2
N�/ � .vk C .��k;m C "m/jxj2/

�
1

2
N�

�
:

By Lemma 6.2, outside D",

j4.uk � .vk C ��k;mjxj2//j � ı" C 2j��k;mj � 40" � Nc"mr�2:

By the Harnack inequality applied to the difference

uk � .vk C ��k;mjxj2/ � 0

we find that (6.21) can be extended to

uk � vk C ��k;mjxj2 C c0"m � vk C .��k;m C c0"m/jxj2



144 Savin and Yu, The N -membrane problem

for some c0 universal on the whole ray

Br=2.z/ \ ¹t N� W t � 0º;

provided that Nc is sufficiently small. Now we can apply Lemma 6.7 to uk.x/ (in fact the
quadratic rescalings 4uk.x

2
/) and vk C ��

k;m
jxj2 in R8�r with � WD c0"m, since the error for

the approximate solutions is bounded by

40" � Nc"mr�2
� c0�.8�r/�2;

and obtain
uj � vj C .��j;m C c00"m/jxj2;

in B�r.z/ for all j 2 Jk , for some c00 small, universal. As in Remark 6.2, the righthand sides
correspond to an admissible family in B�r.z/. Moreover, they change by the same amount on
a set of indices j that belong to an i th group ¹ki�1 C 1; : : : ; kiº for which ¹x � �iº intersects
B�r.z/, since in this case the coincidence sets ¹vj�1 D vj º cover more than 1

10
of the interval

� 2 Œ�4�r; 4�r� on the unit circle 𝜕B1. This means that we can choose �˙
k

accordingly in B�r

and the lemma is proved.

7. Regular intersection points

In this section we study the regularity of the free boundaries for solutions u that stay
close to the blow-up cone

p0.x/ WD
1

2
.xC

2 /2f;

and prove Theorem 1.2 which we recall.

Theorem 7.1. Assume d D 2 and

ju � p0j � "0 in B1.

Then each �i is a C 1;log curve in B1=2.

We prove Theorem 7.1 by induction on the number of membranes N . One of the technical
points is that we need a lower bound for the Weiss energy, see Lemma 7.7, which is not obvious
since we no longer assume 0 2

T
�i .

Similar to Definition 4.3, we approximate solutions u by the slightly more general func-
tions from Definition 4.2

p.x; b0; b1/ D h.x2; b0 C x1b1/; bi 2 B.p0/:

Proposition 7.1. Assume that a solution u to problem P0 satisfies

(7.1) ju � p. � ; b0; b1/j � "r2 in Br ;

for some bi 2 B.p0/ with jb0j � "
1
2 r , jb1j � 2ı"

1
2 . Then

(7.2) ju � p. � ; b0
0; b0

1/j �
"

2
.�r/2 in B�r
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with b0
i 2 B.p0/ and

(7.3) jb0
0 � b0j � C0"r; jb0

1 � b1j � C0":

The constant C0 depends only on the dimension d D 2, � � �0 universal, ı � ı.�/ depending
on �, and " � "0.ı; �/ sufficiently small.

After rescaling it suffices to prove the proposition for r D 1. First we estimate the change
in h.x; b/ as we vary b.

Lemma 7.1. We have

jh.x; b C d/ � .h.x; b/ C xd/j � C jdj.jbj C jdj/

Proof. By the homogeneity of h we may assume that jbj C jdj D 1. Then by Lemma 3.2
we know that the left-hand side is constant when x is outside the interval Œ�C; C �. So it suffices
to prove the inequality when jxj � C . Now the inequality follows from the Lipschitz continuity
of h in its second variable.

Next we establish in the context of Proposition 7.1 the estimate for the rescaled error
of u � p in terms of the distance to the x2-axis, as we did in Lemma 4.6.

Lemma 7.2. Assume that u satisfies (7.1) with r D 1. Then in B1=2,

ju � p. � ; b0; b1/j � C ".jx2j C
p

"/˛;

for some ˛ > 0 small, universal.

Proof. The proof is essentially the same with the one of Lemma 4.6, after replacing
p. � ; b/ by p. � ; b0; b1/. A few comments are in order.

First we remark that the approximate solution solves the Euler–Lagrange equations with
error C jb1j

2 � ı" as before, and is not affected by the presence of b0, see Lemma 4.2.
The comparison function v in Brk

.Z/ is defined as before

v.x/ WD p.x2; b0 C d; b1/ C

�
c1"kq

�
x � Z

rk

�
� "k

�
1;

with d, q as in (4.6). Inequality (4.9) is then replaced by

(7.4) jp.x; b0 C d; b1/ � p.x; b0; b1/ � x2dj �
C

C 0
1

"k in Brk
.Z/;

and the rest of the proof remains the same, by choosing C 0
1 sufficiently large depending on the

other constants c1, c2 and �. We no longer use Lemma 4.2 to establish (7.4), but Lemma 7.2
above with b D b0 C x1b1. Then jbj � 2"

1
2 and, since jdj � C "kr�1

k
and rk � C 0

1"
1
2 , the

left-hand side in (7.4) is bounded by

C "
1
2 "kr�1

k �
C

C 0
1

"k :
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Remark 7.1. As a consequence of Lemma 7.2 and of the quadratic separation of con-
secutive membranes from their common free boundary, we find that in B1=2 the free boundaries
�i .u/ of u lie in a "

1
2
C˛

4 -neighborhood of the corresponding free boundaries of the approximate
solution

p.x; b0; b1/ D h.x2; b0 C x1b1/:

In particular, �i .u/ lie in an Cı"
1
2 -neighborhood of the free boundaries x2 D �i .b0/ of the

exact solution p.x; b0; 0/ D h.x2; b0/.
Assume that the free boundaries of h.x2; b0/ separate of order "

1
2 , i.e., there exists an

interval Œa � c0"
1
2 ; a C c0"

1
2 � for some c0 small, which does not intersect the �i .b0/, but at

least one of these points falls to the left of this interval and at least one to the right. Assume
ı � c0 is sufficiently small. Then the free boundaries �i .u/ do not intersect the strip

S WD

²
jx2 � aj �

c0

2
"

1
2

³
;

and the N -membrane problem decouples into several multi-membrane problems in B1=2

involving fewer membranes.
Indeed, for each set of indices j 2 J for which uj agree in the strip S , we replace uj by

uJ to the right of the strip (we think x2 is the horizontal direction). If there are J1; : : : ; Jl such
sets, then we obtain a multi-membrane problem involving l-membranes. The free boundaries
of the new problem coincide with the free boundaries of u that were on the left of the strip S .
On the other hand, for each set J , uj � uJ solves a multi-membrane problem which has �j .u/

with j 2 J as free boundaries, which lie to the right of the strip S . The same decoupling
procedure can be performed to the approximate solution p.x; b0; b1/, hence the decoupled
multi-membrane problems in B1=2 are still "-approximated by corresponding functions of the
type p. � ; b0; b1/.

Also Lemma 7.2 implies the uniform convergence of the rescaled errors.

Corollary 7.1. If jum � p. � ; bm
0 ; bm

1 /j � "m in B1, with jbm
0 j � "

1
2
m, jbm

1 j � 2ı"
1
2
m, for

a sequence of "m ! 0, then, up to a subsequence, each of the rescaled error functions

"�1
m .um;j � pj . � ; bm

0 ; bm
1 //

converges uniformly in B1=2 to a limit wj that satisfies

kwj kL1 � 1; wj D 0 on x2 D 0

and
j4wj j � ı away from ¹x2 D 0º.

Proof of Proposition 7.1. The rescaled error functions

"�1.uj � pj . � ; b0; b1//

are well approximated in B1=2 by continuous functions wj which vanish on x2 � 0 and satisfy
j4wj j � ı in ¹x2 > 0º. Denote by d0, d1 2 B.p0/ as

dC
0;j D 𝜕x2

wj .0/; d�
0;j D 0; dC

1;j D 𝜕x1x2
wj .0/; d�

1;j D 0:
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Then jdi j � C0, and

jw � x2.d0 C x1d1/j � C0.�3
C ı/ in B�;

for a constant C0 that depends only on the dimension d D 2. If � � �0 universal, and ı � ı.�/

depending on �, then the right-hand side is less than 1
4
�2.

By Lemma 7.1,

p.x; b0 C "d0; b1 C "d1/ � p.x; b0; b1/ D "x2.d0 C x1d1/ C O."
3
2 /;

and we obtain the desired result by choosing b0
0 D b0 C "d0, b0

1 D b1 C "d1.

Remark 7.2. Assume that in B1 we satisfy (7.1) and in addition b0 D 0. We have the
following dichotomy depending on the size of d0 in the proof above.

(a) If

(7.5) jd0j � c.�0/ DW c1

then we may choose b0
0 D 0 and satisfy the conclusion

ju � p. � ; 0; b0
1/j �

"

2
�2

0 in B�0
; jb0

1 � b1j � C0":

Moreover, a similar analysis as in Proposition 5.1 can be performed. If b1=ı"
1
2 is at

distance at most �0 (with �0 small universal) away from the line ¹s� W s 2 Rº, then, as in the
last part of the proof of Proposition 5.1, after a rotation of coordinates as in (5.8) we may reduce
to the case when b1 satisfies the improved bound jb1j �

1
4
ı"

1
2 . Then u 2 S.�0; p0; "

2
/ and the

approximate solutions v1, v�0
for u in B1 respectively B�0

satisfy jv1 � v�0
j � C ".

Assume now that b1=ı"
1
2 is at distance greater than 1

2
�0 away from the line ¹s� js 2 Rº.

Then in the proof of Proposition 7.1, by Corollary 4.1, the right-hand side of 4w is constant
in each quadrant in ¹x2 > 0º but has a discontinuity jump greater than c.ı; �0/ > 0 across
¹x1 D 0º. This implies that w cannot be homogeneous of degree 2 in the annulus B1=2 n B1=4

which, as in Proposition 5.1 implies the energy inequality

(7.6) W.u; �0/ � W.u; 1/ � c"2;

for some c small depending on ı and �0.
(b) If jd0j � c1, then we satisfy the conclusion

ju � p. � ; b0
0; b0

1/j � "�2
1 in B�1

; jb0
0j � c1";

for some small �1, provided that ı is chosen small, depending on �1.

Next we show that when we end up in situation (b), then the N -membrane problem
near the origin can be reduced to one involving fewer membranes. For this we need to iterate
Proposition 7.1 from scale 1 to scale "

1
2 . Precisely, let us assume that, as a starting point we

have
ju � p. � ; b0; b1/j � "�2

1 in B�1
;

with
jb0j �

"

2
; jb1j � ı"

1
2 :



148 Savin and Yu, The N -membrane problem

We can iterate the proposition with r D �m
1 till r � "

1
2 and obtain

(7.7) ju � p. � ; Nb0; Nb1/j � "r2 in Br ; with r D "
1
2 ,

with

(7.8) j Nb0 � b0j � 2C0�1"; j Nb1 � b1j � C jlog "j"

(in the last step of the iteration we applied the proposition for some � 2 Œ�1; �2
1�). Here �1 is

chosen small such that 4C0�1 � c1 � 1 (see (7.5)) and throughout the iteration the inequalities

j Nb0j � "; j Nb1j � 2ı"
1
2

are satisfied. Moreover, if jb0j � c1" then j Nb0j �
c1

2
".

We rescale (7.7) to the unit ball and obtain that

jr�2u.rx/ � p.x; r�1 Nb0; Nb1/j � " if x 2 B1, r D "
1
2 :

If 0 belongs to one of the free boundaries of u, say 0 2 �i0
, and jb0j � c1", then we are in

the setting of Remark 7.1. Precisely, we find that in B1, r�1�i0
is the free boundary of a solu-

tion zur to a multiple membrane problem involving fewer membranes, which satisfies back
hypothesis (7.1) with the same value of ". We summarize the above discussion in the next
lemma.

Lemma 7.3. Assume that u 2 S.1; p0; "/ for some " � "0, i.e.,

ju � p. � ; 0; b1/j � " in B1, jb1j � ı"
1
2 ;

and 0 2 �i0
.u/, for some i0. Then one of the following alternative hold:

(a) We have
ju � p. � ; 0; b0

1/j �
"

2
�2

0 in B�0
, jb0

1 � b1j � C0";

(b) We have
�i0

\ Br � ¹jxnj � C "
1
2 rº if r 2 Œ"

1
2 ; 1�.

When r D "
1
2 , �i0

is a free boundary to a solution zu to the multiple membrane problem in Br

involving fewer membranes than N . Moreover, zu satisfies

jzu � zp. � ; zb0; zb1/j � 2"r2 in Br ; jzb0j � .2"/
1
2 r; jb1j � ı.2"/

1
2 :

Also 0 …
T

�i .

Alternative (b) reduces the situation to one involving fewer membranes.
It remains to investigate alternative (a). While u improves at a C 2;˛ rate as we zoom

in B�0
, the bound on the size of b1 can deteriorate. Part (a) implies that

(7.9) u 2 S.�0; p0; "0/ with "0 D " C C.ı/"
3
2 :

As we iterate part (a) we want to show that the approximating polynomials converge. It
suffices to prove the following lemma.
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Lemma 7.4. Assume that the hypothesis of Lemma 7.3 hold and u satisfies alternative
(a). Then either (a1) or (a2) below hold:

(a1) We have

(7.10) u 2 S

�
�0; p0;

"

2

�
:

(a2) We have

(7.11) u 2 S.�0; p0; 2"/ and W.p0/ C c"
3
2 � W.u; �0/ � W.u; 1/ � c"2:

In both cases jv1 � v�0
jL1.B1/ � C ", where v1, v�0

denote the approximate solutions for u in
B1 respectively B�0

.

The lemma is essentially included in Proposition 5.1 except the crucial lower bound
on W.u; �0/. The statement that W.p0/ � W.u; �0/ allows one to prove the convergence ofP

"k as in Section 4. The inequality follows easily when 0 2
T

�i by the Weiss monotonicity
formula and the fact that p0 is the least energy solution. However, for the general case we need
to establish a lower bound on the energy of approximate solutions the type

W.p. � ; b// � W.p0/ � C "2:

First we establish the opposite inequality in (5.1) of Lemma 5.1.

Lemma 7.5. Assume that u 2 S.1; p0; "/ is "-approximated in B1 by v WD p. � ; b/.
Then

W.u; r/ � W.v/ � C.r/"2:

Proof. The proof is essentially the same as (5.1) in Lemma 5.1 after reverting the roles
of u and v. We write u D v C "w, with jwj � 1. Then we write

W.u; r/ D W.v; r/ C "2rn�2I1 C "rn�2I2;

with

I1 WD

Z
Br

X !k

2
jrwkj

2 dx � r�1

Z
𝜕Br

X
!kw2

k d�;

I2 WD

Z
Br

X
!k.rvk � rwk C fkwk/ dx �

Z
𝜕Br

X
!k

2

r
vkwk d�

D

Z
Br

X
!k.fk �4vk/wk dx:

Now we use the fact that v is a solution in the x2-variable and find (see (1.3))

!k.fk � 𝜕x2x2
vk/wk � 0:

Since j𝜕x1x1
vkj � ı", we find

!k.fk �4vk/wk � !k.fk � 𝜕x2x2
vk/wk � C j𝜕x1x1

vkj � �C ";

which together with I1 � �C gives the desired conclusion.
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In the next lemma we show that each p. � ; b/ "-approximates at leat one solution for
which all the free boundaries intersect at the origin.

Lemma 7.6. Given a vector b 2 B.p0/ with jbj � ı
1
2 ", there exists ub 2 S.1; p0; "/

with 0 2
T

�i which is "-approximated in B1 by p. � ; b/.

Proof. For each solution u we associate the vector z 2 Rn�1 given by

zi WD dist.0; �i /�¹uiDuiC1º
.0/ �

p
.ui � uiC1/.0/�¹ui >uiC1º

.0/:

The quadratic growth of ui � uiC1 away from its zero set implies that u 7! z.u/ is a continuous
map, and 0 2 �i .u/ if and only if zi D 0. Moreover, if we consider the solutions h.x2; b0/ with
free boundaries x2 D �i .b0/, then the corresponding zi satisfies

(7.12) c �
zi

�i .b0/
� C:

For any � 2 Rn�1 with j�j � c0 we associate the corresponding vector b0.�/ 2 B.p0/

for which h.x2; b0/ has free boundaries � . Recall from Section 2 that � 7! b0.�/ is a bi-
Lipschitz map. We choose c0 small universal such that jb0j �

1
2

.
We consider the solutions u� in B1 with boundary data p.x; "b0.�/; b/. We claim that

one of these functions satisfies the conditions of the lemma.
Notice that since p.x; "b0; b/ solves the Euler–Lagrange equations with error ı" we know

that
ju� � p.x; "b0; b/j � ı" in B1.

On the other hand, by Lemma 7.1,

p.x; "b0; b/ D p.x; b/ C "xb0 C O."
3
2 /;

which imply that u� is "-approximated in B1 by p. � ; b/.
If ı is sufficiently small, then

ju� � p.x; "b0; b/j � "�2
1 in B�1

.

and the arguments before Lemma 7.3 applies. In particular, the free boundaries of the rescaling

zu�.x/ WD r�2u�.rx/ with r D "
1
2

are in B1=2 in a Cı"
1
2 -neighborhood of the free boundaries of h.x2; r Nb0/ for some Nb0 that

satisfies
j Nb0 � b0j � 2C0�1;

(see Remark 7.1 and equations (7.7)–(7.8) with b0, Nb0 replaced by "b0 and " Nb0).
Thus the free boundaries of zu� are in a c.�1; ı/"

1
2 -neighborhood of the free boundaries

of h.x2; "
1
2 b0/ with c.�1; ı/ ! 0 as �1, ı ! 0.

This means that the vector
y� WD "�

1
2 z.zu�/

associated to the rescaled solution zu� above is in a c.�1; ı/-neighborhood of the vector

z� WD z.h.x2; b0//

corresponding to h.x2; b0/.
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We can find the desired solution to y� D 0 by a standard topological argument. Indeed,
by (7.12) we know that � � z� � j�j2 hence � � z� � c1 > 0 when j�j D c0. Then � � y� > 0

when � 2 𝜕Bc0 provided that c1.�1; ı/ is sufficiently small. This implies that we can find
� 2 Bc0 such that y� D 0.

As a corollary of Lemma 7.6 we obtain by (5.1) that if jbj � ı"
1
2 , then

(7.13) W.p. � ; b// � W

�
ub;

1

2

�
� C "2

� W.p0/ � C "2;

where ub is the solution provided by Lemma 7.6.
The lower bound on W.p. � ; b// can be improved when b=ı"

1
2 is at distance greater than

�0 away from the line ¹s� W s 2 Rº. For this we apply inductively Proposition 7.1 from scale 1
to scale r D "

1
2 to the function ub of Lemma 7.6. Notice that we cannot end up in alternative (b)

of Remark 7.2 (or Lemma 7.3) since 0 2
T

�i . The iteration requires m0 � jlog "j steps and
the distance from the corresponding sequence of b1 to the s� -line remains greater than �0

2

throughout. From Remark 7.2 (a) we obtain that (see (7.6))

W.p0/ � W.ub; �m
0 / � W.ub; �0/ � .m � 1/c"2;

hence
W.ub; �0/ � W.p0/ C cjlog "j"2:

Then, by the first inequality in (7.13) we find

(7.14) W.p. � ; b// � W.p0/ C cjlog "j"2:

In the next lemma we show that the right-hand side can be improved further, and obtain the
reversed inequality to (5.2) in Lemma 5.1.

Lemma 7.7. We have

W.p. � ; b// � W.p0/ C c"
3
2

if b=ı"
1
2 is at distance greater than �0 away from the line ¹s� W s 2 Rº.

Proof. We claim that if v WD p. � ; b/, with b D "
1
2 d for some d with jdj � 1, then

(7.15) W.v/ D "
3
2 g.d/ C O."2/;

for some continuous function g.d/. Inequality (7.14) implies that if d is at distance greater than
ı�0 away from the line ¹s� W s 2 Rº, then g.d/ > 0 and the lemma easily follows. It remains
to prove the claim (7.15).

Since v is homogeneous of degree 2, we find

W.v/ D

Z
B1

�
vifi �

1

2
vi4vi

�
!i dx:

Using the same formula for p0 and thatZ
B1

.vi4p0;i � p0;i4vi /!i dx D 0;

we get

W.v/ � W.p0/ D

Z
B1

.vi � p0;i /

�
fi �

1

2
4vi �

1

2
4p0;i

�
!i dx:
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We split the integral on the right-hand side into three angular regions:

A1 WD ¹jx2j � C "
1
2 jx1jº; A2 WD ¹x2 > C "

1
2 jx1jº; A3 WD ¹x2 < C "

1
2 jx1jº:

In A3, v D p0 D 0 and the integral is 0. We show that the integrals in A1 \ B1 and A2 \ B1

have the same form as the right-hand side of (7.15).
In A2 \ B1, this follows easily from Lemma 4.1 which gives

vi � p0;i D "
1
2 dix1x2 C O."/

and
fi �

1

2
4vi �

1

2
4p0;i D �".ei .d/�¹x1>0º C ei .�d/�¹x1<0º/:

In A1 \ B1 we use that jvj; jp0j � C ", and we replace the integral in A1 \ B1 by the integral
in T" WD A1 \ ¹jx1j < 1º since their difference is O."

5
2 /. Also we may replace our function

by

w" WD .vi � p0;i /

�
fi �

1

2
𝜕22vi �

1

2
4p0;i

�
!i

which differs from the original function by O."2/, and we integrate them in a domain of
measure � "

1
2 . However, the function w" is obtained from w1 by the quadratic rescaling in

the second variable w".x1; x2/ D "w1.x1; x2="
1
2 / which means thatZ

T"

w" dx D "
3
2

Z
T1

w1 dx:

The claim follows since the right-hand side depends (continuously) only on d.

Proof of Lemma 7.4. We distinguish two cases as in Remark 7.2 (a) depending on the
case whether or not b1=ı"

1
2 , with b1 as in Lemma 7.3, is �0 close to the s� -line. If b1=ı"

1
2

is �0 close to this line, then we already showed in Remark 7.2 that alternative (7.10) holds.
Otherwise the alternative (7.11) holds since, by Lemma 7.5 and Lemma 7.7

W.u; �0/ � W.p. � ; b// � C "2
� W.p0/ C c"

3
2 :

The proof of Theorem 7.1 follows from the following lemma.

Lemma 7.8. Assume that 0 2 �i0
and for some " � "0 small, and with r D 1,

(7.16) ju � p. � ; b0; b1/j � "r2 in Br ; for some jb0j � "
1
2 r; jb1j � ı"

1
2 :

Then there exists a unit direction � with j� � e2j � C "
1
2 such that

�i0
�

®
jx � �j � C jxj

�
"�

1
2 C jlog jxjj

��1¯
:

Proof. We prove the statement by induction depending on the number N of membranes.
We iterate Proposition 7.1 in B�m

0
as long as the hypotheses are satisfied. We want to

show that
�i0

\ B�m
0
�

®
jx � �j � C�m

0

�
"�

1
2 C m

��1¯
:

We distinguish two cases.
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Case 1: jb0j � 3C0". We apply Proposition 7.1 by keeping " fixed through the iteration
(by replacing "

2
by " in (7.2)). Denote by bm

0 , bm
1 the corresponding vectors in B�m

0
, and we

stop the iteration when
bm

0 > "
1
2 �m

0 :

By (7.3), throughout the iteration jb0 � bm
0 j � 2C0" (provided that �0 is chosen small) hence

the iteration stops when
rm D �m

0 � jb0j"
� 1

2 � "
1
2 :

Then we end up in the situation of alternative (b) in Lemma 7.3 with r D rm. We may apply the
induction hypothesis in Br (with " replaced by 2") to the problem involving fewer membranes,
and reach the desired result.

Case 2: jb0j � 3C0". We may replace b0 by 0 and " into C ". After relabeling " we
reduce to the situation u 2 S.1; p; "/ of Lemma 7.3.

We iterate Lemmas 7.3 and 7.4 accordingly in B�m
0

.
We discuss the estimates as long as we remain in alternative (a). By Lemma 7.4, we obtain

that u 2 S.�m
0 ; p; "m/ for a sequence "m, and the approximating solutions vm WD p. � ; bm

1 /

satisfy kvm � vmC1kL1.B1/ � C "m.
Moreover, up to the last value of m, m D m0 (possibly infinite) for which alternative (a2)

applies, we know that

wm WD W.u; �m
0 / � W.p0/ � c"

3
2
m for all m � m0;

hence since, by Lemma 5.1, wm � C "
3
2
m we find that for some c1, c01 small

amC1 � am � c1"2
m � am � c01a

4
3
m; am WD wm C 2c1"2

m � 0:

This implies that a
� 1

3

mC1 � a
� 1

3
m C c, hence

am � .a
� 1

3

0 C c.m � k//�3; m � m0:

Using that a0 � "
3
2 , am � "

3
2
m, we find

"m � C."�
1
2 C m/�2:

This inequality remains valid if we replace m0 by m1 � m0 with m1 denoting the first value
of m (possibly infinite) for which alternative (b) holds, since by (a1), the values of "m decay
geometrically when m goes from m0 to m1. We find

m1X
k

"m � C."�
1
2 C k/�1:

This implies that

kvm � vkkL1.B1/ � C."�
1
2 C k/�1 if k � m � m1:

Then the angle between the rotation directions �m and �k of vm, vk satisfy the same inequality,
and we can use the inequality

"
1
2

k
� C."�

1
2 C k/�1
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to deduce that

�i0
\ Br �

®
jx � �m1

j � C r
�
"�

1
2 C k

��1¯ if r � �k
0 , k � m1:

By Lemma 7.3 (b), the inclusion holds also when

�
m1

0 � r � "
1
2
m1

�
m1

0

with k replaced by m1. In the ball of radius "
1
2
m1

�
m1

0 we can apply the induction hypothesis to
obtain that

�i0
\ Br �

®
jx � N�j � C r

�
"
� 1

2
m1

C m � m1

��1¯ if r D �m
0 � "

1
2
m1

�
m1

0 ;

for some direction N� with j N� � �m1
j � C "

1
2
m1

. We obtain the desired conclusion with unit
direction given by N� since

"
1
2
m1

� C."�
1
2 C m1/�1:
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