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Abstract Ocean mesoscale eddies are often poorly represented in climate models, and therefore, their
effects on the large scale circulation must be parameterized. Traditional parameterizations, which represent the
bulk effect of the unresolved eddies, can be improved with new subgrid models learned directly from data.
Zanna and Bolton (2020), https://doi.org/10.1029/2020gl088376 (ZB20) applied an equation‐discovery
algorithm to reveal an interpretable expression parameterizing the subgrid momentum fluxes by mesoscale
eddies through the components of the velocity‐gradient tensor. In this work, we implement the ZB20
parameterization into the primitive‐equation GFDL MOM6 ocean model and test it in two idealized
configurations with significantly different dynamical regimes and topography. The original parameterization
was found to generate excessive numerical noise near the grid scale. We propose two filtering approaches to
avoid the numerical issues and additionally enhance the strength of large‐scale energy backscatter. The filtered
ZB20 parameterizations led to improved climatological mean state and energy distributions, compared to the
current state‐of‐the‐art energy backscatter parameterizations. The filtered ZB20 parameterizations are scale‐
aware and, consequently, can be used with a single value of the non‐dimensional scaling coefficient for a range
of resolutions. The successful application of the filtered ZB20 parameterizations to parameterize mesoscale
eddies in two idealized configurations offers a promising opportunity to reduce long‐standing biases in global
ocean simulations in future studies.

Plain Language Summary This research focuses on improving the accuracy of ocean models by
addressing the challenges of representing the mesoscale eddies on coarse grids. These eddies play a crucial role
in the Earth's climate system, but traditional climate models struggle to capture their effects. Here, we
implemented a new data‐driven parameterization simulating the physics of the mesoscale eddies into the state‐
of‐the‐art ocean model. The parameterization is interpretable and captures key physical processes related to the
mesoscale eddies known as energy backscatter. We tested this parameterization in two idealized ocean scenarios
and found that it significantly improves the biases in the representation of the mean state and energetics. We
propose new filtering schemes which improve the physical and numerical properties of the parameterization.
Accurate representation of the mesoscale eddies by the present scheme has the potential to resolve long‐standing
biases present in global ocean models and thus allow for more reliable climate simulations.

1. Introduction
Ocean mesoscale eddies emerge on the spatial scale of the Rossby deformation radius (Salmon, 1980; Val-
lis, 2017), which varies in the global ocean from order 100 km near the equator to 10 km near the poles (Chelton
et al., 1998). Mesoscale eddies dominate the ocean kinetic energy (KE) reservoir and are critical for the lateral and
vertical transport of tracers (Ferrari & Wunsch, 2009; Redi, 1982; Uchida et al., 2017). The momentum and
buoyancy fluxes produced by the mesoscale eddies are crucial in strengthening the mean flow via upgradient
fluxes (R. Greatbatch et al., 2010), setting the stratification (Gent & McWilliams, 1990), and closing the global
ocean energy budget (Bachman, 2019; Jansen et al., 2019; Loose et al., 2023).

To adequately simulate mesoscale eddies, several grid spacings per deformation radius are required (Hall-
berg, 2013). Such eddy‐resolving simulations remain unfeasible for the foreseeable future in global coupled
climate models (Christensen & Zanna, 2022; Hewitt et al., 2020). Therefore, the systematic effect of unresolved
mesoscale eddies must be parameterized to reduce the biases in the climatology, variability, and response to
forcing of the ocean and climate. Traditional parameterizations mimic the bulk (i.e., the mean) effect of the
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mesoscale eddies on the resolved flow and are often based on energetic considerations (e.g., Jansen et al., 2015).
For example, the parameterization of Gent and McWilliams (1990) and its extensions (D. P. Marshall et al., 2012;
Mak et al., 2018, 2022, 2023) reduces the potential energy (PE) by flattening the isopycnals. Another popular
parameterization is the KE backscatter (Bachman, 2019; Berloff, 2018; Frederiksen, 1999; Frederiksen &
Davies, 1997; Grooms et al., 2015; Jansen et al., 2019; Jansen & Held, 2014; Juricke et al., 2020; Per-
ezhogin, 2020; Storto & Andriopoulos, 2021; Thuburn et al., 2014), which returns energy from the subgrid scales
to the larger scales. Several of these parameterizations attempt to correct the dissipation associated with eddy
viscosity models by returning the KE to the resolved flow. Other parameterizations represent the net inverse
energy cascade from subgrid to resolved scales.

Recently, machine‐learning methods based on neural networks have been proposed to predict the eddy fluxes
directly from data as an alternative to the traditional bulk modeling (Frezat et al., 2022; Gregory et al., 2023; Guan
et al., 2022; Krasnopolsky et al., 2010; Perezhogin et al., 2023; Rasp et al., 2018; Sane et al., 2023; Shamekh
et al., 2023; Yuval & O’Gorman, 2020; Yuval & O’Gorman, 2023; Zampieri et al., 2023). Neural networks
capture the bulk effect of the subgrid eddies and the instantaneous fields of the diagnosed eddy forcing (Bolton &
Zanna, 2019). These methods can be accurate but contain many tunable parameters, obstructing their physical
interpretation. The approach proposed by Zanna and Bolton (2020) (hereafter ZB20) provided an alternative to
both the traditional bulk approach and black‐box machine‐learning modeling by enabling the discovery of a
closed‐form equation for the eddy parameterization directly from data.

ZB20 parameterized the mesoscale eddy momentum fluxes through a simple interpretable expression that has
strong ties with physics‐based gradient models (Anstey & Zanna, 2017; Jakhar et al., 2024; Khani & Daw-
son, 2023; Zanna & Bolton, 2020). The ZB20 parameterization was trained on the data of the primitive equation
ocean model MITgcm (J. Marshall et al., 1997) and accurately predicts the eddy fluxes, including the upgradient
fluxes (backscatter), with a skill comparable to neural‐network approaches. Once implemented online, the ZB20
parameterization improves the representation of the mean flow and energy distributions (Zanna & Bolton, 2020).
However, their online simulations were limited to a simple one‐layer shallow water model.

In this work, we implement the ZB20 subgrid parameterization into the primitive‐equation GFDL MOM6 ocean
model (Adcroft et al., 2019). In Section 2, we describe the ocean model in the adiabatic limit, governed by the
stacked shallow water equations (Adcroft & Hallberg, 2006). In Section 3, we describe the ZB20 parameterization
and propose modifications via filtering schemes that reduce the resulting grid‐scale numerical instabilities and
improve the large‐scale KE backscatter. In Section 4, we test the ZB20‐based parameterizations in an idealized
ocean configuration, Double Gyre, and show a reduction of biases in the mean state and energetics. In Section 5,
we evaluate the ZB20‐based parameterizations for a range of resolutions and show that they do not require
retuning of the free parameter. This is mainly a consequence of the scale‐awareness (or resolution‐awareness) of
the free parameter, which is solely a function of the grid spacing. We finally describe tests of the parameterization
in a more complex configuration, NeverWorld2 (NW2, Marques et al., 2022), with a cross‐equatorial basin and
Southern Ocean re‐entering channel in Section 6. We find a more pronounced bias reduction in energy distri-
butions and mean state, compared to the simpler Double Gyre configuration. However, our experimentation in the
NW2 configuration revealed the need for additional modifications to improve the numerical stability properties of
the parameterization, similarly to other backscatter schemes (Yankovsky et al., 2024).

2. Ocean Model
We use the GFDL MOM6 ocean model (Adcroft et al., 2019) in an adiabatic limit with no buoyancy forcing. This
allows us to test the direct impact of the new parameterization in idealized settings of a primitive equation model.

The equations of motion are given by the stacked shallow water equations with constant density in each layer
(Marques et al., 2022; Zhang et al., 2023).

∂tuk +
f + ζk

hk
ẑ × (hkuk) + ∇Kk + ∇Mk = Fk + Vk + Sk, (1)

∂thk + ∇ ⋅ (ukhk) = 0, (2)
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where k is the index of the vertical fluid layer, equal to 1 for the surface layer and to K for the bottom layer;
uk = (uk,vk) is the horizontal velocity, where uk and vk are zonal and meridional velocities; hk is the layer
thickness; f is the Coriolis parameter; ζk = ∂xvk − ∂yuk is the vertical component of the relative vorticity;
∇ = (∂x,∂y) is the horizontal gradient operator and ∇⋅ is the horizontal divergence operator, where ∂x and ∂y are
partial derivatives along zonal and meridional directions; ẑ is the unit vector pointing upward; ẑ × uk = (−vk, uk)

is the cross product; Kk = (1/2)uk ⋅ uk is the KE per unit mass. The Montgomery potential is given by
Mk = ∑

k
l=1 g′l−1/ 2 ηl−1/ 2, where ηk+1/ 2 = −H + ∑

K
n=k+1 hn is the interface position between layers k and k + 1 and

H(x,y) ≥ 0 is the ocean depth; g′k+1/ 2 = g(ρk+1 − ρk)/ρ0 is the reduced gravity, where ρk is the density of the fluid
layer, ρ0 is the reference density and g is the gravitation acceleration. The equations of motion in the horizontal
orthogonal curvilinear coordinates are discussed in Adcroft et al. (2019). Fk represents the wind stress and bottom
drag and Sk is a subgrid momentum parameterization. Vk is a biharmonic Smagorinsky model (subsequently, we

omit index k for brevity), with a viscosity ν4 = CSΔ4
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

D̃2
+ D2

√

, where CS is the non‐dimensional Smagorinsky
coefficient, Δ is the grid spacing, D̃ = ∂xu − ∂yv is the stretching deformation, and D = ∂yu + ∂xv is the shearing
deformation. We refer the reader to Griffies and Hallberg (2000) for more details regarding the form and
implementation of the biharmonic operator used in MOM6.

3. Subgrid Parameterizations
Ocean models at a coarse grid resolution have strong biases in the representation of the mean flow and energetics
(Hallberg, 2013; Hewitt et al., 2020). They can be corrected to some degree by parameterizing the effect of the
unresolved (subgrid) mesoscale eddies. In this section, we describe how to diagnose the effect of subgrid
mesoscale eddies on the resolved flow in the momentum equation using a spatial filtering approach (Large Eddy
Simulation, LES, Bachman et al., 2017; Fox‐Kemper & Menemenlis, 2008; Sagaut, 2006). We then describe our
implementation of the ZB20 parameterization of the subgrid mesoscale eddies and different baselines. The
buoyancy fluxes and their parameterizations (Gent & McWilliams, 1990) are absent in all model calculations
documented in the paper.

3.1. Subgrid Momentum Forcing

The subgrid mesoscale eddies produce the following subgrid momentum forcing acting on the resolved eddies
(Zanna & Bolton, 2020)

S = (u ⋅ ∇) u − (u ⋅ ∇)u, (3)

where u is the velocity field of the high‐resolution model, ( ⋅ ) is a spatial filtering and coarse‐graining operator.
Here (u ⋅ ∇) u is the numerical approximation of the advection operator on a coarse grid with the scheme used in
MOM6. Specifically, we employ the Sadourny (1975) energy‐conserving scheme formulated in vector‐invariant
form using the identity (u ⋅ ∇)u = (ζ/h)ẑ × (hu) + ∇K. The subgrid forcing (Equation 3) modifies the governing
equations of the coarse ocean model as shown in Equation 1. Note that in the LES approach, we should use u
whenever referring to the solution of the coarse model, but here, for brevity, we omit this notation everywhere
apart from in Equation 3. To enable computations with a coarse ocean model, we should represent the subgrid
forcing as a function of the resolved flow, referred to as a parameterization.

3.2. Zanna‐Bolton Parameterization (ZB20)

In this section, we describe the original ZB20 parameterization and two filtered modifications, referred to as
filtered ZB20 parameterizations. All three variants are referred to as ZB20‐based parameterizations.

The original ZB20 parameterization for subgrid momentum forcing is given by

S = (
Sx

Sy
) = ∇ ⋅ T = ∇ ⋅ (

Txx Txy

Txy Tyy
) = (

∂xTxx + ∂yTxy

∂xTxy + ∂yTyy
). (4)
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The parameterization was discovered, using a machine learning algorithm, from data generated from baroclinic
ocean simulations Zanna and Bolton (2020). The stress tensor T is given by

T(ζ, D, D̃) = κBC

⎡

⎢
⎣

−ζD ζD̃

ζD̃ ζD

⎤

⎥
⎦

⏟̅̅̅̅⏞⏞̅̅̅̅⏟
Td, deviatoric stress

+
κBC

2
(ζ2 + D2 + D̃2

)[
1 0

0 1
]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
TI , isotropic stress

. (5)

The parameterization is applied independently in every model layer. Here, we follow the approach of Anstey and
Zanna (2017) and gradient models studies (Chen et al., 2003; Meneveau & Katz, 2000) to relate the free coef-
ficient κBC to the area of a coarse grid box:

κBC = −γΔxΔy ≤ 0, (6)

where Δx and Δy are local grid spacings along x and y directions, respectively, and γ ≈ 1 is a tunable non‐
dimensional parameter. In 2D incompressible fluids, the ZB20 parameterization (Equation 5) is equivalent to
the nonlinear gradient model, which is given by T = −l2(∇u) ⋅ (∇u)

†, where ∇u is the velocity gradient tensor, l
is the filter width, † is the matrix transpose and ⋅ is the matrix multiplication; see Equation 59 in Anstey and
Zanna (2017) for details. However, as opposed to the nonlinear gradient model, the ZB20 parameterization
excludes the explicit dependence on the horizontal divergence (σ = ∂xu + ∂yv) in stacked shallow water equa-
tions (see, for example, Zanna and Bolton (2020) for further discussion on the difference between ZB20 and the
nonlinear gradient model). Based on limited numerical experiments in the NW2 configuration, the additional
terms in the nonlinear gradient models, which explicitly depend on σ, have a destabilizing effect on the simu-
lations (not shown).

We refer the reader to Appendix A for details of the numerical discretization of Equations 4 and 5, accounting for
the curvilinear coordinates and varying layer thickness in MOM6. For interested readers, we note that, as opposed
to the original ZB20 model, the implemented ZB20 parameterization may spuriously predict non‐zero acceler-
ations for a state of solid body rotation (ζ = const, D = D̃ = 0). These non‐zero accelerations are caused by the
spatially varying parameterization coefficient κBC, leading to a non‐zero divergence of the isotropic stress tensor
(∇ ⋅ (κBCTI) ≠ 0). We anticipate that the non‐zero accelerations will be small when the coefficient κBC varies over
large spatial scales, as it is the case for the ZB20‐based parameterizations in the current implementation. Other
spatially varying coefficients, such as the layer thickness in the stress divergence expression (Equation A4) or the
Coriolis parameter in the attenuation function (Equation 11, to be introduced later) can lead to a non‐zero
divergence of the isotropic stress tensor as well.

3.2.1. Low‐Pass Filtering of the Stress Tensor (ZB20‐Smooth)

Incorporation of the ZB20 parameterization, which is meant to dissipate energy at small scales, can generate
numerical noise near the grid scale. It happens because the dissipation near the grid scale is not a hard constraint of
the parameterization. Specifically, the energetic contribution of the deviatoric stress is zero after integration by
parts (Td : (∇u) = 0, see Equation A9 in Appendix A) while the energetic contribution of the isotropic stress
(TI : (∇u)) is not sign‐definite (Zanna & Bolton, 2020). Dissipation at the grid scale is often enforced in gradient‐
based parameterizations by projecting the predicted stress tensor onto the dissipative direction (Balarac
et al., 2013; Bouchet, 2003; Vollant et al., 2016). However, this approach is unsuitable because it would remove
an important effect of the KE backscatter on large scales. Thus, we suggest removing the contribution of the ZB20
parameterization on the grid scale eddies by low‐pass filtering the stress tensor. The filtered stress tensor will
represent the KE backscatter. Filtering is widely used in mesoscale eddy parameterizations to suppress the nu-
merical noise and increase the spatial scale of the KE backscatter (Bachman, 2019; Grooms et al., 2015; Juricke
et al., 2019; Perezhogin et al., 2019).

We consider a low‐pass convolutional filter defined on 3 × 3 spatial stencil (“trapezoidal filter” in San (2014)),
which is applied in every fluid layer independently:
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G =
1

16

⎛

⎜
⎜
⎜
⎜
⎝

1 2 1

2 4 2

1 2 1

⎞

⎟
⎟
⎟
⎟
⎠
. (7)

The presented filter has the smallest spatial stencil among filters, completely removing the grid harmonics. It will
be used as a building block for proposing our filtered ZB20 parameterizations.

The ZB20 parameterization with low‐pass filtered stress tensor (hereafter, ZB20‐Smooth) is given by:

S = ∇ ⋅ G(T), (8)

where G = GN is the low‐pass filter which is applied to every component of the stress tensor T (Equation 5), and N
is the number of filtering passes of G (Equation 7). We choose N = 4 similarly to Juricke et al. (2019) (see
Appendix C for sensitivity to the choice of N). We implement the filtering using the marching‐halo algorithm; that
is, 4 filter iterations are performed within a single MPI exchange. The computational cost of the original ZB20
parameterization is 2.5% of the ocean model runtime in the NW2 configuration, while the filtered parameteri-
zation requires 4% of the runtime. Note that filters more appropriate for tensor elements were presented in
Aluie (2019).

3.2.2. High‐Pass Filtering of the Velocity Gradients (ZB20‐Reynolds)

We consider an additional filtering scheme, which can also enhance the KE backscatter.

Perezhogin and Glazunov (2023) show that the Reynolds stress is responsible for the KE backscatter. The
Reynolds stress represents the effect of the eddy‐eddy interactions on the mean flow, through the Germano (1986)
decomposition of the subgrid stress. To isolate the effect of eddy‐eddy interaction from the Reynolds stresses, we
propose a modification of the ZB20 parameterization by using a high‐pass filter on the velocity gradients.
Therefore, the modified parameterization (hereafter, ZB20‐Reynolds) can be expressed as

S = ∇ ⋅ G(T(ζ′, D′, D̃′)), (9)

where G = GN is the low‐pass filter and ( ⋅ )′ = I − G is the high‐pass filter with I being the identity operator. The
computation of the stress tensor in Equation 9 is done as follows. First, the velocity gradients ζ, D, D̃ are high‐pass

filtered to obtain ζ′, D′, D̃′, respectively. Then we compute the stress tensor T(ζ′, D′, D̃′) according to

Equation 5 using high‐pass filtered fields as inputs. Finally, the stress tensor T is low‐pass filtered with the filter G
to separate the parameterization tendency from the grid scale. For consistency with the previous section, we
choose N = 4. This additional filtering results in an increase in the computational cost of the parameterization,
which is 6% of the ocean model runtime in the NW2 configuration.

3.3. Baseline Momentum Parameterizations

We consider multiple backscatter parameterizations as baselines.

The first baseline is the KE backscatter of Jansen et al. (2015) (referred to as JHAH15), already tested in MOM6
(Jansen et al., 2019). The JHAH15 parameterization mainly represents the reinjection of KE energy originally
dissipated with the biharmonic Smagorinsky model. The backscatter of the subgrid KE is parameterized using a
negative Laplacian viscosity model (anti‐viscosity). The negative viscosity coefficient is informed by a local
equation for vertically averaged subgrid KE. We will also consider an updated version of the JHAH15 param-
eterization, from Yankovsky et al. (2024) for multi‐layer models in Section 6.

The second baseline parameterization is a deep‐learning convolution neural network (CNN) model of Guillaumin
and Zanna (2021) (referred to as GZ21). It predicts the subgrid forcing using horizontal velocities and was trained
on data from a coupled climate simulation. It was implemented in MOM6 (Zhang et al., 2023), together with a
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biharmonic Smagorinsky model. The GZ21 parameterization energizes the resolved eddies efficiently and
consequently can be tuned to increase the KE of the coarse model up to the KE of the high‐resolution model.

4. Experiments in Double Gyre Configuration
We first test the subgrid parameterizations in the MOM6 Double Gyre configuration described in Section 3.1 of
Zhang et al. (2023). We use their setting but double the integration time (20 years) with a single ensemble
member. The model has two fluid layers, initially at rest. Momentum input is via the wind and dissipation by the
bottom friction. The computational domain is on a spherical grid with a bowl topography (Figure 1a). The
Smagorinsky coefficient in all experiments is set to CS = 0.06, similar to Jansen et al. (2015), Jansen et al. (2019),
Zhang et al. (2023), see Appendix C for sensitivity to CS.

The unparameterized simulations (S = 0) for a range of resolutions (1/64°, 1/16°, 1/8°, 1/4°, 1/2°) are shown in
Figure 1. The high‐resolution model (1/ 64°) has a grid spacing (≈ 1.5 km) that is 10 times smaller than the
Rossby deformation radius (15 km − 30 km), and consequently, it directly simulates the mesoscale eddies
(Hallberg, 2013). Coarse ocean models with a grid spacing in a range from 1/2° (≈ 50 km) to 1/8° (≈ 12 km)

barely resolve the Rossby deformation radius. These models have a reduced eddy kinetic energy (EKE) spectrum
compared to the high‐resolution model (1/ 64°), with the coarsest models (1/2° and 1/4°) failing to capture the
spectrum at all spatial scales, see Figures 1e and 1f.

In this section, we analyze the impact of subgrid parameterizations, in particular, on improving biases in ener-
getics and the mean states in the coarse resolution model with horizontal grid spacing of 1/4°. The values of the
scaling coefficient γ of the ZB20‐based parameterizations used in this section are reported in Table 1. The co-
efficient γ is larger for the filtered than for the unfiltered versions of the ZB20 parameterization, since filtering
reduces the magnitude of the subgrid forcing. The subgrid parameterizations JHAH15, GZ21 and ZB20‐Reynolds
are tuned to approximately match the total KE, and the ZB20‐Smooth parameterization is tuned to match the
available potential energy (APE). Sensitivity to the scaling coefficient and performance at multiple resolutions are
discussed in Section 5.

Figure 1. (a) Schematic of the MOM6 Double Gyre configuration; (b) snapshot of relative vorticity in the upper layer in the 1/
4° simulation and (c) 1/64° simulation; (d) timeseries of total kinetic energy (KE) (summed over layers) for the different
resolutions. The spatial spectra of the eddy kinetic energy as a function of wavenumbers in the (e) upper and (f) lower fluid
layers. The spectrum is computed within the area enclosed by the white rectangle. The wavenumbers corresponding to the

deformation radius (rd ≈ f −1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

g′h1h2(h1 + h2)
−1

√

) , given by 1/ rd , are shaded in blue.
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4.1. Eddy Kinetic Energy (EKE) Spectrum

The EKE spectrum is one of the metrics that coarse unparameterized ocean
models fail to reproduce (Figures 1e and 1f). The EKE spectrum is defined as
a time‐averaged spatial power spectrum of the eddy velocities u′ = u − ut,
where ( ⋅ )

t is a time‐average over the last 10 years of the simulations. All
spectra in the Double Gyre configuration are computed in the white rectangle

shown in Figure 1c using a 2D Fourier transform with a Hann window and linear detrending (using xrft package,
Uchida et al., 2023). Throughout the paper, we ignore the contribution of the thickness h in the definition of
spectral properties related to KE.

The EKE spectra for runs with different subgrid parameterizations are shown in Figure 2. The ZB20 parame-
terization without filters has a build‐up of energy near the grid scale, that is, numerical noise (Figure 2a), which
results in the deterioration of the EKE spectrum at large scales in both fluid layers. The proposed filtering
techniques (ZB20‐Smooth and ZB20‐Reynolds) allow us to attenuate the grid scale noise generation. The ZB20‐
Smooth and ZB20‐Reynolds parameterizations improve the EKE spectrum at large scales by increasing it
compared to the unparameterized model, reaching levels closer to the high‐resolution model. The ZB20‐Reynolds
parameterization is more efficient in energizing eddies in the upper layer. The JHAH15 and GZ21 baseline
parameterizations are more efficient in energizing eddies near the deformation scale. None of the tested subgrid
parameterizations reproduce the EKE spectrum across all spatial scales.

4.2. Subgrid Kinetic Energy Transfer

In this section, we analyze the subgrid energy transfer in coarse parameterized models to explain the shape of the
EKE spectrum. The energy transfer is computed both offline and online because the accuracy of the parame-
terization can change once it is included in the coarse‐grid model (Meneveau & Katz, 2000; Ross et al., 2023).
Note that the offline analysis evaluates the subgrid parameterization on the filtered and coarse‐grained snapshots
of the high‐resolution model, while the online analysis evaluates the parameterization once the parameterized
ocean model is integrated over time.

The KE transfer spectrum of the subgrid forcing or parameterization S = (Sx, Sy) is given by

T (κx, κy) = Re[F(u)
∗F(Sx) + F(v)

∗F(Sy)], (10)

Table 1
Values of the Default Scaling Coefficient γ in the Different ZB20‐Based
Parameterizations

ZB20 ZB20‐Smooth ZB20‐Reynolds

γ 0.5 1.0 2.0

Figure 2. The eddy kinetic energy spatial spectrum as a function of wavenumbers for the last 10 years of the simulation:
(a) upper layer, (b) lower layer. The unparameterized model (1/4°, dotted dashed line) is compared to parameterized models
(JHAH15 in red, GZ21 in green, ZB20 in blue, ZB20‐Smooth in yellow, ZB20‐Reynolds in violet) and high‐resolution
simulation (1/ 64°, black line). The spectrum is computed in the region indicated by the white rectangle in Figure 1.
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where κx and κy are zonal and meridional wavenumbers, respectively, F is the 2D Fourier transform, * is the
complex conjugate, and Re is the real part. We integrate the two‐dimensional transfer spectrum over circles
(κ2

x + κ2
y = κ2) to obtain the isotropic transfer spectrum T (κ). We compute the subgrid forcing according to

Equation 3, where the filtering operator ( ⋅ ) is defined as the Gaussian filter implemented in the GCM‐filters
package (Grooms et al., 2021; Loose et al., 2022) followed by coarse‐graining. The filtering and coarse‐
graining operations are applied to the 1/ 64° model output toward a 1/4° resolution. The width of the
Gaussian filter is chosen to be proportional to the grid spacing of the coarse resolution model by introducing a
filter‐to‐grid width ratio (FGR, Chow & Moin, 2003; Ghosal, 1996; Lund, 1997; Perezhogin & Glazunov, 2023).
The FGR is not a coefficient used for the online implementation of the parameterization; it is only a parameter
used to diagnose the offline subgrid transfer. The KE transfer of the subgrid models in the offline analysis depends
on the FGR, because, as expected, it depends on grid‐scale features. However, the shape of the offline transfer
spectrum as a function of wavenumber remains roughly unchanged, while the amplitude varies for different FGR
values. For FGR = 2.5, the offline and online KE transfer roughly coincide for the filtered ZB20 and JHAH15
parameterizations (Figure 3). We chose this FGR value in our analysis, which likely corresponds to the filter
width that is effectively reproduced in online simulations by the parameterized ocean models.

The subgrid energy transfer contains an interval with small‐scale energy and enstrophy dissipation (T (κ) < 0) and
an interval of large‐scale energy backscatter (T (κ) > 0), see black line in Figure 3. The unfiltered ZB20
parameterization simulates the positive and negative energy transfer relatively well in the offline analysis; see
Figure 3a, blue line. However, in the online simulations, the energy transfer is reversed: the ZB20 parameteri-
zation dissipates energy at large scales and generates energy near the grid scale (Figure 3b). This explains the

Figure 3. Kinetic energy (KE) transfer in offline (left column) and online (right column) analysis. The target resolution for
offline analysis is 1/4° and the online performance of the parameterizations is computed for simulations at 1/4° resolution.
(a) Offline contribution from each subgrid parameterization (GZ21 in green, ZB20 in blue, ZB20‐Smooth in yellow, ZB20‐
Reynolds in violet, negative viscosity part of JHAH15 in red) and a biharmonic Smagorinsky model “Smag(∇4) ” in light blue.
The black line is the subgrid forcing, Equation 3. (b) The contribution of each parameterization online. (c) and (d): same as
panels (a) and (b) but showing the combined contribution of each parameterization with a biharmonic Smagorinsky model
offline and online, respectively. The offline analysis is performed on fields of the high‐resolution model (1/ 64°) filtered and
coarse‐grained to 1/4° resolution. The spectra are computed over the last 10 years of the simulation for the upper fluid layer, in
the region enclosed by the white rectangle shown in Figure 1. The KE transfer of GZ21 in panels (a) and (c) is multiplied by 10
for convenience.
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emergence of the grid‐scale numerical noise and deterioration of the large scales in the EKE spectrum for the
simulation with the unfiltered ZB20 parameterization (Figure 2). The filtering techniques employed for the ZB20‐
Smooth and ZB20‐Reynolds parameterizations remove the generation of the numerical noise near the grid scale
and preserve the original properties of the ZB20 parameterization. Consequently, the backscattering for these
filtered parameterizations is located over the large scales (Figure 3b). The ZB20‐Reynolds parameterization
appears more efficient than ZB20‐Smooth in reproducing the KE backscatter.

The dissipation predicted by the filtered ZB20 parameterizations alone is insufficient to parameterize the direct
cascade of enstrophy from resolved to subgrid scales because the filtering schemes diminish the effect of these
parameterizations at short wavelengths. Thus, all the online experiments are performed with a biharmonic
Smagorinsky model, which is effective at short wavelengths. We note that the eddy viscosity model of
Leith (1996) may be more suitable for parameterizing the enstrophy dissipation (Bachman et al., 2017). The lower
row in Figure 3 shows a net KE transfer between the resolved and subgrid scales, which is given by a combined
contribution of ZB20‐based parameterizations with a biharmonic Smagorinsky model. The net KE transfer for the
filtered ZB20 parameterizations exhibits less accurate correspondence with the diagnosed subgrid KE transfer,
displaying an overestimation of dissipation and an underestimation of backscatter, both offline and online (see
Figures 3c and 3d). However, the efficacy of the filtered ZB20 parameterizations can be attributed to the scale
separation between backscatter and dissipation effects in the net KE transfer, which is crucial for effectively
energizing the resolved flow (Bagaeva et al., 2024; Jansen & Held, 2014).

The JHAH15 parameterization returns energy in shorter wavelengths than the filtered ZB20 parameterizations
(Figures 3c and 3d). We explain the increased energy density near the deformation scale for the JHAH15
parameterization (Figure 2) by the effect of scale‐selective backscatter, which may be seen as an advantage;
however, it can also lead to numerical instabilities (Bachman, 2019; Bagaeva et al., 2024; Grooms, 2023; Grooms
et al., 2015; Juricke et al., 2019). Note that while the net transfer for the JHAH15 parameterization does not match
the diagnosed KE transfer well, the JHAH15 parameterization is expected to be more accurate when compared to
the subgrid forcing diagnosed with the cut‐off LES filter (Perezhogin & Glazunov, 2023).

For the convenience of plotting, we multiply the offline KE transfer of the GZ21 parameterization by 10 in
Figures 3a–3c; this correction is not applied in online runs presented on panels (b,d). Note that the magnitude of
offline prediction depends a lot on the FGR, while the shape of the predicted KE transfer is less FGR‐sensitive and
thus a more crucial metric. The GZ21 parameterization accurately predicts the shape of the KE transfer in offline
analysis (Figure 3a). However, like the unfiltered ZB20 parameterization, GZ21 performs differently for online
experiments. The online KE transfer spectrum for the GZ21 parameterization is purely positive and lacks a
dissipative region. The shape of the predicted KE transfer resembles the negative Laplacian viscosity model
(Figure 3b), thus suggesting that GZ21 returns energy in short wavelengths and should be effective in improving
the energy density near the deformation scale (Figure 2). A potential drawback of the GZ21 parameterization is
the lack of scale separation between dissipation and backscatter models (Figure 3d).

4.3. Kinetic and Potential Energy

We compute the KE and APE (Appendix B) to address how the parameterizations affect the energy partitioning
between these reservoirs. We further split each reservoir such that the KE is the sum of the mean kinetic energy
(MKE), averaged over the last 10 years of the simulations, and the EKE. We similarly decompose the APE into
the mean potential energy (MPE) and eddy potential energy (EPE).

We compare the coarse‐resolution models, with and without parameterizations, to the high‐resolution model and
its coarse‐grained output (Figure 4). The APE of the unparametrized model (1/4°) is too large, and its KE is too
low compared to the high‐resolution simulation. The ZB20 parameterization improves (reduces) the APE, as
expected from the mesoscale parameterization (Figure 4b). However, due to the generation of numerical noise,
the large‐scale eddies are disrupted, and the total KE is too low (Figure 4a). Note that compared to the physical
buoyancy parameterizations (Gent & McWilliams, 1990), the reduction of APE by the ZB20 parameterization
appears indirectly through the change of the mean state. Directly reducing the APE would require an additional
parameterization in the thickness equation (Loose et al., 2023), which we omit here. The ZB20‐Smooth
parameterization improves (reduces) the APE but with little change to the KE; it also reduces the MKE in
agreement with the high‐resolution model (Figure 4a). The backscatter parameterizations (ZB20‐Reynolds,
JHAH15 and GZ21) efficiently energize the flow by increasing the KE. Additionally, they improve (reduce) the
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energy of the mean state (MKE and MPE). However, they are less accurate in predicting the APE than the ZB20‐
Smooth parameterization.

4.4. Mean State

We concentrate on metrics related to the climatological mean state (Figure 5), such as the time‐mean sea surface
height (SSH). The unparameterized model (1/4°) has a strong persistent recirculation near the western boundary,
absent in the high‐resolution model. In all parameterized simulations (ZB20, ZB20‐Smooth, ZB20‐Reynolds,
JHAH15, GZ21), we observe an improvement in the representation of the mean state. The persistent recirculation
is less evident, and the region exhibits a meandering jet pattern similar to that simulated in the high‐resolution
model. The ZB20‐Smooth model is the most accurate in representing the mean state, and its root mean
squared error (RMSE) is significantly lower than for other parameterized models (see Figure 5 for RMSE SSH
values used to describe the mean bias in SSH). The ZB20‐Smooth parameterization improves the mean state
without increasing the KE (i.e., without strong backscatter). However, the most efficient backscatter parame-
terizations (ZB20‐Reynolds, JHAH15, GZ21) have higher RMSE for SSH. By increasing the scaling coefficient
γ, we can further improve the RMSE for the ZB20‐Reynolds model (Appendix C). However, the value is con-
strained by numerical stability, and here, we find the optimal coefficient γ = 2.8 to be on the boundary of the
stability region.

4.5. Eddy‐Mean Flow Interaction

The two previous sections show that the parameterizations that are best in reproducing the KE backscatter do not
demonstrate optimal performance in reproducing the mean SSH and APE. According to Moser et al. (2021), the
time‐mean subgrid stress is another property of the subgrid eddies that affects the mean flow prediction. In
geophysical fluid flows, a similar effect is known as eddy‐mean flow interaction and has been analyzed in several
studies (Andrews & Mcintyre, 1976; R. J. Greatbatch, 1998, 2010; R. Greatbatch et al., 2010; Hoskins et al., 1983;
Hughes & Ash, 2001; Kamenkovich et al., 2009; Qiu & Chen, 2010; Wardle & Marshall, 2000; Waterman &
Jayne, 2011). Following Hughes and Ash (2001), we show the 10‐year averaged zonal acceleration produced by
the subgrid eddies in the upper layer (Figure 6). The subgrid forcing amplifies the resolved jet by accelerating the
jet current extension eastward (longitude >5°) and decelerating the jet in the separation region (longitude <5°),
see Figure 6a. A similar pattern was shown in Zanna and Bolton (2020); see their Figures S2 and S4. The time‐
mean contribution of the eddy‐viscosity models (biharmonic Smagorinsky and JHAH15) is too small compared to

Figure 4. Energy reservoirs in numerical experiments at resolution 1/4°: (a) Kinetic energy (KE) of the mean flow (MKE)
and eddies (EKE), (b) Available potential energy (APE) of the mean flow (MPE) and eddies (EPE). In both plots, energy is
summed over the fluid layers or interfaces and averaged over the last 10 years. The horizontal dotted lines represent the
ground truth value of the total kinetic (a) and total potential (b) energy.
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the diagnosed subgrid forcing (Figures 6b and 6c), as expected from Moser et al. (2021). The GZ21 parame-
terization produces westward accelerations in most of the domain and thus disagrees with the diagnosed subgrid
forcing (Figure 6d). The ZB20‐Smooth and ZB20‐Reynolds parameterizations reproduce the acceleration pattern
of the subgrid forcing most accurately, with the ZB20‐Smooth having the largest accelerations (Figures 6f and
6g). The zonal acceleration produced by the unfiltered ZB20 parameterization is smaller and less accurate
compared to the filtered models (Figure 6e). The success of the ZB20‐based parameterizations in improving the
mean state and the APE appears to be related to their effect on the time‐mean zonal acceleration (Anstey &
Zanna, 2017).

5. Sensitivity Study and Scale Awareness
The parameterization effect of mesoscale eddies, which are partially resolved, should diminish as the grid is
refined (Haidvogel et al., 2017). We achieve this property by informing the parameterization with the local grid
spacing using Equation 6. Parameterizations with such scaling of the free coefficient are often referred to as scale‐
aware (Bachman et al., 2017; Pearson et al., 2017). To quantify the effect of the scale‐aware parameter, we test the
parameterizations in the Doube Gyre configuration in a range of seven simulations differing in grid resolution.

Figure 5. Sea surface height (SSH) averaged over the last 10 years for experiments at 1/4° resolution. For every coarse
model, we provide the root mean squared error (RMSE) in the time‐mean SSH with respect to the coarse‐grained high‐
resolution model shown in panel (a).
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5.1. Sensitivity to the Scaling Coefficient

We perform experiments with the ZB20‐based parameterizations for a range of resolutions from 1/2° to 1/8° and
consider the sensitivity to the scaling coefficient γ. The effect of the subgrid parameterizations is quantified
through the following metrics: the time‐mean KE and APE, and the RMSE in the time‐mean SSH. We compute
the RMSE with respect to the 10‐year averaged output of the coarse‐grained high‐resolution model 1/ 64°. We
split the last 15 years of the simulation of the coarse resolution models into three 5‐year segments. We compute
the mean over the segments with confidence intervals provided by the min/max values over the different segments
for every metric.

The impact of the ZB20‐based parameterizations on all metrics is consistent with that described in Section 4 for
most resolutions (Figure 7). In particular, the ZB20 and ZB20‐Smooth parameterizations spuriously reduce the
KE (Figures 7a and 7b) but improve the APE (Figures 7d and 7e). Additionally, the spurious effect on the KE is
smaller for the ZB20‐Smooth parameterization than for the unfiltered ZB20. The ZB20‐Reynolds model leads to
an efficient backscatter parameterization: it increases the KE in the simulation (Figure 7c) with little impact on the
APE (Figure 7f). All three subgrid parameterizations reduce the bias in SSH, with the simulation using the ZB20‐
Smooth parameterization having the lowest error and the simulation with the unfiltered ZB20 parameterization
having the highest error (Figure 7, lower row).

Figure 6. Analysis of the eddy‐mean flow interaction following Hughes and Ash (2001): the 10‐year mean zonal acceleration

in the upper fluid layer produced by the subgrid eddies (St
x) . (a) The zonal component of the subgrid forcing (Equation 3),

diagnosed from the 1/ 64° model by filtering and coarse‐graining. Panels (b–g): the zonal acceleration, in online simulations,
produced by combining each parameterization with a biharmonic Smagorinsky model.
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The impact on the KE and APE for all three subgrid parameterizations is proportional to the scaling coefficient
(Figure 7, upper and middle rows). The default scaling coefficients used in the previous section (ZB20‐Smooth:
γ = 1, ZB20‐Reynolds: γ = 2) correspond to a compromise in reproducing the presented metrics for a range of
resolutions. These non‐dimensional coefficients can be kept constant without retuning, thus demonstrating an

Figure 7. Sensitivity to the scaling coefficient γ (shown in legend). Upper row: the time‐mean kinetic energy, middle row: the
time‐mean available potential energy, lower row: root mean squared error (RMSE) in the time‐mean sea surface height. Left
column shows unfiltered ZB20 parameterization and two rightmost columns show filtered ZB20 models. The black line
shows the unparameterized model (biharmonic Smagorinsky). The gray horizontal line shows the 1/ 64° model. The shading
shows confidence intervals (see text).
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advantage of scale‐aware tuning of the free parameter of the filtered ZB20 parameterizations. An overshoot in
some metrics at 1/2° resolution (Figure 7e) occurs because of the coarse resolution (eddies are not permitted). In
Appendix C, we discuss the sensitivity to the number of filtering passes (N) and to the Smagorinsky coeffi-
cient (CS) .

5.2. Comparison to the Baseline Parameterizations

We compare the filtered subgrid parameterizations (ZB20‐Smooth and ZB20‐Reynolds) with the default
parameter γ to the baseline subgrid parameterizations of JHAH15 and GZ21. The subgrid parameterizations
ZB20‐Reynolds, GZ21, and JHAH15 are equally efficient in energizing the resolved flow, that is, they param-
eterize the KE backscatter (Figure 8a) but have similar drawbacks. At the lowest resolutions (1/2° − 1/3°), the
ZB20‐Reynolds and JHAH15 parameterizations underestimate the KE. At the highest resolutions (1/5° − 1/8°),
the ZB20‐Reynolds and JHAH15 parameterizations slightly overestimate the KE without retuning; note that the
GZ21 parameterization was tuned at every resolution to reproduce the KE exactly (Zhang et al., 2023). These
three backscattering parameterizations have only a small impact on the APE (Figure 8b). The ZB20‐Smooth
parameterization demonstrates the best representation of the APE for a range of resolutions 1/3° − 1/8°
(Figure 8b). The SSH error with ZB20‐Smooth is most evidently improved compared to all other parameteri-
zations only at resolution 1/4° discussed in Section 4. The ZB20‐Smooth leads to the most accurate represen-
tation of SSH at resolutions 1/5 − 1/8°, but its effect is comparable to the baseline simulation with JHAH15
parameterization. The ZB20‐Smooth parameterization fails at resolutions coarser than 1/4° (Figure 8c).

6. Experiments in the NeverWorld2 (NW2) Configuration
In this section, we analyze the impact of the different subgrid parameterizations in a more complex adiabatic
configuration of MOM6—the NeverWorld2 (NW2, Marques et al., 2022) setup. This configuration spans the
latitudes from 70°S to 70°N, including the equator, with topography mimicking an idealized Mid‐Atlantic ridge
and a Drake Passage. The number of fluid layers is 15. This configuration was designed specifically to test
mesoscale eddy parameterizations. Compared to the Double Gyre configuration, the NW2 setup has a stronger
need for improving the energetics: the KE significantly depends on the resolution and increases by a factor of 4
when resolution is increased from 1/4° to 1/ 32° (Marques et al., 2022). Therefore, in this section, we target the
1/4° resolution simulation to test the ZB20‐based parameterizations and compare them to backscatter baseline
parameterizations already implemented in NW2 (Yankovsky et al. (2024), hereafter YBSZ24).

6.1. Numerical Issues and Tuning

Preliminary experiments with the proposed ZB20‐based parameterizations demonstrated numerical instabilities
accompanied by various runtime errors, including too‐large ocean velocities, interface height droping below the
bathymetry, and NaN values in the prognostic fields. These issues are partly tied to the structure of isopycnals in
NW2; for example, the significant part of the model area (40%) is characterized by isopycnal layers with small
thicknesses (hk ≈ 10−2m) . To alleviate these numerical issues, we implemented two strategies:

Figure 8. Similar to Figure 7, but comparison of the filtered ZB20 parameterizations to the baselines of Jansen et al. (2015)
and Guillaumin and Zanna (2021). The scaling coefficient γ is set to default: 1.0 for ZB20‐Smooth and 2.0 for ZB20‐
Reynolds.
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• Switch the discretization of the ZB20‐based parameterizations from the energy‐conserving form (Equa-
tion A10) used in the Double Gyre to a non‐conserving one (Equation A12). The non‐conservative numerical
scheme presumably introduces fewer aliasing errors because the multiplication operation follows the
interpolation.

• Attenuate the parameterization in regions of geostrophically unbalanced flows. Similar to Klöwer
et al. (2018), Juricke et al. (2019), we introduce the following attenuation function:

⎛

⎜
⎜
⎝1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

D2 + D̃2
+ ζ2

√

| f |

⎞

⎟
⎟
⎠

−1

. (11)

The ZB20 stress tensor is multiplied by the attenuation function before computing its divergence. The in-
clusion of ζ2 into Equation 11 is a proposed modification, which was found to improve the numerical
stability. The expression D2 + D̃2

+ ζ2 is proportional to the isotropic stress of the ZB20 parameteri-
zation, and thus the attenuation bounds the predicted momentum flux. Note that the attenuation was
inspired by a similar technique of shutting off the backscatter in high‐strain regions proposed by
YBSZ24. The difference between the two approaches is small: we attenuate the parameterization
smoothly while they shut off the backscatter abruptly. We use the inverse Coriolis parameter as a
threshold time scale in the attenuation function while they use the time step (which is a non‐physical
parameter but useful because it is embedded in the numerical stability criteria).

We further note that we have modified the Smagorinsky coefficient in the 1/4° resolution model, compared to the
original NW2 setup. We are using the commonly used (and our default value) of CS = 0.06 instead of the
relatively large value of CS = 0.2 in Marques et al. (2022). This change does not affect the reference unpar-
ametrized coarse resolution simulation (not shown).

We decide to evaluate the parameterizations (ZB20‐based and our baselines) by tuning them to roughly reproduce
the total KE of the filtered NW2 high‐resolution simulation while minimizing the difference across tuning co-
efficients. In our preliminary experiments, we noted that the unfiltered ZB20 parameterization could not be tuned
to reproduce the KE of the filtered high‐resolution model. The increase in the KE compared to the unparame-
terized simulation was never larger than ≈ 25%, with only small improvements in the mean state, thus we do not
show results for the unfiltered ZB20 parameterization in this section. The ZB20‐Smooth and ZB20‐Reynolds
parameterizations were tuned by setting the scaling coefficient to γ = 2.5.

To summarize, compared to the Double Gyre case, we changed the discretization scheme of the ZB20 param-
eterization, introduced the attenuation function, and increased the scaling coefficient.

6.2. Results

The high‐resolution simulation 1/ 32° was spun up in multiple stages (Marques et al., 2022). We use snapshots
from the last 100 days and time‐mean fields over the last 1,000 days for analysis. We ran the coarse parameterized
and unparameterized models at resolution 1/4° for 30,000 days, starting from rest. To compare the coarse and
high‐resolution simulations, we filter the output of the 1/ 32° high‐resolution simulations with filter widths 1° and
1/2°. That is, we assume that the effective resolution of the coarse resolution models is lower than the nominal
resolution given by the coarse grid (Skamarock, 2004; Soufflet et al., 2016).

The baseline GZ21 parameterization, used in the Double Gyre experiment, struggles to generalize to the NW2
configuration, and thus, we omit the results. Rather than use the JHAH15 parameterization, as for the Double
Gyre configuration, we used the most up‐to‐date version of the JHAH15 parameterization from YBSZ24, which
was specifically tuned to represent mesoscale eddies in the NW2 configuration.

The YBSZ24 parameterization attributes a vertical structure to the anti‐viscosity coefficient, tuned to match the
energetics of the NW2 simulation in their original study. This led to a choice of vertical structure that follows the
equivalent barotropic mode raised to the 2nd power. Similarly to the ZB20‐based parameterizations, the coarse
resolution simulation using the YBSZ24 parameterization was tuned to match the KE of the filtered
high‐resolution run, using an anti‐viscosity scaling coefficient of −0.3. Note, however, that the YBSZ24
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parameterization in NW2 requires a much larger Smagorinsky coefficient (CS = 0.2) to remain stable compared
to the unparameterized and ZB20‐based parameterized models (CS = 0.06) .

We compare the coarse models to the high‐resolution simulation (Figure 9, black solid line) and its filtered
versions (Figure 9, light blue and pink lines). We do not show the APE of the filtered high‐resolution model
because it is significantly affected by the implementation of the filtering algorithm near the ocean bottom.

The unparameterized model (1/4°) has a KE that is approximately 4 times lower than the KE of the 1/ 32° model
and 3 times lower than the KE of the filtered 1/ 32° model (Figure 9a). The APE of the unparameterized model is
too high compared to the high‐resolution simulation (Figure 9b) since the coarse resolution model underestimates
the barotropization of the flow (Kjellsson & Zanna, 2017). The ZB20‐Smooth and ZB20‐Reynolds parameter-
izations increase the KE approximately 3 times and reduce the APE below the APE of the high‐resolution
simulation (as we expect for the filtered solution). The ZB20‐Smooth parameterization is slightly more effi-
cient in reducing the APE, and the ZB20‐Reynolds is slightly more efficient in increasing the KE (Figures 9a and
9b) for the same scaling coefficient γ. The YBSZ24 parameterization is equally efficient in reducing APE and
increasing KE. The equilibration of the parametrized run with the YBSZ24 parameterization is faster than the
parametrized simulations with the filtered ZB20 closures.

Figure 9c shows the zonal EKE spectrum at the surface, 1/2(|F(u′)|2 + |F(v′)|2) , averaged in time over
100 days and over all latitudes. The Fourier transform F is computed in the zonal direction with Hann window and
linear detrending. The eddy velocities u′ and v′ are defined as a deviation from the 1000‐day mean velocities at
the surface. The filtered ZB20 parameterizations and the YBSZ24 parameterization increase the EKE spectrum
density at large scales (Figure 9c). Considering the shape of the EKE spectrum at small scales, the filtered ZB20
models are closest to the 1/ 32° model filtered with the filter width 1/2° (Figure 9c). However, the total KE better
matches the filter scale of 1° (Figure 9a). A further increase in KE is possible but at the expense of the APE
presumably becoming unphysical. These findings reveal the difficulties in determining the effective resolution of
the parameterized simulations. The simulation with the YBSZ24 parameterization possesses less energy at small
scales at the surface, likely due to the high value of the Smagorinsky coefficient, which is necessary for numerical
stability (in addition to the local shut‐off described in their original study).

The snapshots of the depth‐integrated KE are shown in Figure 10. The filtered ZB20 models considerably
energize the eddies in all parts of the domain compared to the unparameterized model and in accordance with the

Figure 9. NeverWorld2 configuration. Time series of the (a) kinetic energy and (b) available potential energy. The time series
in 1/4° runs are smoothed in time with a window size of 250 days, while in 1/ 32° run, we provide average values over the
last 100 days (c) The EKE zonal spectrum at the surface averaged over 100 days and over latitudes.
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high‐resolution simulation. The simulation with the YBSZ24 parameterization is also successful at increasing the
KE throughout the domain, with only small differences compared to the ZB20‐based parameterized simulations.
The major difference between the coarse parameterized models and the high‐resolution simulation is the presence
of coherent eddies near the western boundary (Figures 10b–10d), including in the YBSZ24 parametrized
simulation. Presumably, the attenuation function (Equation 11) was needed to bound the growth of these and
similar eddies in the filtered ZB20 models. However, tracking how a particular eddy growth contributes to the
development of numerical instabilities is difficult.

The largest portion of the APE of the mean state is described by the vertical structure of the isopycnal interfaces in
the Drake Passage (60°S‐40°S), shown in Figure 11 at longitude 0°E. The mesoscale eddies extract APE from the
mean state and act to flatten the isopycnals. The coarse unparameterized model poorly resolves mesoscale eddies,
and consequently, its isopycnals are too steep (Figure 11a). Both filtered ZB20 parameterizations and the
YBSZ24 parameterization result in reducing the APE and better reproducing the isopycnal structure in Drake
Passage (Figures 11b–11d). In the same figure, we provide the RMSE values with respect to the high‐resolution
simulation. The biggest improvement is achieved with the ZB20‐Reynolds parameterization, which has the
lowest RMSE. The improvements are visible in the upper ocean in particular, compared to the ZB20‐Smooth and
the YBSZ24 parameterizations. However, the bottom two layers are better represented in the YBSZ24 param-
eterized run than in the ZB20‐based simulations. The performance of the filtered ZB20 parameterizations is
confirmed according to additional metrics quantifying the mean state. These metrics include the RMSE in the
vertical structure of isopycnals in three transects; see Table 2. All parametrized simulations reduce biases, with
the ZB20‐Reynolds parameterized simulation showing the largest improvement using these metrics. When
considering the RMSE in the time‐mean SSH (Table 2), all parametrized models decrease the mean bias, with the
YBSZ24 parameterization performing best. However, all improvements in the mean state are rather small ac-
cording to this metric.

7. Conclusions and Discussion
In this work, we implemented the data‐driven mesoscale eddy parameterization introduced by Zanna and Bol-
ton (2020) (ZB20) into the GFDL ocean model, MOM6, and tested it in two idealized configurations: the Double
Gyre and NeverWorld2 (NW2). The ZB20 parameterization, machine‐learned from data, predicts the subgrid
momentum fluxes and, in particular, captures the KE backscatter, that is, the inverse energy cascade from the
subgrid to resolved scales. Our main findings are as follows.

Figure 10. Snapshot of the depth‐integrated kinetic energy. The coarse models at resolution 1/4°: (a) unparameterized model
(biharmonic Smagorinsky), (b) Yankovsky et al. (2024) (YBSZ24), (c) and (d) filtered ZB20 parameterizations. In panel (e),
we show the filtered high‐resolution model 1/ 32° with filter width 1°.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004104

PEREZHOGIN ET AL. 17 of 27

 19422466, 2024, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004104 by Test, W
iley O

nline Library on [29/10/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://agupubs.onlinelibrary.wiley.com/action/rightsLink?doi=10.1029%2F2023MS004104&mode=


• The original parameterization was found to generate numerical noise near the grid scale. We propose two
filtering schemes to reduce the generation of numerical noise and isolate the large‐scale backscatter effect of
the parameterization. The first scheme (ZB20‐Smooth) applies a low‐pass filter to the ZB20 stress tensor, and
the second scheme (ZB20‐Reynolds) additionally applies a high‐pass filter to the velocity gradients (Per-
ezhogin & Glazunov, 2023).

• The free parameter of the ZB20‐based parameterizations is scale‐aware. Here, we show that the parameter-
izations can be used for a range of eddy‐permitting resolutions without retuning.

• In the Double Gyre configuration, the ZB20‐Reynolds parameterization effectively energizes the resolved flow
and performs similarly to the Jansen et al. (2015) (JHAH15) and Guillaumin and Zanna (2021) (GZ21)

backscatter parameterizations at eddy‐permitting resolutions
(1/4° − 1/8°). In this configuration, the ZB20‐Smooth is less efficient in
parameterizing the backscatter but outperforms other parameterizations in
the SSH and APE predictions at resolutions 1/4° − 1/8°. All subgrid pa-
rameterizations perform poorly at the coarsest resolutions (1/2° − 1/3°),
as expected.

• In the NW2 configuration, the filtered ZB20 parameterizations improve the
model energetics, namely KE and APE reservoirs, and the energy power
spectrum. The ZB20‐based parameterizations improve aspects of the
climatological mean state (here the vertical structure of the isopycnals and
the SSH). The ZB20‐based parameterizations perform better or as well as
the anti‐viscosity parameterization of Yankovsky et al. (2024), which
imposes a vertical structure to the anti‐viscosity coefficient. The ZB20‐
based parameterization does not need to impose a vertical structure to its
coefficient, the 3D flow dependence is encapsulated in the stress tensor
itself.

Figure 11. The time‐mean interfaces in the meridional transect of Drake Passage (Longitude 0°E) averaged over 1,000 days.
The blue dashed lines show the experiments at resolution 1/4°: (a) unparameterized model, (b) Yankovsky et al. (2024)
(YBSZ24), (c) and (d) filtered ZB20 parameterizations. Gray lines show the interfaces of the high‐resolution model 1/ 32°. The
layer numbers (equal to 14, 12,…) are provided.

Table 2
The Root Mean Squared Errors (RMSE) in 1000‐Day Averaged Position of
Interfaces Over Three Meridional Transects at (0°E, 60°S‐40°S) (Drake
Passage, Also Shown in Figure 11), (30°E, 70°S‐70°N) (Mid‐Atlantic Ridge)
and (45°E, 70°S‐70°N) (Similar to Yankovsky et al. (2024))

0°E (m) 30°E (m) 45°E (m) SSH (m)

1/4° 52.1 40.3 34.6 0.101

1/4°, YBSZ24 27.8 20.7 21.3 0.071

1/4°, ZB20‐Smooth 34.5 20.8 24.9 0.090

1/4°, ZB20‐Reynolds 26.9 18.4 18.5 0.080

Note. The rightmost column shows RMSE in 1000‐day averaged sea surface
height (SSH). The error is computed with respect to 1/ 32° model. The best
values of metrics are shown in bold.
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• The direct effect of mesoscale eddy parameterizations in improving the mean state depends on the ocean
configuration. In the NW2 configuration, the subgrid parameterization increases the KE of the resolved flow
by a factor of 3. This significantly enhances the effect by resolved eddies which act to flatten isopycnals and
reduce the APE. In the Double Gyre configuration, on the other hand, the mean state can be improved without
energizing the resolved eddies but instead by imposing strong mean subgrid stress (Kjellsson & Zanna, 2017).

Our methodology enables researchers and ocean modelers to implement and test subgrid machine‐learning pa-
rameterizations in state‐of‐the‐art ocean models. As with all parameterizations in current climate models, the ZB20
parameterization required tuning. The succinct, interpretable form of the subgrid ZB20 model allowed us to study
its physical and numerical properties in detail. We leveraged the filtering schemes to extract the parameterization
effect on the large‐scale flow and to avoid the grid‐scale numerical issues. By testing various discretizations of the
subgrid model, we were able to find a numerically stable scheme for online simulations. Our filtering schemes can
be potentially applied to improve the performance of our baseline parameterizations (JHAH15, BSZ24 and GZ21);
though such testing is beyond the scope of this study. We note that filtering schemes have been consistently used in
the literature, showing a potential to improve the performance of other mesoscale eddy parameterizations (Bagaeva
et al., 2024; Grooms, 2023; Grooms et al., 2015; Juricke et al., 2020; Mak et al., 2023).

While applying the filtering schemes allows us to improve the physical and numerical properties of the ZB20
parameterization, several challenges remain. (a) It is difficult to find a single filtering scheme that simultaneously
improves the mean state and kinetic/potential energies. (b) The proposed filtering approach is applied and tuned a
posteriori; how to learn it directly from data is an open question. (c) The filtered ZB20 parameterizations do not
impact the grid scale flow, therefore a supplementary subgrid dissipative model is needed (in this work, we utilize
a biharmonic Smagorinsky model). (d) Without filters, the ZB20 parameterization is computationally cheap
(2.5% of total runtime). However, the filtered parameterizations can take 4 − 6% of total runtime.

Possible future improvements to the proposed parameterization include: (a) Coupling the ZB20‐based parame-
terizations with the subgrid KE equation, as in energetically consistent parameterizations (Jansen et al., 2015;
Mak et al., 2018). (b) Including spatial non‐locality (P. Wang et al., 2022) or temporal memory (Zanna
et al., 2017) during the training process to potentially reduce the need for a posteriori tuning. (c) Using a neural
network to improve the prediction of the subgrid stress from the same input features. (d) Informing the subgrid
model with local physical parameters to improve generalization to unseen flow regimes (Bachman et al., 2017;
Hallberg, 2013; Jansen et al., 2019).

An additional interesting future direction is to apply the developed subgrid parameterizations in eddy‐permitting
global ocean models to attempt addressing long‐standing biases such as the North Atlantic cold bias (Chang
et al., 2023; Flato et al., 2014; C. Wang et al., 2014).

Appendix A: Curvilinear Coordinates, Varying Layer Thickness, Numerical Schemes
and Boundary Conditions
We modify the original parameterization (Equations 4 and 5) to account for curvilinear coordinates and varying
layer thickness. Also, we propose a numerical discretization scheme and boundary conditions.

A1. Computation of the Stress Tensor

The components of the stress tensor T depend uniquely on the gradients of the velocity field (D, D̃, ζ). The
computation of these gradients depends on the coordinate system. In generalized curvilinear orthogonal co-
ordinates the expressions for D and D̃ must be changed to (Appendix A.b in Griffies and Hallberg (2000) and
Section 17.10.2 in Griffies (2018)).

D = Δy∂x (v/Δy) + Δx∂y (u/Δx), (A1)

D̃ = Δy∂x (u/Δy) − Δx∂y (v/Δx), (A2)

where Δx and Δy are local grid spacings that are proportional to the Lame coefficients.
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Following a similar approach, we compute the relative vorticity as follows:

ζ = Δy∂x (v/Δy) − Δx∂y (u/Δx). (A3)

Note that the relative vorticity can be alternatively computed using the contour integral divided by area, that is
ζ = Δ−1

y ∂x (Δyv) − Δ−1
x ∂y (Δxu) , see Section 2.3.2 in Madec and the NEMO team (2008). We found that both

approaches give close results and use Equation A3 for simplicity.

A2. Divergence of Momentum Flux

Following previous work on viscous operators in ocean models (Equations A3 and A4 in Griffies and Hall-
berg (2000) and Section 17.10.3 in Griffies (2018)), we modify the divergence of the stress tensor (Equation 4):

S =
1
h

∇ ⋅ (hT) =
1
h

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
Δ2

y
∂x (Δ2

yhTxx) +
1

Δ2
x
∂y (Δ2

xhTxy)

1
Δ2

y
∂x (Δ2

yhTxy) +
1

Δ2
x
∂y (Δ2

xhTyy)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (A4)

where we account for curvilinear coordinates with terms including Δx and Δy and for varying layer thickness with
terms including h. The components of the subgrid forcing parameterization S have the dimensions of acceleration,
that is, length1 time−2. The components of the stress tensor (Txx, Txy,…) have the dimensions of length2 time−2.

Accounting for varying thickness allows to build a parameterization that conserves the integral of momentum up
to the boundary fluxes.

∂t ∫ hu dx dy = ⋯ + ∫ h∂tu dx dy = ⋯ + ∫ hS dx dy = ⋯+ (A5)

(A6)

A3. Numerical Discretization

The rate of change of the KE due to the parameterization (Equation A4) after integration by parts is given by.

∂t ∫
1
2

h|u|2 dx dy = ⋯ + ∫ (hu)S dx dy = ⋯ + ∫ u ⋅ ∇ ⋅ (hT) dx dy = ⋯ (A7)

− ∫ hT : (∇u) dx dy, (A8)

where ∇u is the velocity gradient tensor and (:) is the tensor contraction over two indices (Eyink, 1995). In
Cartesian coordinates the components of velocity gradient tensor have a simple form (∇u)ij = ∂jui. The energy
contribution from the deviatoric component of T (Equation 5) is zero because it is orthogonal to the velocity
gradient tensor:

2Td : (∇u) =

⎡

⎢
⎣

− ζD ζD̃

ζD̃ ζD

⎤

⎥
⎦ :

⎡

⎢
⎣

D̃ D

D −D̃

⎤

⎥
⎦

⏟⏞⏞⏟

deviatoric
symmetric

part of 2∇u

= −ζDD̃ + ζD̃D + ζD̃D − ζDD̃ = 0. (A9)
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However, the Equation A9 does not hold numerically when the Arakawa C grid staggering is used, because D, ζ
and Txy are defined in the corner of the grid cell, but Txx, Tyy and D̃ are defined in the center of the grid cell. We
propose the following energy‐conserving discretization of the deviatoric stress Td:

⎡

⎢
⎢
⎣

−ζDx,y ζD̃
x,y

ζD̃
x,y

ζDx,y

⎤

⎥
⎥
⎦

⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟
numerical scheme

:

⎡

⎢
⎣

D̃ D

D − D̃

⎤

⎥
⎦ = − 2ζDx,yD̃

⏟⏞⏞⏟
cell center

+ 2ζDD̃
x,y

⏟⏞⏞⏟
cell corner

, (A10)

where ( ⋅ )
x,y is a linear interpolation from corner to center or vice versa. Terms in the RHS of Equation A10 are

defined in different points but cancel after summation over the domain because the interpolation operator is self‐
adjoint up to the boundary conditions (Section 4.1.2 in Madec and the NEMO team (2008)). Energy‐conserving
discretization on a non‐uniform grid is given by computing the interpolation ζDx,y in a conservative way, that is,
by weighting with the local grid cell area. Note that exact energy conservation property is lost when coefficient
κBC or layer thickness h vary spatially or when the spatial filters are applied.

For the isotropic part of T (Equation 5), we use the simplest numerical scheme because no properties are known:

TI = ((ζx,y
)

2
+ (Dx,y

)
2

+ D̃2
) [

1 0

0 1
]. (A11)

The energy‐conserving discretization (Equation A10) is used in the Double Gyre configuration. In NW2 runs, we
found that the following approximation of the deviatoric component of T demonstrates better numerical stability
properties:

Td =

⎡

⎢
⎢
⎣

− ζx,yDx,y ζD̃
x,y

ζD̃
x,y

ζx,yDx,y

⎤

⎥
⎥
⎦. (A12)

A4. Boundary Conditions

We apply an analog of the free‐slip boundary condition: the momentum flux through the boundary is zero. On the
Arakawa C grid, this is achieved by setting Txy = 0 on the boundary. Zero boundary conditions are also used for
the filtering operations and interpolations on the staggered grid.

Appendix B: Computation of Kinetic and Potential Energy
The KE integrated over the fluid layers and horizontal coordinates in Joules is defined as:

KE =
1
2

∑
k

∫ ρ0|uk|2hk dx dy. (B1)

The KE of the mean flow (ut
k, ht

k) is referred to as a MKE. The EKE is defined as EKE = KEt
− MKE. The PE

summed over interfaces in Joules is defined as:

PE =
1
2

∑
k

∫ ρ0g′k+1/2 η2
k+1/2 dx dy. (B2)

The APE is the PE minus the potential energy of the resting state given by ηref
k+1/ 2 = max(z0

k+1/ 2, −H(x, y)) , where
z0

k+1/ 2 is the constant nominal position of the interfaces and H ≥ 0 is the depth (Marques et al., 2022). MPE is the

APE of the mean flow ηt
k+1/ 2, and EPE is given by EPE = APEt

− MPE.
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Appendix C: Additional Sensitivity Studies
In Figure C1 we show the sensitivity of the online metrics to the number of filter passes (N) for the ZB20‐Smooth
and ZB20‐Reynolds parameterizations. For the ZB20‐Smooth, the effect of reducing APE is slightly stronger for
lower N at the same scaling coefficient γ (Figure C1b). However, the undesirable impact on the KE is also
stronger (Figure C1a). Considering the error in SSH, the optimal number of filters is N = 2 for coarse resolutions
(1/2° − 1/3°) and the optimal number is N = 4 for higher resolutions (Figure C1c). For the ZB20‐Reynolds
parameterization, the impact on the KE is higher for higher N (Figure C1d). An impact on the SSH metric is
also more significant for larger N (Figure C1f). Overall, a slightly more beneficial impact on energetic metrics
(KE, APE) is observed in the case of a larger number of filters N = 4. However, testing in different configurations
is required to determine the optimal parameter N.

In Figure C2, we show the sensitivity to the Smagorinsky coefficient. We consider the bias in SSH prediction
because it is sensitive to including any of the parameterizations (ZB20, ZB20‐Smooth, ZB20‐Reynolds). The
unparameterized models with different Smagorinsky coefficients are shown in black markers. White markers
show the optimal scaling coefficient γ for a given Smagorinsky constant. Note that we include inviscid simu-
lations (CS = 0.00). The inviscid models can be run stably for all three parameterizations for a range of scaling
coefficients γ. However, the optimal SSH metric is achieved when the ZB20‐based parameterizations are turned
off, that is, γ = 0 when CS = 0. This demonstrates that the ZB20‐based parameterizations describe only part of the
subgrid forcing, and cannot be used without an eddy viscosity model. Another important observation—the
optimal scaling coefficient γ should be increased when the eddy viscosity coefficient CS is increased. Finally,
the SSH bias can be efficiently reduced by the ZB20‐Smooth and ZB20‐Reynolds parameterizations for various
values of the Smagorinsky coefficient (CS = 0.03, 0.06, 0.09) .
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Figure C1. Similar to Figure 7, but showing the sensitivity to the number of the filter passes N for the filtered ZB20
parameterizations. The solid lines show the default value of the filter passes (N = 4), and the dotted lines show a smaller
value (N = 2).
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Data Availability Statement
The original NW2 configuration is available via Bhamidipati et al. (2022) and the data for the NW2 reference
simulations, see Marques (2022). The version of the MOM6 source code with the implemented ZB20 parame-
terization, the configuration files for Double Gyre and NW2, and functions needed for generating the figures in
this manuscript are available via Perezhogin (2024b). The simulation data is available via Perezhogin (2024a).
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