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Abstract

In this paper, a multilayer perceptron (MLP)-type artificial neural network model with a back-propagation training algo-
rithm is utilized to model the bubble growth and bubble dynamics parameters in nucleate boiling with a non-uniform
electric field. The influences of the electric field on different parameters that describe bubble’s behaviors including bub-
ble waiting time, bubble departure frequency, bubble growth time, and bubble departure diameter are considered. This
study models single bubble dynamic behaviors of R113 created on a heater in an inconsistent electric field by utilizing a
MLP neural network optimized by four different swarm-based optimization algorithms, namely: Salp Swarm Algorithm
(SSA), Grey Wolf Optimizer (GWO), Artificial Bee Colony (ABC) algorithm, and Particle Swarm Optimization (PSO).
For evaluating the model effectiveness, the MSE value (Mean-Square Error) of the artificial neural network model
with various optimization algorithms is measured and compared. The results suggest that the optimal networks in the
two-hidden layer and three-hidden layer models for the bubble departure diameter improve MSE by 33.85% and 35.27%,
respectively, when compared with the best response in the one-hidden layer model. Additionally, for bubble growth time,
the networks with two hidden layers and three hidden layers have the 44.51% and 45.85% reduction in error, when com-
pared with the network with one hidden layer, respectively. For the departure frequency, the error reduction in the
two-layer and three-layer networks is 46.85% and 62.32%, respectively. For bubble waiting time, the best net-
works in the two hidden-layer and three hidden-layer models improve MSE by 52.44% and 62.27% compared with
the best 1HL model response, respectively. Also, the two algorithms of SSA and GWO are able to compete well
(comparable MSE) with the PSO and ABC algorithms.

Abbreviation SSA Salp Swarm Algorithm
HT Heat Transfer EHD Electrohydrodynamic
ABC Artificial Bee Colony

Nomenclature
MSE Mean-Square error
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1 Introduction

Boiling in power stations, distillation, coolers, and elec-
tronic devices has been employed as an excellent thermal
management strategy because of its remarkable heat trans-
fer performance [1, 2]. Unlike single-phase heat transfer,
boiling heat transfer has the ability to dissipate a substan-
tial amount of heat at a higher rate by means of latent
heat absorbed by liquid. During boiling at microcavities,
entrapped gases originate bubble formation called nuclea-
tion. These nucleated bubbles enlarge and detach from
the surface so that heat is eliminated from the surface by
phase change [3]. By augmenting the surface temperature,
the generated bubbles are gradually increased, leading to
enhancing the boiling heat transfer rate. Thus, the behaviors
and characteristics of bubbles in the nucleate boil-
ing play a crucial role in understanding and accord-
ingly increasing the heat transfer performance. Various
researchers have worked on quantifying the bubble growth
dynamics including bubble departure diameter [4-9],
growth rate [10-12], waiting time [2, 13, 14], and bubble
departure frequency [4, 15—17]. One of the main findings
of these studies is that the effects of these parameters on
the nucleate boiling heat transfer (HT) is significant.

By manipulating the bubble dynamics parameters, the
higher heat dissipation can be achieved, which enhances the
HT in nucleate boiling. This HT enhancement is urgently
needed with the emerge of new products with a higher heat
flux, such as high-power electronic devices. Thus, numerous
scholars focused on enhancing the HT coefficient during
nucleate boiling [18-21]. Among them, using an electric
field to the boiling fluid is appealing since superior boiling
heat transfer has been achieved [22, 23]. An external electric
field in the HT enhancement was first proposed by Chubb in
1916 [24]. After that, various scientists studied the effects
of electrically charged fluids, called electrohydrodynamics
(EHD), on boiling heat transfer and fluid flow [25, 26]. For
instance, Ogata and Yabe [27] utilized a mesh electrode for
studying the boiling heat transfer enhancement by applying
EHD. It was concluded that the number of bubbles during
nucleate boiling was significantly increased when an exter-
nal electric field was used. It was also stated that the bubble
departure diameter was reduced and the departure frequency
was augmented. They reported that a dielectrophoresis force
pushed the vapor bubble to the heated surface because of
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the inequality of the dielectric constants of vapor and liq-
uid. In another experimental study, Karayiannis and Xu [28]
examined the boiling HT of R-123 with applying a high DC
voltage and rode electrodes. According to their results, the
enhancement ratio of boiling HT was more than 4.9 times
higher than that with no voltage. Also, Ahmad et al. [29]
examined the influences of surface roughness and EHD
(5 kV to 25 kV) on the boiling HT enhancement of R123.
Based on the results, applying EHD increases heat transfer
and make a delay in the critical heat flux. Zu and Yan [30] in
a numerical study investigated the impacts of EHD on nucle-
ate boiling enhancement and the bubble shape. It was stated
that the bubble was pulled axially which leads to the bubble
elongation axially. Furthermore, in an experiment performed
by Kweon and Kim [23], a plate-shaped electrode was
used to investigate the EHD influence on nucleate boiling
around a heated wire. They stated which the average bubble
departure diameter and the growth and waiting time were
decreased with applying a voltage to the fluid. In contrast,
the average bubble frequency and nucleation density were
magnified by increasing the electric field strength, leading
to the boiling HT enhancement. Pascual et al. [31] worked
on the nucleate boiling of R123 with the EHD enhance-
ment technique utilizing a platinum heating wire and a mesh
electrode. According to a statistical evaluation, the average
bubble departure diameter and the active nucleation sites
were decreased by an increase in the electric field strength.
Additionally, a heating wire and wire electrode were used
by Madadnia and Koosha [32] to evaluate EHD impacts on
nucleate boiling. In their results, once the electric voltage
and heat flux exceeded 6 kV and 6 kW/m?, respectively, the
enhancement effects were observed with increasing the bub-
ble frequency and the nucleation site density with respect
to a zero-voltage condition. It was hypothesized that this
could be as a consequence of polarization forces that push
bubbles on the heated surface which keeps bubbles longer
on it. Recently, Siedel et al. [33] investigated a single bub-
ble formation, growth, and departure from a heated surface
with and without applying an external electric field. They
reported that the boiling HT was improved and the bubble
was enlarged with applying the electric field. However, the
departure frequency and growth time were not considerably
modified. Chen et al. [34] achieved a conclusion that a bub-
ble was enlarged and its departure frequency and growth
time increased while its waiting time reduced under an elec-
tric field. However, any conclusion regarding boiling heat
transfer enhancement with EHD was not provided. Based on
the literature, some impacts of EHD on nucleate boiling have
been reported, but discrepancies regarding nucleate boiling
with the EHD enhancement still exist due to the complexity
of this phenomenon [35-37]. Therefore, modern and accu-
rate methods to predict the bubble behavior in nucleate boil-
ing with the EHD enhancement are required.
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Existing computational and experimental approaches
to predict the bubble behaviors are commonly either high-
priced or sometimes inaccurate [38—41]. Thus, accurate
and effective methods to predict the bubble behaviors in
nucleate boiling remain a substantial challenge. Some algo-
rithms that learn from data, called machine learning, can
be applied to obviate these challenges and this subject has
gained significant attentions over the last decade [42-48].
For instance, Wei et al. [49] used an artificial neural net-
work and genetic algorithm (GNN) for predicting the onset
of nucleate boiling in a narrow channel contained distilled
water. By comparing experimental data and the genetic neu-
ral network (GNN), they achieved the conclusion that the
model is able to predict the experimental data accurately.
Furthermore, different neural networks such as ANFIS
(adaptive network-based fuzzy inference system), LSSVM
(least-squares support vector machine), and RBF (radial
basis function) were applied by Zendehboudi and Tatar
[50] for modeling nucleate boiling HT of a refrigerant-oil/
nanoparticles mixture. Also, the influences of using nano-
particles on the HT coefficient in various conditions were
investigated. According to their results, RBF was the best
network to estimate the nucleate boiling HT and the HT
coefficient. Balcilar et al. [51] examined characteristics of
the nucleate boiling HT with the presence of TiO, by using
ANN. Their results show that the ANN could estimate the
experimental data of the pool boiling HT coefficient with
a deviation range of +5%. Pare and Ghosh [52] used an
ANN to model the effects of Al,Os/water nanofluid on pool
boiling. According to the results, the most accurate model
could be achieved by using Levenberg Marquardt training
algorithm. Also, Liang et al. [53] estimated the boiling heat
transfer in helical coils on the condition of high gravity by
using an MLP neural network. Eight input parameters such
as helical coil diameter, surface area, inlet pressure and tem-
perature, thermal power, and so on were considered. It was
mentioned that the suggested model could predict the heat
transfer. Based on these studies, artificial neural networks
were able to model heat transfer phenomena in a reasonable
range of errors. However, to model the heat transfer with a
better accuracy, artificial neural networks can be optimized
by different optimization algorithms.

In this study, a multilayer perceptron (MLP) ANN with
a back-propagation (BP) training algorithm is applied for
modeling the bubble growth and bubble dynamics param-
eters in nucleate boiling under a non-uniform electric field.
The influences of the electric field and heat flux on bubble
dynamics parameters including bubble waiting time, bub-
ble departure frequency, bubble growth time, and bubble
departure diameter are considered. It is important to note
that throughout the study, other influencing parameters such
as heated surface orientation, surface roughness, and similar
factors remained constant, ensuring a focused examination

of the specific effects of voltage and heat flux on the bub-
ble dynamics parameters in nucleate boiling. In addition, a
single bubble dynamic behavior of R113 created on a heater
is modeled in an inconsistent electric field with MLP neural
network and then optimized by four various swarm-based
optimization algorithms, namely: Salp Swarm Algorithm
(SSA), Grey Wolf Optimizer (GWO), Artificial Bee Colony
(ABC) algorithm, and Partial Swarm Optimization (PSO). A
throughout literature review illustrates that there is no study
focusing on using these algorithms to model nucleate boiling
and the associated bubble dynamics parameters. Finally, for
the aim of evaluating the accuracy of the models, the MSE
value of the models with different optimization algorithms
is measured and compared with each other.

2 Data gathering

The utilized data is gathered from the previous experimental
studies related to nucleation and bubble dynamics behaviors
of R113 formed on a heated surface under variable electric
fields [27, 54, 55]. These data illustrate the impacts of the
electric field on different bubble dynamics parameters that
explain the behavior of a growing bubble, including bub-
ble departure diameter (the bubble diameter while leaving
the heated surface), bubble growth time (the time between
bubble initiation and departure), bubble departure frequency
(the bubble separation’s frequency from a nucleation site),
and bubble waiting time (the time between departure of the
former bubble and creation of the succeeding bubble).

Figure 1 depicts an example experimental setup for the
nucleate boiling on a heated surface, consisting of a high-volt-
age power supplier that generated 0 to 5000 DC voltage and
a needle electrode that provides the electric field [27, 54, 55].
There is a distance between the heated surface and the needle
so that the needle does not intervene the bubble growth. Addi-
tionally, 3-D plots of all 4 parameters with respect to various
heat fluxes and voltages are shown in Fig. 2.

3 Structure of neural network

Artificial neural networks (ANN) are a major modeling
technique of data in different engineering problems includ-
ing heat transfer and boiling phenomena [56]. ANNs are
information-processing tools developed founded upon the
operation of the brain’s neural network. The network’s
processing units are neurons which are connected to each
other through communication links, each with an associated
weight. A standard neural network has considerable amounts
of neurons and their connections [57]. Network structure,
transfer function, and learning algorithm make ANN meth-
ods distinct from other artificial neural networks.
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Fig. 1 Experimental setup for High-voltage
nucleate boiling supply
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In this study, a multilayer perceptron (MLP) neural net-  technique, the neuron connections’ weights are adjusted

work with a Back-Propagation (BP) training algorithm is
utilized to tackle the nucleate boiling problem. In the BP
training algorithm on the basis of the supervised learning
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founded upon the discrepancy between the desired network
outputs and the predicted outputs [58]. An MLP network
composes of one input layer, one output layer, and one or

3D plot of Bubble Growth Time with respect to Heat Flux and Voltage
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more hidden layers (Fig. 3). The inputs' and outputs’ number
of the problem determines the number of neurons in the input
and output layers, whereas the hidden layers’ number and
the neurons’ number in each hidden layer can be selected
by designer’s choice. Moreover, the designer can choose the
neurons’ transfer function in the hidden and output layers.
Thus, the performance of this method is susceptible to these
selectable parameters, in particular the transfer function in
each layer and the neurons’ number in each hidden layer.
The network’s architecture can be optimized to produce the
minimum error and the best performance.

This study initially models an MLP neural network with
one hidden layer and then with two and three hidden layers
for the optimization. The optimization problem for the two
hidden layers network has four design variables X =[N, N,,
F,, FZ]T, and for the three hidden layers network has six
design variables X =[N, N,, N3, F,, F, F;]", where N, F,
and T are the number of neurons, the type of transfer func-
tion, and the transpose of the design variable matrix, respec-
tively. To evaluate the effectiveness of the optimization, the
value of the Mean Squared Error (MSE) is considered as the
cost function. The optimization problem is shown in Eq. (1),

Min MSE (X),
X . {N7’E]}

S.t (subject to): < 1 <N, < 30 &y

F; € {logsig, tansig, elliotsig}
i = 1,2 For two hidden layers network

i = 1,2,3 For three hidden layers network

where N, and F; are the neuron number and the transfer func-
tion in the ith hidden layer, respectively. It is assumed that
the transfer function is selected among three cases; Log-
sigmoid transfer function (sigmoid), Hyperbolic tangent
sigmoid transfer function (tansig), and Elliot symmetric

Fig.3 Schematic of a neural
network structure
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sigmoid transfer function (elliotsig). Also, the lower band
the neurons’ number in each hidden layer is 1 and the upper
bound is 30. The design parameters of this optimization
problem are discrete variables, and the optimization algo-
rithms must search for optimal variables to be integer values.

4 Optimization algorithms

Various optimization algorithms are implemented, making net-
work outputs and actual outputs (experimental data) get closer,
in order to reduce modeling errors of the nucleate boiling heat
transfer. These include four different swarm-based optimiza-
tion algorithms, namely: Salp Swarm Algorithm, Grey Wolf
Optimizer, Artificial Bee Colony, Partial Swarm Optimiza-
tion. During the optimization, the MSE value reaches its mini-
mum by manipulating the design variables. The swarm-based
methods imitate groups of animals and their social behaviors
which are one of meta-heuristic optimization methods [59].
Table 1 shows the applied optimization algorithms with the
corresponding year of development.

4.1 Particle swarm optimization

Particle swarm optimization (PSO) was established in
accordance with social behaviors of birds, bees, and fish and
their dynamic movements and each species is considered
“particle” [60]. The particle path is modified based on the
particle’s knowledge (individual) and the swarm’s knowl-
edge (group) which is adapted during iterations. The final
solution of this algorithm is the position of the swarm. If a
swarm has P particles, a position vector X! = (X Xp X0 .- )C_;n)T
and a velocity vector Vj’ = (V1 v, Vizs -+ vjn)T at ¢ iteration for
each one of the j particle (j=1,2, ..., P) can be considered
[61]. Also, the jth particle with the best location is called
P, > and its corresponding location for the swarm is rep-
resented by G,,,, in each iteration. For determining the jth

Hidden layer Output layer

Output

E—
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Table 1 Optimization algorithms used in this study

No. Applied Optimization Algorithm Proposed Year
1 Particle Swarm Optimization 1995
2 Artificial Bee Colony 2005
3 Grey Wolf Optimizer 2014
4 Salp Swarm Algorithm 2017

particle position and velocity, the following equations can
be utilized [62, 63],

X()=XG-D+V(), j=12...P @)

Vi(i) = yVi(i = 1) + ¢y [Pyeyj — X, — 1] \
+ oty [Gpo — X;(i = D], j=1,2,...,P. )
where ¢, and ¢, are constants defined as learning coeffi-
cients of cognition for an individual and group, respectively.
u, and u, are two random numbers in [0, 1]. Finally, y(i) is
a weighting factor which has a value between 0.4 and 0.9.
This factor can be kept constant or reduced with rising the
iterations’ number.

4.2 Artificial bee colony algorithm

Artificial bee colony (ABC) algorithm is a popular optimi-
zation algorithm due to its simplicity having few control
parameters. The solution of this algorithm is a food source’s
position based on bees’ search [64, 65]. In ABC, three kinds
of bees are considered in the bee colony: employed bees,
onlooker bees, and scout bees when 50% of the colony
includes the employed and scout bees and the rest are the
onlookers. An employed bee turns into scout when a food
source by it. It is assumed that solution ‘s quality (fitness)
is indicated by the food source’s nectar amount. In ABC, an
initial solution is created, and the algorithm iteratively goes
through three phases: the employed bee, onlooker bee, and
scout bee phases till a satisfaction criterion is met.
The steps of ABC algorithms are:

1. Initialization of parameters including the food source
number, a satisfaction criterion, and limit (the number
of trials before abandoning a food source).

2. Population initialization of solutions which is randomly
created by [66],

xy = X"+ rand (0, 1) X (xj’"“x - xj’.”i”) 4)
where x; and rand are the food source’s position and a

random number between [0, 1]. min and max indicate
the minimum and maximum values of Xje
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3. In the employed bee phase, the bee is in charge of
exploiting possible food sources (new) around its ini-
tially designated food sources (old). The old food source
is substituted by the new one once the old one’s nectar
quantity is lower than that of the new one.

4. Inthe next phase, an onlooker bee assesses all the informa-
tion gathered by the employed bees and picks out a food
source relying upon the probability contributed to the food
source (p,), that is measured by the following equation [66],

Jfit;
Zjﬁl ﬁtn (5)

where fit; represents the fitness value of the solution and
SN is referred to the food sources’ number. In this step,
the solutions are modified by the onlooker bee to gener-
ate new food sources near the initialized food source
position by using,

pi =

vy = X; + qﬁij(xij - xkj) (6)

where k € {1,2,...,SN} and v is the posision of the
newly generated food source. ¢, ; is a random number in
[-1, 1] which regulates the generation of a neighbor food
source adjacent to x; ;. According to Eq. (6), the pertur-
bation associated with the position x; ; decreases while
the discrepancy between the parameters of x; ; and x; ; is
reduced. Therefore, the step length (change in the target
value at each step) is appropriately decreased while the
search reaches the optimal solution in the search space.

5. Inthe scout bee phase, if an employed bee cannot further
improve a food source (based on the limit), the bee leaves
the food source and turns into a scout bee. Next, the bee
arbitrarily searches a new food source to replace the aban-
doned food.

6. Steps 3 to 5 are repeated till a satisfaction criterion
is fulfilled.

4.3 Grey wolf optimizer (GWO)

A grey wolf optimization algorithm (GWO) provides competi-
tive results in comparison with renowned algorithms like PSO
[67]. In this algorithm, grey wolves are regarded as predators
that are mainly in a group that follow an extremely severe social
dominant hierarchy as depicted in Fig. 4. Alpha (o) is located on
the top as the leader of the group including a male and a female.
The alpha is mainly in charge of determining hunting. Other
members of the group are commitment to the alpha’s decisions
[68]. Betas are the second level of the grey wolves’ hierarchy.
The beta can be considered as the representatives helping alphas
in making decision or other group activities. The beta orders the
lower-level wolves and follow the alpha. The lowest level in the
hierarchy of the grey wolf is omega. The omega has to adhere
to all the other predominant wolves and these wolves have the
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- X, +X,+X,; (13

Fig.4 Hierarchy of grey wolf (dominance decreases from top to
down) [67]

last permission to eat among others. A wolf is called subordinate
(delta) that is not an alpha, beta, or omega. Delta has to obey
alpha and beta, however, they govern the omega.

In GWO, the most suitable solution is the alpha (&) while beta
(B) and delta (5) are the second and third best solutions. a, #, and
6 direct the hunting (optimization) and the @ wolves obey these
three wolves. The succeeding relation have been introduced for
modeling the wolves’ encircling conduct mathematically [67],

D= |CX,(H)-X® (7

X(t+1)=Xp()—AD ®)

where ¢ is referred to the current iteration. A and C indicate
coefficient vectors. X and X , indicate a grey wolf’s position
vector and the position vector of the prey, respectively.

The following equations are used to calculate Aand C [67],

A=27-a ()
C=27, (10)

where d ‘s components are linearly reduced from 2 to 0 dur-
ing iterations. Also, r; and r, are random vectors in [0, 1].
By utilizing Egs. (7) and (8), the position of a grey wolf is
upgraded inside the space near the prey in any random loca-
tion [67]. Next, for mathematically simulating the hunting
attitude of grey wolves, the following equations have been
introduced [67],

5, - [6%,- 7] )
B, - [%, -] "
5= [6%, -
X, =X, -4.(D,), (12)

% =%, (57).

where D,, Dy, and Dy are the updated positions of search
agents. Equation (13) is used to upgrade the current search
agent’s position for the next iteration.

4.4 Salp swarm algorithm (SSA)

A salp swarm algorithm (SSA) is a recently developed algo-
rithm which shows effective behaviors in finding the opti-
mum solutions. This algorithm is generally inspired by the
swarm conduct of salps, called a salp chain (Fig. 5).

For modeling the salp chain mathematically, the popula-
tion is initially split into two parts: followers and leader. The
salp located at the front of the chain is regarded the leader
whilst the others are followers. The guidance of the swarm
is the leader’s responsibility and the followers obey each
other. The salps’ position is determined in an n-dimensional
search space in which n represents the variables’ number in a
specific problem. In modeling, a 2-D matrix named x is used
to store the position of all salps. Also, it is presumed that the
swarm’s target is a food source named F in the search space.
The following equation has been introduced for updating the
leader’s position [70],

o= Fi+¢ ((ubj - lbj)cz + lbj)
] Fj—cl((ubj—lbj)cz+lbj)

c; >0

where F; and x} indicate the food source’s position and the
leader’s position in the jth dimension, respectively. ub; and
Ib; represent the upper and lower bounds of jth dimension,
respectively. ¢,, and c; are random numbers in [0, 1], and ¢,
is determined by the succeeding equation [70],

o =20 (t) (15)

where [ and L represent the current iteration and the maxi-
mum number of iterations, respectively.

Additionally, the subsequent equation has been used for
updating the followers’ position [70],
¥ o= Lod 46 (16)

AR B

In summary, the steps of the SSA algorithm are first, SSA
parameters such as the salp population, upper and lower
bounds, and maximum number of iterations are initiated.
In the next step, the fitness of each salp is measured and the
salp with the best fitness is found out. Then, the best salp’s
position is assigned to F which is the food source. Mean-
time, ¢, can be upgraded by Eq. (15). Also, the positions of
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Fig.5 Schematic of a swarm of
salp (salp chain) [69]

the leader and the followers can be upgraded by Egs. (14)
and (16) in each dimension, respectively. Then, if any salp
passes the boundaries of the search space, it is brought back
on the basis of the upper and lower bounds. All the men-
tioned steps are iteratively performed except the initializa-
tion until an end criterion is satisfied.

5 Results and discussion

In this section, the optimization for four bubble dynamics
parameters including bubble waiting time, bubble departure
frequency, bubble growth time, bubble departure diameter
are initially provided using the one hidden-layer network.
Then, these parameters are modeled and compared by opti-
mizing two- and three-hidden layer networks with four opti-
mization algorithms including PSO, ABC, GWO, and SSA.
Also, the best neural network for each bubble dynamics
parameter is provided by comparison of MSE values in four
different optimization algorithms. For modeling the boiling
HT with the neural networks, the obtained dataset is split
into three datasets randomly, so that 70% of the dataset is
utilized for training, 15% for testing, and the last 15% for
validation. To train the network, the Levenberg—Marquardt
algorithm is applied [71]. The network’s performance was
determined based on the MSE values between the desired
output and the predicted output from the networks. The input
variables and the number of samples for each case are pre-
sented in Table 2. All datasets are normalized before using
in the neural network.

@ Springer

5.1 One hidden layer (1HL) network

For the neural network with one hidden layer, only two
design variables X =[N, F,]T are considered for the optimi-
zation problem. Figure 6 shows the typical structure of the
IHL network. By considering the N, and F, values with 30
and 3 levels, respectively, the problem has 90 various cases.
By testing all cases, the optimal design variables that have a
minimum MSE value were chosen. Table 3 shows the best
results for four different bubble dynamics parameters.
Figures 7, 8, 9 and 10 show the regression diagrams
for the best MLP network with one hidden layer (in
accordance with the specifications in Table 3) for all four
parameters including bubble waiting time, bubble depar-
ture frequency, bubble departure diameter, bubble growth
time. In these diagrams, the MLP network with one hid-
den layer can approximate the desired outputs based on
the values of coefficient of determination. The coefficient

Table 2 Inputs and the number of samples for each output parameter

Output Inputs Number
of
samples

Bubble departure Heat Flux (W/m?) Voltage (V. 740

diameter

Heat Flux (W/m?) Voltage (V) 724
Heat Flux (W/m?) Voltage (V) 668

Bubble growth time
Bubble departure
frequency

Bubble waiting time Heat Flux (W/m?) Voltage (V) 684
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Fig.6 A typical structure of the
1HL network

Hidden Layer

of determination (R?) proves the ability of the suggested
models in predicting the bubble dynamics parameters data
once it is close to 1. Based on Fig. 7, the regression dia-
grams of experimental and estimated values for the bubble
departure diameter show the values of R? for training and
all datasets are 0.99914 and 0.99842, respectively. Most
of the data points for both test and training datasets are
condensed near the line that indicates the precise estima-
tion of the suggested models. Also, similar results can
be obtained from Figs. 8, 9 and 10 for the bubble growth
time, bubble departure frequency, and bubble waiting
time, respectively. The coefficients of determination (R?)
for the bubble growth time for the training and all data-
sets are 0.9995 and 0.99938, respectively. Based on these
measured values, the model is considerably powerful in
predicting the bubble dynamics parameters. Also, Figs. 7,
8, 9 and 10 also verify the precision and the prediction
ability of the MLP neural network.

5.2 Two hidden layers (2HL) network

In this section, two hidden layers is considered in the neural
network. The optimization problem for the 2HL network has
four design variables X =[N, N,, F,, F,]". Figure 11 shows
a typical structure of the 2HL network. For the optimization
process by using different algorithms, the population sizes
and the numbers of maximum iterations are selected as 10
and 100, respectively.

a) Bubble departure diameter
For bubble departure diameter, the results of opti-
mizing the MLP network with 2 hidden layers apply-

Table 3 The best results for four bubble dynamics parameters using
the 1HL network

Output N, F, MSE R?

Bubble departure diameter 29  logsig  6.5166e-05 0.99894
Bubble growth time 24 logsig 1.2802e-05 0.99938
Bubble departure frequency 27 tansig 3.861e-06 0.99994
Bubble waiting time 27 logsig 4.0665e-06 0.99996

ing 4 various algorithms including PSO, ABC, GWO,
and SSA are provided in Table 4 and Fig. 12. It can be
observed that the lowest MSE value belongs to the ABC
algorithm and then followed by the SSA algorithm. The
lowest MSE value of the bubble departure diameter is
4.31 x 1075 and the second lowest MSE belongs to SSA
algorithm which is 4.37 x 107>, It should be noted that
this small difference could be significant if the num-
ber of experimental data points is less than the number
of data points used in this study. Under this condition,
to have a precise prediction, the best model should be
selected. Also, in comparison with different transfer
functions, the tansig function is seen more than others in
optimal populations. Additionally, the trend of changes
in the error (MSE) in four optimization algorithms are
plotted according to the number of iterations in Fig. 13.
As it is clear, the MSE value decreases in each iteration
for all of the optimization algorithms. It should be noted
that the initial population in these methods is randomly
created, making the starting points of these algorithms
in Fig. 13 different.
b) Bubble growth time

Table 5 and Fig. 14 show the results of MLP network
optimization with 2 hidden layers for bubble growth
time output using four optimization algorithms. Based
on these results, the ABC method has the least error,
followed by the GWO and PSO algorithms that have
less MSE values than the SSA algorithm. The low-
est MSE value of the bubble growth time is 7.1 x 1076
so it can be considered as the most accurate model
in predicting the bubble growth time in the 2HL net-
work. The percentage of error increase between ABC
and GWO is 3.5%. Also, in comparison of different
transfer functions, tansig is still more common than
the others in optimal populations. Figure 15 shows the
trend of error changes according to the iterations for
4 optimization methods. The figure suggests that it is
possible to obtain the optimal value of the ABC algo-
rithm before reaching 50 iterations, which indicates the
strength of this algorithm.

c) Bubble departure frequency
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Fig. 7 Regression diagrams of the best MLP network for bubble departure diameter with the 1HL network

&

The results of bubble departure frequency optimized by
the MLP networks with the 2HL network are presented
in Table 6 and Fig. 16. Based on these results, the ABC
method has the lowest error and the other three algorithms
follow it. The lowest MSE value for the bubble departure
frequency is 2.05 x 107°. Also, the logsig function can be
observed more than the rest in the optimal populations.
The trend of changing the MSE values (performance) in
Fig. 17 shows that the ABC algorithm reaches the optimal

Springer

d)

value much faster at 41 iterations. As it is clear, the MSE
value decreases in each iteration for all of the optimization
algorithms which is highly favorable.
Bubble waiting time

As the final output, the bubble waiting time is opti-
mized by the same technique. Similar to the previous
three outputs, Table 7 and Fig. 18 show that the ABC
algorithm performs best, followed by the PSO algorithm
with less error than the remaining two algorithms. To
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Fig.8 Regression diagrams of the best MLP network for bubble growth time with the 1HL network

be specific, the lowest MSE value of the bubble wait-
ing time in the 2HL network is 1.93 X 107°. Also, in
comparison of different transfer functions, tansig and
elliotsig are more common than logsig in optimal popu-
lations. Figure 19 also shows the trend of error changes
for all four utilized algorithms. This figure shows that
the ABC algorithm reaches the optimal value at itera-
tions less than 100.

5.3 Three hidden layers (3HL) network

In this section, we consider three hidden layers (3HL) in the neural
network. The optimization problem for the 3HL network has six
design variables X=[N1, N2, N3, F1, F2, F3]T. Figure 20 shows
the typical structure of the 3HL network. Similar to the 2HL
network optimization, the population sizes and the numbers of
maximum iterations are considered as 10 and 100, respectively.
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a) Bubble departure diameter

The results for bubble departure diameter with the
3HL network using four optimization algorithms are
provided in Table 8. Figure 21 illustrates the error com-
parison between the four optimization methods. Based
on these results, the PSO algorithm has the lowest MSE
value and the SSA and GWO algorithms are in the next
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Fig. 9 Regression diagrams of the best MLP network for bubble departure frequency with the 1HL network

ranks. The lowest MSE value of the bubble departure
diameter for the 3HL network is 4.22 X 107°. Interest-
ingly, the ABC algorithm did not work properly in the
3HL network because its error for this output is much
greater than that in the 2HL network. The trend of error
changes in Fig. 22 shows that the PSO algorithm reaches
the optimal value in 15 iterations. Also, in comparison
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with different transfer functions, logsig and elliotsig are
more common than tansig in optimal populations of
the PSO algorithm which shows the best performance
among the algorithms.
Bubble growth time

The results for bubble growth time are presented in
Table 9 and Figs. 23 and 24 based on the 3HL net-
work optimized by four different algorithms. Accord-
ing to these results, the GWO method has the lowest
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10 Regression diagrams of the best MLP network for bubble waiting time with one 1HL network

MSE value and then followed by the SSA method
when compared with the remaining two algorithms.
The lowest MSE value of the bubble growth time in
the 3HL network is 6.93 x 107 and the second low-
est MSE is 7.32 x 107%. It should be noticed that the
SSA error is almost 5% higher than GWO algorithm for
the bubble growth time in the 3HL network. In terms
of transfer functions, elliotsig can be observed less in
optimal populations than the other transfer functions.
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First Hidden Layer Second Hidden Layer Output

Fig. 11 A structure of the 2HL network

Table 4 Optimum values of the design parameters for bubble depar-
ture diameter with the 2HL network

Table 5 Optimum values of the design parameters for bubble growth
time with the 2HL network

N; (number of F,; (transfer function) MSE

N; (number of F,; (transfer function) MSE

neurons) neurons)
N, N, F, F, N, N, F, F,
PSO 30 25 tansig logsig 4.4664e-05 PSO 26 20 tansig tansig 7.3738e-06
ABC 27 27 tansig tansig 4.3087e-05 ABC 25 29 tansig logsig 7.1041e-06
GWO 27 13 tansig logsig 4.4623e-05 GWO 30 21 tansig tansig 7.3454e-06
SSA 23 24 tansig tansig 4.3660e-05 SSA 29 21 tansig tansig 7.9099¢e-06
4.50E-05
4.45E-05
)
7 4.40E-05
=
dé 4.35E-05
<
£ | 430805
£
—
)
A 4.25E-05
4.20E-05
PSO ABC GWO SSA
4.47E-05 4.31E-05 4.46E-05 4.37E-05

Fig. 12 Comparison of MSE values in four different optimization algorithms for bubble departure diameter with the 2HL network
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Fig. 13 Performance evolution le-5

of four optimization algorithms
for bubble departure diameter
with the 2HL network 7
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Figure 24 shows that the two algorithms, GWO and  «¢)
SSA, have higher errors in the initial population, but

are eventually able to achieve lower errors than ABC

and PSO, which indicates that the capabilities of these

new optimization methods are considerable in predict-

ing experimental data.

40 60 80 100
lteration

Bubble departure frequency

The results of bubble departure frequency are pro-
vided in Table 10 using four different algorithms.
Figure 25 shows a comparison of MSE values for
all implemented algorithms. The results reveal that
the PSO algorithm has the lowest MSE value which
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Performance (MSE)

6.80E-06

6.60E-06

PSO ABC

GWO SSA

7.37E-06 7.10E-06

7.35E-06 7.91E-06

Fig. 14 Comparison of MSE values in four different optimization algorithms for bubble growth time with the 2HL network
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Fig. 15 Performance evolution

of four optimization algorithms
for bubble growth time with the
2HL network
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Table 6 Optimum values of the design parameters for bubble depar-

ture frequency with the 2HL network

40 60 80 100
Ilteration

is 1.46 x 107° and then followed by the SSA method.
The highest MSE value for the bubble departure fre-

N; (number of  F, (transfer function) MSE quency of the 3HL belongs to ABC algorithm which is
neurons) 2.34 x 107°. The error increase between PSO and ABC
N, N, F, F, is 60%, which is significant. For transfer functions, elli-
5 - ) oas St otsig is seen more than others in the optimal popula-
PSO ; 1 tal‘;mg_ ogsg 2’5 3?6'06 tions. Additionally, the trend of error changes in Fig. 26
ABC 2 6 ¢ %Ots%g tansfg 0521e-06 indicates that the PSO algorithm reaches the optimal
GWO 24 27 elliotsig logsig 2.5522e-06 value in the 50th iteration
SSA 27 20 logsig logsig 2.5314e-06 d) Bubble waiting time
3.00E-06
2.50E-06
~~
84
E 2.00E-06
N
O
o 1.50E-06
:
S 1.00E-06
3
0]
[al
5.00E-07
0.00E+00
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Fig. 16 Comparison of MSE values in four different optimization algorithms for bubble departure frequency with the 2HL network
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Fig. 17 Performance evolution le-6
of four optimization algorithms
for bubble departure frequency 6
with the 2HL network
5
A
L A
N 4 [
-y
13
@
Pt e AAAAAA
3| dennnnkkikk
000000000000

PSO
ABC
GWO
SSA

+ > 8 O

AAAA

As the final output, the bubble waiting time is opti-
mized, and the results are provided in Table 11 and
Figs. 27 and 28. According to the results, the SSA algo-
rithm which is followed by the GWO algorithm has the
lowest MSE value as compared to ABC and PSO meth-
ods. Also, by comparing different transfer functions,
the tansig function is less than the other two transfer
functions in optimal populations. Additionally, by con-
sidering the trend of error changes in Figure 28, it can be
mentioned that the SSA algorithm reaches the optimal
value in the 55th iteration. As it is clear, the MSE value
decreases in each iteration for all of the optimization
algorithms which is highly favorable.

5.4 Comparison of results between different
hidden layers

This section examines the influences of the number of hidden
layers in the MLP network on the reduction of MSE value.
The results of four bubble dynamics parameters optimized by
four optimization algorithms in the 2HL and 3HL networks

Table 7 Optimum values of the design parameters for bubble waiting
time with the 2HL network

N; (number of F; (transfer function) MSE

neurons)

N, N, F, F,
PSO 19 19 elliotsig tansig 2.0735e-06
ABC 23 28 elliotsig logsig 1.9339¢-06
GWO 25 8 elliotsig tansig 2.8184e-06
SSA 28 29 elliotsig tansig 2.4132e-06

3
%129630 3038 96363638 38 36303630 20 33032 2L I

40 60 80 100
lteration

are compared. Figure 29 shows that in the SSA and GWO
algorithms, the optimal network error in the 3HL model is
always less than the optimal network in the 2HL model. In
the PSO algorithm, the error in the 3HL model is less than
that in the 2HL. model for the bubble departure diameter and
departure frequency while the error in the 3HL model is more
than that in the 2HL model for the bubble growth time and
bubble waiting time. In all cases of the ABC algorithm, the
error in the 2HL model is less than that in the 3HL model.

In Tables 12, 13, 14 and 15, the best values of the least
MSE are compared in all algorithms according to the num-
ber of hidden layers. Table 12 illustrates that the optimal
networks in the 2HL and 3HL models for the bubble depar-
ture diameter improve by 33.85% and 35.27%, respectively,
when compared with the best response in the 1HL model.
Additionally, Table 13 shows that networks with 2HL and
3HL have the 44.51% and 45.85% reduction in error for the
bubble growth time when compared with the network with
1HL, respectively. Furthermore, Tables 12 and 13 show that
increasing the number of layers from 1 to 2 is significant
in bubble departure diameter and bubble growth time, but
changing the number of layers from 2 to 3 has a minimal
effect on reducing errors. Table 14 shows that the error in
2HL and 3HL networks for departure frequency is reduced
by 46.85% and 62.32%, respectively, when compared with
the best 1HL network. For the bubble waiting time, Table 15
shows that the best 2HL and 3HL networks reduce the MSE
values by 52.44% and 62.27% when compared with the best
1HL model response, respectively. Consequently, for bubble
departure frequency and bubble waiting time, raising the
number of hidden layers from 1 to 2 and then from 2 to 3 in
the best networks could have a significant effect on reducing
network errors.
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Fig. 18 Comparison of MSE values in four different optimization algorithms for bubble waiting time with the 2HL network

Additionally, Figs. 30, 31, 32 and 33 show the error
analysis for different outputs in terms of the percentage of
the relative deviation and the error histogram using the best
3HL network. The relative deviation shows how well the
individual numbers agree with each other. In other words, it
can tell how precise the average of results is. It can be seen
that the relative deviation for the bubble departure diameter,
the bubble growth time, the bubble departure frequency, and

the bubble waiting time is in the range of +4%, approxi-
mately. Additionally, the error histogram is a graph of the
errors between predicted values from the neural network
and target values. This shows how the target values and pre-
dicted values are close and how the errors from the neural
network are spread. For achieving a precise model, the error
distribution diagram is needed to obey the normal distri-
bution diagram. Based on Figs. 31, 32 and 33, the errors
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Fig.20 A structure of the 3HL
network

Table 8 Optimum values of the
design parameters for bubble
departure diameter with the
3HL network

First Hidden Layer

Second Hidden Layer

N; (number of neurons) F, (transfer function) MSE

N, N, N; F, F F;
PSO 27 18 9 elliotsig logsig logsig 4.2180e-05
ABC 23 14 18 elliotsig elliotsig logsig 4.3914e-05
GWO 25 21 16 tansig tansig tansig 4.2541e-05
SSA 28 28 19 elliotsig logsig tansig 4.2537e-05
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Fig.21 Comparison of MSE values in four different optimization algorithms for bubble departure diameter with the 3HL network
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Fig. 22 Performance evolution
of four optimization algorithms
for bubble departure diameter
with the 3HL network

Table 9 Optimum values of the
design parameters for bubble
growth time with the 3HL
network

=

1]
|

(4]

5.5-1
H

+ > & O

PSO
ABC
GWO
SSA
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Iteration
N; (number of neurons) F, (transfer function) MSE
N, N, N; F, F, F;
PSO 20 20 22 elliotsig logsig tansig 8.1514e-06
ABC 15 18 11 tansig logsig logsig 8.1041e-06
GWO 30 25 22 logsig elliotsig tansig 6.9321e-06
SSA 11 30 12 tansig tansig logsig 7.3150e-06
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Fig. 23 Comparison of MSE values in four different optimization algorithms for bubble growth time with the 3HL network
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Fig. 24 Performance evolution
of four optimization algorithms
for bubble growth time with the
3HL network
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Iteration
Table 10 thimum values N; (number of neurons) F, (transfer function) MSE
of the design parameters for
bubble departure frequency N, N, N; F, F, F;
with the 3HL network
PSO 22 18 9 elliotsig tansig elliotsig 1.4550e-06
ABC 10 22 23 elliotsig elliotsig elliotsig 2.3375e-06
GWO 23 21 11 elliotsig tansig elliotsig 2.1460e-06
SSA 27 30 1 elliotsig tansig logsig 2.1192e-06
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Fig. 25 Comparison of MSE values in four different optimization algorithms for bubble departure frequency with the 3HL network
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Fig. 26 Performance evolution
of four optimization algorithms
for bubble departure frequency
with the 3HL network

Table 11 Optimum values
of the design parameters for
bubble waiting time with the
3HL network

PSO
ABC
GWO
SSA

Iteration
N; (number of neurons) F; (transfer function) MSE
N, N, N; F, F, F,
PSO 13 28 4 elliotsig logsig logsig 2.7252e-06
ABC 22 9 27 elliotsig logsig elliotsig 2.7031e-06
GWO 17 23 30 tansig elliotsig elliotsig 2.1545e-06
SSA 29 30 19 logsig logsig tansig 1.4528e-06
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Fig. 27 Comparison of MSE values in four different optimization algorithms for bubble waiting time with the 3HL network
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Fig. 28 Performance evolution
of four optimization algorithms
for bubble waiting time with the

3HL network
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Fig. 29 Performance comparison of four bubble dynamics parameters using the 2HL and 3HL networks (2ZHLggQ 3HL )

@ Springer



350 Heat and Mass Transfer (2024) 60:329-361
Tal?le 1? gomparison of the N, F, MSE Improvement
best results .for the bubble (number of neurons) (transfer function) compared to
departure diameter output 1 HL network
(%)
1HL network [29] [logsig] 6.5166e-05 —
2HL network [27] [tansig, tansig] 4.3087e-05 33.88
3HL network [9, 18, 27] [elliotsig, logsig, logsig] 4.2180e-05 35.27
Table 153 qomparison of the N, F, MSE Improvement
best resu.lts for the bubble (number of neurons) (transfer function) compared to
growth time output 1HL network
(%)
1HL network [24] [logsig] 12.8020e-06 —
2HL network [25, 29] [tansig, logsig] 7.1041e-06 44,51
3HL network [22, 25, 30] [logsig, elliotsig, tansig] 6.9321e-06 45.85
Table 14 Comparison of the N, F, MSE Improvement
best results for the bubble (number of neurons) (transfer function) compared to
departure frequency output 1HL network
(%)
1HL network [27] [tansig] 3.8610e-06 —
2HL network [16, 22] [elliotsig, tansig] 2.0521e-06 46.85
3HL network [9, 18, 22] [elliotsig, tansig, elliotsig] 1.4550e-06 62.32

are normally distributed and considerably low in all bubble
dynamics parameters. In other words, the error frequency
accumulates mainly in the zero-axis error range that cre-
ates a symmetric graph and illustrates which the models can
estimate the behavior of the bubble dynamics parameters
excellent. Note that the "zero error” line divides positive and
negative values. The direction of the bias can be identified
by the sign of the error. Positive error indicates the outputs
are smaller than the targets and negative error indicates that
the targets are larger than the outputs.

By increasing the number of hidden layers more than three,
the network error may decrease further. However, augment-
ing the hidden layers and the neurons’ number in each hid-
den layer could lead to a higher number of connections and
thus increases the computational costs. It happens when the

number of hidden layers and the number of neurons in each
layer are increased simultaneously. In Figs. 34, 35, 36 and
37, the effects of the number of connections on the network’s
MSE are analyzed. It should be noted that the number of
connections can be independent of the number of hidden
layers in some cases. For instance, the 2HL network has
greater connections than the 3HL network because it relies
upon the neurons’ number in each hidden layer. Figures 34,
35, and 37 show that, by increasing the number of connections
in the network, its MSE is decreased for bubble departure
diameter, bubble growth time, and bubble waiting time.
However, Fig. 36 shows that this behavior is reversed for
bubble departure frequency, that suggests that in a greater
number of connections, MSE could be increased.

Table 15 Comparison of the N

- - ; F, MSE Improvement
bes.t .resuFts for the bubble (number of neurons) (transfer function) compared to
waiting time output I HL network

(%)
1HL network [27] [logsig] 4.0665e-06 —
2HL network [23, 28] [elliotsig, logsig] 1.9339¢-06 52.44
3HL network [19, 29, 30] [logsig, logsig, tansig] 1.4528e-06 64.27
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6 Conclusion

In this study, a MLP neural network with a BP training
algorithm is used to model the heat transfer enhancement
of nucleate boiling with a non-uniform electric field. The
influences of the electric field on different parameters
describing bubble’s behaviors including bubble waiting
time, bubble departure frequency, bubble growth time,
bubble departure diameter are considered. Specifically,
the objective of the investigation is to model a single
bubble dynamic behavior of R113 created on a heater in an
inconsistent electric field with the MLP-NN optimized by
four different swarm-based optimization algorithms, namely:
Partial Swarm Optimization (PSO), Artificial Bee Colony
(ABC) algorithm, Grey Wolf Optimizer (GWO) and Salp
Swarm Algorithm (SSA). For evaluating the accuracy of
various models, the MSE value of the ANN model with
different optimization algorithms is measured and compared.
Also, the optimal network for each parameter is defined. The
results of MLP network optimization with four algorithms
(PSO, ABC, GWO, and SSA) can be summarized as follows:

e In optimization of the network with 2HL, the ABC algo-
rithm has the least error.

e For network optimization in 3HL model, the PSO algo-
rithm has the least error for the bubble departure diam-
eter and bubble departure frequency and the SSA and
GWO algorithms have the best performance for the bub-
ble waiting time and bubble growth time, respectively.

e Comparing the results of the ABC algorithm, the error of the
optimal networks in the 2HL. model is always less than that
of the optimal networks in the 3HL model. This suggests that
the ABC algorithm performs better in a smaller number of
design variables.

e In the results of the SSA and GWO algorithms, the error
of optimal networks in the 3HL model is always less than
that of optimal networks in the 2HL model. This sug-
gests that the SSA and GWO algorithms perform better
in larger design variables.

e The SSA and GWO algorithms compete properly with
the PSO and ABC algorithms and obtain remarkable out-
comes with low MSE values. Considering the antiquity
and power of PSO and ABC algorithms, the capabilities
of these fledgling algorithms are remarkable.

e The number of neurons in the middle layers in optimal
networks shows that the number of neurons in the ini-
tial middle layer is higher than the neurons’ number in
the final middle layer.

e The relative deviations of the optimized networks for
the bubble departure diameter, the bubble growth time,
the bubble departure frequency, and the bubble waiting
time are in the range of + 4%, approximately.

e For bubble departure diameter, bubble growth time, and
bubble waiting time, by increasing the number of con-
nections in the network, its MSE is decreased.
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