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Abstract

In this paper, a multilayer perceptron (MLP)-type artificial neural network model with a back-propagation training algo-

rithm is utilized to model the bubble growth and bubble dynamics parameters in nucleate boiling with a non-uniform 

electric field. The influences of the electric field on different parameters that describe bubble9s behaviors including bub-

ble waiting time, bubble departure frequency, bubble growth time, and bubble departure diameter are considered. This 

study models single bubble dynamic behaviors of R113 created on a heater in an inconsistent electric field by utilizing a 

MLP neural network optimized by four different swarm-based optimization algorithms, namely: Salp Swarm Algorithm 

(SSA), Grey Wolf Optimizer (GWO), Artificial Bee Colony (ABC) algorithm, and Particle Swarm Optimization (PSO).  

For evaluating the model effectiveness, the MSE value (Mean-Square Error) of the artificial neural network model  

with various optimization algorithms is measured and compared. The results suggest that the optimal networks in the 

two-hidden layer and three-hidden layer models for the bubble departure diameter improve MSE by 33.85% and 35.27%,  

respectively, when compared with the best response in the one-hidden layer model. Additionally, for bubble growth time,  

the networks with two hidden layers and three hidden layers have the 44.51% and 45.85% reduction in error, when com-

pared with the network with one hidden layer, respectively. For the departure frequency, the error reduction in the 

two-layer and three-layer networks is 46.85% and 62.32%, respectively. For bubble waiting time, the best net-

works in the two hidden-layer and three hidden-layer models improve MSE by 52.44% and 62.27% compared with 

the best 1HL model response, respectively. Also, the two algorithms of SSA and GWO are able to compete well  

(comparable MSE) with the PSO and ABC algorithms.

Abbreviation

HT  Heat Transfer

ABC  Artificial Bee Colony

MSE  Mean-Square error

BP  Back-Propagation

LSSVM  Least-Squares Support-Vector Machine

RBF  Radial Basis Function

GNN  Genetic Neural Network

ANN  Artificial Neural Network

MLP  Multilayer Perceptron

PSO  Partial Swarm Optimization

GWO  Grey Wolf Optimizer

SSA  Salp Swarm Algorithm

EHD  Electrohydrodynamic

Nomenclature

pi   Probability of food source

fit   Fitness vakue
�⃗X   Position vector of a grey wolf
�⃗Xp   Position vector of prey

x1

j
   Position of leader

Fj   Position of food

l   Current iteration

L   Maximum number of iteration

ub  Upper bound

lb  Lower bound

N  Number of neuron

F  Transfer function

Greek letters

�   Leader

�   Subordinates
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�   Subordinates

�   Subordinates

Subscripts

i  i Th

j  j Th

1 Introduction

Boiling in power stations, distillation, coolers, and elec-

tronic devices has been employed as an excellent thermal 

management strategy because of its remarkable heat trans-

fer performance [1, 2]. Unlike single-phase heat transfer, 

boiling heat transfer has the ability to dissipate a substan-

tial amount of heat at a higher rate by means of latent 

heat absorbed by liquid. During boiling at microcavities, 

entrapped gases originate bubble formation called nuclea-

tion. These nucleated bubbles enlarge and detach from 

the surface so that heat is eliminated from the surface by 

phase change [3]. By augmenting the surface temperature,  

the generated bubbles are gradually increased, leading to 

enhancing the boiling heat transfer rate. Thus, the behaviors  

and characteristics of bubbles in the nucleate boil-

ing play a crucial role in understanding and accord-

ingly increasing the heat transfer performance. Various  

researchers have worked on quantifying the bubble growth 

dynamics including bubble departure diameter [4–9], 

growth rate [10–12], waiting time [2, 13, 14], and bubble 

departure frequency [4, 15–17]. One of the main findings 

of these studies is that the effects of these parameters on 

the nucleate boiling heat transfer (HT) is significant.

By manipulating the bubble dynamics parameters, the 

higher heat dissipation can be achieved, which enhances the 

HT in nucleate boiling. This HT enhancement is urgently 

needed with the emerge of new products with a higher heat 

flux, such as high-power electronic devices. Thus, numerous 

scholars focused on enhancing the HT coefficient during 

nucleate boiling [18–21]. Among them, using an electric 

field to the boiling fluid is appealing since superior boiling 

heat transfer has been achieved [22, 23]. An external electric 

field in the HT enhancement was first proposed by Chubb in 

1916 [24]. After that, various scientists studied the effects 

of electrically charged fluids, called electrohydrodynamics 

(EHD), on boiling heat transfer and fluid flow [25, 26]. For 

instance, Ogata and Yabe [27] utilized a mesh electrode for 

studying the boiling heat transfer enhancement by applying 

EHD. It was concluded that the number of bubbles during 

nucleate boiling was significantly increased when an exter-

nal electric field was used. It was also stated that the bubble 

departure diameter was reduced and the departure frequency 

was augmented. They reported that a dielectrophoresis force 

pushed the vapor bubble to the heated surface because of 

the inequality of the dielectric constants of vapor and liq-

uid. In another experimental study, Karayiannis and Xu [28] 

examined the boiling HT of R-123 with applying a high DC 

voltage and rode electrodes. According to their results, the 

enhancement ratio of boiling HT was more than 4.9 times 

higher than that with no voltage. Also, Ahmad et al. [29] 

examined the influences of surface roughness and EHD 

(5 kV to 25 kV) on the boiling HT enhancement of R123. 

Based on the results, applying EHD increases heat transfer 

and make a delay in the critical heat flux. Zu and Yan [30] in 

a numerical study investigated the impacts of EHD on nucle-

ate boiling enhancement and the bubble shape. It was stated 

that the bubble was pulled axially which leads to the bubble 

elongation axially. Furthermore, in an experiment performed 

by Kweon and Kim [23], a plate-shaped electrode was 

used to investigate the EHD influence on nucleate boiling 

around a heated wire. They stated which the average bubble 

departure diameter and the growth and waiting time were 

decreased with applying a voltage to the fluid. In contrast, 

the average bubble frequency and nucleation density were 

magnified by increasing the electric field strength, leading 

to the boiling HT enhancement. Pascual et al. [31] worked 

on the nucleate boiling of R123 with the EHD enhance-

ment technique utilizing a platinum heating wire and a mesh 

electrode. According to a statistical evaluation, the average 

bubble departure diameter and the active nucleation sites 

were decreased by an increase in the electric field strength. 

Additionally, a heating wire and wire electrode were used 

by Madadnia and Koosha [32] to evaluate EHD impacts on 

nucleate boiling. In their results, once the electric voltage 

and heat flux exceeded 6 kV and 6 kW/m2, respectively, the 

enhancement effects were observed with increasing the bub-

ble frequency and the nucleation site density with respect 

to a zero-voltage condition. It was hypothesized that this 

could be as a consequence of polarization forces that push 

bubbles on the heated surface which keeps bubbles longer 

on it. Recently, Siedel et al. [33] investigated a single bub-

ble formation, growth, and departure from a heated surface 

with and without applying an external electric field. They 

reported that the boiling HT was improved and the bubble 

was enlarged with applying the electric field. However, the 

departure frequency and growth time were not considerably 

modified. Chen et al. [34] achieved a conclusion that a bub-

ble was enlarged and its departure frequency and growth 

time increased while its waiting time reduced under an elec-

tric field. However, any conclusion regarding boiling heat 

transfer enhancement with EHD was not provided. Based on 

the literature, some impacts of EHD on nucleate boiling have 

been reported, but discrepancies regarding nucleate boiling 

with the EHD enhancement still exist due to the complexity 

of this phenomenon [35–37]. Therefore, modern and accu-

rate methods to predict the bubble behavior in nucleate boil-

ing with the EHD enhancement are required.
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Existing computational and experimental approaches 

to predict the bubble behaviors are commonly either high-

priced or sometimes inaccurate [38–41]. Thus, accurate 

and effective methods to predict the bubble behaviors in 

nucleate boiling remain a substantial challenge. Some algo-

rithms that learn from data, called machine learning, can 

be applied to obviate these challenges and this subject has 

gained significant attentions over the last decade [42–48]. 

For instance, Wei et al. [49] used an artificial neural net-

work and genetic algorithm (GNN) for predicting the onset 

of nucleate boiling in a narrow channel contained distilled 

water. By comparing experimental data and the genetic neu-

ral network (GNN), they achieved the conclusion that the 

model is able to predict the experimental data accurately. 

Furthermore, different neural networks such as ANFIS 

(adaptive network-based fuzzy inference system), LSSVM 

(least-squares support vector machine), and RBF (radial 

basis function) were applied by Zendehboudi and Tatar 

[50] for modeling nucleate boiling HT of a refrigerant-oil/

nanoparticles mixture. Also, the influences of using nano-

particles on the HT coefficient in various conditions were 

investigated. According to their results, RBF was the best 

network to estimate the nucleate boiling HT and the HT 

coefficient. Balcilar et al. [51] examined characteristics of 

the nucleate boiling HT with the presence of  TiO2 by using 

ANN. Their results show that the ANN could estimate the 

experimental data of the pool boiling HT coefficient with 

a deviation range of ±5% . Pare and Ghosh [52] used an 

ANN to model the effects of  Al2O3/water nanofluid on pool 

boiling. According to the results, the most accurate model 

could be achieved by using Levenberg Marquardt training 

algorithm. Also, Liang et al. [53] estimated the boiling heat 

transfer in helical coils on the condition of high gravity by 

using an MLP neural network. Eight input parameters such 

as helical coil diameter, surface area, inlet pressure and tem-

perature, thermal power, and so on were considered. It was 

mentioned that the suggested model could predict the heat 

transfer. Based on these studies, artificial neural networks 

were able to model heat transfer phenomena in a reasonable 

range of errors. However, to model the heat transfer with a 

better accuracy, artificial neural networks can be optimized 

by different optimization algorithms.

In this study, a multilayer perceptron (MLP) ANN with 

a back-propagation (BP) training algorithm is applied for 

modeling the bubble growth and bubble dynamics param-

eters in nucleate boiling under a non-uniform electric field. 

The influences of the electric field and heat flux on bubble 

dynamics parameters including bubble waiting time, bub-

ble departure frequency, bubble growth time, and bubble 

departure diameter are considered. It is important to note 

that throughout the study, other influencing parameters such 

as heated surface orientation, surface roughness, and similar 

factors remained constant, ensuring a focused examination 

of the specific effects of voltage and heat flux on the bub-

ble dynamics parameters in nucleate boiling. In addition, a 

single bubble dynamic behavior of R113 created on a heater 

is modeled in an inconsistent electric field with MLP neural 

network and then optimized by four various swarm-based 

optimization algorithms, namely: Salp Swarm Algorithm 

(SSA), Grey Wolf Optimizer (GWO), Artificial Bee Colony 

(ABC) algorithm, and Partial Swarm Optimization (PSO). A 

throughout literature review illustrates that there is no study 

focusing on using these algorithms to model nucleate boiling 

and the associated bubble dynamics parameters. Finally, for 

the aim of evaluating the accuracy of the models, the MSE 

value of the models with different optimization algorithms 

is measured and compared with each other.

2  Data gathering

The utilized data is gathered from the previous experimental 

studies related to nucleation and bubble dynamics behaviors 

of R113 formed on a heated surface under variable electric 

fields [27, 54, 55]. These data illustrate the impacts of the 

electric field on different bubble dynamics parameters that 

explain the behavior of a growing bubble, including bub-

ble departure diameter (the bubble diameter while leaving 

the heated surface), bubble growth time (the time between 

bubble initiation and departure), bubble departure frequency 

(the bubble separation9s frequency from a nucleation site), 

and bubble waiting time (the time between departure of the 

former bubble and creation of the succeeding bubble).

Figure 1 depicts an example experimental setup for the 

nucleate boiling on a heated surface, consisting of a high-volt-

age power supplier that generated 0 to 5000 DC voltage and 

a needle electrode that provides the electric field [27, 54, 55]. 

There is a distance between the heated surface and the needle 

so that the needle does not intervene the bubble growth. Addi-

tionally, 3-D plots of all 4 parameters with respect to various 

heat fluxes and voltages are shown in Fig. 2.

3  Structure of neural network

Artificial neural networks (ANN) are a major modeling 

technique of data in different engineering problems includ-

ing heat transfer and boiling phenomena [56]. ANNs are 

information-processing tools developed founded upon the 

operation of the brain9s neural network. The network9s 

processing units are neurons which are connected to each 

other through communication links, each with an associated 

weight. A standard neural network has considerable amounts 

of neurons and their connections [57]. Network structure, 

transfer function, and learning algorithm make ANN meth-

ods distinct from other artificial neural networks.
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In this study, a multilayer perceptron (MLP) neural net-

work with a Back-Propagation (BP) training algorithm is 

utilized to tackle the nucleate boiling problem. In the BP 

training algorithm on the basis of the supervised learning 

technique, the neuron connections9 weights are adjusted 

founded upon the discrepancy between the desired network 

outputs and the predicted outputs [58]. An MLP network 

composes of one input layer, one output layer, and one or 

Fig. 1  Experimental setup for 

nucleate boiling

Fig. 2  3-D plots of a bubble departure diameter, b growth time, c bubble departure frequency, c bubblewaiting time with respect to heat flux and 

voltage [55]
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more hidden layers (Fig. 3). The inputs' and outputs’ number  

of the problem determines the number of neurons in the input 

and output layers, whereas the hidden layers’ number and 

the neurons’ number in each hidden layer can be selected 

by designer’s choice. Moreover, the designer can choose the 

neurons’ transfer function in the hidden and output layers. 

Thus, the performance of this method is susceptible to these 

selectable parameters, in particular the transfer function in 

each layer and the neurons’ number in each hidden layer. 

The network’s architecture can be optimized to produce the 

minimum error and the best performance.

This study initially models an MLP neural network with 

one hidden layer and then with two and three hidden layers 

for the optimization. The optimization problem for the two 

hidden layers network has four design variables X =  [N1,  N2, 

 F1,  F2]T, and for the three hidden layers network has six 

design variables X =  [N1,  N2,  N3,  F1,  F2,  F3]T, where N, F, 

and T are the number of neurons, the type of transfer func-

tion, and the transpose of the design variable matrix, respec-

tively. To evaluate the effectiveness of the optimization, the 

value of the Mean Squared Error (MSE) is considered as the 

cost function. The optimization problem is shown in Eq. (1),

where N
i
 and F

i
 are the neuron number and the transfer func-

tion in the ith hidden layer, respectively. It is assumed that 

the transfer function is selected among three cases; Log-

sigmoid transfer function (sigmoid), Hyperbolic tangent 

sigmoid transfer function (tansig), and Elliot symmetric 

(1)

Min MSE (X),

X ∶ {Nj, , Fj}

S.t (subject to): < 1 < Nj < 30

Fj ∈ {logsig, tansig, elliotsig}

i = 1, 2 For two hidden layers network

i = 1, 2, 3 For three hidden layers network

sigmoid transfer function (elliotsig). Also, the lower band 

the neurons’ number in each hidden layer is 1 and the upper 

bound is 30. The design parameters of this optimization 

problem are discrete variables, and the optimization algo-

rithms must search for optimal variables to be integer values.

4  Optimization algorithms

Various optimization algorithms are implemented, making net-

work outputs and actual outputs (experimental data) get closer, 

in order to reduce modeling errors of the nucleate boiling heat 

transfer. These include four different swarm-based optimiza-

tion algorithms, namely: Salp Swarm Algorithm, Grey Wolf 

Optimizer, Artificial Bee Colony, Partial Swarm Optimiza-

tion. During the optimization, the MSE value reaches its mini-

mum by manipulating the design variables. The swarm-based 

methods imitate groups of animals and their social behaviors 

which are one of meta-heuristic optimization methods [59]. 

Table 1 shows the applied optimization algorithms with the 

corresponding year of development.

4.1  Particle swarm optimization

Particle swarm optimization (PSO) was established in 

accordance with social behaviors of birds, bees, and fish and 

their dynamic movements and each species is considered 

“particle” [60]. The particle path is modified based on the 

particle’s knowledge (individual) and the swarm’s knowl-

edge (group) which is adapted during iterations. The final 

solution of this algorithm is the position of the swarm. If a 

swarm has P particles, a position vector Xt

j
= (xj1,xj2,xj3,… xjn)

T 

and a velocity vector V t
j
= (vj1,vj2,vj3,… vjn)

T at t iteration for 

each one of the j particle (j = 1,2, …, P) can be considered 

[61]. Also, the jth particle with the best location is called 

Pbest,j, and its corresponding location for the swarm is rep-

resented by Gbest in each iteration. For determining the jth 

Fig. 3  Schematic of a neural 

network structure
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particle position and velocity, the following equations can 

be utilized [62, 63],

where c1 and c2 are constants defined as learning coeffi-

cients of cognition for an individual and group, respectively. 

u1 and u2 are two random numbers in [0, 1]. Finally, γ(i) is 

a weighting factor which has a value between 0.4 and 0.9. 

This factor can be kept constant or reduced with rising the 

iterations’ number.

4.2  Artificial bee colony algorithm

Artificial bee colony (ABC) algorithm is a popular optimi-

zation algorithm due to its simplicity having few control 

parameters. The solution of this algorithm is a food source’s 

position based on bees’ search [64, 65]. In ABC, three kinds 

of bees are considered in the bee colony: employed bees, 

onlooker bees, and scout bees when 50% of the colony 

includes the employed and scout bees and the rest are the 

onlookers. An employed bee turns into scout when a food 

source by it. It is assumed that solution ‘s quality (fitness) 

is indicated by the food source’s nectar amount. In ABC, an 

initial solution is created, and the algorithm iteratively goes 

through three phases: the employed bee, onlooker bee, and 

scout bee phases till a satisfaction criterion is met.

The steps of ABC algorithms are:

1. Initialization of parameters including the food source 

number, a satisfaction criterion, and limit (the number 

of trials before abandoning a food source).

2. Population initialization of solutions which is randomly 

created by [66],

where xij and rand are the food source’s position and a 

random number between [0, 1]. min and max indicate 

the minimum and maximum values of xij.

(2)Xj(i) = Xj(i − 1) + Vj(i), j = 1, 2,… , P.

(3)
Vj(i) = �Vj(i − 1) + c1u1

[

Pbest,j − Xj(i − 1)
]

+ c2u2

[

Gbest − Xj(i − 1)
]

, j = 1, 2,… , P.

(4)xij = xmin
j

+ rand (0, 1) ×

(

xmax
j

− xmin
j

)

3. In the employed bee phase, the bee is in charge of 

exploiting possible food sources (new) around its ini-

tially designated food sources (old). The old food source 

is substituted by the new one once the old one’s nectar 

quantity is lower than that of the new one.

4. In the next phase, an onlooker bee assesses all the informa-

tion gathered by the employed bees and picks out a food 

source relying upon the probability contributed to the food 

source ( pi ), that is measured by the following equation [66],

where fiti represents the fitness value of the solution and 

SN is referred to the food sources’ number. In this step, 

the solutions are modified by the onlooker bee to gener-

ate new food sources near the initialized food source 

position by using,

where k ∈ {1, 2,… , SN} and v is the posision of the 

newly generated food source. �i,j is a random number in 

[-1, 1] which regulates the generation of a neighbor food 

source adjacent to xi,j . According to Eq. (6), the pertur-

bation associated with the position xi,j decreases while 

the discrepancy between the parameters of xi,j and xk,j is 

reduced. Therefore, the step length (change in the target 

value at each step) is appropriately decreased while the 

search reaches the optimal solution in the search space.

5. In the scout bee phase, if an employed bee cannot further 

improve a food source (based on the limit), the bee leaves 

the food source and turns into a scout bee. Next, the bee 

arbitrarily searches a new food source to replace the aban-

doned food.

6. Steps 3 to 5 are repeated till a satisfaction criterion 

is fulfilled.

4.3  Grey wolf optimizer (GWO)

A grey wolf optimization algorithm (GWO) provides competi-

tive results in comparison with renowned algorithms like PSO 

[67]. In this algorithm, grey wolves are regarded as predators 

that are mainly in a group that follow an extremely severe social 

dominant hierarchy as depicted in Fig. 4. Alpha (α) is located on 

the top as the leader of the group including a male and a female. 

The alpha is mainly in charge of determining hunting. Other 

members of the group are commitment to the alpha’s decisions 

[68]. Betas are the second level of the grey wolves’ hierarchy. 

The beta can be considered as the representatives helping alphas 

in making decision or other group activities. The beta orders the 

lower-level wolves and follow the alpha. The lowest level in the 

hierarchy of the grey wolf is omega. The omega has to adhere 

to all the other predominant wolves and these wolves have the 

(5)pi =
fiti

∑SN

n=1
fitn

(6)�ij = xij + �ij(xij − xkj)

Table 1  Optimization algorithms used in this study

No. Applied Optimization Algorithm Proposed Year

1 Particle Swarm Optimization 1995

2 Artificial Bee Colony 2005

3 Grey Wolf Optimizer 2014

4 Salp Swarm Algorithm 2017
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last permission to eat among others. A wolf is called subordinate 

(delta) that is not an alpha, beta, or omega. Delta has to obey 

alpha and beta, however, they govern the omega.

In GWO, the most suitable solution is the alpha ( � ) while beta 

( �) and delta ( � ) are the second and third best solutions. �, �, and 

� direct the hunting (optimization) and the � wolves obey these 

three wolves. The succeeding relation have been introduced for 

modeling the wolves’ encircling conduct mathematically [67],

where t is referred to the current iteration. �⃗A and ��⃗C indicate 

coefficient vectors. �⃗X and �⃗Xp indicate a grey wolf’s position 

vector and the position vector of the prey, respectively.

The following equations are used to calculate �⃗A and ��⃗C [67],

where �⃗a ‘s components are linearly reduced from 2 to 0 dur-

ing iterations. Also, r1 and r2 are random vectors in [0, 1]. 

By utilizing Eqs. (7) and (8), the position of a grey wolf is 

upgraded inside the space near the prey in any random loca-

tion [67]. Next, for mathematically simulating the hunting 

attitude of grey wolves, the following equations have been 

introduced [67],

(7)��⃗D =
|
|
|

��⃗C.

�⃗Xp(t) −
�⃗X(t)

|
|
|

(8)�⃗X(t + 1) = �⃗X
P
(t) − �⃗A.��⃗D

(9)�⃗A = 2 �⃗a. ��⃗r1
− �⃗a

(10)��⃗C = 2.��⃗r2

(11)

⃖⃖⃖⃖⃗D� =

|
|
|

⃖⃖⃖⃗C1. ⃖⃗X� −
⃖⃗X
|
|
|
,

⃖⃖⃖⃖⃗D� =

|
|
|

⃖⃖⃖⃗C2. ⃖⃗X� −
⃖⃗X
|
|
|
,

(12)

⃖⃖⃖⃖⃗D� =
||
|
⃖⃖⃖⃗C3. ⃖⃗X� −

⃖⃗X
||
|

⃖⃖⃖⃗X1 =
⃖⃗X� −

⃖⃖⃖⃗A1.

(
⃖⃖⃖⃖⃗D�

)
,

⃖⃖⃖⃗X2 =
⃖⃗X� −

⃖⃖⃖⃗A2.

(
⃖⃖⃖⃖⃗D�

)
,

where D
�
 , D� , and D

�
 are the updated positions of search 

agents. Equation (13) is used to upgrade the current search 

agent’s position for the next iteration.

4.4  Salp swarm algorithm (SSA)

A salp swarm algorithm (SSA) is a recently developed algo-

rithm which shows effective behaviors in finding the opti-

mum solutions. This algorithm is generally inspired by the 

swarm conduct of salps, called a salp chain (Fig. 5).

For modeling the salp chain mathematically, the popula-

tion is initially split into two parts: followers and leader. The 

salp located at the front of the chain is regarded the leader 

whilst the others are followers. The guidance of the swarm 

is the leader’s responsibility and the followers obey each 

other. The salps’ position is determined in an n-dimensional 

search space in which n represents the variables’ number in a 

specific problem. In modeling, a 2-D matrix named x is used 

to store the position of all salps. Also, it is presumed that the 

swarm’s target is a food source named F in the search space. 

The following equation has been introduced for updating the 

leader’s position [70],

where Fj and x1

j
 indicate the food source’s position and the 

leader’s position in the jth dimension, respectively. ubj and 

lbj represent the upper and lower bounds of jth dimension, 

respectively. c
2
 , and c

3
 are random numbers in [0, 1], and c

1
 

is determined by the succeeding equation [70],

where l and L represent the current iteration and the maxi-

mum number of iterations, respectively.

Additionally, the subsequent equation has been used for 

updating the followers’ position [70],

In summary, the steps of the SSA algorithm are first, SSA 

parameters such as the salp population, upper and lower 

bounds, and maximum number of iterations are initiated. 

In the next step, the fitness of each salp is measured and the 

salp with the best fitness is found out. Then, the best salp’s 

position is assigned to F which is the food source. Mean-

time, c
1
 can be upgraded by Eq. (15). Also, the positions of 

(13)

⃖⃖⃖⃗X
3
= ⃖⃗X� −

⃖⃖⃖⃗A
3
.

(

⃖⃖⃖⃖⃗D�

)

⃖⃗X(t + 1) =
⃖⃖⃖⃗X

1
+ ⃖⃖⃖⃗X

2
+ ⃖⃖⃖⃗X

3

3

(14)x1

j
=

{

Fj + c
1

((

ubj − lbj

)

c
2
+ lbj

)

c
3
≥ 0

Fj − c
1

((

ubj − lbj

)

c
2
+ lbj

)

c
3
< 0

(15)c
1
= 2e

−

(

4l

L

)2

(16)xi
j
=

1

2
(xi

j
+ xi−1

j
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the leader and the followers can be upgraded by Eqs. (14) 

and (16) in each dimension, respectively. Then, if any salp 

passes the boundaries of the search space, it is brought back 

on the basis of the upper and lower bounds. All the men-

tioned steps are iteratively performed except the initializa-

tion until an end criterion is satisfied.

5  Results and discussion

In this section, the optimization for four bubble dynamics 

parameters including bubble waiting time, bubble departure 

frequency, bubble growth time, bubble departure diameter 

are initially provided using the one hidden-layer network. 

Then, these parameters are modeled and compared by opti-

mizing two- and three-hidden layer networks with four opti-

mization algorithms including PSO, ABC, GWO, and SSA. 

Also, the best neural network for each bubble dynamics 

parameter is provided by comparison of MSE values in four 

different optimization algorithms. For modeling the boiling 

HT with the neural networks, the obtained dataset is split 

into three datasets randomly, so that 70% of the dataset is 

utilized for training, 15% for testing, and the last 15% for 

validation. To train the network, the Levenberg–Marquardt 

algorithm is applied [71]. The network’s performance was 

determined based on the MSE values between the desired 

output and the predicted output from the networks. The input 

variables and the number of samples for each case are pre-

sented in Table 2. All datasets are normalized before using 

in the neural network.

5.1  One hidden layer (1HL) network

For the neural network with one hidden layer, only two 

design variables X =  [N1,  F1]
T are considered for the optimi-

zation problem. Figure 6 shows the typical structure of the 

1HL network. By considering the  N1 and  F1 values with 30 

and 3 levels, respectively, the problem has 90 various cases. 

By testing all cases, the optimal design variables that have a 

minimum MSE value were chosen. Table 3 shows the best 

results for four different bubble dynamics parameters.

Figures 7, 8, 9 and 10 show the regression diagrams 

for the best MLP network with one hidden layer (in 

accordance with the specifications in Table 3) for all four 

parameters including bubble waiting time, bubble depar-

ture frequency, bubble departure diameter, bubble growth 

time. In these diagrams, the MLP network with one hid-

den layer can approximate the desired outputs based on 

the values of coefficient of determination. The coefficient 

Fig. 5  Schematic of a swarm of 

salp (salp chain) [69]

Table 2  Inputs and the number of samples for each output parameter

Output Inputs Number 

of 

samples

Bubble departure 

diameter

Heat Flux (W/m2) Voltage (V 740

Bubble growth time Heat Flux (W/m2) Voltage (V) 724

Bubble departure 

frequency

Heat Flux (W/m2) Voltage (V) 668

Bubble waiting time Heat Flux (W/m2) Voltage (V) 684
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of determination (R2) proves the ability of the suggested 

models in predicting the bubble dynamics parameters data 

once it is close to 1. Based on Fig. 7, the regression dia-

grams of experimental and estimated values for the bubble 

departure diameter show the values of R2 for training and 

all datasets are 0.99914 and 0.99842, respectively. Most 

of the data points for both test and training datasets are 

condensed near the line that indicates the precise estima-

tion of the suggested models. Also, similar results can 

be obtained from Figs. 8, 9 and 10 for the bubble growth 

time, bubble departure frequency, and bubble waiting 

time, respectively. The coefficients of determination (R2) 

for the bubble growth time for the training and all data-

sets are 0.9995 and 0.99938, respectively. Based on these 

measured values, the model is considerably powerful in 

predicting the bubble dynamics parameters. Also, Figs. 7, 

8, 9 and 10 also verify the precision and the prediction 

ability of the MLP neural network.

5.2  Two hidden layers (2HL) network

In this section, two hidden layers is considered in the neural 

network. The optimization problem for the 2HL network has 

four design variables X =  [N1,  N2,  F1,  F2]
T. Figure 11 shows 

a typical structure of the 2HL network. For the optimization 

process by using different algorithms, the population sizes 

and the numbers of maximum iterations are selected as 10 

and 100, respectively.

a) Bubble departure diameter

  For bubble departure diameter, the results of opti-

mizing the MLP network with 2 hidden layers apply-

ing 4 various algorithms including PSO, ABC, GWO, 

and SSA are provided in Table 4 and Fig. 12. It can be 

observed that the lowest MSE value belongs to the ABC 

algorithm and then followed by the SSA algorithm. The 

lowest MSE value of the bubble departure diameter is 

4.31 × 10
−5 and the second lowest MSE belongs to SSA 

algorithm which is 4.37 × 10
−5 . It should be noted that 

this small difference could be significant if the num-

ber of experimental data points is less than the number 

of data points used in this study. Under this condition, 

to have a precise prediction, the best model should be 

selected. Also, in comparison with different transfer 

functions, the tansig function is seen more than others in 

optimal populations. Additionally, the trend of changes 

in the error (MSE) in four optimization algorithms are 

plotted according to the number of iterations in Fig. 13. 

As it is clear, the MSE value decreases in each iteration 

for all of the optimization algorithms. It should be noted 

that the initial population in these methods is randomly 

created, making the starting points of these algorithms 

in Fig. 13 different.

b) Bubble growth time

  Table 5 and Fig. 14 show the results of MLP network 

optimization with 2 hidden layers for bubble growth 

time output using four optimization algorithms. Based 

on these results, the ABC method has the least error, 

followed by the GWO and PSO algorithms that have 

less MSE values than the SSA algorithm. The low-

est MSE value of the bubble growth time is 7.1 × 10
−6 

so it can be considered as the most accurate model 

in predicting the bubble growth time in the 2HL net-

work. The percentage of error increase between ABC 

and GWO is 3.5%. Also, in comparison of different 

transfer functions, tansig is still more common than 

the others in optimal populations. Figure 15 shows the 

trend of error changes according to the iterations for 

4 optimization methods. The figure suggests that it is 

possible to obtain the optimal value of the ABC algo-

rithm before reaching 50 iterations, which indicates the 

strength of this algorithm.

c) Bubble departure frequency

Fig. 6  A typical structure of the 

1HL network

Table 3  The best results for four bubble dynamics parameters using 

the 1HL network

Output N1 F1 MSE R2

Bubble departure diameter 29 logsig 6.5166e-05 0.99894

Bubble growth time 24 logsig 1.2802e-05 0.99938

Bubble departure frequency 27 tansig 3.861e-06 0.99994

Bubble waiting time 27 logsig 4.0665e-06 0.99996
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  The results of bubble departure frequency optimized by 

the MLP networks with the 2HL network are presented 

in Table 6 and Fig. 16. Based on these results, the ABC 

method has the lowest error and the other three algorithms 

follow it. The lowest MSE value for the bubble departure 

frequency is 2.05 × 10
−6 . Also, the logsig function can be 

observed more than the rest in the optimal populations. 

The trend of changing the MSE values (performance) in 

Fig. 17 shows that the ABC algorithm reaches the optimal 

value much faster at 41 iterations. As it is clear, the MSE 

value decreases in each iteration for all of the optimization 

algorithms which is highly favorable.

d) Bubble waiting time

  As the final output, the bubble waiting time is opti-

mized by the same technique. Similar to the previous 

three outputs, Table 7 and Fig. 18 show that the ABC 

algorithm performs best, followed by the PSO algorithm 

with less error than the remaining two algorithms. To 

Fig. 7  Regression diagrams of the best MLP network for bubble departure diameter with the 1HL network
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be specific, the lowest MSE value of the bubble wait-

ing time in the 2HL network is 1.93 × 10
−6 . Also, in 

comparison of different transfer functions, tansig and 

elliotsig are more common than logsig in optimal popu-

lations. Figure 19 also shows the trend of error changes 

for all four utilized algorithms. This figure shows that 

the ABC algorithm reaches the optimal value at itera-

tions less than 100.

5.3  Three hidden layers (3HL) network

In this section, we consider three hidden layers (3HL) in the neural 

network. The optimization problem for the 3HL network has six 

design variables X = [N1, N2, N3, F1, F2,  F3]T. Figure 20 shows 

the typical structure of the 3HL network. Similar to the 2HL 

network optimization, the population sizes and the numbers of 

maximum iterations are considered as 10 and 100, respectively.

Fig. 8  Regression diagrams of the best MLP network for bubble growth time with the 1HL network
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a) Bubble departure diameter

  The results for bubble departure diameter with the 

3HL network using four optimization algorithms are 

provided in Table 8. Figure 21 illustrates the error com-

parison between the four optimization methods. Based 

on these results, the PSO algorithm has the lowest MSE 

value and the SSA and GWO algorithms are in the next 

ranks. The lowest MSE value of the bubble departure 

diameter for the 3HL network is 4.22 × 10
−5

. Interest-

ingly, the ABC algorithm did not work properly in the 

3HL network because its error for this output is much 

greater than that in the 2HL network. The trend of error 

changes in Fig. 22 shows that the PSO algorithm reaches 

the optimal value in 15 iterations. Also, in comparison 

Fig. 9  Regression diagrams of the best MLP network for bubble departure frequency with the 1HL network
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with different transfer functions, logsig and elliotsig are 

more common than tansig in optimal populations of 

the PSO algorithm which shows the best performance 

among the algorithms.

b) Bubble growth time

  The results for bubble growth time are presented in 

Table 9 and Figs. 23 and 24 based on the 3HL net-

work optimized by four different algorithms. Accord-

ing to these results, the GWO method has the lowest 

MSE value and then followed by the SSA method 

when compared with the remaining two algorithms. 

The lowest MSE value of the bubble growth time in 

the 3HL network is 6.93 × 10
−6 and the second low-

est MSE is 7.32 × 10
−6 . It should be noticed that the 

SSA error is almost 5% higher than GWO algorithm for 

the bubble growth time in the 3HL network. In terms 

of transfer functions, elliotsig can be observed less in 

optimal populations than the other transfer functions. 

Fig. 10  Regression diagrams of the best MLP network for bubble waiting time with one 1HL network
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Fig. 11  A structure of the 2HL network

Table 4  Optimum values of the design parameters for bubble depar-

ture diameter with the 2HL network

N
i
 (number of 

neurons)

F
i
 (transfer function) MSE

N
1

N
2

F
1

F
2

PSO 30 25 tansig logsig 4.4664e-05

ABC 27 27 tansig tansig 4.3087e-05

GWO 27 13 tansig logsig 4.4623e-05

SSA 23 24 tansig tansig 4.3660e-05

Fig. 12  Comparison of MSE values in four different optimization algorithms for bubble departure diameter with the 2HL network

Table 5  Optimum values of the design parameters for bubble growth 

time with the 2HL network

N
i
 (number of 

neurons)

F
i
 (transfer function) MSE

N
1

N
2

F
1

F
2

PSO 26 20 tansig tansig 7.3738e-06

ABC 25 29 tansig logsig 7.1041e-06

GWO 30 21 tansig tansig 7.3454e-06

SSA 29 21 tansig tansig 7.9099e-06
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Figure 24 shows that the two algorithms, GWO and 

SSA, have higher errors in the initial population, but 

are eventually able to achieve lower errors than ABC 

and PSO, which indicates that the capabilities of these 

new optimization methods are considerable in predict-

ing experimental data.

c) Bubble departure frequency

  The results of bubble departure frequency are pro-

vided in Table  10 using four different algorithms. 

Figure  25 shows a comparison of MSE values for 

all implemented algorithms. The results reveal that 

the PSO algorithm has the lowest MSE value which 

Fig. 13  Performance evolution 

of four optimization algorithms 

for bubble departure diameter 

with the 2HL network

Fig. 14  Comparison of MSE values in four different optimization algorithms for bubble growth time with the 2HL network
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is 1.46 × 10
−6 and then followed by the SSA method. 

The highest MSE value for the bubble departure fre-

quency of the 3HL belongs to ABC algorithm which is  

2.34 × 10
−6

. The error increase between PSO and ABC 

is 60%, which is significant. For transfer functions, elli-

otsig is seen more than others in the optimal popula-

tions. Additionally, the trend of error changes in Fig. 26 

indicates that the PSO algorithm reaches the optimal 

value in the 50th iteration.

d) Bubble waiting time

Fig. 15  Performance evolution 

of four optimization algorithms 

for bubble growth time with the 

2HL network

Table 6  Optimum values of the design parameters for bubble depar-

ture frequency with the 2HL network

N
i
 (number of 

neurons)

F
i
 (transfer function) MSE

N
1

N
2

F
1

F
2

PSO 23 27 tansig logsig 2.5135e-06

ABC 22 16 elliotsig tansig 2.0521e-06

GWO 24 27 elliotsig logsig 2.5522e-06

SSA 27 20 logsig logsig 2.5314e-06

Fig. 16  Comparison of MSE values in four different optimization algorithms for bubble departure frequency with the 2HL network
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  As the final output, the bubble waiting time is opti-

mized, and the results are provided in Table 11 and 

Figs. 27 and 28. According to the results, the SSA algo-

rithm which is followed by the GWO algorithm has the 

lowest MSE value as compared to ABC and PSO meth-

ods. Also, by comparing different transfer functions, 

the tansig function is less than the other two transfer 

functions in optimal populations. Additionally, by con-

sidering the trend of error changes in Figure 28, it can be 

mentioned that the SSA algorithm reaches the optimal 

value in the 55th iteration. As it is clear, the MSE value 

decreases in each iteration for all of the optimization 

algorithms which is highly favorable.

5.4  Comparison of results between different  
hidden layers

This section examines the influences of the number of hidden 

layers in the MLP network on the reduction of MSE value. 

The results of four bubble dynamics parameters optimized by 

four optimization algorithms in the 2HL and 3HL networks 

are compared. Figure 29 shows that in the SSA and GWO 

algorithms, the optimal network error in the 3HL model is 

always less than the optimal network in the 2HL model. In 

the PSO algorithm, the error in the 3HL model is less than 

that in the 2HL model for the bubble departure diameter and 

departure frequency while the error in the 3HL model is more 

than that in the 2HL model for the bubble growth time and 

bubble waiting time. In all cases of the ABC algorithm, the 

error in the 2HL model is less than that in the 3HL model.

In Tables 12, 13, 14 and 15, the best values of the least 

MSE are compared in all algorithms according to the num-

ber of hidden layers. Table 12 illustrates that the optimal 

networks in the 2HL and 3HL models for the bubble depar-

ture diameter improve by 33.85% and 35.27%, respectively, 

when compared with the best response in the 1HL model. 

Additionally, Table 13 shows that networks with 2HL and 

3HL have the 44.51% and 45.85% reduction in error for the 

bubble growth time when compared with the network with 

1HL, respectively. Furthermore, Tables 12 and 13 show that 

increasing the number of layers from 1 to 2 is significant 

in bubble departure diameter and bubble growth time, but 

changing the number of layers from 2 to 3 has a minimal 

effect on reducing errors. Table 14 shows that the error in 

2HL and 3HL networks for departure frequency is reduced 

by 46.85% and 62.32%, respectively, when compared with 

the best 1HL network. For the bubble waiting time, Table 15 

shows that the best 2HL and 3HL networks reduce the MSE 

values by 52.44% and 62.27% when compared with the best 

1HL model response, respectively. Consequently, for bubble 

departure frequency and bubble waiting time, raising the 

number of hidden layers from 1 to 2 and then from 2 to 3 in 

the best networks could have a significant effect on reducing 

network errors.

Fig. 17  Performance evolution 

of four optimization algorithms 

for bubble departure frequency 

with the 2HL network

Table 7  Optimum values of the design parameters for bubble waiting 

time with the 2HL network

N
i
 (number of 

neurons)

F
i
 (transfer function) MSE

N
1

N
2

F
1

F
2

PSO 19 19 elliotsig tansig 2.0735e-06

ABC 23 28 elliotsig logsig 1.9339e-06

GWO 25 8 elliotsig tansig 2.8184e-06

SSA 28 29 elliotsig tansig 2.4132e-06
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Additionally, Figs. 30, 31, 32 and 33 show the error 

analysis for different outputs in terms of the percentage of 

the relative deviation and the error histogram using the best 

3HL network. The relative deviation shows how well the 

individual numbers agree with each other. In other words, it 

can tell how precise the average of results is. It can be seen 

that the relative deviation for the bubble departure diameter, 

the bubble growth time, the bubble departure frequency, and 

the bubble waiting time is in the range of ± 4%, approxi-

mately. Additionally, the error histogram is a graph of the 

errors between predicted values from the neural network 

and target values. This shows how the target values and pre-

dicted values are close and how the errors from the neural 

network are spread. For achieving a precise model, the error 

distribution diagram is needed to obey the normal distri-

bution diagram. Based on Figs. 31, 32 and 33, the errors 

Fig. 18  Comparison of MSE values in four different optimization algorithms for bubble waiting time with the 2HL network

Fig. 19  Performance evolution 

of four optimization algorithms 

for bubble waiting time with the 

2HL network
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Fig. 20  A structure of the 3HL 

network

Table 8  Optimum values of the 

design parameters for bubble 

departure diameter with the 

3HL network

N
i
 (number of neurons) F

i
 (transfer function) MSE

N
1

N
2

N
3

F
1

F
2

F
3

PSO 27 18 9 elliotsig logsig logsig 4.2180e-05

ABC 23 14 18 elliotsig elliotsig logsig 4.3914e-05

GWO 25 21 16 tansig tansig tansig 4.2541e-05

SSA 28 28 19 elliotsig logsig tansig 4.2537e-05

Fig. 21  Comparison of MSE values in four different optimization algorithms for bubble departure diameter with the 3HL network
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Fig. 22  Performance evolution 

of four optimization algorithms 

for bubble departure diameter 

with the 3HL network

Table 9  Optimum values of the 

design parameters for bubble 

growth time with the 3HL 

network

N
i
 (number of neurons) F

i
 (transfer function) MSE

N
1

N
2

N
3

F
1

F
2

F
3

PSO 20 20 22 elliotsig logsig tansig 8.1514e-06

ABC 15 18 11 tansig logsig logsig 8.1041e-06

GWO 30 25 22 logsig elliotsig tansig 6.9321e-06

SSA 11 30 12 tansig tansig logsig 7.3150e-06

Fig. 23  Comparison of MSE values in four different optimization algorithms for bubble growth time with the 3HL network
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Fig. 24  Performance evolution 

of four optimization algorithms 

for bubble growth time with the 

3HL network

Table 10  Optimum values 

of the design parameters for 

bubble departure frequency 

with the 3HL network

N
i
 (number of neurons) F

i
 (transfer function) MSE

N
1

N
2

N
3

F
1

F
2

F
3

PSO 22 18 9 elliotsig tansig elliotsig 1.4550e-06

ABC 10 22 23 elliotsig elliotsig elliotsig 2.3375e-06

GWO 23 21 11 elliotsig tansig elliotsig 2.1460e-06

SSA 27 30 1 elliotsig tansig logsig 2.1192e-06

Fig. 25  Comparison of MSE values in four different optimization algorithms for bubble departure frequency with the 3HL network
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Fig. 26  Performance evolution 
of four optimization algorithms 
for bubble departure frequency 
with the 3HL network

Table 11  Optimum values 
of the design parameters for 
bubble waiting time with the 
3HL network

N
I
 (number of neurons) F

I
 (transfer function) MSE

N
1

N
2

N
3

F
1

F
2

F
3

PSO 13 28 4 elliotsig logsig logsig 2.7252e-06

ABC 22 9 27 elliotsig logsig elliotsig 2.7031e-06

GWO 17 23 30 tansig elliotsig elliotsig 2.1545e-06

SSA 29 30 19 logsig logsig tansig 1.4528e-06

Fig. 27  Comparison of MSE values in four different optimization algorithms for bubble waiting time with the 3HL network
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Fig. 28  Performance evolution 
of four optimization algorithms 
for bubble waiting time with the 
3HL network

Fig. 29  Performance comparison of four bubble dynamics parameters using the 2HL and 3HL networks (2HL  3HL )
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are normally distributed and considerably low in all bubble 
dynamics parameters. In other words, the error frequency 
accumulates mainly in the zero-axis error range that cre-
ates a symmetric graph and illustrates which the models can 
estimate the behavior of the bubble dynamics parameters 
excellent. Note that the "zero error" line divides positive and 
negative values. The direction of the bias can be identified 
by the sign of the error. Positive error indicates the outputs 
are smaller than the targets and negative error indicates that 
the targets are larger than the outputs.

By increasing the number of hidden layers more than three,  
the network error may decrease further. However, augment-
ing the hidden layers and the neurons’ number in each hid-
den layer could lead to a higher number of connections and 
thus increases the computational costs. It happens when the 

number of hidden layers and the number of neurons in each 
layer are increased simultaneously. In Figs. 34, 35, 36 and 
37, the effects of the number of connections on the network’s 
MSE are analyzed. It should be noted that the number of 
connections can be independent of the number of hidden 
layers in some cases. For instance, the 2HL network has 
greater connections than the 3HL network because it relies 
upon the neurons’ number in each hidden layer. Figures 34,  
35, and 37 show that, by increasing the number of connections  
in the network, its MSE is decreased for bubble departure 
diameter, bubble growth time, and bubble waiting time. 
However, Fig. 36 shows that this behavior is reversed for 
bubble departure frequency, that suggests that in a greater 
number of connections, MSE could be increased.

Table 12  Comparison of the 
best results for the bubble 
departure diameter output

N
i

(number of neurons)
F
i

(transfer function)
MSE Improvement 

compared to
1HL network 
(%)

1HL network [29] [logsig] 6.5166e-05 –-

2HL network [27] [tansig, tansig] 4.3087e-05 33.88

3HL network [9, 18, 27] [elliotsig, logsig, logsig] 4.2180e-05 35.27

Table 13  Comparison of the 
best results for the bubble 
growth time output

N
i

(number of neurons)
F
i

(transfer function)
MSE Improvement 

compared to
1HL network 
(%)

1HL network [24] [logsig] 12.8020e-06 –-

2HL network [25, 29] [tansig, logsig] 7.1041e-06 44.51

3HL network [22, 25, 30] [logsig, elliotsig, tansig] 6.9321e-06 45.85

Table 14  Comparison of the 
best results for the bubble 
departure frequency output

N
i

(number of neurons)
F
i

(transfer function)
MSE Improvement 

compared to
1HL network 
(%)

1HL network [27] [tansig] 3.8610e-06 –-

2HL network [16, 22] [elliotsig, tansig] 2.0521e-06 46.85

3HL network [9, 18, 22] [elliotsig, tansig, elliotsig] 1.4550e-06 62.32

Table 15  Comparison of the 
best results for the bubble 
waiting time output

N
i

(number of neurons)
F
i

(transfer function)
MSE Improvement 

compared to
1HL network 
(%)

1HL network [27] [logsig] 4.0665e-06 –-

2HL network [23, 28] [elliotsig, logsig] 1.9339e-06 52.44

3HL network [19, 29, 30] [logsig, logsig, tansig] 1.4528e-06 64.27
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Fig. 30  Error analysis for bubble departure diameter with the best 3HL network
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Fig. 31  Error analysis for bubble growth time with the best 3HL network
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Fig. 32  Error analysis for bubble departure frequency with the best 3HL network
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Fig. 33  Error analysis for bubble waiting time with the best 3HL network
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Fig. 34  Number of connections versus Network’s MSE for bubble departure diameter with the best 2HL and 3HL networks

Fig. 35  Number of connections versus network’s MSE for bubble growth time with the best 2HL and 3HL networks
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Fig. 36  Number of connections versus network’s MSE for bubble departure frequency with the best 2HL and 3HL networks

Fig. 37  Number of connections versus network’s MSE for bubble waiting time with the best 2HL and 3HL networks
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6  Conclusion

In this study, a MLP neural network with a BP training 
algorithm is used to model the heat transfer enhancement 
of nucleate boiling with a non-uniform electric field. The 
influences of the electric field on different parameters 
describing bubble’s behaviors including bubble waiting 
time, bubble departure frequency, bubble growth time, 
bubble departure diameter are considered. Specifically, 
the objective of the investigation is to model a single 
bubble dynamic behavior of R113 created on a heater in an 
inconsistent electric field with the MLP-NN optimized by 
four different swarm-based optimization algorithms, namely: 
Partial Swarm Optimization (PSO), Artificial Bee Colony 
(ABC) algorithm, Grey Wolf Optimizer (GWO) and Salp 
Swarm Algorithm (SSA). For evaluating the accuracy of 
various models, the MSE value of the ANN model with 
different optimization algorithms is measured and compared. 
Also, the optimal network for each parameter is defined. The 
results of MLP network optimization with four algorithms 
(PSO, ABC, GWO, and SSA) can be summarized as follows:

• In optimization of the network with 2HL, the ABC algo-
rithm has the least error.

• For network optimization in 3HL model, the PSO algo-
rithm has the least error for the bubble departure diam-
eter and bubble departure frequency and the SSA and 
GWO algorithms have the best performance for the bub-
ble waiting time and bubble growth time, respectively.

• Comparing the results of the ABC algorithm, the error of the 
optimal networks in the 2HL model is always less than that 
of the optimal networks in the 3HL model. This suggests that 
the ABC algorithm performs better in a smaller number of 
design variables.

• In the results of the SSA and GWO algorithms, the error 
of optimal networks in the 3HL model is always less than 
that of optimal networks in the 2HL model. This sug-
gests that the SSA and GWO algorithms perform better 
in larger design variables.

• The SSA and GWO algorithms compete properly with 
the PSO and ABC algorithms and obtain remarkable out-
comes with low MSE values. Considering the antiquity 
and power of PSO and ABC algorithms, the capabilities 
of these fledgling algorithms are remarkable.

• The number of neurons in the middle layers in optimal 
networks shows that the number of neurons in the ini-
tial middle layer is higher than the neurons’ number in 
the final middle layer.

• The relative deviations of the optimized networks for 
the bubble departure diameter, the bubble growth time, 
the bubble departure frequency, and the bubble waiting 
time are in the range of ± 4%, approximately.

• For bubble departure diameter, bubble growth time, and 
bubble waiting time, by increasing the number of con-
nections in the network, its MSE is decreased.
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