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Abstract—Edge servers have recently become very popular for
performing localized analytics, especially on video, as they reduce
data traffic and protect privacy. However, due to their resource
constraints, these servers often employ compressed models, which
are typically prone to data drift. Consequently, for edge servers
to provide cloud-comparable quality, they must also perform
continuous learning to mitigate this drift. However, at expected
deployment scales, performing continuous training on every edge
server is not sustainable due to their aggregate power demands
on grid supply and associated sustainability footprints.

To address these challenges, we propose Us.ás, an ap-
proach combining algorithmic adjustments, hardware-software
co-design, and morphable acceleration hardware to enable the
training of workloads on these edge servers to be powered by re-
newable, but intermittent, solar power that can sustainably scale
alongside data sources. Our evaluation of Us.ás on a real-world
traffic dataset indicates that our continuous learning approach
simultaneously improves both accuracy and efficiency: Us.ás
offers a 4.96% greater mean accuracy than prior approaches
while our morphable accelerator that adapts to solar variance can
save up to {234.95kWH, 2.63MWH}/year/edge-server compared
to a {DNN accelerator, data center scale GPU}, respectively.

I. INTRODUCTION

The rampant growth, and anticipated sustained expansion

of data collection and consumption are currently driving

data-driven analytics using trained inference models, with

significant economic impact. Amidst the myriad of data-driven

domains, urban mobility, smart cities, autonomous driving,

and the Internet of Things (IoT) emerge as some of the most

rapidly expanding fields contributing to the global economy,

amounting to more than 4 trillion US dollars [1], [54], [76],

[98]. These statistics underscore the profound significance and

transformative potential of these data-driven realms, delineat-

ing their pivotal role in shaping the landscape of computing

technology, from algorithms to architecture.

What distinguishes these data is their diverse origin, span-

ning from IoT devices to wearables, and their acquisition from

challenging environments, including autonomous driving and

urban mobility scenarios. Consequently, they frequently ex-

hibit a phenomenon known as “data drift”, where the incoming

data deviates from the distribution of the originally trained

model, leading to degradation in inference accuracy.

Mitigating Data Drift: Dealing with data drift in edge com-

pute nodes presents a significant challenge. While larger

models with more parameters may exhibit limited data drift

due to their increased capacity to generalize, deploying such

large models on edge compute nodes can be difficult due to

inherent limitations in form factor, energy efficiency, thermal

constraints, and compute resources. To accommodate these

constraints, it is a common practice to employ compressed

Deep Neural Network (DNN) models, that are quantized,

distilled, or otherwise reduced in size. However, while com-

pressed models are essential for meeting resource limitations,

they are more sensitive to data drift because they may not

generalize as effectively.

Traditionally, data drift has been handled by cloud-based

periodic re-training using continuous learning algorithms [20],

[74]. However, there are challenges in resources, privacy,

and sustainability to utilize existing techniques at envisioned

scales. As these applications become more ubiquitous, partic-

ularly in urban deployments for tasks like traffic surveillance,

autonomous driving, and health analytics [18], [77], [90],

demands on communication bandwidth and network reliability

limit the direct streaming of diverse data (e.g., video, 3D point

cloud, sensor, voice) from numerous sensor-compute nodes to

the cloud. Moreover, recent changes in privacy regulations

across multiple countries [2], [100] call for preserving the

privacy of citizens [12] and may preclude streaming personal

data to third-party cloud services. As a result, “on-premise”

edge servers [7], [8] have become prime choices for local

inference and prediction [6], [39], [85], [86], necessitating

the handling of both learning and inference tasks to meet

application needs, including privacy preservation, reduced

data communication, and disaggregated computing. Finally,

although recent studies have suggested co-locating training and

inference [12] to tackle privacy concerns without significantly

affecting the inference service, the power demand associated

with equipping multiple commercial edge servers [7], [8] for

both tasks hinders sustainable scaling.

The Problem Space: To address the multi-faceted challenges

of sustainable, scalable and privacy-preserving continuous

learning at edge servers, several crucial problem spaces must

be explored. Firstly, the issue of (non-)supervision arises,

demanding the ability to label data without human interven-

tion to preserve privacy during the learning process. While

recent works [12], [46] have attempted to tackle this concern

through student-teacher paradigms, efficiently deploying such

approaches in complex data modalities (e.g., multi-class video,

3D point cloud) remains a formidable challenge. Ensuring

adherence to Service Level Agreements (SLAs), where in-

ference typically utilizes a lower-resource model [51], [75]

and labeling is performed using a larger teacher model [44],
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[50], [73] at a much lower rate, necessitates informed decisions

regarding deployment placement and sampling rates.

Secondly, the issue of functionality comes to the fore,

requiring effective continuous learning from often non-

Independently and Identically Distributed (non-IID) data. Such

non-IID data distributions, evident in tasks like standard traffic

monitoring with varied class observations (e.g., more cars

than buses, all frames having STOP signs), may introduce

sampling bias [70], [74] in the network. This challenge can

be addressed through proper exemplar selection algorithms

employing representation learning techniques [31], [74], ca-

pable of learning new classes in real-time. However, these

compute-intensive algorithms can be optimized further through

dedicated hardware acceleration.

Thirdly, the aspect of sustainability poses a critical question

of deploying such systems, ideally with minimal reliance

on the power grid for learning tasks. Designing a learning

platform that can adapt to intermittent renewable energy

sources (e.g., solar power) and maintain a minimal operational

carbon footprint [29] is paramount. Such a platform should

continuously make progress on unsupervised labeling, exem-

plar building, and continuous learning, and maximize drift

mitigation while minimizing power consumption. Moreover,

the system must accommodate support for intermittency

inherent in sustainable power sources like solar and wind.

While incorporating conventional battery storage can mitigate

intermittency, it introduces environmental and sustainability

challenges associated with resource extraction, production, and

replacement [3], [5], [10], [13], [53], [66], [69]. An ideal

solution would entail a battery-free system (not energy storage-

free, i.e., still with some capacitive storage), circumventing

these concerns and aligning with the objectives of sustainable

and reliable continuous learning at the edge.

To these ends, we propose Us.ás, 1 a HW-SW co-design

approach to building sustainable, scalable, drift-mitigating

edge analytics platforms using harvested power to support

continuous learning. Us.ás, unlike prior edge-focused analytics

approaches (e.g., Ekya [12]), detaches the inference and train-

ing hardware, as the training task is the major source of the

compute, power, and time consumption. Us.ás introduces an al-

gorithmic framework for data labeling using a teacher-student

model, designing the exemplar selection using representation

learning and determining the right set of hyperparameters

using micro profiling to energy-efficiently continuously train

the DNNs with the selected exemplar sets. Us.ás also employs

a dynamically morphable systolic array for enabling energy-

efficient computing within the harvested power envelope. Key

contributions of the work include:

• We propose algorithmic enhancements of continuous learn-

ing for mitigating data drift and design a student-teacher

based automated data labelling algorithm, to prepare train-

ing exemplars from input data. We use a two-level data

annotation mechanism: exemplar identification based on the

1Vedic goddess of dawn in Hinduism [36]; emphasizing the dawn of
sustainable continuous learning and significance of solar power in our design.

confidence matrix of the student model, followed by a repre-

sentation learning based exemplar selection by ensembling

multiple teacher models. Our policy updates both the teacher

and student models for robust unsupervised learning.

• We implement a micro-profiler, which predicts the right set

of hyper-parameters to efficiently perform the training tasks

on an energy-harvesting edge server while operating within

its power budget and minimizing data drift.

• We design a morphable hardware accelerator that effi-

ciently maps training tasks, is suitable for intermittent

computing, and can adapt its capabilities to reduce power

emergencies without devolving to grid operation. We dis-

cuss how the proposed hardware techniques can be adapted

by many of the current DNN training accelerators to add

similar dynamism in sustainability-sensitive environments.

• Finally, we evaluate Us.ás in depth on a real-world traffic

data set [97] and perform sensitivity studies on other

classes (audio, IMU) of data. Our algorithmic framework for

performing continuous learning has a 4.96% greater mean

accuracy than a naı̈ve continuous learner. Power estimations

of our hardware design, modeled by Design Compiler [93],

indicate that the proposed morphable accelerator approach

can save up to 234.95kWH/year/edge-server, compared to

running continuous learning on a state of the art DNN

accelerator and 2.63MWH/year/edge-server, compared to

utilizing a datacenter-scale GPU for learning on the edge.

II. BACKGROUND AND MOTIVATION

Edge servers often leverage the convenience and flexibil-

ity of cloud interfaces, granting access to the same APIs,

tools, and functionalities [60]. However, due to their inherent

limitations in resources, such as weak GPUs and smaller

memory capacities [83], these servers often resort to “cus-

tomized” analytics services to maximize throughput and meet

SLAs, including specialized DNN models tailored for edge

deployments [51], [75], which are compressed, quantized, and

optimized for the targeted hardware [30], [103], [109]. These

tailored models enable accurate inference with high throughput

and reduced resource footprint, with some compressed models

having approximately 50× fewer parameters [30], but with a

greater susceptibility to data drift [42], [55].

Data drift emerges as a significant concern in real-world

systems as the live data diverges from the original training

data, and the environment undergoes rapid changes [12].

Fig. 1 depicts our experimental investigations on data drift,

encompassing training and testing multiple DNNs on diverse

datasets such as Urban Traffic [12], [97], 3D Point Cloud [14],

[24], and audio [78]. The similar trends across these results

highlight the impact of varying time windows and encounter-

ing diverse scene changes, leading to degradation in network

accuracy by up to 30%. These findings underscore the critical

challenge posed by data drift and the need for continuous

learning on edge servers.

Continuous Learning at the Edge: Continuous learning,

wherein the model continually learns from new samples over

time, adapting to seen and previously unseen classes, has
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Fig. 1: Data drift on different data modalities. Sampling

window size: 4hours for video, 20 minutes for audio for

urban traffic video and audio data. 1hour for 3D Point Cloud

simulated data. [SM:Small Model (smaller model or larger

model pruned and quantized using energy aware pruning [102]

and NetAdapat [103]), LM:Large Model (no pruning or quan-

tization), SMR:Small Model with Retraining].

emerged as a preferred approach to mitigate data drift [20],

[44], [50], [74]. The temporal locality of (video like) data has

shown models to effectively learn from recent data. Although,

multiple task-dedicated models are typically deployed to

enhance accuracy and reduce sampling bias [70], particularly

in scenarios like traffic monitoring, where different time

periods exhibit distinct traffic patterns, they are not immune

to data drift. As depicted in Fig. 1, our experiments, on

different modalities, shows the accuracy degradation due to

data drift. Specifically focuing on video data, we observe

that: using quantized MobileNet-v2 (14M paramters, 71.3%

accuracy) as the small model and ResNet-101 (171M

parameters, 76.4% accuracy) as the large model, the accuracy

of the smaller model has degraded > 20% over 5 sampling

windows (of 4 hours each), where as the effect is minimal

in the larger model. However, with a proper retraining, the

smaller model could keep up with the original accuracy. We

also observe a similar trend over other modalities, making the

importance of continuous learning clear for multiple domains.

However, in a continuous learning paradigm, training be-

comes an essential, repeatedly scheduled task whose computa-

tional and time costs cannot be considered a one-time overhead

freely delegated to the cloud. A recent work, Ekya [12],

has demonstrated that edge servers equipped with GPUs are

capable of performing the necessary tasks for continuous

learning within their form-factor-imposed resource constraints,

provided that those resources are intelligently managed.

Sustainable Continuous Learning at the Edge: Even given

such advancements in continuous learning on edge servers,

provisioning training resources at the edge for every sensing-

to-analytics application entails sustainability questions. For ex-

ample, a popular AWS outpost, a g4dn.12xlarge instance [83],

consists of a 24 core Intel Xeon CPU (150W TDP) [71]

with 192GB of memory and 4 NVIDIA T4 (with tensor

cores, 70W TDP) [65] with 64GB GPU memory. A standard

offering with 2×g4dn.12xlarge instances need 4kW power [7]

(the compute units have a TDP of ≈ 1kW [65], [71]) for

performing analytics. With state-of-the-art learning APIs [60]

and intelligent co-location and scheduling of inference and

continuous learning [12], these edge servers can support about

8 videos streams [12], resulting in ≈ 120W (just for compute)

per video stream. Scaling this to crowded cities with 30-

50+kilo-cameras like Beverly Hills (> 35k [11]), Los Angeles

(≈ 35k [92]), New York (≈56k [92]), or Chicago (≈30k)

will need a lot of power. In fact, it will take ≥3Million

cameras (assuming ≈9 cameras/1000 people, similar to LA,

and scaled to US population) to just enable autonomous urban

mobility in the USA, which may consume 360MW power

(1296GWh energy, 0.03% of US power) for video analytics

alone. Clearly, the current solution is not sustainable, neither

in terms of the load on the power grid, nor in terms of

the CO2 footprint (1.1×109lbs); reducing the power budget

for continuous learning is essential, as the carbon footprint

of DNN training has emerged as a prominent concern [21],

[57], [67], [89], demanding careful consideration as a primary

design metric.

Although green data centers [58], [59] provide partial mit-

igation, they fail to address data privacy and communication

bandwidth challenges in the current context. Similarly, other

applications with diverse data modalities, such as LiDAR

and Camera for autonomous driving, IMU, bio-sensors, and

Speech for IoT, face similar issues. Thus, attaining a sustain-

able solution for privacy-preserving, distributed continuous

learning remains an ongoing pursuit.

Exploiting Intermittent Computing: An obvious solution to

the power problem is to run the training in a self-sustained

way, i.e., without depending on the power grid and by relying

on a renewable energy source like solar power; opportunities

for harvesting renewables naturally scale alongside a greater

number of deployment locations and solar power, even though

not always available, is in abundance. In the United States, a

typical 12% efficient solar panel [91], can provide an annual

average of 50W/m2 −150W/m2 of power [64]. Furthermore,

solar power has reasonably predictability characteristics. Typ-

ically, inference tasks have significantly less compute time

and power requirement, and commercial off the shelf devices,

like edgeTPU [19] can perform object detection using the

aforementioned compressed models at a reasonable frame rate

(at times ≥ 71 f ps). Therefore, designing a training platform

to perform continuous learning with the intermittent solar

power and within the typical harvested budget would be the

best solution. The power sustainability consequently reduces

the cost of deployment as the publicly available edge server,

like AWS outpost offering (one of the cheaper and lower

power consuming ones) for performing edge inference costs

$5,134.92/month [83].

Our Approach (and its Novelty): Us. ás introduces several

novel contributions in the domain of sustainable continuous

learning at edge servers using harvested energy, setting it apart

from prior works examining on-edge learning.

Battery-Free Operation: A key highlight of Us. ás lies in its

battery-free operation, which aligns with the current global

push for sustainable computing. The scaling up via mil-
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lions of additional battery-supported analytics platforms would

introduce severe environmental challenges due to resource

extraction, production, and replacement of batteries [3], [5],

[10], [13], [53], [66], [69]. By demonstrating the viability of a

battery-less edge server for video analytics, Us.ás spearheads

the adoption of similarly sustainable systems for other do-

mains. While the initial scope is limited to urban mobility

applications, the concept’s adaptability extends to various

domains, including autonomous driving, smart industries, and

remote sensing: Section V-D performs an initial exploration

of how techniques from Us.ás will apply to other domains.

Algorithmic Advancements: Us. ás extends the frontier of rep-

resentation learning for continuous learning by implementing

it at a large scale and addressing related challenges. Prior

works relied on supervised learning or K-means clustering, un-

suitable for Us. ás due to its need for unsupervised data annota-

tion and the inability to handle large-scale datasets with numer-

ous classes. To overcome these limitations, Us. ás employs an

ensembled teacher-student method, wherein multiple teachers

annotate student data. A hierarchical K-means+ (or DBSCAN)

clustering approach learns representations for exemplar se-

lection. Additionally, a novel power-aware micro-profiling

policy is adapted to determine optimal hyper-parameters for

a variable-power environment. The robust exemplar selection

and micro-profiling mechanisms are discussed and evaluated

in §III-B and §III-C, respectively.

Hardware Innovation: Us.ás embraces the intermittency en-

tailed by harvesting and advocates for hardware adaptation

(resizing) to efficiently manage variable power income and

avoid power emergencies. While previous works have de-

signed energy-efficient training hardware with support for

variable precision training, none have adapted to variable

energy income. Us. ás optimizes the entire solution space,

maximizing hardware reuse for exemplar selection and micro-

profiling while addressing the training task. The system can

turn off individual compute-tiles to accommodate runtime

power variability (see §IV-B) and enable seamless operation

during power reductions.

Overall, Us.ás demonstrates the viability of sustainable con-

tinuous learning at edge servers, encompassing advancements

in energy harvesting, algorithmic techniques, and hardware

adaptation.

III. CONTINUOUS LEARNING

The first step to any data-driven learning algorithm is data

collection and annotation. Since Us. ás is a continuous learning

framework and learns from the live data that the camera(s)

capture, data collection is simply storing the live video feed.

However, data annotation or labeling is more challenging.

Classically, once data is collected, it is classified, labeled, and

bounded by borders (bounding box) mostly using manual labor

(at times with software assistance) or crowd sourcing [33],

[82], [88]. This requires the data to be present at a central

location for manual inspection, both of which are not possible

because of communication and privacy constraints. Therefore,

we adapt a “student-teacher paradigm” [46], where a more

Classify

Low Conf

Frame?

Discard

Frame
No

ExemplarYes

Yes

Edge Model

Confidence Matrix

Majority Voting Labeling

M1 M2 M3

Fig. 2: Auto-labeling in Us. ás: Select frames only with low

confidence as they might contain potentially new information,

and use ensemble learning to improve the labeling.

general, robust and larger model (typically with hundreds of

millions of parameters [43], [99]) helps in annotating the

data. However, because of the heavy compute requirements,

the teacher model runs with a much slower frame rate and

annotates only some (important) frames. There has been a

significant body of work on frame similarity and saliency [45],

[84], [101], [105], [107], [108], and those details remain

beyond the scope of this work.

A. Data Annotation

Picking the Important Ones: Typically, edge models are ca-

pable of inferring at the frame rate of the camera (at times,

30fps to 60fps) [19]. However, the teacher model used to

label the incoming data cannot match this in a resource-

constrained environment where performing training is going

to be even more resource consuming. Therefore, we employ

an intelligent “data sampling mechanism” to select the frames

that might contain new information and a potential candidate

for learning. Fig. 2 shows the different components of the

student-teacher data annotation model adapted in Us. ás, where

the edge model is the “student” (continuously retrained),

and larger models are the “teachers” (the ones teaching the

student about what-is-what). The students models are typically

optimized for edge, i.e. with optimizations like quantization,

pruning etc. or by developing an application specific model

from scratch along with the said optimizations. These student

models, thanks to their lack of robustness (which is often,

but not always, related to the smaller footprint they have, and

thereby lacking the parameter space to generalize better), are

susceptible to data drift and hence are continuously retrained.

However, the teacher models are typically large, and with

a wide parameter space can generalize the learning process

better than the students. These teacher models are often factory

trained. As they are less prone to drift, they need occasional

updates. For each sampled frame, the classification results and

the confidence matrix (output of the last layer) are sent for

annotation. If the student (or the edge model) is confident

about the classification (e.g. a clear frame with no new objects,

or a frame similar to one of the training samples), then that

frame is discarded as it potentially contains little to no new

information. However, if the student is not confident on the

classification, the frame is then saved as a potential exemplar

(we will further refine this in §III-B). The potential exemplars
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Fig. 3: Distribution of different classes on a typical traffic

pattern and the impact of training on the sampling bias. The

”appeared“ line represents the percentage of the frames in

which the corresponding class is present, e.g. Fire hydrant,

in the taken scene, is present in 100% of the frames. Incorrect

exemplar selection might lead to non-IID training data distri-

bution, leading to catastrophic forgetting or over-fitting.

are then further refined and classified by the teacher models. To

improve the confidence of the teacher models, we employ an

ensemble learning based weighted majority voting policy [28].

Each of the teacher models infers on the exemplar frame.

Furthermore, each teacher model has its private confidence

matrix on different object classes. This confidence matrix

serves as a weight for performing the ensemble of multiple

teachers, and helps exploiting the expertise of each of the

teacher models for each of the individual classes, significantly

boosting the accuracy and robustness of the data annotation.

This maximizes the accuracy of the teacher, and consequently

minimizes the chance of the student model learning wrong

labels. Note that the limited parameters of the student make it

more sensitive to data fidelity and hence ensuring an accurate

data labeling is very important for end to end classification

accuracy. The impact of wrong labeling is discussed in §V.

The Problem: However, this exemplar section mechanism has

an inherent flaw. Consider a traffic camera looking at a busy

street with a traffic signal. Due to the traffic distribution (e.g.,

more cars than buses), the camera typically sees a varied

distribution of different classes, which might reflect in the

exemplar set. Moreover, some static objects (traffic light, stop

sign, etc.) might be present in all frames. This creates a

sampling “bias” [70] while performing the training, and often

leads to catastrophic forgetting. Fig. 3 shows a typical traffic

distribution from Urban Traffic data [97]) and the impact of

sampling bias on class distribution. Note that, as some of the

classes (e.g., bicycles) are barely present in the exemplar,

the model tend to lose accuracy (because of catastrophic

forgetting) on them, whereas the model rapidly over-fits for

the classes with more examples (e.g., traffic light).

B. Proper Exemplar Selection

To tackle the sampling bias [70], we adapt a representation

learning [74] framework for designing the proper exemplar

selection. The fundamental issue with the previous approach

is the inability to select correct numbers of IID data for

training. In addition to that, just DNN training cannot learn

new classes if there is no way to annotate and label new

classes. Representation learning solves both these issues.

The learner (here the teacher models) need to properly

classify the data, learn if the data is a new type of one of

the older classes, and identify if it encounters a new class.

We achieve this by clustering the feature vector of the Large

DNN model. Fundamentally, we use the larger DNN models as

feature extractors which turn the data into a feature vector. In

the original training phase, these feature vectors are separated

using K-means [74] or other clustering. The cluster centers for

each data (µy for class y) are calculated as µy =
1
Py

∑p∈Py
Φ(p),

where Py is the number of samples belonging to class (or

cluster y), and Φ is the feature extraction function working

on the data p. These clusters represent the classes in the high

dimensional feature space. When the classifier sees new data

(x), it calculates its distance from all the cluster centers as

y∗ = miny=1...t ||Φ(x)−µy||. There are three cases:

Case-1: If the data is close to one of the cluster centers and

belongs to its cluster boundary, then it falls into the bucket

of that particular class. This typically happens if the data are

very similar to the training samples.

Case-2: If the data belongs to a known class, but is signif-

icantly different from the training samples, it falls not too

far from one of the clusters. This distance of the new data

from the cluster center is called the “distillation loss” [74]. An

encounter of a new example of the existing class is followed

by an update to the clustering by minimizing the classification

loss of the newly-seen data.

Case-3: Finally, if the classifier sees an example of a new

class then the feature vector of the data sits far from all

the cluster centers indicating an unknown class. The distance

of this feature vector from the other cluster center is called

“classification loss” [74], and this re-triggers clustering with

an updated number of clusters.

Over multiple time windows, the representation learner

goes through all the possible exemplars selected by using

the confidence matrix and creates an exemplar set with same

number of examples from each possible class. Since we

have multiple teacher models, each of them contributes to

the exemplar set, making it robust and removing bias. To

efficiently implement the exemplar selection algorithm, Us. ás

implements the major portions using “custom hardware” (dis-

cussed in §IV-A). The annotations on the new exemplar set

created by the representation learner is compared against the

confidence matrix of the edge model to calculate the “drift”.

Consequently, this exemplar set becomes the training data for

the continuous learning, which consequently minimizes the

drift. Once the student model is trained with the exemplar

set, the data is discarded and the feature space for the teacher

models is updated. By doing this, Us. ás keeps both the student

and the teacher models “updated.” Since the feature space

of the teacher model is updated using K-means+, the major

computation is the training of the student model using the

exemplar data. Although efficient hardware accelerators [16],

[27], [80] have been developed to do the same, these ac-

celerators are typically designed with a “throughput-first”

895

Authorized licensed use limited to: Penn State University. Downloaded on October 29,2024 at 14:39:33 UTC from IEEE Xplore.  Restrictions apply. 



approach and are neither configured nor capable of operating

with an intermittent power source. Deploying sufficient battery

resources to allow intermittency-unaware designs to operate on

solar power is neither efficient nor sustainable.

C. Hyperparameters: The Right Way to Learn

After finalizing the training set for continuous learning,

the next challenge is to learn within the power and time

budget. Given enough time even naı̈ve low power hardware

can finish training, but will have longer periods where the

drift is exposed. A more preferable solution is to get rid

of drift as quickly as possible, i.e. finish training on the

exemplars (described in §III-B) as soon as possible and also

reach the desired accuracy – but to do this within the harvested

budget. Prior works [34], [48], [68] suggest that selecting

the right hyper-parameters (like batch size, learning rate,

number of layers to train etc.) have a huge impact on the

convergence and accuracy of the models. For each edge servers

to handle multiple steams with multiple drifts, we need to

jointly optimize the hyper-parameters for maximizing accuracy

with minimum power and resource budget.

To achieve this, we design a “micro-profiler” that can look

into the drift of the models as well as the power availability

and decide the right hyperparameters to train the models.

Prior works [12], [38], [68] have designed hyperparameter

micro-profilers. However, they never considered an intermit-

tent power source, nor explored jointly optimizing multiple

models with power, accuracy and latency constraints. Further-

more, each model might contribute differently to the overall

accuracy. Observing this, we propose a “weighted accuracy

metric”, where the weight of each of the model is a function of

the accuracy, time needed and power availability. Furthermore,

we allow some slack to the weighted accuracy so that the

optimizer can choose a better set of hyperparameters if we

can reach close to the weighted accuracy with much lower

resource (power or compute) consumption. Typically, there

is an inverse correlation of the convergence of the stochastic

gradient descent (SGD) algorithm, the most popular training

algorithm for DNNs, over the number of iterations (ni) [68]:

l ∝ O(1/ni) and l = 1
β0.ni+β1

+ β2, where l is the loss of

the SGD and βi is an non-negative real number. Therefore,

by running a few iterations of the SGD algorithms with

various other hyperparameters, we can easily predict the con-

vergence of the models. Note that this needs to be done every

time one of the constraints (accuracy, power etc.) changes.

The micro-profiler optimizes the weighted accuracy (Aw =
Wi
Ai
/∑Wi;∀i ≤ #models;Wi = f (time,dri f t,compute) with a

user-defined slack value of δ ), with respect to available power

(Pav): maxAw; s.t.P ≤ Pav.

Energy Buffering and Power-Predictor: To regulate, manage

and ensure a stable power supply to the circuitry, Us. ás uses a

super-capacitor assisted voltage regulation circuit. To properly

model the energy harvesting, losses during conversion, and

leakage, we built a rectification circuit with 4× 5.5V, 2.2F

super-capacitors connected in parallel to a voltage regulator

circuit. The harvested power is given as an input to a mov-

ing average power predictor [61], [72] to predict the future

available power. Note that the power predictors used in prior

works are meant for fickle energy harvesting scenarios like

piezoelectric (movement), or RF (WiFi). We have adjusted

the time window size. We took a history (years 2019 and

2020; from Seattle, WA; Sterling, VA; and Oak Ridge, TN)

of solar energy traces from SOLRAD [25], [91] and built

a weight matrix which looks into a window of 1 hour at

1 minute (average power) intervals to predict the power for

next 10 minutes (1 minute granularity). We use regression to

find the weights (exponents and coefficients) to the prediction

curve followed by exponential smoothing to decay the weights.

The rate of exponential smoothing depends on the scheduler

used - while for the conservative scheduler the predictor

always underestimated the power (shallow smoothing), the

eager scheduling uses the direct output of the predictor (steeper

smoothing). In either case, the predictor predicts the power

with ≈ 95% (peak of 98.72 (with real solar power trace) and

minimum of 89.14 (with synthetic power trace) accuracy. The

micro-profiler, having run multiple sweeps, returns a set of

hyper-parameters (Ψi) for each model which is then stored in

a history table. This helps us avoid unnecessary profiling (up to

41%). When introduced to a new set of constraints (change of

power availability, accuracy etc.), the micro-profiler first looks

in the history table to find a configuration and runs profiling

if and only if it could not find one.

IV. THE MORPHABLE HARDWARE

Why Not Commercial GP-GPUs? DNN training is mas-

sively parallel, fairly compute intensive, time consuming, and

needs a lot of (albeit structured) data movements [16], [37].

Therefore, GP-GPUs have classically been used to train DNN

models. However, as mentioned in §I, the commercial GPUs

used for DNN training are typically power hungry ( typically

in 100s of Watts TDP; We exprimented with multiple GPUs,

server class A6000: 300W TDP, server class A100: 250W –

400W TDP, client class TRX3090: 350W TDP, and client class

T4: 70W TDP), and are not equipped to handle intermittent

power emergencies. However, these GPUs are often equipped

with dynamic voltage and frequency scaling (DVFS). 2 To un-

derstand the impact of DVFS on energy savings and dynamic

compute scaling, we implemented a simple multi-arm bandit

algorithm to select the right bucket of compute frequencies

(SM frequency for NVIDIA GPUs), and memory frequencies

to match the power-demands of the intermittent solar source.

As shown in Fig. 4 even with DVFS, commercial off the

shelf GPUs could only finish < 50% of the scheduled training

task. However, hardware is not the only limitation, as even

with custom hardware [16] enabled with the state-of-the-art

continuous learning algorithm [12] could only finish ≈ 75%

2NVIDIA provides the list of supported clocks through the API
“nvidia--smi --q --d SUPPORTED_CLOCKS”; We did not creport
the results from A100 for this, as it does not offer multiple memory clocks,
significantly impacting its DVFS capabilities. T4, thanks to its limited compute
capabilities, could not finish training tasks on time.
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of the scheduled training without any intermittency support.

It is clear that we can neither use the commercial GPUs nor

rely on the standard software and algorithmic approach for

intermittent training purpose as they cannot finish the compute

given the intermittent power budget.
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Fig. 4: Impact of DVFS on completion (average power budget

70W). Note that, even with DVFS, most scheduled compute

could not be finished. This includes the intermittent failures

(≤20W where no compute could be done); we included check-

pointing to ensure that progress is saved in power-failures. C/S

is the ratio of Completed over the Scheduled training tasks

over multiple time windows of 4hours. Our custom HW runs

with intermittent support both by hardware and software.

There have also been significant efforts in designing and

optimizing specialized DNN training accelerators [16], [27],

[81], and many commercial organizations have already devel-

oped their own accelerators [37], [95] as well. Considering the

compute mapping of the DNN training, almost all of these de-

signs are based on a “systolic architecture”, performing chains

of multiplication and accumulations (MACs). However, these

devices take a “throughput-first” approach, to minimize the

time consumption and seldom optimize power consumption

first. This has lead to a global concern of the energy and

consequently carbon-footprint of the DNN training [21], [57],

[67], [89]. Furthermore, these accelerators have been designed

to operate under constantly available power. Although our pro-

posed representation learning (§III) and micro-profiler (§III-C)

help us find a better training configuration that can minimize

the compute if deployed in the aforementioned accelerators,

it does not solve sustainability: That is, with variable solar

power, can we scale compute alongside power to continue

to make “forward progress”, even when minimum amount of

power is available. The systolic array structure of the DNN

accelerators is well suited for this as we can change the com-

pute size, as well as the number of memory channels feeding

to those compute units as per the power availability. However,

we need to be innovative in terms of designing and placing

the compute hierarchy to ensure minimum data movement and

re-computations when compute scaling. The hardware design

of Us. ás (Fig. 5a) incorporates all the aforementioned points.

Note that, Us. ás introduces a design philosophy for building a

morphable hardware, and it can easily be adapted by any of

the systolic array based commercial off the shelf (or research

prototype) DNN training accelerators.
DNN Compute Mapping: Typically there are three ways of

mapping DNN compute into a systolic array, namely, 1. output
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Fig. 5: Overall architecture with the components and the power

failure handle sequence of Us. ás.

stationary; 2. input stationary; and 3. weight stationary [79].

Most large-scale accelerators use the output stationary imple-

mentations to minimize the output feature map movement [81],

and some of available hardware even supports multiple types

of mappings [15], [37]. However, our design objective is to

minimize data movements in the case of compute reconfigura-

tion. In an output stationary mapping, both input and weights

are dynamic and any power failure or reconfiguration will

need to save and restore a lot of current context (partial sums,

indices of weights and inputs etc.) to resume and remap the

compute. This problem reduces in both input stationary and

weight stationary, but at the cost of throughput [80]. Typically,

the input feature maps are larger than the (individual) weights,

and more importantly large weights can easily be represented
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Fig. 6: Weight stationary compute mapping. The PE-level

shows how the input flows and the convolutions are computed

with a 3x3 convolution toy example. The tile-level shows how

each tile consists of multiple such PEs and will be working

on one kernel at a time. The accelerator-level shows that the

entire accelerator is made of multiple such tiles (4x4 in the

toy example). Inputs are broadcast into each tile so that each

tile can work on a kernel. Computation is redistributed when

there is a change in the power availability, and multiple tiles

are shutdown (redacted) without impacting the data flow.

or decomposed as multiple units called “kernels” (or “filters”).

In a typical convolutional neural network (CNN), each kernel

is convoluted over the entire input feature map, and hence there

is an “inter-kernel parallelism” (all kernels of a single layer

can be executed in parallel) and “intra-kernel parallelism”

(multiple computes in a convolution can happen in parallel).

This property is true both for the forward pass and the

backward pass of the standard CNN training. The modular

nature of the weight stationary mapping makes it a strong

candidate for use in a re-configurable or morphable systolic

structure as turning off some compute is the same as not

computing a kernel and scheduling it for later. Therefore, Us. ás

employs a weight stationary compute mapping for executing

the training tasks on the morphable hardware.

A. Design Description of the DNN Hardware Augmentations

Compute Mapping: Fig. 5a shows the high level design,

architecture and different components present in our proposed

accelerator. The accelerator encompasses 256 tiles, structured

in a 4×4 configuration of 16 super-tiles, each harboring 4×4

tiles. These super-tiles Each tile, individually switchable ON

or OFF based on power availability, houses 64 16-bit floating

point MAC units configured in an 8 × 8 systolic array for

convolution operations. A modular computational approach is

adopted where each tile is accountable for one CNN kernel,

necessitating ⌈[C×H ×W ]/64⌉ iterations for a kernel of size

[C×H ×W ]. Data streaming and partial compute storage are

facilitated by four double buffered SRAM structures, with the

weights residing in a double buffered multi-banked SRAM.

The filter SRAM has 256 banks (one per tile), each with

a size of 1kB (double buffered, 512B per buffer per bank).

Input data broadcast to all tiles is managed by a 64kB double-

buffered input feature map SRAM (32kB each), requiring

⌈[X ×Y ×Z]/1024⌉ iterations for full input loading, with each

buffer loaded [X ×Y ×Z]/2048 times. The convolution map

transforms [X ×Y × Z]
M×C×W×H
−−−−−−−→ [M ×U ×V ] to yield an

output tensor of dimensions [M ×U ×V ], supported by a

256 banked double buffered output feature map SRAM, each

bank of size 8kB (4kB/buffer). A 128kB SRAM serves as a

scratchpad for storing activations, transposes, and intermediate

differentials during the backward pass. The accelerator also

houses 256× 256 compactor-mux combinational logic units

(256 units per tile) for ReLU activation (forward pass) and

inverse activation (backward pass). For smaller DNNs without

256 kernels in any layer, a batching mode is operational with

a batch size of B = ⌊A/L⌋ images, where L denotes the layer

with the fewest channels, and A the number of active tiles.

This generic design is adaptable for various workloads.

In DNN training, meticulous compute mapping, mem-

ory access strategies, and operational formulas are instru-

mental for the forward and backward passes. The for-

ward pass computes activations via the formula Amuv =

∑
C−1
c=0 ∑

H−1
i=0 ∑

W−1
j=0 X(u+i)(v+ j)c ·Kmi jc, with results stored in the

double-buffered output feature map SRAM. The backward

pass emphasizes gradient computation through backpropaga-

tion, which is crucial for weight updates. The gradient of

the loss function concerning the weights is computed through

the formula ∂L
∂Kmi jc

= ∑
U−1
u=0 ∑

V−1
v=0

∂L
∂Amuv

·X(u+i)(v+ j)c. This gra-

dient computation, fundamental for learning, is meticulously

mapped across the systolic array, ensuring precise and efficient

backpropagation. Memory accesses are optimally managed via

the double-buffered SRAM structures, providing timely data

availability for the MAC units. The 8×8 systolic array in each

tile executes multiply-accumulate operations in a pipelined and

parallel fashion, abiding by the Weight Stationary approach,

thereby optimizing the throughput and efficiency of the train-

ing operations within this hardware architecture.

Power Control Logic: Power emergency prediction in Us. ás

is always conservative, and the solar power predictor has a

mean accuracy of 92%, limiting false positives and helping the

control unit select appropriate tile counts. The system needs

at least 512 cycles of advanced notice to flush compute and

enable a compute migration. Fig. 5a shows the block diagram

of the mesh interconnect, and Fig. 5b shows the power-down

sequence and signal states. The network works at a super-tile

(STile) granularity and each arbiter node uses an 8x8 priority-

mux. The network only gets activated when it gets a w-pdown

warning signal from the predictor. This signal starts a graceful

power-down sequence for the required number of tiles. The

w-pdown triggers the backup signal and the system goes into

pwr-warning state (other states being on, off, invalid and X).

In the pwr-warning phase the system finishes the remaining

compute of the systolic arrays (which can take up to 64 cycles),
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and starts flushing the results for backup.

Buffer Management: Us. ás uses non-volatile state buffers

(NVSBs, 18 count, 1 per 4x4 tiles, each of 1kB, and 2 of

4kB each) for state saving and data backup. The control logic

prioritizes writing data into the local NVSB for the arbiter

(each arbiter caters to 2 STiles). If those get full because

of continuous power failures, the control directs the data to

the global NVSBS (NVSB-NW and NVSB-SE in Fig. 5a).

The NVSB stores the global/asynchronous work queue and

the shuffling configuration (mini-batch arrangement).

B. Power Failure and Compute Scheduling

Central to the Us. ás accelerator’s operational efficiency is

the work queue—an intricately designed, hierarchical structure

that meticulously catalogues pending computational tasks.

Each task, represented in the queue, corresponds to the execu-

tion of specific CNN kernels, feature tiles and operations. As

deep neural network models often have a complex interplay of

layers, each with distinct computational needs, the work queue

ensures a systematic, prioritized approach to handle these oper-

ations. Two distinct scheduling strategies, each complemented

by its own type of work queue, govern the computational

flow: Conservative Scheduling and Eager Scheduling. The

dual-scheduling mechanism, bolstered by the work queue’s

flexible architecture, not only optimizes compute performance

but also offers resilience against power uncertainties. The

work queue schedule, intermediate result, network and layer

information are saved on predicted power failure, and data

from the DRAM (the working set of IF/OF/filter and model

state) are moved to an NV-RAM using STT-RAM based

buffers in the memory hierarchy (parallel to the IF/OF/filter).

We do not replace the DRAM buffers with NVM because

of limited lifetimes [17]. The host writes the latest copy of

the completed iteration (in epoch granularity) into the STT-

RAMs (STT-RAM-N for the upper 128 SAs, and STT-RAM-

S for the lower 128SAs, Fig. 5a). In case of a complete

power failure, the compute in flight are rejected and, once the

system starts working, the work queues get invalidated and the

host starts the compute again from the last checkpoint. Along

with that, the most common intermittent software libraries and

software designs [26], [52] (and most DNN training libraries

like PyTorch, TensorFlow) also offer periodic checkpoints.

Note that the power-up sequence for a tile runs in the exact

opposite order of the powerdown sequence (a tile becomes

computationally active 512 cycles after it gets the power up

signal). Us. ás uses two kinds of scheduling policies to handle

the graceful powerdown and work queue rearrangement.

Conservative Scheduling: The most important part of the

Us. ás accelerator design is to ensure proper “compute place-

ment” even under a power emergency or power scaling.

Fig. 6:Accelerator level provides a high-level overview of

the compute scheduling (where the redacted part of the hard-

ware is turned off because of the lack of power). The key

components of the scheduler are the “moving average power

predictor” and the “micro-profiler”. In the ith kernel scheduling

iteration, given the power budget and power prediction, the

micro-profiler decides the required training configuration, and

the control logic (conservatively) enables suitable number of

tiles (say ti tiles of the 256 tiles). Those ti tiles fetch ti
unique kernels from the 1Byte wide, 256 deep global kernel

dispatch queue (GKDQ, ti kernels scheduled in parallel ). Note

that the power requirement of each tile is known in advance

(please refer to §V, TABLE I for details). Once the scheduled

(ti) tiles are completed, the micro-profiler again finds the

right configuration for the i+ 1th iteration and the scheduler

again conservatively enables ti+1 number of tiles suitable for

the power budget. The ti+1 tiles fetch the next ti+1 kernels

from the GKDQ and the process continues. This conservative

compute and power estimation ensures that none of the kernel

computes (the lowest decomposed level of compute unit for

the hardware) ever fails and hence there is no need for any

partial data movement. The GKDQ always points to the next

available kernel location. The control fetches the right number

of kernels and all of them are synchronously executed in the

active tiles.

Eager Scheduling: A weight stationary implementation with

a conservative scheduling will always run synchronously.

However, in the middle of an kernel execution iteration, if the

hardware gains access to more power which in turn can enable

more tiles, it cannot do so without breaking synchrony (i.e.

when some of the tiles are half way through the compute, some

other tiles can just start execution). Facilitating such schedul-

ing will provide us less idle time, more forward progress and

more efficient use of the incoming power but at the expense

of more control overheads. We call this Eager Scheduling. To

enable eager scheduling, we decentralized the global kernel

dispatch queue and equipped each tile with a local kernel

dispatch queue (1Byte wide 16 deep). At the beginning of

each kernel scheduling iteration, the micro-profiler decides the

right configuration, and the control distributes equal number

of kernels to each active tile (given A active kernel, and K

total kernels, each tile gets ⌊K/A⌋ kernels to execute). The

conservative scheduler ensures that no tile loses power before

finishing the current scheduled kernel. However, in the middle

of the execution if any new tiles becomes alive (because of

an increase in harvested power), the scheduler immediately

marks it ready to start working and the tile fetches a kernel

(currently not scheduled in any of the tiles) and starts working

on it. We face three issues here: 1. How does the new tile get

any kernel to work on? 2. Over multiple iterations of such

asynchronous scheduling, the kernel queue for each tile will

be of different size creating a load imbalance; how to tackle

this? 3. How do we know when to stop executing?

To address the first two issues, we developed a work-stealing

mechanism for each tile. When any of the active tiles are

marked ready by the scheduler, the tile employees a state

machine to decide where to get work from. Each time the

tile finishes some work, if its remaining work queue (the local

work queue size) is less than the average of all other active

tiles, it seeks a new kernel to work on. Considering the global

control always enqueues any idle tile with work, whenever

the tile has no work left, it steals a kernel from the most
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heavily loaded tiles. We implemented a counter (local kernel

counter) to keep track of the size of the remaining local work

queue of each of the tile. We also implemented a counter

(layer kernel counter) which keeps track of the total kernels

to be scheduled for each layer. Whenever all the local work

queue counter hits zero along with the layer kernel counter,

the control moves to schedule the next layer (or previous layer

in backward propagation) for computation.

Note that we do not delve into the details of the computa-

tional primitives involved in training the DNN as several prior

works [15], [16], [80] provide a very detailed accounting of it

(for both forward and backward pass) along with the hardware

and control requirements. We treat the convolution scheduling

(using input stationary and at a kernel level) in a morphable

systolic hardware to be the main challenge and explain it.

V. IMPLEMENTATION AND EVALUATION

We focus our evaluation on urban mobility, i.e. performing

single shot object detection for traffic monitoring using the

MobileNetV2 [51] model on the urban traffic data set [97].

This is a traffic video dataset containing 62GB of videos

recorded from five pole-mounted fish-eye cameras in the city

of Bellevue, WA, USA. Each video stream is recorded with

a resolution of 1280× 720 at 30fps. This contains a total of

101 hour of video across all cameras of which 30 hours of

video is used to fine-tune the teacher models and the rest 71

hours of data is used to evaluate our continuous learning so-

lution. For annotating the incoming video stream we use three

teachers models, namely, ResNet101 [32], YOLOV2 [22], and

VGG16 [87]. For sustainability, we use solar power to perform

our compute. Since our dataset is from Bellevue, WA, we

took the SOLRAD solar radiation data [25] (managed and

published by National Oceanic and Atmospheric Administra-

tion, NOAA) of Seattle, WA (the SOLRAD center closest to

Bellevue and hence we believe is a good approximation). In

our experiments we assume the hardware to be powered by

a solar panel of one square-meter, and the powers are scaled

accordingly (data is available as W/m2). Finally, we assume

the exact same setup of the Urban traffic dataset and hence

have 5 different MobileNetV2 models trying to classify the

traffic they are facing, and learning from the streaming data.

We vary the training intervals to see the effect of frequency

of retraining.

Existing Approaches: Although there has been significant re-

search [40], [41], [47], [52], [56], [61], [72], [104] on enabling

machine learning in intermittently powered devices, a major-

ity of it focuses on performing inference. Only intermittent

learning [47] focuses on performing on-device training, but

with very small workloads and models. Considering the scale,

scope and workload of our problem, limits direct comparisons,

except for comparing their exemplar selection method (refer

Fig. 9). Similarly, Ekya [12] only focuses on co-location of

computation, and it’s efficiency on finishing compute even on

custom hardware is shown in Fig. 4.
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Fig. 7: Accuracy boost due to proper exemplar selection over

8 hours of time window. Labels: MN – MobileNet-V2, BL –

Baseline, Teacher – the ensemble of teacher models, MN–#:

targeted MobileNet-V2 model for the particular time of day.

A. Continuous Learning: Accuracy

Fig. 7 shows the accuracy improvement over a time window

of 8 hours by using the continuous learning algorithm. We

compare against a baseline using naı̈ve continuous learning

algorithm with no representation learning. In contrast, Us. ás

uses a 2 level exemplar selection algorithm (one using the

confidence matrix, and then further refined by the representa-

tion learning). We observe that, with representation learning,

Us. ás is ≈4.94% (maximum ≈8.03%, and minimum ≈2.62%)

more accurate than the naı̈ve learner. Further, Us. ás converges

closer to the accuracy of the teacher model. This was possible

by restricting the training space and by using the superior

exemplar set construction by using representation learning.

Fig. 8 shows the impact of micro-profiling on the hyper

parameter selection. Due to the drift- and weighted accuracy-

aware micro-profiler, the suggested configuration is almost

every time the same as an oracular selection. Fig. 8a shows

the number of layers trained for a DNN, in contrast to the

ideal number of layers to achieve maximum accuracy. Over 10

training iterations, we observed the micro-profiler to be con-

sistent with the oracle (except for one case of iteration 7). Note

that the hyperparameter selected in iteration 7 by the micro-

profiler performs as good as the the oracle model in terms of

achieving accuracy, albeit by performing more computation. A

deep dive into 7th iteration reveals that the micro-profiler chose

a higher learning rate (compared to the oracle), which biased

the convergence curve fitting and extrapolation (as discussed

in §III-C) and hence suggested a larger number of layers to

be trained to achieve the required convergence. Similarly, the

micro-profiler shows consistent behaviour while choosing the

right number of batches. Fig. 8b also shows the error rate of

retraining performed by choosing the hyperparameters given

by the micro-profiler vs an oracle selection. Observation over

40 hours of continuous learning on the dataset suggest that

the micro-profiler has, on average, an accuracy deviation of

2.46%, compared to an oracle parameter selection. Along with

that, the micro-profiler selects correct batch size 82.64% of the

time and the correct number of layers for 87.06% of the time.

B. Impact on Exemplar Selection

Us. ás benefits from the use of multiple teacher models

for data annotation and exemplar selection. Prior works on

intermittent learning have either chosen one teacher model
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Fig. 8: Algorithmic performance of Us. ás: the benifits of the

exemplar selection and µ-profiler.

Component Spec Power Area(mm2)

SRAM Buffers 1kB*256+8kB*256+64kB+16*256kB 10.372W 117.164

MAC Unit (8*8)*256 8.46W 32.72
Adder Tree and Comparator 16*16bit + 256 2.4W 21.556
Control – 0.96W 12.2
Host ∼Cortex A78 series 11W –

Design at 592MHz with Synopsys AED 32nm library
Total 256 tiles 33.192W 183.64

TABLE I: Area and power estimation of our design.

(e.g. Ekya [12] using ResNeXt101) to annotate the data or

used a heuristic on top of the teacher model (e.g. intermittent

learning [47] using randomized selection, K–Last List, or

round-robin policy). As shown in Fig. 9, a single teacher,

even with the augmented heuristics, typically fails to select the

right exemplar set. The exemplar set significantly impacts the

accuracy in two ways: 1. missing valid exemplars will result

in the student model missing out in learning vital information,

increasing its drift, and 2. a wrong annotation by the teacher

can also result in the student learning wrong labels, resulting in

increased mis-predictions. To avoid this, in Us. ás, the teacher

models perform majority voting to decide the right exemplar,

which significantly reduces false positives and true negatives

(refer to the top bar in Fig. 9: with the ensemble, the best

case annotation is the ideal one with only 2 false positives).

Furthermore, the feature extraction for each of the potential

exemplars for the teacher model is hardware-assisted (§V-C),

and hence poses no overhead to the inference task.
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Having an ensemble provides robust exemplar selection and

improves accuracy over a single teacher. The X-Axis has

different DNNs , R: ResNeXt101, T: YOLO-V3, V: VGG-

16, IL: Intermittent Learning, RR: Round Robin.

C. Hardware Implementation and Evaluation

The proposed morphable hardware was simulated using an

in-house simulator based on ScaleSim [79]. We included a

wrapper around ScaleSim to dynamically change the con-

figuration of the systolic array. Further, the simulator was

integrated with CACTI [62] and DRAMSIM3 [49] to estimate

access latency, power, and simulate the memory access pattern.

Rather than including a cycle accurate CPU (host) simulator

to orchestrate the compute, we used a simple program to

act as proxy for the host CPU and send control signals to

schedule and orchestrate the compute on the systolic array. To

correctly estimate accelerator power and area, we implemented

a register-transfer level model using System Verilog and syn-

thesized using Synopsys Design Compiler [93] with a 32nm

library [94]. Table I lists the estimated power consumption and

area of the major components. Instead of simulating the CPU,

we tested the K-means clustering and cluster optimization on

a mobile SoC with 8× ARM Cortex A78 series CPU. Table II

gives the key attributes of the implemented hardware against

some of the prior accelerators. Note that Us. ás hardware is not

outperforming any of them as the goal was greater scheduling

flexibility for power tracking rather than performance or area.

Platform
Freq.

(MHz)
Area

(mm2)
Power
(W)

Peak Thpt.
(GOps)

Energy Eff.
(GOps/W)

DaDianNao [16] 606 67.3 16.3 4964 304.54
CNVLUTIN [4] 606 70.1 17.4 4964 285.29

Activation Sparse [80] 667 292 19.2 5466 284.69
EyerissV2 [15] 200MHz N/A N/A 153.6G 8b fixed pt/s 193.7
FlexBlock [63] 333MHz 160.3 (65nm) 34.4 (when same #PEs) 4504 131.03

Us. ás

592 168.2 22.7 (17.2 if only train) 4016 159.42
Fully powered, DNN Compute only 287.44

Fully powered, DNN µ−profiler 255.39
EH + µ−profile + NV-mems + resizing RAM + Host 159.40

TABLE II: Comparison with prior accelerator-based platforms.

The systolic array accelerator time multiplexes between per-

forming feature extraction for exemplar selection and running

the training. Fig. 8c shows the time distribution of the accel-

erator between performing exemplar selection and training. It

also shows the number of exemplar frames per 100 frame,

i.e., of any 100 frame encountered, how many of those will

contain a relatively new data. Over 10 iterations of retraining,
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Fig. 10: Contribution of different components of Us. ás on other

applications, data modalities, and power environments.

the learner classified ≈4.5 frames/100-frames (on an average)

as exemplar data. And, over 40 hours of continuous learning,

we get ≈5.02 frames/100-frames as exemplar data (resulting

in ≈17.4% of total accelerator time).

Performance-Power Trade-offs: As Table II suggest, Us. ás

does not deliver the highest throughput and also consumes

more power compared to the other accelerators. Us. ás was

designed on a intermittency friendly approach, and was never

designed to hit the best throughput. The unit compute (only a

3 × 3 convolution per tile) that Us. ás can perform is much

smaller than the other accelerators, limiting its throughput

but increasing its modularity of handling intermittent power

failures (or power changes). Us. ás also consumes more power

than the other accelerators since it also performs the exemplar

selection along with the DNN training, and also houses

NV-SRAM buffers for hardware check-pointing. While fully

powered, Us. ás is competitive in terms of energy efficiency

for training-only tasks. We include details on the energy

efficiency of Us. ás under different of operation configurations

in Table II. Note that the energy inefficiency arises primarily

from i) multiple saves and restores, ii) use of NV memories

and iii) reconfiguring the DRAM (along with a commercial

ARM based host CPU). Note that most prior works ignore

memory and host overheads while reporting the throughput,

efficiency and power numbers. Moreover, Us. ás needs more

I/O operations to store the streaming data to compute the

exemplars. We believe it will not be fair to compare the energy

efficiency and throughput of a system like ours, which in-

herently has more memory, I/O and reconfiguration operation

with a pure compute based systems mentioned in the hardware

baseline. Further, we are the first of a kind system to imagine

sustainability first and design a morphable hardware which can

facilitate multiple functionality. We also compare our work

against two reconfigurable platforms [15], [63].

Power Aware Scaling: The Us. ás hardware’s most important

feature is its ability to morph according to power availability.

Fig. 11 shows its ability to maximize the instantaneous power

utilization and scale the number of tiles. This allows Us. ás

to effectively perform more computation with an intermittent

power source. As shown in Fig. 11b, Us. ás maintains a high

duty cycle across power variance, whereas DaDianNao [16]

could not be active for all the power cycles. Considering the

power profile of Fig. 11b, Us. ás can finish about 50 cycles of

retraining (50 complete training cycles) and DaDianNao can

only finish 22 training cycles, even assuming a zero overhead,

seamless save-restore of the partial computes of DaDianNao

during a power failure/emergency.

Setup Effective Training Accuracy Degradation Replacement Cycle*

Battery Backed Custom HW[5000mAH] 93.17 2.48 2 - 3 years
Battery Backed Mobile GPU 78.55 7.43 18 - 24 months
Fixed Power [15W] 67.54 12.6

NA
Fixed Power [35W] 100 1.87
Us. ás 95.3 1.92 7 - 10 years

TABLE III: Comparing Us. ás with other possible solutions.

Sustainability: To ensure sustainable and continuous learning

at the edge, Us. ás operates independently of the power grid

or cloud dependency. We evaluated Us. ás against DaDian-

Nao, a power-efficient DNN training accelerator, with some

modifications for comparison. Using the Seattle SOLRAD

power trace for January 1, 2022, we simulated 40 hours of

continuous learning with 5 different models on Urban Traffic

data [97] and Us. ás hardware. The results, summarized in

Table IV, demonstrate the effectiveness of Us. ás in achieving

continuous forward progress compared to other approaches.

It completed more training tasks while consuming less power

and minimizing wastage. In contrast, cloud-based solutions ex-

hibited poor sustainability, relying on high-power-consuming

GP-GPUs, and edge servers without power availability strug-

gled to perform any compute. Us. ás emerges as a promising

solution, effectively achieving sustainable and carbon-neutral

continuous learning at the edge, addressing critical challenges

related to power constraints and environmental impact.

Alternate Solutions: Although Us. ás works completely using

intermittent power, it is imperative to compare and contrast

it with other possible solutions. TABLE III depicts some of

such possible comparison points. The possible alternate solu-

tions being battery-backed custom HW [16], battery-backed

commercial GPU and fixed power budget with store and
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Fig. 11: Tile utilization against available power: Us. ás with

eager scheduling vs an oracle scheduler. Us. ás closely tracks

oracle, where as DaDianNao [16] falls short.

execute (using a capacitor/ battery). We quantitatively compare

the effective training, i.e. the ratio of number of scheduled

training to the number of completed training, loss of accuracy

compared to the baseline. It is clear that even with intermittent

power availability Us. ás is objectively finishing more tasks

(except compared to a system with a consistently high power

availability). Furthermore, we also present a qualitative com-

parison on the maintenance cycle needed for these solutions.

While a completely grid based solution is best in terms of

reliability, it is not feasible because of the power demands. Any

battery backed system will be limited to the charging cycle of

the batteries (≈ 500 cycles for Li-ion batteries) which leads to

a typical 18 to 24 months of life for such devices (compared

to this, a super capacitor have a life of more than 100 years).

We believe that the lifetime of Us. ás will be limited either by

the live of the harvesting source (≈ 20 – 30 years for solar,

≈ 10 – 12 years for portable wind turbines), or the training

hardware (typical life cycle of embedded devices are of range

of 7 – 10 years). We agree that a limitation of our work

comes from the choice of solar energy: unavailability during

night and bad weather makes the deployment harder. However,

there has been significant recent development in portable wind

turbines [96], which can be deployed on rooftops, can work

with ≥ 5mph wind speed, and can provide power equivalent

of 15 solar cells. Therefore, similar technologies can be used

to augment the harvesting mechanism.

Deployment
Training

Completed
Mean Power

Consumed (W)
Mean Power
Wasted (W)

Carbon
Footprint (lbs/yr)

Us. ás 11 17.2 3.54 8.33
DaDianNao (persistent) 6 6.4 10.8 128.0712
DaDianNao (Software Only) 4 5.8 12.46 135.964
DaDianNao (actual) 2 2.09 24.73 199.70
Edge Cloud 0 0 –
Cloud 1 200 0 2233.8

Max Power = 32W; Min Power = 12W; Training Scheduled = 12

TABLE IV: Comparing Us. ás hardware with other state of the

art offerings for both performance and sustainability.

D. Towards Other Applications and Domains

The morphable hardware design of Us. ás plays a crucial role

in efficiently handling varying energy income and workloads.

As the energy income becomes more sporadic, hardware-

assisted scheduling seamlessly transfers work to active pro-

cessing elements (PEs), maximizing the completion of tasks

that could have otherwise been lost. This hardware-driven

adaptive scheduling significantly impacts different data modal-

ities, from large-scale to small-scale, and various magnitudes

of energy income, as depicted in Fig. 10c. For scenarios

with larger and predictable energy income, software-based

backup and restore mechanisms can offer significant benefits,

as the energy consumed for such operations is typically a

small fraction of the overall energy income. Predictive actions

for saving the system state can be easily taken. However, in

situations with sporadic energy income, the hardware-assisted

scheduling becomes paramount. It ensures that active PEs

efficiently utilize available power to complete work, preventing

potential losses and eliminating the need to restart tasks from

the beginning. Us. ás excels as a candidate for continuous

learning at all scales due to the hardware’s adaptability to

varying data and model sizes. As data and model dimensions

decrease, the hardware assistance’s impact becomes more

pronounced, making Us. ás an excellent solution for continuous

learning across diverse application sizes.

Along with morphable hardware, the exemplar selection

and the micro-profiler play an important role for the success

of Us. ás. When power is highly uncertain, the morphable

hardware also strongly contributes, however, as the power

profile becomes stable, the algorithmic contributions dominate.

Fig. 10a shows the contribution of the different components

of Us. ás under different power profiles. Moreover, the algo-

rithmic contributions can be extended into any classification

based application or data modality. If the learning has to be

unsupervised, one needs to experiment with known clustering

techniques to decide the right classification approach. We

demonstrate this by testing the exemplar selection and the

µ−profiler with different modalities of data. Our workloads

included Audio [23], [35](speech classification), 3D Point

Clouds [14], [24](object classification) and Inertial Measure-

ment Unit sensor data [9], [106](fault and activity detection).

Observe that, as Us. ás is designed to handle dense and noisy

data, it outperforms the respective state-of-the-arts (which

were tuned for small, clean benchmark data).
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VI. DISCUSSION

Key insights: Compared to other systems, the ratio of energy

requirement of task vs the harvested energy is much higher

here. Added with time constraints, designing such a system

becomes tricky. While many of the prior works have designed

their systems around inference using intermittent systems,

we are one of the few works which focuses on learning,

and the only work which does it on a large scale of data.

The proposed system is not only energy intermittent, but

also memory intermittent, interconnect intermittent and most

importantly data intermittent (we don’t know how much data

and what data). This gives us a unique platform to think of

intermittency beyond embedded systems and energy.

Related Works: Although there has been significant re-

search [40], [41], [47], [52], [56], [61], [72], [104] on enabling

machine learning in intermittently powered devices, a majority

of it focuses on performing inference. Only intermittent learn-

ing [47] focuses on performing on-device training, but with

very small workloads and models. Considering the scale, scope

and workload of our problem, limits direct comparisons, ex-

cept for comparing their exemplar selection method. Similarly,

Ekya [12] only focuses on co-location of computation, and it’s

efficiency on finishing compute even on a custom hardware is

shown in Fig. 4.

Green Data Centers: As sustainability gains traction, industry

has worked towards building green data centers [58], [59].

Although using these data centers for computation can be an

alternative, it will not solve the bandwidth and the privacy

issues mentioned in §I. Moreover, communicating and storing

such high volume data will also require energy. Our solu-

tion decentralizes this massive compute using a sustainable

approach and hence has its own merits. Further, this can help

build future solutions using these decentralised nodes for other

applications. We do encourage the use of green data centers

for other centralized compute applications.

VII. CONCLUDING REMARKS

The growth of smart cities and urban mobility applications,

along with reformations in privacy laws, have produced a need

for pervasive, DNN based continuous learning at the edge.

Although current commercial devices are capable of handling

inference at the edge, the power and resource requirements

of training make it impractical and unsustainable for all edge

nodes to also perform continuous training off of grid power. In

this work, we design Us. ás, a sustainable continuous learning

platform, which can perform video analytics by using an inter-

mittent power source like solar power. The learning algorithm

of Us. ás delivers 4.96% more accurate classification compared

to a naı̈ve learner, and the morphable hardware design uses

intermittent computing to maintain forward progress even

while running on lower power budget. Together, Us. ás can save

up to 200lbs of CO2 per year compared to a state of the art

accelerator running on the grid.
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