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Abstract—Edge servers have recently become very popular for
performing localized analytics, especially on video, as they reduce
data traffic and protect privacy. However, due to their resource
constraints, these servers often employ compressed models, which
are typically prone to data drift. Consequently, for edge servers
to provide cloud-comparable quality, they must also perform
continuous learning to mitigate this drift. However, at expected
deployment scales, performing continuous training on every edge
server is not sustainable due to their aggregate power demands
on grid supply and associated sustainability footprints.

To address these challenges, we propose Usds, an ap-
proach combining algorithmic adjustments, hardware-software
co-design, and morphable acceleration hardware to enable the
training of workloads on these edge servers to be powered by re-
newable, but intermittent, solar power that can sustainably scale
alongside data sources. Our evaluation of Usds on a real-world
traffic dataset indicates that our continuous learning approach
simultaneously improves both accuracy and efficiency: Usas
offers a 4.96% greater mean accuracy than prior approaches
while our morphable accelerator that adapts to solar variance can
save up to {234.95kWH, 2.63MWH }/year/edge-server compared
to a {DNN accelerator, data center scale GPU}, respectively.

[. INTRODUCTION

The rampant growth, and anticipated sustained expansion
of data collection and consumption are currently driving
data-driven analytics using trained inference models, with
significant economic impact. Amidst the myriad of data-driven
domains, urban mobility, smart cities, autonomous driving,
and the Internet of Things (IoT) emerge as some of the most
rapidly expanding fields contributing to the global economy,
amounting to more than 4 trillion US dollars [1], [54], [76],
[98]. These statistics underscore the profound significance and
transformative potential of these data-driven realms, delineat-
ing their pivotal role in shaping the landscape of computing
technology, from algorithms to architecture.

What distinguishes these data is their diverse origin, span-
ning from IoT devices to wearables, and their acquisition from
challenging environments, including autonomous driving and
urban mobility scenarios. Consequently, they frequently ex-
hibit a phenomenon known as “data drift”, where the incoming
data deviates from the distribution of the originally trained
model, leading to degradation in inference accuracy.
Mitigating Data Drift: Dealing with data drift in edge com-
pute nodes presents a significant challenge. While larger
models with more parameters may exhibit limited data drift
due to their increased capacity to generalize, deploying such
large models on edge compute nodes can be difficult due to

inherent limitations in form factor, energy efficiency, thermal
constraints, and compute resources. To accommodate these
constraints, it is a common practice to employ compressed
Deep Neural Network (DNN) models, that are quantized,
distilled, or otherwise reduced in size. However, while com-
pressed models are essential for meeting resource limitations,
they are more sensitive to data drift because they may not
generalize as effectively.

Traditionally, data drift has been handled by cloud-based
periodic re-training using continuous learning algorithms [20],
[74]. However, there are challenges in resources, privacy,
and sustainability to utilize existing techniques at envisioned
scales. As these applications become more ubiquitous, partic-
ularly in urban deployments for tasks like traffic surveillance,
autonomous driving, and health analytics [18], [77], [90],
demands on communication bandwidth and network reliability
limit the direct streaming of diverse data (e.g., video, 3D point
cloud, sensor, voice) from numerous sensor-compute nodes to
the cloud. Moreover, recent changes in privacy regulations
across multiple countries [2], [100] call for preserving the
privacy of citizens [12] and may preclude streaming personal
data to third-party cloud services. As a result, “on-premise”
edge servers [7], [8] have become prime choices for local
inference and prediction [6], [39], [85], [86], necessitating
the handling of both learning and inference tasks to meet
application needs, including privacy preservation, reduced
data communication, and disaggregated computing. Finally,
although recent studies have suggested co-locating training and
inference [12] to tackle privacy concerns without significantly
affecting the inference service, the power demand associated
with equipping multiple commercial edge servers [7], [8] for
both tasks hinders sustainable scaling.

The Problem Space: To address the multi-faceted challenges
of sustainable, scalable and privacy-preserving continuous
learning at edge servers, several crucial problem spaces must
be explored. Firstly, the issue of (non-)supervision arises,
demanding the ability to label data without human interven-
tion to preserve privacy during the learning process. While
recent works [12], [46] have attempted to tackle this concern
through student-teacher paradigms, efficiently deploying such
approaches in complex data modalities (e.g., multi-class video,
3D point cloud) remains a formidable challenge. Ensuring
adherence to Service Level Agreements (SLAs), where in-
ference typically utilizes a lower-resource model [51], [75]
and labeling is performed using a larger teacher model [44],
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[50], [73] at a much lower rate, necessitates informed decisions
regarding deployment placement and sampling rates.

Secondly, the issue of functionality comes to the fore,
requiring effective continuous learning from often non-
Independently and Identically Distributed (non-IID) data. Such
non-IID data distributions, evident in tasks like standard traffic
monitoring with varied class observations (e.g., more cars
than buses, all frames having STOP signs), may introduce
sampling bias [70], [74] in the network. This challenge can
be addressed through proper exemplar selection algorithms
employing representation learning techniques [31], [74], ca-
pable of learning new classes in real-time. However, these
compute-intensive algorithms can be optimized further through
dedicated hardware acceleration.

Thirdly, the aspect of sustainability poses a critical question
of deploying such systems, ideally with minimal reliance
on the power grid for learning tasks. Designing a learning
platform that can adapt to intermittent renewable energy
sources (e.g., solar power) and maintain a minimal operational
carbon footprint [29] is paramount. Such a platform should
continuously make progress on unsupervised labeling, exem-
plar building, and continuous learning, and maximize drift
mitigation while minimizing power consumption. Moreover,
the system must accommodate support for intermittency
inherent in sustainable power sources like solar and wind.
While incorporating conventional battery storage can mitigate
intermittency, it introduces environmental and sustainability
challenges associated with resource extraction, production, and
replacement [3], [5], [10], [13], [53], [66], [69]. An ideal
solution would entail a battery-free system (not energy storage-
free, i.e., still with some capacitive storage), circumventing
these concerns and aligning with the objectives of sustainable
and reliable continuous learning at the edge.

To these ends, we propose Usds, | a HW-SW co-design
approach to building sustainable, scalable, drift-mitigating
edge analytics platforms using harvested power to support
continuous learning. Usds, unlike prior edge-focused analytics
approaches (e.g., Ekya [12]), detaches the inference and train-
ing hardware, as the training task is the major source of the
compute, power, and time consumption. Usds introduces an al-
gorithmic framework for data labeling using a teacher-student
model, designing the exemplar selection using representation
learning and determining the right set of hyperparameters
using micro profiling to energy-efficiently continuously train
the DNNs with the selected exemplar sets. Usds also employs
a dynamically morphable systolic array for enabling energy-
efficient computing within the harvested power envelope. Key
contributions of the work include:

e We propose algorithmic enhancements of continuous learn-
ing for mitigating data drift and design a student-teacher
based automated data labelling algorithm, to prepare train-
ing exemplars from input data. We use a two-level data
annotation mechanism: exemplar identification based on the

'Vedic goddess of dawn in Hinduism [36]; emphasizing the dawn of
sustainable continuous learning and significance of solar power in our design.
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confidence matrix of the student model, followed by a repre-
sentation learning based exemplar selection by ensembling
multiple teacher models. Our policy updates both the teacher
and student models for robust unsupervised learning.

We implement a micro-profiler, which predicts the right set
of hyper-parameters to efficiently perform the training tasks
on an energy-harvesting edge server while operating within
its power budget and minimizing data drift.

We design a morphable hardware accelerator that effi-
ciently maps training tasks, is suitable for intermittent
computing, and can adapt its capabilities to reduce power
emergencies without devolving to grid operation. We dis-
cuss how the proposed hardware techniques can be adapted
by many of the current DNN training accelerators to add
similar dynamism in sustainability-sensitive environments.

Finally, we evaluate Usds in depth on a real-world traffic
data set [97] and perform sensitivity studies on other
classes (audio, IMU) of data. Our algorithmic framework for
performing continuous learning has a 4.96% greater mean
accuracy than a naive continuous learner. Power estimations
of our hardware design, modeled by Design Compiler [93],
indicate that the proposed morphable accelerator approach
can save up to 234.95kWH/year/edge-server, compared to
running continuous learning on a state of the art DNN
accelerator and 2.63MWH/year/edge-server, compared to
utilizing a datacenter-scale GPU for learning on the edge.

II. BACKGROUND AND MOTIVATION

Edge servers often leverage the convenience and flexibil-
ity of cloud interfaces, granting access to the same APIs,
tools, and functionalities [60]. However, due to their inherent
limitations in resources, such as weak GPUs and smaller
memory capacities [83], these servers often resort to “cus-
tomized” analytics services to maximize throughput and meet
SLAs, including specialized DNN models tailored for edge
deployments [51], [75], which are compressed, quantized, and
optimized for the targeted hardware [30], [103], [109]. These
tailored models enable accurate inference with high throughput
and reduced resource footprint, with some compressed models
having approximately 50x fewer parameters [30], but with a
greater susceptibility to data drift [42], [55].

Data drift emerges as a significant concern in real-world
systems as the live data diverges from the original training
data, and the environment undergoes rapid changes [12].
Fig. 1 depicts our experimental investigations on data drift,
encompassing training and testing multiple DNNs on diverse
datasets such as Urban Traffic [12], [97], 3D Point Cloud [14],
[24], and audio [78]. The similar trends across these results
highlight the impact of varying time windows and encounter-
ing diverse scene changes, leading to degradation in network
accuracy by up to 30%. These findings underscore the critical
challenge posed by data drift and the need for continuous
learning on edge servers.

Continuous Learning at the Edge: Continuous learning,
wherein the model continually learns from new samples over
time, adapting to seen and previously unseen classes, has
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Fig. 1: Data drift on different data modalities. Sampling
window size: 4hours for video, 20 minutes for audio for
urban traffic video and audio data. l1hour for 3D Point Cloud
simulated data. [SM:Small Model (smaller model or larger
model pruned and quantized using energy aware pruning [102]
and NetAdapat [103]), LM:Large Model (no pruning or quan-
tization), SMR:Small Model with Retraining].

emerged as a preferred approach to mitigate data drift [20],
[44], [50], [74]. The temporal locality of (video like) data has
shown models to effectively learn from recent data. Although,
multiple task-dedicated models are typically deployed to
enhance accuracy and reduce sampling bias [70], particularly
in scenarios like traffic monitoring, where different time
periods exhibit distinct traffic patterns, they are not immune
to data drift. As depicted in Fig. 1, our experiments, on
different modalities, shows the accuracy degradation due to
data drift. Specifically focuing on video data, we observe
that: using quantized MobileNet-v2 (14M paramters, 71.3%
accuracy) as the small model and ResNet-101 (171M
parameters, 76.4% accuracy) as the large model, the accuracy
of the smaller model has degraded > 20% over 5 sampling
windows (of 4 hours each), where as the effect is minimal
in the larger model. However, with a proper retraining, the
smaller model could keep up with the original accuracy. We
also observe a similar trend over other modalities, making the
importance of continuous learning clear for multiple domains.
However, in a continuous learning paradigm, training be-
comes an essential, repeatedly scheduled task whose computa-
tional and time costs cannot be considered a one-time overhead
freely delegated to the cloud. A recent work, Ekya [12],
has demonstrated that edge servers equipped with GPUs are
capable of performing the necessary tasks for continuous
learning within their form-factor-imposed resource constraints,
provided that those resources are intelligently managed.
Sustainable Continuous Learning at the Edge: Even given
such advancements in continuous learning on edge servers,
provisioning training resources at the edge for every sensing-
to-analytics application entails sustainability questions. For ex-
ample, a popular AWS outpost, a gd4dn.12xlarge instance [83],
consists of a 24 core Intel Xeon CPU (150W TDP) [71]
with 192GB of memory and 4 NVIDIA T4 (with tensor
cores, 70W TDP) [65] with 64GB GPU memory. A standard
offering with 2 x g4dn.12xlarge instances need 4kW power [7]
(the compute units have a TDP of ~ 1kW [65], [71]) for
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performing analytics. With state-of-the-art learning APIs [60]
and intelligent co-location and scheduling of inference and
continuous learning [12], these edge servers can support about
8 videos streams [12], resulting in ~ 120W (just for compute)
per video stream. Scaling this to crowded cities with 30-
50+kilo-cameras like Beverly Hills (> 35k [11]), Los Angeles
(= 35k [92]), New York (=56k [92]), or Chicago (~30k)
will need a lot of power. In fact, it will take >3Million
cameras (assuming ~9 cameras/1000 people, similar to LA,
and scaled to US population) to just enable autonomous urban
mobility in the USA, which may consume 360MW power
(1296GWh energy, 0.03% of US power) for video analytics
alone. Clearly, the current solution is not sustainable, neither
in terms of the load on the power grid, nor in terms of
the CO, footprint (1.1x10Ibs); reducing the power budget
for continuous learning is essential, as the carbon footprint
of DNN training has emerged as a prominent concern [21],
[57], [67], [89], demanding careful consideration as a primary
design metric.

Although green data centers [58], [59] provide partial mit-
igation, they fail to address data privacy and communication
bandwidth challenges in the current context. Similarly, other
applications with diverse data modalities, such as LiDAR
and Camera for autonomous driving, IMU, bio-sensors, and
Speech for 10T, face similar issues. Thus, attaining a sustain-
able solution for privacy-preserving, distributed continuous
learning remains an ongoing pursuit.

Exploiting Intermittent Computing: An obvious solution to
the power problem is to run the training in a self-sustained
way, i.e., without depending on the power grid and by relying
on a renewable energy source like solar power; opportunities
for harvesting renewables naturally scale alongside a greater
number of deployment locations and solar power, even though
not always available, is in abundance. In the United States, a
typical 12% efficient solar panel [91], can provide an annual
average of 50W /m2 — 150w/ m? of power [64]. Furthermore,
solar power has reasonably predictability characteristics. Typ-
ically, inference tasks have significantly less compute time
and power requirement, and commercial off the shelf devices,
like edgeTPU [19] can perform object detection using the
aforementioned compressed models at a reasonable frame rate
(at times > 71fps). Therefore, designing a training platform
to perform continuous learning with the intermittent solar
power and within the typical harvested budget would be the
best solution. The power sustainability consequently reduces
the cost of deployment as the publicly available edge server,
like AWS outpost offering (one of the cheaper and lower
power consuming ones) for performing edge inference costs
$5,134.92/month [83].

Our Approach (and its Novelty): Usds introduces several
novel contributions in the domain of sustainable continuous
learning at edge servers using harvested energy, setting it apart
from prior works examining on-edge learning.

Battery-Free Operation: A key highlight of Usds lies in its
battery-free operation, which aligns with the current global
push for sustainable computing. The scaling up via mil-
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lions of additional battery-supported analytics platforms would
introduce severe environmental challenges due to resource
extraction, production, and replacement of batteries [3], [5],
[10], [13], [53], [66], [69]. By demonstrating the viability of a
battery-less edge server for video analytics, Usds spearheads
the adoption of similarly sustainable systems for other do-
mains. While the initial scope is limited to urban mobility
applications, the concept’s adaptability extends to various
domains, including autonomous driving, smart industries, and
remote sensing: Section V-D performs an initial exploration
of how techniques from Usds will apply to other domains.
Algorithmic Advancements: Usds extends the frontier of rep-
resentation learning for continuous learning by implementing
it at a large scale and addressing related challenges. Prior
works relied on supervised learning or K-means clustering, un-
suitable for Usds due to its need for unsupervised data annota-
tion and the inability to handle large-scale datasets with numer-
ous classes. To overcome these limitations, Usds employs an
ensembled teacher-student method, wherein multiple teachers
annotate student data. A hierarchical K-means+ (or DBSCAN)
clustering approach learns representations for exemplar se-
lection. Additionally, a novel power-aware micro-profiling
policy is adapted to determine optimal hyper-parameters for
a variable-power environment. The robust exemplar selection
and micro-profiling mechanisms are discussed and evaluated
in §III-B and §III-C, respectively.

Hardware Innovation: Usds embraces the intermittency en-
tailed by harvesting and advocates for hardware adaptation
(resizing) to efficiently manage variable power income and
avoid power emergencies. While previous works have de-
signed energy-efficient training hardware with support for
variable precision training, none have adapted to variable
energy income. Usds optimizes the entire solution space,
maximizing hardware reuse for exemplar selection and micro-
profiling while addressing the training task. The system can
turn off individual compute-tiles to accommodate runtime
power variability (see §IV-B) and enable seamless operation
during power reductions.

Overall, Usds demonstrates the viability of sustainable con-
tinuous learning at edge servers, encompassing advancements
in energy harvesting, algorithmic techniques, and hardware
adaptation.

III. CONTINUOUS LEARNING

The first step to any data-driven learning algorithm is data
collection and annotation. Since Usds is a continuous learning
framework and learns from the live data that the camera(s)
capture, data collection is simply storing the live video feed.
However, data annotation or labeling is more challenging.
Classically, once data is collected, it is classified, labeled, and
bounded by borders (bounding box) mostly using manual labor
(at times with software assistance) or crowd sourcing [33],
[82], [88]. This requires the data to be present at a central
location for manual inspection, both of which are not possible
because of communication and privacy constraints. Therefore,
we adapt a “student-teacher paradigm” [46], where a more
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Fig. 2: Auto-labeling in Usds: Select frames only with low
confidence as they might contain potentially new information,
and use ensemble learning to improve the labeling.

general, robust and larger model (typically with hundreds of
millions of parameters [43], [99]) helps in annotating the
data. However, because of the heavy compute requirements,
the teacher model runs with a much slower frame rate and
annotates only some (important) frames. There has been a
significant body of work on frame similarity and saliency [45],
[84], [101], [105], [107], [108], and those details remain
beyond the scope of this work.

A. Data Annotation

Picking the Important Ones: Typically, edge models are ca-
pable of inferring at the frame rate of the camera (at times,
30fps to 60fps) [19]. However, the teacher model used to
label the incoming data cannot match this in a resource-
constrained environment where performing training is going
to be even more resource consuming. Therefore, we employ
an intelligent “data sampling mechanism” to select the frames
that might contain new information and a potential candidate
for learning. Fig. 2 shows the different components of the
student-teacher data annotation model adapted in Usds, where
the edge model is the “student” (continuously retrained),
and larger models are the “teachers” (the ones teaching the
student about what-is-what). The students models are typically
optimized for edge, i.e. with optimizations like quantization,
pruning etc. or by developing an application specific model
from scratch along with the said optimizations. These student
models, thanks to their lack of robustness (which is often,
but not always, related to the smaller footprint they have, and
thereby lacking the parameter space to generalize better), are
susceptible to data drift and hence are continuously retrained.
However, the teacher models are typically large, and with
a wide parameter space can generalize the learning process
better than the students. These teacher models are often factory
trained. As they are less prone to drift, they need occasional
updates. For each sampled frame, the classification results and
the confidence matrix (output of the last layer) are sent for
annotation. If the student (or the edge model) is confident
about the classification (e.g. a clear frame with no new objects,
or a frame similar to one of the training samples), then that
frame is discarded as it potentially contains little to no new
information. However, if the student is not confident on the
classification, the frame is then saved as a potential exemplar
(we will further refine this in §11I-B). The potential exemplars
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Fig. 3: Distribution of different classes on a typical traffic
pattern and the impact of training on the sampling bias. The
“appeared line represents the percentage of the frames in
which the corresponding class is present, e.g. Fire hydrant,
in the taken scene, is present in 100% of the frames. Incorrect
exemplar selection might lead to non-IID training data distri-
bution, leading to catastrophic forgetting or over-fitting.

are then further refined and classified by the teacher models. To
improve the confidence of the teacher models, we employ an
ensemble learning based weighted majority voting policy [28].
Each of the teacher models infers on the exemplar frame.
Furthermore, each teacher model has its private confidence
matrix on different object classes. This confidence matrix
serves as a weight for performing the ensemble of multiple
teachers, and helps exploiting the expertise of each of the
teacher models for each of the individual classes, significantly
boosting the accuracy and robustness of the data annotation.
This maximizes the accuracy of the teacher, and consequently
minimizes the chance of the student model learning wrong
labels. Note that the limited parameters of the student make it
more sensitive to data fidelity and hence ensuring an accurate
data labeling is very important for end to end classification
accuracy. The impact of wrong labeling is discussed in §V.
The Problem: However, this exemplar section mechanism has
an inherent flaw. Consider a traffic camera looking at a busy
street with a traffic signal. Due to the traffic distribution (e.g.,
more cars than buses), the camera typically sees a varied
distribution of different classes, which might reflect in the
exemplar set. Moreover, some static objects (traffic light, stop
sign, etc.) might be present in all frames. This creates a
sampling “bias” [70] while performing the training, and often
leads to catastrophic forgetting. Fig. 3 shows a typical traffic
distribution from Urban Traffic data [97]) and the impact of
sampling bias on class distribution. Note that, as some of the
classes (e.g., bicycles) are barely present in the exemplar,
the model tend to lose accuracy (because of catastrophic
forgetting) on them, whereas the model rapidly over-fits for
the classes with more examples (e.g., traffic light).

B. Proper Exemplar Selection

To tackle the sampling bias [70], we adapt a representation
learning [74] framework for designing the proper exemplar
selection. The fundamental issue with the previous approach
is the inability to select correct numbers of IID data for
training. In addition to that, just DNN training cannot learn
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new classes if there is no way to annotate and label new
classes. Representation learning solves both these issues.

The learner (here the teacher models) need to properly
classify the data, learn if the data is a new type of one of
the older classes, and identify if it encounters a new class.
We achieve this by clustering the feature vector of the Large
DNN model. Fundamentally, we use the larger DNN models as
feature extractors which turn the data into a feature vector. In
the original training phase, these feature vectors are separated
using K-means [74] or other clustering. The cluster centers for
each data (u, for class y) are calculated as 1, = ,%)_ Yoep, ®(p),
where P, is the number of samples belonging to class (or
cluster y), and @ is the feature extraction function working
on the data p. These clusters represent the classes in the high
dimensional feature space. When the classifier sees new data
(x), it calculates its distance from all the cluster centers as
y* =miny—;_,||®(x) — py||. There are three cases:

Case-1: If the data is close to one of the cluster centers and
belongs to its cluster boundary, then it falls into the bucket
of that particular class. This typically happens if the data are
very similar to the training samples.

Case-2: If the data belongs to a known class, but is signif-
icantly different from the training samples, it falls not too
far from one of the clusters. This distance of the new data
from the cluster center is called the “distillation loss” [74]. An
encounter of a new example of the existing class is followed
by an update to the clustering by minimizing the classification
loss of the newly-seen data.

Case-3: Finally, if the classifier sees an example of a new
class then the feature vector of the data sits far from all
the cluster centers indicating an unknown class. The distance
of this feature vector from the other cluster center is called
“classification loss” [74], and this re-triggers clustering with
an updated number of clusters.

Over multiple time windows, the representation learner
goes through all the possible exemplars selected by using
the confidence matrix and creates an exemplar set with same
number of examples from each possible class. Since we
have multiple teacher models, each of them contributes to
the exemplar set, making it robust and removing bias. To
efficiently implement the exemplar selection algorithm, Usds
implements the major portions using “custom hardware” (dis-
cussed in §IV-A). The annotations on the new exemplar set
created by the representation learner is compared against the
confidence matrix of the edge model to calculate the “drift”.
Consequently, this exemplar set becomes the training data for
the continuous learning, which consequently minimizes the
drift. Once the student model is trained with the exemplar
set, the data is discarded and the feature space for the teacher
models is updated. By doing this, Usds keeps both the student
and the teacher models “updated.” Since the feature space
of the teacher model is updated using K-means+, the major
computation is the training of the student model using the
exemplar data. Although efficient hardware accelerators [16],
[27], [80] have been developed to do the same, these ac-
celerators are typically designed with a “throughput-first”
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approach and are neither configured nor capable of operating
with an intermittent power source. Deploying sufficient battery
resources to allow intermittency-unaware designs to operate on
solar power is neither efficient nor sustainable.

C. Hyperparameters: The Right Way to Learn

After finalizing the training set for continuous learning,
the next challenge is to learn within the power and time
budget. Given enough time even naive low power hardware
can finish training, but will have longer periods where the
drift is exposed. A more preferable solution is to get rid
of drift as quickly as possible, i.e. finish training on the
exemplars (described in §III-B) as soon as possible and also
reach the desired accuracy — but to do this within the harvested
budget. Prior works [34], [48], [68] suggest that selecting
the right hyper-parameters (like batch size, learning rate,
number of layers to train etc.) have a huge impact on the
convergence and accuracy of the models. For each edge servers
to handle multiple steams with multiple drifts, we need to
jointly optimize the hyper-parameters for maximizing accuracy
with minimum power and resource budget.

To achieve this, we design a “micro-profiler” that can look
into the drift of the models as well as the power availability
and decide the right hyperparameters to train the models.
Prior works [12], [38], [68] have designed hyperparameter
micro-profilers. However, they never considered an intermit-
tent power source, nor explored jointly optimizing multiple
models with power, accuracy and latency constraints. Further-
more, each model might contribute differently to the overall
accuracy. Observing this, we propose a “weighted accuracy
metric”’, where the weight of each of the model is a function of
the accuracy, time needed and power availability. Furthermore,
we allow some slack to the weighted accuracy so that the
optimizer can choose a better set of hyperparameters if we
can reach close to the weighted accuracy with much lower
resource (power or compute) consumption. Typically, there
is an inverse correlation of the convergence of the stochastic
gradient descent (SGD) algorithm, the most popular training
algorithm for DNNs, over the number of iterations (n;) [68]:
le< O(1/n;) and | = m+ﬁ2, where [ is the loss of
the SGD and f§; is an non-negative real number. Therefore,
by running a few iterations of the SGD algorithms with
various other hyperparameters, we can easily predict the con-
vergence of the models. Note that this needs to be done every
time one of the constraints (accuracy, power etc.) changes.
The micro-profiler optimizes the weighted accuracy (A, =
%/ZWi;Vi < #models;W; = f(time,drift,compute) with a
user-defined slack value of 8), with respect to available power
(P,y): maxA,; s.t.P < P,,.

Energy Buffering and Power-Predictor: To regulate, manage
and ensure a stable power supply to the circuitry, Usds uses a
super-capacitor assisted voltage regulation circuit. To properly
model the energy harvesting, losses during conversion, and
leakage, we built a rectification circuit with 4 x 5.5V, 2.2F
super-capacitors connected in parallel to a voltage regulator
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circuit. The harvested power is given as an input to a mov-
ing average power predictor [61], [72] to predict the future
available power. Note that the power predictors used in prior
works are meant for fickle energy harvesting scenarios like
piezoelectric (movement), or RF (WiFi). We have adjusted
the time window size. We took a history (years 2019 and
2020; from Seattle, WA; Sterling, VA; and Oak Ridge, TN)
of solar energy traces from SOLRAD [25], [91] and built
a weight matrix which looks into a window of 1 hour at
1 minute (average power) intervals to predict the power for
next 10 minutes (1 minute granularity). We use regression to
find the weights (exponents and coefficients) to the prediction
curve followed by exponential smoothing to decay the weights.
The rate of exponential smoothing depends on the scheduler
used - while for the conservative scheduler the predictor
always underestimated the power (shallow smoothing), the
eager scheduling uses the direct output of the predictor (steeper
smoothing). In either case, the predictor predicts the power
with ~ 95% (peak of 98.72 (with real solar power trace) and
minimum of 89.14 (with synthetic power trace) accuracy. The
micro-profiler, having run multiple sweeps, returns a set of
hyper-parameters (F/;) for each model which is then stored in
a history table. This helps us avoid unnecessary profiling (up to
41%). When introduced to a new set of constraints (change of
power availability, accuracy etc.), the micro-profiler first looks
in the history table to find a configuration and runs profiling
if and only if it could not find one.

IV. THE MORPHABLE HARDWARE

Why Not Commercial GP-GPUs? DNN training is mas-
sively parallel, fairly compute intensive, time consuming, and
needs a lot of (albeit structured) data movements [16], [37].
Therefore, GP-GPUs have classically been used to train DNN
models. However, as mentioned in §I, the commercial GPUs
used for DNN training are typically power hungry ( typically
in 100s of Watts TDP; We exprimented with multiple GPUs,
server class A6000: 300W TDP, server class A100: 250W —
400W TDP, client class TRX3090: 350W TDP, and client class
T4: 70W TDP), and are not equipped to handle intermittent
power emergencies. However, these GPUs are often equipped
with dynamic voltage and frequency scaling (DVFES). 2 To un-
derstand the impact of DVFS on energy savings and dynamic
compute scaling, we implemented a simple multi-arm bandit
algorithm to select the right bucket of compute frequencies
(SM frequency for NVIDIA GPUs), and memory frequencies
to match the power-demands of the intermittent solar source.
As shown in Fig. 4 even with DVFS, commercial off the
shelf GPUs could only finish < 50% of the scheduled training
task. However, hardware is not the only limitation, as even
with custom hardware [16] enabled with the state-of-the-art
continuous learning algorithm [12] could only finish ~ 75%

2NVIDIA provides the list of supported clocks through the API
“nvidia--smi --gq --d SUPPORTED_CLOCKS”; We did not creport
the results from A100 for this, as it does not offer multiple memory clocks,
significantly impacting its DVFS capabilities. T4, thanks to its limited compute
capabilities, could not finish training tasks on time.
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of the scheduled training without any intermittency support.
It is clear that we can neither use the commercial GPUs nor
rely on the standard software and algorithmic approach for
intermittent training purpose as they cannot finish the compute
given the intermittent power budget.
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Fig. 4: Impact of DVFS on completion (average power budget
70W). Note that, even with DVFES, most scheduled compute
could not be finished. This includes the intermittent failures
(<20W where no compute could be done); we included check-
pointing to ensure that progress is saved in power-failures. C/S
is the ratio of Completed over the Scheduled training tasks
over multiple time windows of 4hours. Our custom HW runs
with intermittent support both by hardware and software.

There have also been significant efforts in designing and
optimizing specialized DNN training accelerators [16], [27],
[81], and many commercial organizations have already devel-
oped their own accelerators [37], [95] as well. Considering the
compute mapping of the DNN training, almost all of these de-
signs are based on a “systolic architecture”, performing chains
of multiplication and accumulations (MACs). However, these
devices take a “throughput-first” approach, to minimize the
time consumption and seldom optimize power consumption
first. This has lead to a global concern of the energy and
consequently carbon-footprint of the DNN training [21], [57],
[67], [89]. Furthermore, these accelerators have been designed
to operate under constantly available power. Although our pro-
posed representation learning (§1I1) and micro-profiler (§II1-C)
help us find a better training configuration that can minimize
the compute if deployed in the aforementioned accelerators,
it does not solve sustainability: That is, with variable solar
power, can we scale compute alongside power to continue
to make “forward progress”, even when minimum amount of
power is available. The systolic array structure of the DNN
accelerators is well suited for this as we can change the com-
pute size, as well as the number of memory channels feeding
to those compute units as per the power availability. However,
we need to be innovative in terms of designing and placing
the compute hierarchy to ensure minimum data movement and
re-computations when compute scaling. The hardware design
of Usds (Fig. 5a) incorporates all the aforementioned points.
Note that, Usds introduces a design philosophy for building a
morphable hardware, and it can easily be adapted by any of
the systolic array based commercial off the shelf (or research
prototype) DNN training accelerators.

DNN Compute Mapping: Typically there are three ways of
mapping DNN compute into a systolic array, namely, 1. output
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Fig. 5: Overall architecture with the components and the power
failure handle sequence of Usds.

stationary; 2. input stationary; and 3. weight stationary [79].
Most large-scale accelerators use the output stationary imple-
mentations to minimize the output feature map movement [81],
and some of available hardware even supports multiple types
of mappings [15], [37]. However, our design objective is to
minimize data movements in the case of compute reconfigura-
tion. In an output stationary mapping, both input and weights
are dynamic and any power failure or reconfiguration will
need to save and restore a lot of current context (partial sums,
indices of weights and inputs etc.) to resume and remap the
compute. This problem reduces in both input stationary and
weight stationary, but at the cost of throughput [80]. Typically,
the input feature maps are larger than the (individual) weights,
and more importantly large weights can easily be represented
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Fig. 6: Weight stationary compute mapping. The PE-level
shows how the input flows and the convolutions are computed
with a 3x3 convolution toy example. The tile-level shows how
each tile consists of multiple such PEs and will be working
on one kernel at a time. The accelerator-level shows that the
entire accelerator is made of multiple such tiles (4x4 in the
toy example). Inputs are broadcast into each tile so that each
tile can work on a kernel. Computation is redistributed when
there is a change in the power availability, and multiple tiles
are shutdown (redacted) without impacting the data flow.

or decomposed as multiple units called “kernels” (or “filters”).
In a typical convolutional neural network (CNN), each kernel
is convoluted over the entire input feature map, and hence there
is an “inter-kernel parallelism” (all kernels of a single layer
can be executed in parallel) and “intra-kernel parallelism”
(multiple computes in a convolution can happen in parallel).
This property is true both for the forward pass and the
backward pass of the standard CNN training. The modular
nature of the weight stationary mapping makes it a strong
candidate for use in a re-configurable or morphable systolic
structure as turning off some compute is the same as not
computing a kernel and scheduling it for later. Therefore, Usds
employs a weight stationary compute mapping for executing
the training tasks on the morphable hardware.

A. Design Description of the DNN Hardware Augmentations

Compute Mapping: Fig. 5a shows the high level design,
architecture and different components present in our proposed
accelerator. The accelerator encompasses 256 tiles, structured
in a 4 x 4 configuration of 16 super-tiles, each harboring 4 x 4
tiles. These super-tiles Each tile, individually switchable ON
or OFF based on power availability, houses 64 16-bit floating
point MAC units configured in an 8 x 8 systolic array for
convolution operations. A modular computational approach is
adopted where each tile is accountable for one CNN kernel,
necessitating [[C x H x W]/64] iterations for a kernel of size
[C x H x W]. Data streaming and partial compute storage are
facilitated by four double buffered SRAM structures, with the
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weights residing in a double buffered multi-banked SRAM.
The filter SRAM has 256 banks (one per tile), each with
a size of 1kB (double buffered, 512B per buffer per bank).
Input data broadcast to all tiles is managed by a 64kB double-
buffered input feature map SRAM (32kB each), requiring
[[X xY x Z]/1024] iterations for full input loading, with each
buffer loaded [X x ¥ x Z]/2048 times. The convolution map
transforms [X X Y x Z] MxC el [M xU xV] to yield an
output tensor of dimensions [M x U x V], supported by a
256 banked double buffered output feature map SRAM, each
bank of size 8kB (4kB/buffer). A 128kB SRAM serves as a
scratchpad for storing activations, transposes, and intermediate
differentials during the backward pass. The accelerator also
houses 256 x 256 compactor-mux combinational logic units
(256 units per tile) for ReLU activation (forward pass) and
inverse activation (backward pass). For smaller DNNs without
256 kernels in any layer, a batching mode is operational with
a batch size of B= |A/L| images, where L denotes the layer
with the fewest channels, and A the number of active tiles.
This generic design is adaptable for various workloads.

In DNN training, meticulous compute mapping, mem-
ory access strategies, and operational formulas are instru-
mental for the forward and backward passes. The for-
ward pass computes activations via the formula A, =
Z‘f,:_ol i 6] Z})-V:_Ol X(uri)(v+j)c - Kmije, with results stored in the
double-buffered output feature map SRAM. The backward
pass emphasizes gradient computation through backpropaga-
tion, which is crucial for weight updates. The gradient of
the loss function concerning the weights is computed through
the formula 91?51-,-0 = ):3;01 ZL:OI #jw “X(uti)(v+j)e- This gra-
dient computation, fundamental for learning, is meticulously
mapped across the systolic array, ensuring precise and efficient
backpropagation. Memory accesses are optimally managed via
the double-buffered SRAM structures, providing timely data
availability for the MAC units. The 8 x 8 systolic array in each
tile executes multiply-accumulate operations in a pipelined and
parallel fashion, abiding by the Weight Stationary approach,
thereby optimizing the throughput and efficiency of the train-
ing operations within this hardware architecture.

Power Control Logic: Power emergency prediction in Usds
is always conservative, and the solar power predictor has a
mean accuracy of 92%, limiting false positives and helping the
control unit select appropriate tile counts. The system needs
at least 512 cycles of advanced notice to flush compute and
enable a compute migration. Fig. 5a shows the block diagram
of the mesh interconnect, and Fig. 5b shows the power-down
sequence and signal states. The network works at a super-tile
(STile) granularity and each arbiter node uses an 8x8 priority-
mux. The network only gets activated when it gets a w-pdown
warning signal from the predictor. This signal starts a graceful
power-down sequence for the required number of tiles. The
w-pdown triggers the backup signal and the system goes into
pwr-warning state (other states being on, off, invalid and X).
In the pwr-warning phase the system finishes the remaining
compute of the systolic arrays (which can take up to 64 cycles),
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and starts flushing the results for backup.

Buffer Management: Usds uses non-volatile state buffers
(NVSBs, 18 count, 1 per 4x4 tiles, each of 1kB, and 2 of
4kB each) for state saving and data backup. The control logic
prioritizes writing data into the local NVSB for the arbiter
(each arbiter caters to 2 STiles). If those get full because
of continuous power failures, the control directs the data to
the global NVSBS (NVSB-NW and NVSB-SE in Fig. 5a).
The NVSB stores the global/asynchronous work queue and
the shuffling configuration (mini-batch arrangement).

B. Power Failure and Compute Scheduling

Central to the Usds accelerator’s operational efficiency is
the work queue—an intricately designed, hierarchical structure
that meticulously catalogues pending computational tasks.
Each task, represented in the queue, corresponds to the execu-
tion of specific CNN kernels, feature tiles and operations. As
deep neural network models often have a complex interplay of
layers, each with distinct computational needs, the work queue
ensures a systematic, prioritized approach to handle these oper-
ations. Two distinct scheduling strategies, each complemented
by its own type of work queue, govern the computational
flow: Conservative Scheduling and Eager Scheduling. The
dual-scheduling mechanism, bolstered by the work queue’s
flexible architecture, not only optimizes compute performance
but also offers resilience against power uncertainties. The
work queue schedule, intermediate result, network and layer
information are saved on predicted power failure, and data
from the DRAM (the working set of IF/OF/filter and model
state) are moved to an NV-RAM using STT-RAM based
buffers in the memory hierarchy (parallel to the IF/OF/filter).
We do not replace the DRAM buffers with NVM because
of limited lifetimes [17]. The host writes the latest copy of
the completed iteration (in epoch granularity) into the STT-
RAMs (STT-RAM-N for the upper 128 SAs, and STT-RAM-
S for the lower 128SAs, Fig. 5a). In case of a complete
power failure, the compute in flight are rejected and, once the
system starts working, the work queues get invalidated and the
host starts the compute again from the last checkpoint. Along
with that, the most common intermittent software libraries and
software designs [26], [52] (and most DNN training libraries
like PyTorch, TensorFlow) also offer periodic checkpoints.
Note that the power-up sequence for a tile runs in the exact
opposite order of the powerdown sequence (a tile becomes
computationally active 512 cycles after it gets the power up
signal). Usds uses two kinds of scheduling policies to handle
the graceful powerdown and work queue rearrangement.
Conservative Scheduling: The most important part of the
Usds accelerator design is to ensure proper “‘compute place-
ment” even under a power emergency or power scaling.
Fig. 6:Accelerator level provides a high-level overview of
the compute scheduling (where the redacted part of the hard-
ware is turned off because of the lack of power). The key
components of the scheduler are the “moving average power
predictor” and the “micro-profiler”. In the i kernel scheduling
iteration, given the power budget and power prediction, the
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micro-profiler decides the required training configuration, and
the control logic (conservatively) enables suitable number of
tiles (say #; tiles of the 256 tiles). Those ¢#; tiles fetch ;
unique kernels from the 1Byte wide, 256 deep global kernel
dispatch queue (GKDQ, #; kernels scheduled in parallel ). Note
that the power requirement of each tile is known in advance
(please refer to §V, TABLE I for details). Once the scheduled
(t;) tiles are completed, the micro-profiler again finds the
right configuration for the i+ 17" iteration and the scheduler
again conservatively enables #;11 number of tiles suitable for
the power budget. The 7, tiles fetch the next 7;;; kernels
from the GKDQ and the process continues. This conservative
compute and power estimation ensures that none of the kernel
computes (the lowest decomposed level of compute unit for
the hardware) ever fails and hence there is no need for any
partial data movement. The GKDQ always points to the next
available kernel location. The control fetches the right number
of kernels and all of them are synchronously executed in the
active tiles.

Eager Scheduling: A weight stationary implementation with
a conservative scheduling will always run synchronously.
However, in the middle of an kernel execution iteration, if the
hardware gains access to more power which in turn can enable
more tiles, it cannot do so without breaking synchrony (i.e.
when some of the tiles are half way through the compute, some
other tiles can just start execution). Facilitating such schedul-
ing will provide us less idle time, more forward progress and
more efficient use of the incoming power but at the expense
of more control overheads. We call this Eager Scheduling. To
enable eager scheduling, we decentralized the global kernel
dispatch queue and equipped each tile with a local kernel
dispatch queue (1Byte wide 16 deep). At the beginning of
each kernel scheduling iteration, the micro-profiler decides the
right configuration, and the control distributes equal number
of kernels to each active tile (given A active kernel, and K
total kernels, each tile gets |K/A]| kernels to execute). The
conservative scheduler ensures that no tile loses power before
finishing the current scheduled kernel. However, in the middle
of the execution if any new tiles becomes alive (because of
an increase in harvested power), the scheduler immediately
marks it ready to start working and the tile fetches a kernel
(currently not scheduled in any of the tiles) and starts working
on it. We face three issues here: 1. How does the new tile get
any kernel to work on? 2. Over multiple iterations of such
asynchronous scheduling, the kernel queue for each tile will
be of different size creating a load imbalance; how to tackle
this? 3. How do we know when to stop executing?

To address the first two issues, we developed a work-stealing
mechanism for each tile. When any of the active tiles are
marked ready by the scheduler, the tile employees a state
machine to decide where to get work from. Each time the
tile finishes some work, if its remaining work queue (the local
work queue size) is less than the average of all other active
tiles, it seeks a new kernel to work on. Considering the global
control always enqueues any idle tile with work, whenever
the tile has no work left, it steals a kernel from the most
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heavily loaded tiles. We implemented a counter (local kernel
counter) to keep track of the size of the remaining local work
queue of each of the tile. We also implemented a counter
(layer kernel counter) which keeps track of the total kernels
to be scheduled for each layer. Whenever all the local work
queue counter hits zero along with the layer kernel counter,
the control moves to schedule the next layer (or previous layer
in backward propagation) for computation.

Note that we do not delve into the details of the computa-
tional primitives involved in training the DNN as several prior
works [15], [16], [80] provide a very detailed accounting of it
(for both forward and backward pass) along with the hardware
and control requirements. We treat the convolution scheduling
(using input stationary and at a kernel level) in a morphable
systolic hardware to be the main challenge and explain it.

V. IMPLEMENTATION AND EVALUATION

We focus our evaluation on urban mobility, i.e. performing

single shot object detection for traffic monitoring using the
MobileNetV2 [51] model on the urban traffic data set [97].
This is a traffic video dataset containing 62GB of videos
recorded from five pole-mounted fish-eye cameras in the city
of Bellevue, WA, USA. Each video stream is recorded with
a resolution of 1280 x 720 at 30fps. This contains a total of
101 hour of video across all cameras of which 30 hours of
video is used to fine-tune the teacher models and the rest 71
hours of data is used to evaluate our continuous learning so-
lution. For annotating the incoming video stream we use three
teachers models, namely, ResNet101 [32], YOLOV2 [22], and
VGG16 [87]. For sustainability, we use solar power to perform
our compute. Since our dataset is from Bellevue, WA, we
took the SOLRAD solar radiation data [25] (managed and
published by National Oceanic and Atmospheric Administra-
tion, NOAA) of Seattle, WA (the SOLRAD center closest to
Bellevue and hence we believe is a good approximation). In
our experiments we assume the hardware to be powered by
a solar panel of one square-meter, and the powers are scaled
accordingly (data is available as W /m?). Finally, we assume
the exact same setup of the Urban traffic dataset and hence
have 5 different MobileNetV2 models trying to classify the
traffic they are facing, and learning from the streaming data.
We vary the training intervals to see the effect of frequency
of retraining.
Existing Approaches: Although there has been significant re-
search [40], [41], [47], [52], [56], [61], [72], [104] on enabling
machine learning in intermittently powered devices, a major-
ity of it focuses on performing inference. Only intermittent
learning [47] focuses on performing on-device training, but
with very small workloads and models. Considering the scale,
scope and workload of our problem, limits direct comparisons,
except for comparing their exemplar selection method (refer
Fig. 9). Similarly, Ekya [12] only focuses on co-location of
computation, and it’s efficiency on finishing compute even on
custom hardware is shown in Fig. 4.
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Fig. 7: Accuracy boost due to proper exemplar selection over
8 hours of time window. Labels: MN — MobileNet-V2, BL —
Baseline, Teacher — the ensemble of teacher models, MN—#:

targeted MobileNet-V2 model for the particular time of day.

A. Continuous Learning: Accuracy

Fig. 7 shows the accuracy improvement over a time window
of 8 hours by using the continuous learning algorithm. We
compare against a baseline using naive continuous learning
algorithm with no representation learning. In contrast, Usds
uses a 2 level exemplar selection algorithm (one using the
confidence matrix, and then further refined by the representa-
tion learning). We observe that, with representation learning,
Usds is ~4.94% (maximum =~8.03%, and minimum ~2.62%)
more accurate than the naive learner. Further, Usds converges
closer to the accuracy of the teacher model. This was possible
by restricting the training space and by using the superior
exemplar set construction by using representation learning.

Fig. 8 shows the impact of micro-profiling on the hyper
parameter selection. Due to the drift- and weighted accuracy-
aware micro-profiler, the suggested configuration is almost
every time the same as an oracular selection. Fig. 8a shows
the number of layers trained for a DNN, in contrast to the
ideal number of layers to achieve maximum accuracy. Over 10
training iterations, we observed the micro-profiler to be con-
sistent with the oracle (except for one case of iteration 7). Note
that the hyperparameter selected in iteration 7 by the micro-
profiler performs as good as the the oracle model in terms of
achieving accuracy, albeit by performing more computation. A
deep dive into 7" iteration reveals that the micro-profiler chose
a higher learning rate (compared to the oracle), which biased
the convergence curve fitting and extrapolation (as discussed
in §II1-C) and hence suggested a larger number of layers to
be trained to achieve the required convergence. Similarly, the
micro-profiler shows consistent behaviour while choosing the
right number of batches. Fig. 8b also shows the error rate of
retraining performed by choosing the hyperparameters given
by the micro-profiler vs an oracle selection. Observation over
40 hours of continuous learning on the dataset suggest that
the micro-profiler has, on average, an accuracy deviation of
2.46%, compared to an oracle parameter selection. Along with
that, the micro-profiler selects correct batch size 82.64% of the
time and the correct number of layers for 87.06% of the time.

B. Impact on Exemplar Selection

Usds benefits from the use of multiple teacher models
for data annotation and exemplar selection. Prior works on
intermittent learning have either chosen one teacher model
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Fig. 8: Algorithmic performance of Usds: the benifits of the
exemplar selection and p-profiler.

Component Spec Power Area(mm*)
SRAM Buffers 1kB*256+8kB*256+64kB+16%256kB | 10.372W 117.164
MAC Unit (8*8)*256 8.46W 3272
Adder Tree and Comparator 16*16bit + 256 2.4W 21.556
Control - 0.96W 122
Host ~Cortex A78 series 1TW —
Design at 592MHz with Synopsys AED 32nm library
Total I 256 tiles [ 33.192W | 183.64

TABLE I: Area and power estimation of our design.

(e.g. Ekya [12] using ResNeXt101) to annotate the data or
used a heuristic on top of the teacher model (e.g. intermittent
learning [47] using randomized selection, K-Last List, or
round-robin policy). As shown in Fig. 9, a single teacher,
even with the augmented heuristics, typically fails to select the
right exemplar set. The exemplar set significantly impacts the
accuracy in two ways: 1. missing valid exemplars will result
in the student model missing out in learning vital information,
increasing its drift, and 2. a wrong annotation by the teacher
can also result in the student learning wrong labels, resulting in
increased mis-predictions. To avoid this, in Usds, the teacher
models perform majority voting to decide the right exemplar,
which significantly reduces false positives and true negatives
(refer to the top bar in Fig. 9: with the ensemble, the best
case annotation is the ideal one with only 2 false positives).
Furthermore, the feature extraction for each of the potential
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exemplars for the teacher model is hardware-assisted (§V-C),
and hence poses no overhead to the inference task.

[ #Exemplars Selected (Best Case)
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# Exemplars
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[=°] ~N
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Fig. 9: Impact of multiple teachers on exemplar selection. X-
axis shows #exemplars/100 inferred frames over a 2hr window.
Having an ensemble provides robust exemplar selection and
improves accuracy over a single teacher. The X-Axis has
different DNNs , R: ResNeXt101, T: YOLO-V3, V: VGG-
16, IL: Intermittent Learning, RR: Round Robin.

C. Hardware Implementation and Evaluation

The proposed morphable hardware was simulated using an
in-house simulator based on ScaleSim [79]. We included a
wrapper around ScaleSim to dynamically change the con-
figuration of the systolic array. Further, the simulator was
integrated with CACTI [62] and DRAMSIM3 [49] to estimate
access latency, power, and simulate the memory access pattern.
Rather than including a cycle accurate CPU (host) simulator
to orchestrate the compute, we used a simple program to
act as proxy for the host CPU and send control signals to
schedule and orchestrate the compute on the systolic array. To
correctly estimate accelerator power and area, we implemented
a register-transfer level model using System Verilog and syn-
thesized using Synopsys Design Compiler [93] with a 32nm
library [94]. Table I lists the estimated power consumption and
area of the major components. Instead of simulating the CPU,
we tested the K-means clustering and cluster optimization on
a mobile SoC with 8 x ARM Cortex A78 series CPU. Table II
gives the key attributes of the implemented hardware against
some of the prior accelerators. Note that Usds hardware is not
outperforming any of them as the goal was greater scheduling
Sflexibility for power tracking rather than performance or area.

Freq. Arca Power Peak Thpt. Energy EIT.

Platform

(MHz) (mm?) ) (GOps) (GOps/W)
DaDianNao [16] 606 67.3 16.3 2964 30454
CNVLUTIN [4] 606 70.1 74 2964 285.29
Activation Sparse [30] 667 292 192 5466 284.69
EyerissV2 [15] 200MHz N/A N/A 153.6G 8b fixed pUs 1937
FlexBlock [63] 333MHz_| 160.3 (65nm) | 34.4 (when same #PEs) 131.03
592 168.2 22.7 (17.2 if only train) 4016 159.42
Usds Fully powered, DNN Compute only 28744
g Fully powered, DNN fi—profiler 25539
EH + fi—profile + NV-mems + resizing RAM + Host 159.40

TABLE II: Comparison with prior accelerator-based platforms.

The systolic array accelerator time multiplexes between per-
forming feature extraction for exemplar selection and running
the training. Fig. 8c shows the time distribution of the accel-
erator between performing exemplar selection and training. It
also shows the number of exemplar frames per 100 frame,
i.e., of any 100 frame encountered, how many of those will
contain a relatively new data. Over 10 iterations of retraining,
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Fig. 10: Contribution of different components of Usds on other
applications, data modalities, and power environments.

the learner classified ~4.5 frames/100-frames (on an average)
as exemplar data. And, over 40 hours of continuous learning,
we get ~5.02 frames/100-frames as exemplar data (resulting
in ~17.4% of total accelerator time).

Performance-Power Trade-offs: As Table II suggest, Usds
does not deliver the highest throughput and also consumes
more power compared to the other accelerators. Usds was
designed on a intermittency friendly approach, and was never
designed to hit the best throughput. The unit compute (only a
3 x 3 convolution per tile) that Usds can perform is much
smaller than the other accelerators, limiting its throughput
but increasing its modularity of handling intermittent power
failures (or power changes). Usds also consumes more power
than the other accelerators since it also performs the exemplar
selection along with the DNN training, and also houses
NV-SRAM buffers for hardware check-pointing. While fully
powered, Usds is competitive in terms of energy efficiency
for training-only tasks. We include details on the energy
efficiency of Usds under different of operation configurations
in Table II. Note that the energy inefficiency arises primarily
from i) multiple saves and restores, ii) use of NV memories
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and iii) reconfiguring the DRAM (along with a commercial
ARM based host CPU). Note that most prior works ignore
memory and host overheads while reporting the throughput,
efficiency and power numbers. Moreover, Usds needs more
I/O operations to store the streaming data to compute the
exemplars. We believe it will not be fair to compare the energy
efficiency and throughput of a system like ours, which in-
herently has more memory, I/O and reconfiguration operation
with a pure compute based systems mentioned in the hardware
baseline. Further, we are the first of a kind system to imagine
sustainability first and design a morphable hardware which can
facilitate multiple functionality. We also compare our work
against two reconfigurable platforms [15], [63].

Power Aware Scaling: The Usds hardware’s most important
feature is its ability to morph according to power availability.
Fig. 11 shows its ability to maximize the instantaneous power
utilization and scale the number of tiles. This allows Usds
to effectively perform more computation with an intermittent
power source. As shown in Fig. 11b, Usds maintains a high
duty cycle across power variance, whereas DaDianNao [16]
could not be active for all the power cycles. Considering the
power profile of Fig. 11b, Usds can finish about 50 cycles of
retraining (50 complete training cycles) and DaDianNao can
only finish 22 training cycles, even assuming a zero overhead,
seamless save-restore of the partial computes of DaDianNao
during a power failure/emergency.

Setup
Battery Backed Custom HW[5000mAH]
Battery Backed Mobile GPU
Fixed Power [15W]
Fixed Power [35W]
Usds

Effective Training | Accuracy Degradation
93.17 2.48
78.55 7.43
67.54 12.6
100 1.87
953 1.92

Cycle*
2 - 3 years
18 - 24 months

NA

7- 10 years

TABLE III: Comparing Usds with other possible solutions.

Sustainability: To ensure sustainable and continuous learning
at the edge, Usds operates independently of the power grid
or cloud dependency. We evaluated Usds against DaDian-
Nao, a power-efficient DNN training accelerator, with some
modifications for comparison. Using the Seattle SOLRAD
power trace for January 1, 2022, we simulated 40 hours of
continuous learning with 5 different models on Urban Traffic
data [97] and Usds hardware. The results, summarized in
Table IV, demonstrate the effectiveness of Usds in achieving
continuous forward progress compared to other approaches.
It completed more training tasks while consuming less power
and minimizing wastage. In contrast, cloud-based solutions ex-
hibited poor sustainability, relying on high-power-consuming
GP-GPUs, and edge servers without power availability strug-
gled to perform any compute. Usds emerges as a promising
solution, effectively achieving sustainable and carbon-neutral
continuous learning at the edge, addressing critical challenges
related to power constraints and environmental impact.

Alternate Solutions: Although Usds works completely using
intermittent power, it is imperative to compare and contrast
it with other possible solutions. TABLE III depicts some of
such possible comparison points. The possible alternate solu-
tions being battery-backed custom HW [16], battery-backed
commercial GPU and fixed power budget with store and
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Fig. 11: Tile utilization against available power: Usds with
eager scheduling vs an oracle scheduler. Usds closely tracks
oracle, where as DaDianNao [16] falls short.

execute (using a capacitor/ battery). We quantitatively compare
the effective training, i.e. the ratio of number of scheduled
training to the number of completed training, loss of accuracy
compared to the baseline. It is clear that even with intermittent
power availability Usds is objectively finishing more tasks
(except compared to a system with a consistently high power
availability). Furthermore, we also present a qualitative com-
parison on the maintenance cycle needed for these solutions.
While a completely grid based solution is best in terms of
reliability, it is not feasible because of the power demands. Any
battery backed system will be limited to the charging cycle of
the batteries (= 500 cycles for Li-ion batteries) which leads to
a typical 18 to 24 months of life for such devices (compared
to this, a super capacitor have a life of more than 100 years).
We believe that the lifetime of Usds will be limited either by
the live of the harvesting source (= 20 — 30 years for solar,
~ 10 — 12 years for portable wind turbines), or the training
hardware (typical life cycle of embedded devices are of range
of 7 — 10 years). We agree that a limitation of our work
comes from the choice of solar energy: unavailability during
night and bad weather makes the deployment harder. However,
there has been significant recent development in portable wind
turbines [96], which can be deployed on rooftops, can work
with > Smph wind speed, and can provide power equivalent
of 15 solar cells. Therefore, similar technologies can be used
to augment the harvesting mechanism.
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Deployment Training Mean Power Mean Power Carbon
C C (W) Wasted (W) Footprint (Ibs/yr)
Usds 11 172 3.54 833
DaDianNao (persistent) 6 6.4 10.8 128.0712
DaDianNao (Software Only) 4 5.8 12.46 135.964
DaDianNao (actual) 2 2.09 24.73 199.70
Edge Cloud 0 0 -
Cloud 1 200 0 22338
Max Power = 32W; Min Power = 12W; Training Scheduled = 12

TABLE IV: Comparing Usds hardware with other state of the
art offerings for both performance and sustainability.

D. Towards Other Applications and Domains

The morphable hardware design of Usds plays a crucial role
in efficiently handling varying energy income and workloads.
As the energy income becomes more sporadic, hardware-
assisted scheduling seamlessly transfers work to active pro-
cessing elements (PEs), maximizing the completion of tasks
that could have otherwise been lost. This hardware-driven
adaptive scheduling significantly impacts different data modal-
ities, from large-scale to small-scale, and various magnitudes
of energy income, as depicted in Fig. 10c. For scenarios
with larger and predictable energy income, software-based
backup and restore mechanisms can offer significant benefits,
as the energy consumed for such operations is typically a
small fraction of the overall energy income. Predictive actions
for saving the system state can be easily taken. However, in
situations with sporadic energy income, the hardware-assisted
scheduling becomes paramount. It ensures that active PEs
efficiently utilize available power to complete work, preventing
potential losses and eliminating the need to restart tasks from
the beginning. Usds excels as a candidate for continuous
learning at all scales due to the hardware’s adaptability to
varying data and model sizes. As data and model dimensions
decrease, the hardware assistance’s impact becomes more
pronounced, making Usds an excellent solution for continuous
learning across diverse application sizes.

Along with morphable hardware, the exemplar selection
and the micro-profiler play an important role for the success
of Usds. When power is highly uncertain, the morphable
hardware also strongly contributes, however, as the power
profile becomes stable, the algorithmic contributions dominate.
Fig. 10a shows the contribution of the different components
of Usds under different power profiles. Moreover, the algo-
rithmic contributions can be extended into any classification
based application or data modality. If the learning has to be
unsupervised, one needs to experiment with known clustering
techniques to decide the right classification approach. We
demonstrate this by testing the exemplar selection and the
n—profiler with different modalities of data. Our workloads
included Audio [23], [35](speech classification), 3D Point
Clouds [14], [24](object classification) and Inertial Measure-
ment Unit sensor data [9], [106](fault and activity detection).
Observe that, as Usds is designed to handle dense and noisy
data, it outperforms the respective state-of-the-arts (which
were tuned for small, clean benchmark data).
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VI. DISCUSSION

Key insights: Compared to other systems, the ratio of energy
requirement of task vs the harvested energy is much higher
here. Added with time constraints, designing such a system
becomes tricky. While many of the prior works have designed
their systems around inference using intermittent systems,
we are one of the few works which focuses on learning,
and the only work which does it on a large scale of data.
The proposed system is not only energy intermittent, but
also memory intermittent, interconnect intermittent and most
importantly data intermittent (we don’t know how much data
and what data). This gives us a unique platform to think of
intermittency beyond embedded systems and energy.

Related Works: Although there has been significant re-
search [40], [41], [47], [52], [56], [61], [72], [104] on enabling
machine learning in intermittently powered devices, a majority
of it focuses on performing inference. Only intermittent learn-
ing [47] focuses on performing on-device training, but with
very small workloads and models. Considering the scale, scope
and workload of our problem, limits direct comparisons, ex-
cept for comparing their exemplar selection method. Similarly,
Ekya [12] only focuses on co-location of computation, and it’s
efficiency on finishing compute even on a custom hardware is
shown in Fig. 4.

Green Data Centers: As sustainability gains traction, industry
has worked towards building green data centers [58], [59].
Although using these data centers for computation can be an
alternative, it will not solve the bandwidth and the privacy
issues mentioned in §I. Moreover, communicating and storing
such high volume data will also require energy. Our solu-
tion decentralizes this massive compute using a sustainable
approach and hence has its own merits. Further, this can help
build future solutions using these decentralised nodes for other
applications. We do encourage the use of green data centers
for other centralized compute applications.

VII. CONCLUDING REMARKS

The growth of smart cities and urban mobility applications,
along with reformations in privacy laws, have produced a need
for pervasive, DNN based continuous learning at the edge.
Although current commercial devices are capable of handling
inference at the edge, the power and resource requirements
of training make it impractical and unsustainable for all edge
nodes to also perform continuous training off of grid power. In
this work, we design Usds, a sustainable continuous learning
platform, which can perform video analytics by using an inter-
mittent power source like solar power. The learning algorithm
of Usds delivers 4.96% more accurate classification compared
to a naive learner, and the morphable hardware design uses
intermittent computing to maintain forward progress even
while running on lower power budget. Together, Usds can save
up to 200lbs of CO, per year compared to a state of the art
accelerator running on the grid.
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