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Optical model potentials for deuteron scattering off 24Mg, 28Si, 58Ni, 90Zr, 116Sn,
and 208Pb at ≈100 MeV/nucleon
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Angular distributions of the elastic and inelastic deuteron-nucleus scattering off 24Mg, 28Si, 58Ni, 90Zr, 116Sn,
and 208Pb have been measured at a beam energy of 98 MeV/nucleon, with the goal of constraining the deuteron
optical potential in this kinematical regime and to extract the reduced transition probabilities for the ground-
state transitions to low-lying excited states of these nuclei. Two potential models were used in the analysis of
the measured (d, d ) and (d, d ′) data within the optical model and the distorted-wave Born approximation: the
phenomenological optical model potential associated with the collective model of nuclear scattering, and the
semimicroscopic double-folding model of the deuteron-nucleus potential based on a realistic density-dependent
M3Y interaction. The deuteron optical potential and inelastic (d, d ′) scattering form factors were calculated
using these two potential models, allowing for a direct comparison between the potential models as well as the
validation of the deduced Eλ transition rates.

DOI: 10.1103/PhysRevC.110.044314

I. INTRODUCTION

With the increasing availability of radioactive ion beams of
reasonable intensities, there has been enhanced recent interest
in the investigation of giant resonances (GRs), which are
highly collective oscillations of atomic nuclei. In particular,
the isoscalar giant monopole resonance (ISGMR) in nuclei
far from the stability line has the potential to enable signifi-
cant strides in our understanding of nuclear incompressibility,
K∞, and especially the asymmetry term, Kτ [1]. Such mea-
surements have to be performed in inverse kinematics, with
deuterium and helium gases being the best targets available
so far. While inelastic scattering of α particles has been the
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mainstay of such studies for a long time now [1], there has not
been much work with deuterons since the mid-1970s primar-
ily because of various experimental constraints [2,3]. On the
other hand, most of the measurements of GRs with radioactive
ion beams so far have employed active-target time projection
chambers (AT-TPCs) with deuterium as the component gas
[4–7]. Because of paucity of GR data with deuterons, it was
important to validate in known cases the results obtained in
(d, d ′) measurements via direct comparison with results of in-
elastic α scattering. Such a detailed investigation was carried
out by measuring small-angle inelastic deuteron scattering off
116Sn and 208Pb, and it was established that the extracted IS-
GMR strength distributions, using a multipole decomposition
analysis similar to that done for inelastic α scattering, agree
very well with those deduced from the (α, α′) data [8].

Such analyses hinge upon obtaining good-quality optical
model (OM) parameters from elastic scattering data. The OM
potential is widely used to generate wave functions for elastic
scattering. These wave functions serve, in turn, as the door
waves, widely known as the distorted waves, for the analysis
of other direct reaction channels within the distorted-wave
Born approximation (DWBA) or coupled-channel formalism.
The inelastic scattering leading to the excitation of collective
states of the target nucleus is essential for the determination of
the underlying nuclear structure properties from the measured
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TABLE I. Target specifications.

Thickness Thickness
Target (mg/cm2) Target (mg/cm2)

24Mg 50.0 90Zr 4.2
28Si 58.5 116Sn 10.0
58Ni 1.5 208Pb 10.0

angular distributions. The nuclear interaction potential is,
however, inherently complicated. Therefore, the phenomeno-
logical optical potential (OP) of a simple functional form
is often employed in the OM and DWBA calculations to
describe direct nuclear reactions and to extract nuclear prop-
erties from the angular distribution data. It represents a simple
“effective” interaction used in the collective model of nuclear
scattering [9] to describe both the elastic and inelastic scatter-
ing channels.

For elastic deuteron-nucleus scattering, the existing OM
studies of the deuteron OP are mainly based on the phe-
nomenological potential model using the Woods-Saxon (WS)
functional form as described, for example, in Ref. [10]. This
simple OP was successfully used to describe the elastic as well
as inelastic angular distributions of deuteron scattering off
heavy nuclei (A � 40), based on the collective model of nu-
clear scattering [9]. However, the collective model approach
seems to overestimate the (one-step) transition probabilities
from the ground state to the low-lying excited states of some
light nuclei. For example, as noted in Ref. [11], the OM
parameter set that gives the best fit of the elastic angular
distribution requires 40% lower value of the deformation pa-
rameter β2, as compared to the adopted value, to reproduce
the experimentally observed 2+

1 angular distribution in the
nucleus 16O.

In this work, we report on the elastic and inelastic
deuteron-nucleus scattering measurements at the beam en-
ergy of 98 MeV/nucleon for several targets, ranging from
light- to medium- and heavy-mass nuclei. The measured
(d, d ) and (d, d ′) scattering data were analyzed within the
OM and DWBA, respectively, using both the WS phe-
nomenological potential model as well as a semimicroscopic
deuteron-nucleus potential obtained in the double-folding
model [12–14]. The extracted OM parameters are expected to
be useful in analyzing the giant resonance data with radioac-
tive ion beams.

The experiments were performed at the ring cyclotron fa-
cility of the Research Center for Nuclear Physics (RCNP),
Osaka University, Japan. The Ed = 196 MeV deuteron beam
was scattered off six highly enriched (more than 90%) self-
supporting targets listed in Table I. Elastic and inelastic
deuteron-nucleus scattering measurements were made over an
angular range of θlab ≈ 3.5◦–32◦. Each experimental angular
opening (≈2◦ wide) was subdivided into three parts for the
analysis, each corresponding to a solid angle of 0.42 msr.

The scattered particles were momentum analyzed by the
magnetic spectrometer Grand Raiden and focused onto the
focal-plane detector system [15] consisting of two multiwire
drift chambers (MWDCs) and two plastic scintillators [16].

The time-of-flight and energy-loss techniques were used for
the identification of the scattered particles. Grand Raiden
was used in the double-focusing mode in order to identify
and eliminate practically all instrumental background from
the final spectra [8]. Particle tracks were reconstructed using
the ray-tracing technique described in Refs. [15,17]. This,
in turn, allowed for the reconstruction of the scattering angle.
The experimental angular resolution was ≈0.15◦, including
the nominal broadening of the scattering angle due to the
emittance of the beam and the multiple Coulomb scattering
effects. Further details of the experimental and data analysis
procedures are provided in Refs. [8,18].

II. DWBA ANALYSIS BASED ON THE
PHENOMENOLOGICAL OM POTENTIAL

The two available global deuteron-nucleus optical poten-
tials were developed by Daehnick et al. [10] and Bojowald
et al. [19] in the 1980s using the phenomenological WS form
for both the real and imaginary OPs, covering the mass range
of 27 � A � 238 and energy range of Ed ≈ 10–90 MeV. The
deuteron carries one unit of spin (s = 1) in its ground state,
and this requires the inclusion of a real spin-orbit term V�s in
the OP. For the imaginary OP, in addition to the volume ab-
sorptionW , an imaginary surface termWD is also included to
account for the surface absorption which is significant due to
the deuteron breakup [20,21]. Thus, the total OP is determined
explicitly as

U (r) = V (r) + iW (r) + iWD(r) +V�s(r)(� · s) +VC (r),
(1)

where

V (r) = −V f (r, rV , aV ), (2)

W (r) = −W f (r, rW , aW ), (3)

WD(r) = 4aDWD
d

dr
f (r, rD, aD), (4)

V�s(r) = V�s

[
h̄

mπc

]2 1

r

d

dr
f (r, r�s, a�s), (5)

and VC (r) is the Coulomb potential of a uniformly charged
sphere of radius RC = 1.3A1/3 fm. The functional form f is
chosen in the WS form for all the terms:

f (r, ri, ai ) =
[
1 + exp

(
r − riA1/3

ai

)]−1

. (6)

The phenomenological OM potential given by Eqs. (1)–(6) is
used in the OM analysis of the measured elastic (d, d ) scatter-
ing data, and to generate the distorted waves for the DWBA
description of the inelastic (d, d ′) scattering data. The asso-
ciated OM parameters were obtained from a χ2-minimization
fit to the elastic (d, d ) data using the code ECIS97 [22], and
they are given explicitly in Table II. The global deuteron
OPs [10,19] were used for the parameter initialization in the
χ2 search. The OM results obtained using the best-fit OP
parameter set are shown as dashed lines in Figs. 1 and 2,
in comparison with elastic (d, d ) scattering data measured at
Ed = 196 MeV for the targets under study.
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TABLE II. Best-fit parameters of the phenomenological OP (1)–(6). Because of spin convention, the V�s value must be divided by 2 when
used in the numerical input of the code ECIS97 [22]. The errors were deduced from the weight of each parameter in the covariant multiparameter
χ 2 search, with rV and V�s kept fixed during the search.

Target 208Pb 116Sn 90Zr 58Ni 28Si 24Mg

V (MeV) 46.54 ± 0.01 44.33 ± 0.01 42.95 ± 0.13 39.07 ± 0.14 35.58 ± 0.13 31.92 ± 0.13
rV (fm) 1.18 1.18 1.18 1.18 1.18 1.18
aV (fm) 0.938 ± 0.001 0.911 ± 0.001 0.997 ± 0.013 0.914 ± 0.004 0.911 ± 0.013 0.977 ± 0.004

W (MeV) 20.59 ± 0.01 20.87 ± 0.03 20.20 ± 0.20 21.41 ± 0.20 22.67 ± 0.13 24.39 ± 0.14
rW (fm) 1.160 ± 0.001 1.070 ± 0.001 1.060 ± 0.013 1.100 ± 0.019 0.850 ± 0.001 1.000 ± 0.012
aW (fm) 0.361 ± 0.002 0.670 ± 0.002 0.538 ± 0.012 0.456 ± 0.004 0.420 ± 0.005 0.501 ± 0.003

WD (MeV) 7.00 ± 0.01 7.00 ± 0.01 7.90 ± 0.19 7.60 ± 0.19 7.95 ± 0.04 7.50 ± 0.14
rD (fm) 1.230 ± 0.001 1.110 ± 0.001 1.100 ± 0.019 1.050 ± 0.020 1.000 ± 0.004 1.022 ± 0.005
aD (fm) 0.790 ± 0.001 1.080 ± 0.001 0.997 ± 0.006 1.030 ± 0.015 0.980 ± 0.001 0.920 ± 0.003

V�s (MeV) 4.22 4.22 4.22 4.22 4.22 4.22
r�s (fm) 1.150 ± 0.001 1.130 ± 0.001 1.200 ± 0.001 1.190 ± 0.017 1.130 ± 0.015 1.163 ± 0.003
a�s (fm) 1.230 ± 0.001 1.110 ± 0.013 0.985 ± 0.002 1.110 ± 0.012 1.110 ± 0.020 1.164 ± 0.013

The DWBA analysis of inelastic deuteron-nucleus scatter-
ing data is restricted to the direct one-step excitation of a
collective state of the target, neglecting the contributions of in-
direct two- or three-step transitions and the channel coupling
effects. The (d, d ′) scattering cross section is calculated using
the following DWBA inelastic scattering amplitude [23]:

TDWBA =
∫
[χ−(k′, r′)]∗〈dA′|Vd−A|dA〉χ+(k, r)d3r d3r′,

(7)

FIG. 1. Elastic (d, d ) scattering data measured at Ed = 196MeV
(in ratio to the corresponding Rutherford cross sections) for 24Mg,
28Si, and 58Ni targets (solid points). The dashed and solid lines are
the OM results given by the phenomenological OP (1)–(6) and hybrid
folded OP (13)–(18), respectively.

where the distorted waves χ± are generated by the OP (1)–(6).
The transition matrix element of the deuteron-nucleus inter-
action 〈dA′|Vd−A|dA〉 is dubbed the inelastic scattering form
factor (FF). A widely adopted method is to obtain the nuclear
inelastic scattering FF by radially deforming nuclear part of
the OP, based on the collective vibrational (or rotational)
model of nuclear scattering [9]. For the (d, d ′) scattering to
a 2λ-pole collective excited state of target, the inelastic scat-
tering FF is determined as

Fλ(r) = F (λ)
N (r) + F (λ)

�s (r)(� · s) + F (λ)
C (r), (8)

F (λ)
N (r) = δ

(N )
λ

d

dr
[V (r) + iW (r) + iWD(r)], (9)

F (λ)
�s (r) = δ

(N )
λ

d

dr
V�s(r). (10)

FIG. 2. The same as Fig. 1 but for 90Zr, 116Sn, and 208Pb targets.
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TABLE III. Experimentally adopted values for the reduced elec-
tric transition rates B(E2 ↑) [24,25], B(E3 ↑) [26], and the best-fit
transition rates B(Eλ)DOP and B(Eλ)DFM deduced from the DWBA
analysis of the (d, d ′) data using the inelastic FF based on the
phenomenological OP and that based on the hybrid folded deuteron-
nucleus potential, respectively. The errors (italicized numbers in
parentheses) were estimated from those of the measured angular
distributions, which refer to the uncertainties in the last digits of the
quoted B(Eλ) values.

Ex λπ B(Eλ)adopted B(Eλ)DOP B(Eλ)DFM
Target (MeV) (e2 bλ) (e2 bλ) (e2 bλ)

24Mg 1.368 2+ 0.0432 (11) 0.0284 (14) 0.0410 (21)
28Si 1.779 2+ 0.0326 (12) 0.0196 (10) 0.0326 (16)
58Ni 1.454 2+ 0.0695 (20) 0.0695 (35) 0.0695 (35)
90Zr 2.186 2+ 0.061 (4) 0.0641 (32) 0.0641 (32)

2.748 3− 0.098 (5)a 0.0510 (37) 0.0640 (32)
0.037–0.079b

116Sn 1.293 2+ 0.209 (6) 0.241 (12) 0.240 (12)
2.266 3− 0.132 (18)c 0.142 (7) 0.160 (8)

0.112–0.202b
208Pb 2.610 3− 0.611 (9)c 0.611 (31) 0.642 (32)

0.419–0.836b

aAdopted from (e, e′) data.
bFrom inelastic nucleon- and light-ion scattering data.
cAdopted from Coulomb excitation data.

Prescription (9)–(10) is known as the deformed optical poten-
tial (DOP) method to generate the inelastic nuclear scattering
FF. The spin-orbit contribution (10) to the total (d, d ′) cross
section is minor, but it helps to better reproduce the ob-
served oscillation pattern of inelastic (d, d ′) cross section for
medium mass targets. For an isoscalar excitation, the nuclear
deformation length δ

(N )
λ is usually assumed to be the same

as the proton deformation length δ
(p)
λ , determined from the

reduced transition rate B(Eλ ↑) [23] as

δ
(p)
λ = 4π

√
B(Eλ ↑)/e2
3ZRλ−1

A

, RA = 1.3A1/3 fm. (11)

The Coulomb inelastic FF in Eq. (8) can be approximately
obtained in a “model independent” form [23]:

F (λ)
C (r) = 4π

√
B(Eλ ↑) e

(2λ + 1)rλ+1
. (12)

Thus, the OP parameters (1)–(6) and the reduced transition
rate B(Eλ ↑) of the target excitation are the main inputs for
the DWBA analysis of inelastic (d, d ′) scattering using the
collective model of nuclear scattering [9] associated with the
phenomenological OP. The DWBA calculation of the (d, d ′)
scattering cross section was done using two choices of the
B(Eλ):

(i) B(Eλ ↑) is fixed to the experimentally adopted transi-
tion rates [24–26], denoted as B(Eλ)adopted in Table III.

(ii) B(Eλ ↑) is deduced from the best DWBA fit of the
calculated (d, d ′) cross section to the (d, d ′) scatter-
ing data and denoted as B(Eλ)DOP or B(Eλ)DFM in
Table III.

FIG. 3. The inelastic (d, d ′) scattering data measured at Ed =
196 MeV (solid points) for the excitation of 2+

1 states of 24Mg, 28Si,
58Ni targets, and the 3−

1 state of the 208Pb target. The DWBA results
given by the collective model FF (8)–(12) based on the adopted
B(Eλ)adopted and best-fit B(Eλ)DOP values (see Table III) are shown
as dashed and solid lines, respectively.

The DWBA description of inelastic (d, d ′) scattering data
measured for the excitation of 2+

1 states of 24Mg, 28Si, 58Ni tar-
gets, and 3−

1 state of 208Pb target given by the collective-model
inelastic FF (8)–(12) is shown in Fig. 3. As can be seen, the 3−

1
angular distribution measured for 208Pb target is reproduced
well with the adopted B(E3)adopted value [26]. However, the
DWBA description of the measured 2+

1 cross section using
the adopted B(E2) value, B(E2)adopted, seems to get worse for
light 24Mg and 28Si nuclei, where the calculated (d, d ′) cross
section overestimates data at small angles, and then becomes
non-oscillatory for angles above ≈25◦. The best DWBA fit to
inelastic (d, d ′) data given by the collective-model FF requires
B(E2)DOP value of around 40% lower than B(E2)adopted value.
This likely indicates a deficiency of the collective model of
nuclear scattering [9] based on the phenomenological OP
(1)–(6) for light-mass nuclei, as also found earlier for 16O in
Ref. [11].

The DWBA has been proven to be a reliable approximation
for the direct reaction studies at energies around or above
100 MeV/nucleon. Therefore, a good agreement of the (d, d ′)
cross section calculated in the DWBA with (d, d ′) data mea-
sured for 2+

1 and 3−
1 states of target must be a prerequisite

for the validation of the phenomenological OP (1)–(6). In
the present work, the DWBA analysis of inelastic deuteron
scattering off 90Zr and 116Sn targets was chosen as test ground
for the phenomenological deuteron-nucleus OP. The DWBA
results obtained for 116Sn and 90Zr targets are shown in Figs. 4
and 5, respectively. At variance with light targets, the DWBA
cross sections given by the collective model inelastic FF based
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FIG. 4. Inelastic 116Sn(d, d ′) scattering data (solid points) mea-
sured at Ed = 196 MeV for the excitation of the 2+

1 and 3−
1 states of

116Sn target. The DWBA results given by the collective model FF (8)-
(12) based on the adopted B(Eλ)adopted and best-fit B(Eλ)DOP values
(see Table III) are shown as dashed and solid lines, respectively.

on the best-fit OP and adopted B(E2)adopted values [24,25]
agree well with the measured 2+

1 angular distribution for both
90Zr and 116Sn targets. The best DWBA fit yields B(E2)DOP

FIG. 5. The same as Fig. 4 but for inelastic 90Zr(d, d ′) scattering
data.

values around 5% and 15% larger than B(E2)adopted values for
90Zr and 116Sn, respectively (see Table III).

The situation is different, on the other hand, for the 3−
1

angular distributions measured for these targets. While the
DWBA calculation using the collective model inelastic FF
based on the adopted B(E3)adopted value [26] describes well
the (d, d ′) data measured for the 3−

1 state of 116Sn, the same
prescription overestimates the 3−

1 angular distribution mea-
sured for the 90Zr target over the whole angular range. Given
B(E3)adopted ≈ 0.098 e2b3 adopted from (e, e′) data, and the
empirical B(E3) values of 0.037 to 0.079 e2b3 deduced from
inelastic nucleon- and light-ion scattering data (see Table V
in Ref. [26]), such a disagreement with the 3−

1 angular dis-
tribution for 90Zr would not be unexpected. Indeed, the best
DWBA fit to the measured 3−

1 cross sections yields a lower
value of B(E3)DOP ≈ 0.051 e2b3.

III. DWBA ANALYSIS BASED ON THE FOLDED
DEUTERON-NUCLEUS POTENTIAL

The microscopic description of the nucleus-nucleus in-
teraction is usually based on a chosen effective pairwise
nucleon-nucleon (NN) interaction v between a projectile
nucleon and a bound nucleon of the target. The density
dependence of v presumably takes into account the three-
nucleon interaction and higher-order NN correlations. Among
such models, the double-folding model (DFM) has been used
widely to calculate the α-nucleus and heavy-ion OP [12–14].
The established success of the DFM in describing the ob-
served elastic scattering for many nucleus-nucleus systems
indicates that it produces the dominant part of the nucleus-
nucleus OP. Within the DFM, the deuteron-nucleus scattering
potential can be formally determined [14] as

UF = 〈dA′|Vd−A|dA〉 = A
∑
i∈d

∑
j∈A

∑
j′∈A′

〈i j′|vNN |i j〉, (13)

where the diagonal (A′ = A) and nondiagonal (A′ 
= A) ma-
trix elements describe elastic and inelastic deuteron-nucleus
scattering, respectively. The antisymmetrization A accounts
for all single-nucleon exchanges between deuteron and target,
giving rise to a nonlocal exchange term of the potential (13),

UF =
∑
i∈d

∑
j∈A

∑
j′∈A′

[〈i j′|vD|i j〉 + 〈i j′|vEX| ji〉], (14)

where vD(EX) is the direct (exchange) part of v. Given
the nonlocal exchange potential, one has to solve an inte-
grodifferential OM equation involving a nonlocal kernel of
the deuteron-nucleus OP, which has not been done so far
due the complexity of the nonlocal DFM computation. In fact,
the exact solution of the OM equation with the nonlocal folded
OP was obtained only for elastic nucleon scattering (see,
e.g., Ref. [27] and references therein). Like previous DFM
calculations [14,28], we have used in the present work the
well-proven local approximation for the exchange potential,
based on the Wentzel-Kramers-Brillouin (WKB) approxima-
tion for the change in the deuteron-nucleus relative motion
wave function induced by the exchange of spatial coordi-
nates of each interacting nucleon pair (see more details in

044314-5



D. PATEL et al. PHYSICAL REVIEW C 110, 044314 (2024)

TABLE IV. Parameters of the Fermi distribution (15).

Nuclear density distribution

Target 24Mg 28Si 58Ni 90Zr 116Sn 208Pb

ρ0 (fm−3) 0.170 0.167 0.176 0.165 0.154 0.157
c (fm) 2.995 3.160 4.080 4.900 5.490 6.670
a (fm) 0.478 0.523 0.515 0.515 0.515 0.545
Reference [35] [35] [36] [37] [37] [37]

Charge density distribution

Target 24Mg 28Si 58Ni 90Zr 116Sn 208Pb

ρ0 (fm−3) 0.0785 0.0841 0.0826 0.0726 0.0688 0.0628
c (fm) 3.045 3.154 4.177 4.908 5.417 6.647
a (fm) 0.523 0.523 0.523 0.523 0.523 0.523
Reference [38] [38] [38] [38] [38] [38]

Ref. [29]). In this case, both the direct and exchange terms
of the deuteron-nucleus potential (14) are evaluated [14] by
folding the deuteron and target densities with the chosen
effective NN interaction v. The accuracy of such a WKB ap-
proximation was shown again in a recent OM study of elastic
nucleon-nucleus scattering [27]. With a localized exchange
potential, not only the OM calculation is much simpler, but
also the comparison with the (local) phenomenological OP
(1)–(6) is more direct, which is essential for the present study.

A. Effective density-dependent NN interaction
and nuclear densities

The CDM3Y6 density-dependent version of the M3Y in-
teraction [28] is used in the present DFM calculation of the
deuteron-nucleus potential (13)–(14). The real density depen-
dence of the CDM3Y6 interaction was adjusted by a realistic
HF description of nuclear matter, with nuclear incompressibil-
ity K ≈ 252 MeV [28]. The imaginary density dependence
of the CDM3Y6 interaction was introduced in Ref. [30] to
reproduce the Brueckner-Hartree-Fock results for nucleon OP
in nuclear matter by Jeukenne, Lejeune, andMahaux (the JLM
potential) [31]. This (complex) density-dependent CDM3Y6
interaction was successfully used in the DFM calculation of
the α + 208Pb OP and inelastic scattering FF [30] for the
multipole decomposition analysis of (α, α′) data measured
for isoscalar giant resonances of 208Pb at 97 MeV/nucleon
[32]. We note that, prior to the present work, the only DFM
calculation of the deuteron-nucleus OP was done 42 years ago
by Cook [33] using the density independent M3Y interaction.

Besides the effective NN interaction, the nuclear densities
of projectile and target are essential inputs for the DFM cal-
culation. In the present work, we have chosen the deuteron
density given by the exact solution of the two-body problem
using the Argonne V18 interaction as the free NN interaction
[34]. For the DFM calculation of the diagonal (A′ = A) elastic
deuteron-nucleus potential, the Fermi distribution has been
adopted for the ground-state (g.s.) densities of target nuclei:

ρ0(r) = ρ0/{1 + exp[(r − c)/a]}, (15)

with the parameters ρ0, c, and a listed in Table IV.

The main input for the DFM calculation of the nondiago-
nal (A′ 
= A) deuteron-nucleus potential (the folded inelastic
scattering FF) is the nuclear transition density of the target
excitation. The DFM method (13)–(14) is also used to cal-
culate the Coulomb inelastic FF microscopically by folding
the deuteron charge density and charge transition density of
the target excitation with the Coulomb force acting between
two protons [14]. For the 2λ-pole excitations under study, we
adopt the so-called Bohr-Mottelson prescription [39] for the
nuclear- and charge transition densities:

ρλ(r) = −δλ

dρ0(r)

dr
and ρ

(λ)
charge(r) = −δλ

dρ
(0)
charge(r)

dr
,

(16)

where the g.s. charge density ρ
(0)
charge(r) is determined using

the same Fermi distribution (15) with parameters listed in
Table IV. The deformation length δλ is determined from the
transition rate B(Eλ ↑) of the target excitation using the fol-
lowing relation:

B(Eλ) = e2|Mλ|2, where Mλ =
∫ ∞

0
rλ+2ρ

(λ)
charge(r) dr.

(17)

At variance with the DOP prescription (11), the deformation
length δλ in Eq. (17) is the scaling factor of the nuclear
transition density (16) used in the folding calculation (14) of
inelastic scattering FF, which is constrained by the considered
B(Eλ) transition rate.

B. Folded deuteron OP and inelastic scattering FF

The deuteron breakup has been shown to affect signif-
icantly the deuteron OP at the surface [20,21], and a WS
surface term WD(r) has been added to the imaginary folded
OP because the DFM does not take into account the dynamic
polarization of the OP by the breakup effect. A slight renor-
malization of the strength of both the real and imaginary
folded OP is also allowed in the OM analysis of elastic (d, d )
data, and the total OP is determined in the hybrid manner as

U (r) = U (0)
F (r) + iWD(r) +V�s(r)(� · s) +VC (r), (18)

where U (0)
F (r) = NVV

(0)
F (r) + iNWW

(0)
F (r) is the diagonal

folded deuteron-nucleus potential (14). The surface and spin-
orbit terms of the OP (18) are determined in the same way
as in Eqs. (4)–(5). The OM results obtained with the hybrid
folded deuteron OP (18) are shown as solid lines in Figs. 1
and 2, with the best-fit NV (W ) coefficients, parameters of the
surface, and spin-orbit terms of the OP listed in Table V. With
the surface absorption taken into account by WD(r) term of
the imaginary deuteron OP (18), the impact of the deuteron
breakup on the complex folded deuteron-nucleus OP seems
to be small, with the obtained NV (W ) coefficients being quite
close to unity (see Table V).

The total inelastic (d, d ′) scattering FF is also determined
in the hybrid manner as

Fλ(r) = U (λ)
F (r) + F (λ)

WD
(r) + F (λ)

�s (r)(� · s) + F (λ)
C (r), (19)
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TABLE V. Best-fit NV (W ) coefficients, parameters of the surface, and spin-orbit terms of the hybrid folded deuteron OP (18). Because of
spin convention, the V�s value must be divided by 2 when used in the numerical input of the code ECIS97 [22]. The errors were deduced from
the weight of each parameter in the covariant multiparameter χ 2 search, withWD, aD, V�s, and a�s kept fixed during the search.

Target 208Pb 116Sn 90Zr 58Ni 28Si 24Mg

NV 0.98 ± 0.01 0.94 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
NW 1.01 ± 0.02 1.04 ± 0.02 1.00 ± 0.01 1.03 ± 0.03 1.09 ± 0.03 1.00 ± 0.03
WD (MeV) 7.60 7.60 7.60 7.60 7.60 7.60
rD (fm) 0.70 ± 0.09 0.70 ± 0.04 0.55 ± 0.03 0.92 ± 0.04 0.54 ± 0.07 0.75 ± 0.08
aD (fm) 0.65 0.65 0.65 0.65 0.65 0.65
V�s (MeV) 4.22 4.22 4.22 4.22 4.22 4.22
r�s (fm) 1.03 ± 0.01 1.00 ± 0.02 1.03 ± 0.02 1.05 ± 0.01 1.03 ± 0.02 0.82 ± 0.02
a�s (fm) 0.85 0.85 0.85 0.85 0.85 0.85

where the folded nuclear U (λ)
F (r) = V (λ)

F (r) + iW (λ)
F (r) and

Coulomb F (λ)
C (r) terms of the inelastic scattering FF are

kept unchanged (as given by the DFM calculation) in the
DWBA analysis of (d, d ′) data. The surface and spin-orbit
terms of the FF (19) are determined by the DOP method
(9)–(10), using the same deformation length δλ as that used
for the nuclear- and charge transition densities (16). The
DWBA results obtained with the hybrid folded inelastic FF
(19) for (d, d ′) scattering on 24Mg, 28Si, 58Ni, and 208Pb
targets are shown in Fig. 6. Unlike the DWBA description
of the 2+

1 cross sections measured for light 24Mg and 28Si
targets given by the collective model FF (9)–(12) shown in
Fig. 3, the hybrid folded FF (19) reproduces these same
(d, d ′) data very well using the B(E2)adopted values. The os-
cillation pattern of the 2+

1 cross section observed for these
targets is also better reproduced by the hybrid folded FF

FIG. 6. The same as in Fig. 3 but obtained with the hybrid
folded inelastic FF (19). The DWBA results based on the adopted
B(Eλ)adopted and best-fit B(Eλ)DFM values (see Table III) are shown
as dashed and solid lines, respectively.

compared to the collective model FF, and the best-fit
B(E2)DFM value agrees nicely with the B(E2)adopted value as
shown in Table III.

It should be noted here that the deformation parameter
β2 is obtained in one case from the OP geometry using the
DOP method (9)–(10), while in the other case it is obtained
(16) from the geometry of the g.s. density. A more accurate
comparison could be made based on the deformation length
β2R obtained from both geometries or even better to compare
the full integral of both the folded inelastic FF and collec-
tive model FF determined with the respective deformation
parameters.

The DWBA descriptions of the 2+
1 and 3−

1 angular distri-
butions given by the hybrid folded inelastic FF (19) for 116Sn
and 90Zr targets are shown in Figs. 7 and 8, respectively. One
can see that the collective-model and hybrid folded inelastic

FIG. 7. The same as in Fig. 4, but obtained with the hybrid
folded inelastic FF (19). The DWBA results based on the adopted
B(Eλ)adopted and best-fit B(Eλ)DFM values (see Table III) are shown
as dashed and solid lines, respectively.
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FIG. 8. The same as in Fig. 5, but obtained with the hybrid folded
inelastic FF (19). The DWBA results based on the B(Eλ)adopted and
best-fit B(Eλ)DFM values (see Table III) are shown as dashed and
solid lines, respectively.

scattering FFs give nearly equivalent DWBA descriptions of
(d, d ′) data measured for the 2+

1 excitation of these nuclei.
The best-fit B(E2)DOP and B(E2)DFM values obtained for 90Zr
and 116Sn targets are larger than the adopted values by around
5% and 15%, respectively (see Table III).

Like the DWBA results given by the collective-model FF
shown in Figs. 4 and 5, the DWBA results given by the hybrid
folded FF (19) based on the B(E3)adopted value [26] reasonably
reproduce the (d, d ′) data measured for the 3−

1 state of 116Sn,
but overestimate the data measured for the 3−

1 state of 90Zr
over the entire angular range. The best-fit B(E3)DFM value
is around 35% smaller than B(E3)adopted value from (e, e′)
data, but in a good agreement with the empirical B(E3) val-
ues deduced from inelastic nucleon- and light-ion scattering
data [26].

We note further that the best-fit B(E3)DOP value ob-
tained for the 3−

1 state of 90Zr using the collective-model
FF is about 20% lower than the best-fit B(E3)DFM value.
A similar trend was also found for 3−

1 states of 116Sn and
208Pb (see Table III) which shows that the DOP method
consistently gives a lower B(E3) value compared to that
given by the DFM approach, as discussed previously in
Ref. [40]. However, the DOP method seems to better re-
produce B(E3)adopted value from the Coulomb excitation
data [26].

IV. SUMMARY

Elastic and inelastic deuteron scattering have been mea-
sured off 24Mg, 28Si, 58Ni, 90Zr, 116Sn, and 208Pb at an energy
of 98 MeV/nucleon. The measured (d, d ) and (d, d ′) angu-
lar distributions were analyzed within the OM and DWBA
using the phenomenological deuteron OP associated with the
collective model of nuclear scattering, and the hybrid poten-
tial model for the deuteron OP and inelastic FF based on
the microscopic DFM calculation. The E2 and E3 transi-
tion rates of the 2+

1 and 3−
1 excitations of these target nuclei

were deduced from the best DWBA fits to the (d, d ′) scat-
tering data, which agree reasonably with the adopted B(Eλ)
values [24,26].

The results of the OM analysis of elastic (d, d ) data using
the hybrid folded OP show that the deuteron breakup does not
affect significantly the volume part of the deuteron OP given
by the DFM calculation. However, the breakup effect seems
to imply an enhanced absorption at the surface, which can be
taken into account effectively by a surfaceWS potential added
to the imaginary deuteron OP.

While both potential models describe equally well the
(d, d ) and (d, d ′) angular distributions measured for medium-
and heavy-mass target nuclei, the DWBA calculation using
the collective-model inelastic FF (DOP) gives a poorer de-
scription of the 2+

1 angular distribution measured for the
light-mass 24Mg and 28Si nuclei, in comparison with the
DWBA description of the same data using the semimicro-
scopic folded inelastic FF (DFM).

The DWBA analysis of the 3−
1 angular distribution mea-

sured for 90Zr target indicates that B(E3)adopted value from
(e, e′) data [26] is too high, and the DWBA results given by
the two potential models agree well with (d, d ′) scattering
data, with the best-fit B(E3) values close to those deduced
from inelastic nucleon- and light-ion scattering data.

A hindrance of the E3 transition rate determined by the
collective-model inelastic FF compared to that determined
by the inelastic folded FF was also found, which illustrates
the inconsistency between the DWBA description of nuclear
excitation with λ � 3 based on the DOP approach and that
based on the DFM approach discussed earlier by Beene
et al. [40].
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