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Abstract—This work focuses on forecasting future license
usage for high-performance computing environments and using
such predictions to improve the effectiveness of job scheduling.
Specifically, we propose a model that carries out both short-term
and long-term license usage forecasting and a method of using
forecasts to improve job scheduling. Our long-term forecasting
model achieves a Mean Absolute Percentage Error (MAPE) as
low as 0.26 for a 12-month forecast of daily peak license usage.
Our job scheduling experimental results also indicate that wasted
work from jobs with insufficient licenses can be reduced by up to
92% without increasing the average license-using job completion
times, during periods of high license usage, with our proposed
license-aware scheduler.

Index Terms—Software-as-a-Service (SaaS), High-Performance
Computing (HPC), License Management, Machine Learning.

I. INTRODUCTION

The use of Software-as-a-Service (SaaS) has increased
significantly in the past few years. One use of SaaS in
High-Performance Computing (HPC) is in the form of “soft-
ware licenses.” Software licenses give temporary access to
commercial software for the jobs/applications scheduled to
execute in large HPC clusters. Normally, a job scheduled for
execution in such clusters cannot start its useful work without
proper corresponding software license(s) even if it has already
acquired its necessary hardware resources. Therefore, for many
types of HPC workloads, license management is, in principle,
as important as hardware resource management.

Unfortunately, compared to hardware resource management,
which has enjoyed substantial investigation [15], [19], [22],
[25], license management has not received much attention
from the research community. This is partly because most HPC
application/hardware owners tend to heavily over-provision
licenses (purchasing more licenses than required), to avoid po-
tential scenarios where a job acquires the hardware resources
it needs for execution but could not acquire the required
software licenses. However, the cost of such over-provisioning
has recently reached intolerable levels, with large companies
spending up to 18% of their revenue on software [10].

Ideally, only the “right” number of licenses would be
purchased, and the number of licenses provisioned would
vary along with time-dependent needs, thereby reducing the
overheads of licenses purchased to support peak demands that
may never or rarely occur. However, being able to do so
requires accurate prediction of long-term license needs. While
there have been a few preliminary works that have focused on
this problem, the findings so far are not satisfactory and, as a
result, the proposed approaches have not, to our knowledge,
been deployed in any production system. Interestingly, in
addition to long-term prediction, which can guide license
provisioning/purchase decisions, short-term license usage pre-
diction can also be very useful in practice. In particular, short-

term prediction can provide additional input to a job scheduler,
enabling it to make, for example, “license availability-aware”
scheduling decisions. In other words, predicting the number
of licenses that would be needed in the future, whether that
is near-term or long-term, can benefit both the managers
and users of HPC clusters.

This work focuses on performing long and short-term
license prediction (forecasting). By performing long-term
(months-year) forecasting, HPC administrators can make in-
formed decisions when purchasing licenses, to save money.
Short-term prediction, on the other hand, can be used to
improve job scheduling, allowing users of a cluster to execute
their jobs sooner and have less work wasted due to license-
related job failures, allowing HPC administrators to use fewer
resources while still satisfying service-level agreements.

The main contributions of this paper include:

e We introduce a method to process HPC log/accounting
files, for use in forecasting and for simulation.

e We evaluate several forecasting models for long-term
forecasting, show the results for the best model and propose
a method for short-term forecasting.

e We propose a “license-aware” job scheduling strategy that
uses short-term license usage forecasts.

e We design a simulator that can simulate job and license
behavior in regard to changes in the job scheduler and license
manager. We evaluate our scheduler on this simulator and
our experimental analysis of the proposed license prediction,
compared to the baseline method of “polling”, indicates that
for periods of high license usage: (i) the number of denied
jobs due to insufficient licenses decreases by up to 96%; (ii)
as a result, the amount of wasted work decreases by up to
92% with close to no change in job completion times.

II. BACKGROUND

This section provides an overview of current usage for
software licenses (SaaS) and license managers. It then presents
background on our chosen forecasting model — A Multi-
Horizon Quantile Recurrent Forecaster (MQ-CNN).

Software licenses are contract agreements between soft-
ware publishers and end-users of an application [7]. Li-
censes protect the software vendor’s rights in cases of du-
plication, multi-host installation, code editing (unless the
product is open-source), and reverse engineering [7], [8].
Software licenses are often structured as collections of
several different sub-licenses which unlock different func-
tionalities of the software. For example, a MATLAB li-
cense consists of features such as Symbolic_Toolbox,
Statistics_Toolbox, Neural_Network_Toolbox,
Bioinformatics_Toolbox, and more.
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Fig. 1: COMSOL daily peak license usage plot.

Software publishers/vendors use license management
mainly for protection from piracy and protection against
exceeding license terms. License management also al-
lows the publishers to create different types of licenses
(trial/perpetual/subscription) and set usage limits for individual
license features or the whole license [7]. Existing licensing
models differ in terms of the number of licenses purchased
to the resources available to install licensing systems, but fall,
broadly, in a modest number of categories [8].

In this study, our focus is on the FlexNet license manager
(FlexLM) [9]. The FlexNet License Manager, formerly known
as FlexLLM, is a popular license management product that
allows the management and control over the distribution of
software licenses for various software applications. FlexNet
allows software vendors to implement various licensing mod-
els, such as Node Locked licenses and Floating (concurrent)
licenses [9]. The details of FlexNet and other commonly-used
license managers can be found elsewhere [7], [9].

In this work, we collect historical data on license usage.
This collected data is time-series data, and there are a number
of preexisting approaches to forecast from time-series data
in the literature. We used various supervised learning models
to perform forecasting, and we only list the results of the
best-performing model, which is MQ-CNN. MQ-CNN is a
Seq2Seq' framework that solves complex forecasting prob-
lems and generates Multi-Horizon Quantile forecasts [27].

III. MOTIVATION

Many HPC applications require specialized commercial
software, which can present significant costs to businesses and
application owners alike. In HPC environments, commercial
software generally requires licenses, which are purchased for
a limited period of time, to utilize them. Most companies and
institutions over-provision software licenses to avoid facing
the scenario of application failures due to license shortage.
Consequently, license costs can be substantial, and accurate
long-term forecasting of license usage is crucial for avoid-
ing over-provisioning these licenses and thus minimizing the
associated (unnecessary) expenses made by businesses using
license-over-provisioned HPC environments.

A Seq2Seq model takes a sequence of items and outputs another sequence
of items [26].

Moreover, the use of software licenses is expected to grow
significantly in the coming years, further increasing the costs
of over-provisioning licenses. In 2022, the software global
market share had a value of $51.08 billion, with over half
of this value from software subscriptions alone, and it is
estimated to reach a market value of $91.6 billion in 2028 [6].
In a 2022 survey of 501 organizations with 2000 or more
employees, with half having over 10,000 employees, it is
revealed that the median fraction of the revenue that is spent
on software is about 18% [10].

In addition to cost savings, forecasting license usage can
help incorporate “license awareness” into job schedulers and
resource managers. Many HPC systems have separate software
for managing HPC hardware resources and software licenses.
However, these two groups of software work independently
of one another, which is unfortunate because for a job to start
and successfully execute both hardware resources and software
licenses must be acquired. By predicting whether a job would
fail due to insufficient licenses using short-term forecasting,
job schedulers can be made more license-aware. While in this
study we collect data from The Pennsylvania State University
(PSU) ROAR HPC cluster to make forecasts based on the
collected data, we believe that the problem of “disconnect”
between hardware resource management and software licenses
is endemic across different institutions worldwide [11]. We
believe our cluster represents a typical mid-size datacenter
targeting HPC workloads that need widely-used software
licenses.

A. Long-Term Forecasting

For businesses, purchasing licenses can cost a significant
fraction of their revenue [10], making even a small decrease
in the number of licenses purchased significant. For exam-
ple, for COMSOL Multiphysics’ 2015 pricing, a single base
COMSOL floating network license, which can be used by a
single user concurrently, costs $3,390 annually, with additional
sublicenses costing between $590 to $3,390 [17]. As men-
tioned previously, licenses can be underutilized by more than
30%. With accurate long-term forecasting of license usage,
businesses and HPC managers can make informed decisions
and mitigate the over-purchasing of software licenses. Using
COMSOL software license logs obtained from PSU ROAR
HPC, we observe that licenses are very sparsely used. The base
COMSOL license on average has 12.57 licenses checked out
at a given point in time, yet the total number of base COMSOL
licenses purchased are 51, giving a utilization rate of 24.6%.
This stems from licenses being purchased to accommodate
“peak” usage, not “average” usage. By taking the peak usage
license usage per day for the base COMSOL license and
averaging it, we obtain a daily peak average of 19.14 and
a standard deviation of 8.45, giving a daily peak utilization of
37.2%. Analysis of our COMSOL license data shows that the
highest daily peak utilization in our data ranges from 0.06% to
70.2%. Fig. 1 shows the daily peak license usage for our logs.
Note that, while there are a total of 49 different COMSOL
licenses in our log data, for ease of visualization, this plot only
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shows the base COMSOL license (COMSOL in the figure) and
the four “most-denied” licenses.
B. Short-Term Forecasting

Job schedulers and license managers are usually two distinct
pieces of software in HPC environments. In PSU’s ROAR
HPC cluster, the job scheduler (TORQUE) has no information
about licenses/license management, and the license manager
(FlexNet LM) is not aware of scheduling decisions. Licenses
can be requested at any point during job execution, which is
completely unknown to the job scheduler. By utilizing short-
term forecast information of future license usage/requirements,
one can predict whether a job will fail due to insufficient
licenses and schedule the job when it has a lower chance of
failing. This helps to prevent the potential loss of work and
time due to unpredictable jobs failing.

Furthermore, in the ROAR HPC cluster, jobs that fail to
check out a license due to insufficient available licenses,
simply get terminated. Unless the user running the job had
saved the job progress, the resubmitted job needs to start over
and re-perform any work that was done before. This leads to
a waste of hardware resources and energy, and it negatively
impacts users. Additionally, in periods of high amounts of
license denials, empirically, users typically resubmit jobs until
their job manages to check out the licenses it needs. This leads
to users resubmitting the same jobs hundreds of times in a
short period, causing additional stress on the job scheduler
and license manager, and decreases the job’s priority due
to fairshare policies in the job scheduler [5]. From our 4-
year COMSOL license data set, for example, we observe that
43,421 job failures are directly caused by a lack of licenses,
and these failed jobs were submitted by 555 distinct users.
C. Simulation

In our work, we implemented an accurate simulator that can
use historical data to simulate a past time period. This can be
used to estimate how the changes made to the job scheduler,
licenses, and license manager affect jobs, without having to
test them in a real HPC environment. The simulator also
enables us to test the effectiveness of novel/emerging license-
aware job scheduling strategies which may be infeasible to
implement in practical job schedulers used today.

IV. DESIGN

This section explains the log processing methods, the design
of the forecasting model, and the simulator design.?
A. Preprocessing

1) Processing License Logs: For our experiments, we used
log data obtained from PSU’s ROAR HPC system, for the
COMSOL [4] software ranging from August 2015 to February
2020. COMSOL Multiphysics is a software platform that is
based on advanced numerical methods. It is used for physics-
based problem modeling and simulations [4]. In our setup,
the COMSOL log files are generated from the FlexNet LM
software [9]. In total, there are 4,568,089 intervals of license
check-outs and check-ins we obtained from this log. In this
context, a “check-out” means that a license was borrowed by a

2Code & data: https://github.com/abgulhan/LicenseManagementMASCOTS
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Fig. 2: COMSOL license usage intervals in seconds with the
number of data points in brackets for a 2 month period.
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Fig. 3: License matching problem illustration.

job, a “check-in” means that a license was returned by the job,
and denied means that a license was attempted to be checked-
out, out but failed due to some reason (such as no currently free
license). In addition, our data contain a total of 49 licenses,
one of which is the base COMSOL license, which unlocks
basic features of the COMSOL software, and the 48 other
sub-licenses that unlock additional functionalities.

In the FlexNet License Manager, relevant lines in the log
file contain the date-time, the action taken (whether a license
was checked-out, checked-in, or denied), name of the license
for which the action was attempted, ID of the user attempting
the action, and compute node in which the action was taken.
The time granularity is in seconds. The FlexNet log file, in its
current form, cannot be used for simulation and forecasting,
as it needs to be processed into suitable “layouts” for each.
To process the log file, we first match license check-outs and
check-ins into a single interval. A username, compute node,
and feature name must be the same between a check-out
and its corresponding check-in, as shown in Fig. 3. However,
while this does match most licenses without issue, there is
still ambiguity for 8.56% of all licenses. One reason for this
ambiguity is that a user may check out duplicate licenses from
the same compute node. This issue is illustrated in Fig. 3. To
deal with this issue, we decided to choose pairs that minimize
license use duration, since jobs in our system have a wall-
time limit of 48 hours, by choosing the minimum duration,
we can be sure that we satisfy this condition, thus eliminating
some incorrect possibilities. Fig. 2 shows a plot of the license
intervals for 2 months of log data. We can observe that almost
all license usage intervals are below 2 days. Note that this
assumption does not change the number of licenses currently
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being used in any time period: It only affects the job intervals
which are used in the simulation. Another reason is that there
are some missing data in the log files from when the license
manager was restarted. To deal with this issue, we identify the
regions where the license manager was not logging data, which
are usually only a few hours in duration. Then, for check-outs
that do not have a valid check-in and vice-versa, we assign a
check-in or check-out from these regions.

This license matching problem can be formulated and
solved using “minimum weight bipartite matching” [13]. We
make a bipartite graph where sets U and V represent the
two disjoint independent sets. Each node in set U represents
a check-out, and each node in set V represents a check-in.
Edges between U and V are made if the check-in node in V
has a larger date-time than the check-out node in U and if the
difference between these two is smaller than the maximum job
length. The edge weight corresponds to the number of seconds
between the date-times of the two connected nodes. Edges
chosen after solving minimum weight bipartite matching are
the license intervals that are matched. Nodes disconnected
from the chosen edges are candidates for having missing data
in regions where the license manager stopped logging data.

2) Processing Accounting Logs: The accounting log con-
tains information about submissions to HPC job queues and
is produced by TORQUE [24], which is based on the Portable
Batch System (PBS) job scheduler [3]. Our accounting log
ranges from October 2016 to January 2023 and contains over
120 million data points for 40,634,793 different jobs. However,
only a fraction of these jobs use COMSOL software licenses.
This log does not contain any license information. It only
contains job-related information, of which there are three
relevant types of data points indicating: (i) when a job was
queued, (ii) started execution, and (iii) ended execution. These
data points all contain a unique job ID, the corresponding
time, and the user who submitted the job. Data points (ii)
and (iii) also contain the compute node(s) where the job
is executing. We use accounting logs to simulate jobs for
testing our job scheduler. However, just the accounting log
is not sufficient for this purpose since jobs can use licenses at
various periods throughout their execution, which can affect
if a job finishes successfully or terminates due to insufficient
licenses. Therefore, we need to match the license intervals
obtained in Section IV-Al to their respective jobs, (explained
in Section IV-A3).

3) Matching Licenses to Jobs: When matching licenses to
jobs, our goal is to find a job ID for each license usage interval.
Doing so allows us to know when, during a job execution, a
license was requested and how long it was used. Note that
multiple license usage intervals can map to the same job. Since
the license logs do not contain job ID information, we instead
use the user name, compute node, and time stamp information,
which appears in both accounting and license logs. Correct
matching of a license usage interval to a job must satisfy the
following conditions: (i) the compute node where the license
was requested and the compute node a job is running on must
match; (ii) the user who submitted the job and the user who

Start

Start Date: 12:00
Date: 12:00 Job Id: 100
Job 1d: 100 User: abc123
User: abc123 Node: cmp14
Node: cmpl4
Start
Start Date: 12:15
Date: 12:15 — Job Id: 101
Job Id: 101 iLicense Check 0ut| User: abc123
——————————— |User: abc123 I Node cmplé
iLicense Check 0ut|Node cmpl4 :
| IF.nd : 'End
i Date: 12:30 I License Check In :?:geldlioio
|"-'_an_sgfﬂe_C|_<ln__!Job 1d: 100 = User abc123
User: abc123 Node: cmp14
Node: cmp14
End End
Date: 12:45 Date: 12:45
Job Id: 101 Job Id: 100
User: abc123 User: abc123
Node: cmp14 Node: cmp14
(@) (b)

Fig. 4: Ambiguity examples for matching licenses to jobs.

requested the license must match; and (iii) the job execution
start time must be less than or equal to the license check-
out time and the job execution end time must be larger than
or equal to the license check-in time. However, even if these
conditions are satisfied, there could still be some ambiguous
matching. Several jobs may satisfy the above conditions, since
multiple jobs may be run by the same user on the same
compute node. An example is shown in Fig. 4. The license
interval shown in both figures satisfies the conditions stated
above, yet it is still not clear which job this license interval
belongs to. This job mismatch occurs in 68% of jobs using
COMSOL licenses in our data and the average number of
possible jobs per mismatched license is 2.48. Furthermore,
license usage intervals themselves may also not be correct,
since there are ambiguous matches between license check-ins
and check-outs, as mentioned earlier in Section IV-A1l. Since
matching occurs in just 2 jobs per license interval in a majority
of cases, and since no correct solution for this exists, due to it
being caused by insufficient information, we randomly match
jobs to such licenses upon such ambiguity.

B. Generating Forecasting Data

For our forecasting model, we used the “license usage
interval” data we obtained, as described in Section IV-Al.
However, we need to transform this data into a layout suitable
for long-term forecasting. To do this, we used a “wide” data
representation, where the index values are date-time, and the
other columns represent the total number of licenses checked
out at a given date-time index. Since we have a total of 49
COMSOL licenses in our license log, the data set has 49
columns, each representing a different license plus one index
column. The date-time values for indexes correspond to license
intervals’ check-in or check-out, since only at those times does
the total number of licenses in use change.

The wide data representation, as is, cannot be used for
forecasting, since the index values need to be equally spaced.
For long-term license forecasting, we chose 24-hour spacing,
meaning that the forecasts are done with a 24-hour granularity.
The reason for this is that the more data points that are
being forecasted, generally the less accurate the forecast is
and the slower the model training is. As an example, with
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the DeepAR forecasting model, forecasting over 400 data
points is not recommended for this reason [2]. With long-term
forecasting, we perform up to 365 days of forecasts, and with
24-hour spacing, we stay under the recommended maximum
data points. Having a smaller spacing is also unnecessary since
the goal of long-term forecasting is to predict the license
usage trend, for making informed decisions when purchasing
licenses. Furthermore, when evenly spacing the wide data,
we chose the “maximum number of licenses used”, for each
license, in the chosen even-spacing interval. We choose the
maximum, since we want to predict peak license usage, not
the average, to prevent license denials. Further, license usage
is sparse and bursty — the peak and average are quite far apart
for most licenses observed.

C. Long-Term Forecasting Model

We tested several forecasting models, including,
ARIMA [14], DeepAR [21], DeepVAR [20] and MOQ-
CNN [27], and found that MQ-CNN performs the best for our
data. MQ-CNN is a Seq2seq-based CNN forecasting model
and is used to make multivariate forecasts, meaning that the
features that it is trained on do not need to be known in
the future forecasting period. This allows MQ-CNN to make
use of multiple license information. We use the GluonTS [1]
library’s implementation of long-term forecasting models.

D. Short-Term Forecasting Model

For short-term forecasting, we take a different approach.
The purpose of short-term forecasting is to be used during job
scheduling. Whenever a job fails due to an insufficient license,
we want to delay that job upon resubmission until that license
becomes free. The goal is to predict the earliest time a license
becomes free, whereas in long-term forecasting the goal was
to predict how many licenses are in use at each time period.
While the long-term forecasting approach can be used to figure
out when a license becomes free, we found that the forecasting
models were not accurate enough for this purpose. Instead,
we propose a method of predicting “when” a license becomes
free by using a license usage distribution that is derived from
historical license usage times — which requires license log files
or another method of recording license use times. The time
for delaying a license, that is how long to wait until a license
becomes free, is formulated as an expected value as follows:

Delay = E(min(X; — t1, Xo — to, ..., X5, — t,)|

1
X1 > 61, Xo > to, ..., Xy, > t,), whereX; ~ f(x), M

where X; is a random variable, denoting the license usage
duration of a currently in-use license X, which has been
running for time ¢;, where license usage times are from a
probability density function f(z). This equation can also be
formulated as follows:

/°° iy (1 =TIy Pr(Xs >y + ;)
0 [[Z, Pr(Xi > t;)
We implemented (2) numerically where the distribution for X

was obtained using license interval data from IV-Al and is up-
dated as new license intervals are completed during simulation.

dy 2

To deal with numerical stability issues that arise from having
a large n value, that is, having many of that license currently
in use when predicting the expected delay for a license, we
do not calculate Pr(X; > t;) and Pr(X; > y + t;) directly.
We instead omit the denominator of these probabilities so that
we obtain an integer instead of a probability between O and
1. Since this omitted value occurs in both the numerator and
denominator of the integral in (2), it does not affect the result,
but it significantly increases numerical stability.

It should be noted that this is a limited form of forecasting
license usage, compared to our long-term forecasting method.
Our short-term forecasting method only predicts when the
license usage will decrease; it does not predict license in-
creases. Furthermore, it assumes that the predicted license will
not increase past its current value, before decreasing. Since
this forecasting method is only used when a license is at its
maximum usage, the aforementioned assumption is satisfied
and the limitation is sufficient for job scheduling purposes.
Note that, this method, in its current form, cannot be used
to predict the case where multiple of the same license are
checked-out simultaneously by the same job. Our COMSOL
dataset does have such licenses, but all of those licenses are
unlimited, therefore those licenses are never denied.

E. Simulation

1) Assumptions: Due to limitations in extracting infor-
mation from log files, we make several assumptions, listed
below. It should be noted that, in real-world use cases, these
assumptions may not hold, which may lead to different results:

¢ Job Independence: We assume that each job is submitted
independently of other jobs, but this is not always the case.
A user may submit a subsequent job only after a previous
job completes, or users may use workflow managers, that
splits a task into multiple dependent jobs. However, since such
information is not found in our accounting logs, we make this
assumption.

o Stateless Jobs: We assume that once a job fails, the
resubmitted job will take the same amount of time to complete
and use same licenses at the same periods of execution. This
assumption will only hold if the resubmitted job does not use
work done by its previous failed execution. For example, a user
may make checkpoints during job execution and resume from
the most recent one after a job failure, leading to resubmitted
job taking less time to complete and potentially using different
licenses for different periods of time. Since this information is
also not available in our log files, we make this assumption.

e Job Resubmission. In our job submission system, when
a job fails, it needs to be resubmitted by the user. This can
be done by the user manually resubmitting, or writing a script
to automatically resubmit. There may be a few seconds of
delay between when a user submits a job and when a job is
logged in the accounting log, and similarly when a job fails
and when the user receives the error message. Furthermore,
we cannot know when a user will decide to resubmit a job,
and how often they will continue trying to resubmit. For these
reasons, we need to make an assumption about the delay
between job re-submissions in our simulation. We can observe
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the resubmission behavior in our log files, and see that the it
varies. We use the “average” of resubmission intervals of log
data in our simulated time period as the “resubmission time”
for jobs and we continue resubmission until success.

e Queuing time. Job queuing time can vary significantly
depending the requested hardware resources. Due to the com-
plexity of accurately simulating these compute resources, we
make the assumption that jobs will have the “same” queuing
time recorded in the accounting logs upon resubmission.

F. Simulator Design

Our simulator, shown in Fig. 5, is used to simulate the
behavior of historical data and test the changes we make to
the job scheduler. The input data to the simulator consists of
jobs, with each job having:

e submission time, which is equivalent to the job queue time
we extracted from the accounting logs in Section IV-A2;

e duration, which is the time between job start and job end,
also discussed in Section IV-A2;

e gueue name, which indicates which queue the job will be
submitted to. This information is from accounting logs;

e [icense usage intervals of that job, if any. As shown in
Fig. 5, a job can have licenses used at any part of its execution.
Licenses each have a check-out time and the license usage
duration, at the end of which the license is checked-in. This
matching was explained in Section IV-A3. Not all jobs have
licenses, yet those jobs can optionally be used in the simulation
if simulating limited nodes is desired, since those jobs affect
the queuing time of other (license-using) jobs.

Jobs are read from the input file and sent into a job queue
when job submission time arrives. The job queue consists
of a high-priority “batch” queue, which is reserved for users
who paid for resource allocation, and a low-priority “open”
queue, which can be used by all users for free. Any jobs
in the high-priority batch queue begin execution before the
open queue. Jobs begin execution when they are assigned to
a compute node. Each compute node requests a license from
“license manager” when/if a job checks out a license at the
current time. When a license is finished being used by the job,
the license is checked into the license manager. The license
manager contains several licenses along with their respective
maximum amount. Upon check-out, one of the licenses is
assigned to the job requesting it and becomes unavailable.
If a job requests a license that is not available at that time,
the job terminates and is sent to the “resubmission queue”, as
shown in Fig. 5. The resubmission queue puts jobs back into
the job queue after a certain “delay”. This delay can be either
chosen as a fixed/constant value, which can be calculated using
the accounting logs (to attempt to simulate close to historical
data), or it can be chosen based on a short-term forecasting
model. The forecasting model predicts when the license that
the job failed to check out would become available and sets a
delay value accordingly. The resubmitted job, starts execution
from the beginning, not from where it got terminated.

V. EXPERIMENTAL SETUP

We used Python 3.7.12, Pandas 1.2.5, Apache MXNet

CUDA 1.6.0, GluonTS 0.12.5, and NumPy 1.21.6, SciPy 1.7.3
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Fig. 5: Simulator design.

License Name =~ COMSOL COMSOLGUI ~ CADIMPORT  ACOUSTICS
MSE 39.574 £3.178  18.406 = 0.32  3.886 + 1.66 4.29 + 0.895
MAPE 0.294 + 0.003 0.307 + 0.04 0.439 + 0.0 0.625 + 0.045

TABLE I: 1-Year Forecast Results

library versions for the forecasting model, simulation, and data
processing stages.

The license logs that are used as input to our fore-
casting model are collected with FlexNet Licensing version
v11.15.1.0. The software platform for which the licensing
logs are collected is COMSOL Multiphysics, which has been
described earlier. The PSU ROAR HPC infrastructure operates
30,000 cores to support research and provides dual 10- or 12-
core Xeon E5-2680, and 10-core Xeon E7-4830 processors,
with memory configurations of 128GB, 256GB, and 1TB
respectively. The operating system is RHEL 7.

VI. EXPERIMENTAL RESULTS
A. Long-Term Forecasting

For our long-term forecasting results, the best-performing
model that we tried was MQ-CNN. We trained our model
using 2 years of data and forecasted 1 year in the future. Fig. 6
shows our best 1-year forecast results for licenses COMSOL
and COMSOLGUI - two of the most commonly used licenses.
This figure shows two separate forecasts, in green and blue,
where each forecast was trained independently of the past 2
years of data and predicted the following year. Since MQ-CNN
is a “quantile-based” forecasting method, we trained the model
for 3 different quantiles of 0.05, 0.5, and 0.95. The Mean
Average Percentile Error (MAPE) and Mean Squared Error
(MSE) results are listed in Table I. For each element in the
table, we average the resulting metrics of both forecasts and
give the standard deviation. We observe that licenses with low
maximum amount, such as CADIMPORT and ACOUSTICS,
have higher MAPE, but lower MSE.

B. Job Scheduling

We focus on predicting a suitable resubmission delay for
jobs that were denied due to insufficient licenses, such that,
after the delay, the necessary licenses would be available. For
our simulation data, we chose a total of 3 months of simulation
data with the highest number of license denials that were not
caused by interactive nodes, since interactive nodes do not
simply fail on license denial. To measure the performance of
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Fig. 6: 1-Year Forecasting results of maximum licenses used
per day using the MQ-CNN Model, with quantiles of 0.05,
0.5, and 0.95. (a) shows the forecasting results vs baseline
for the COMSOLGUI license and (b) shows the forecasting
results vs baseline for the COMSOL license. Green and Blue
lines each show a 1-year forecast, using the MQ-CNN model
which was trained with the previous 2 years’ data.

# Unique Avg. Avg. Total Avg Wasted
FOTB:?;;;Y pe [fe i?;jls Job License-Using Denied Wasted Work Per

Denials Job Time Job Time ‘Work Denied Job
Constant 3991 39 9:23:59 1d,2:15:32 2d7:17:13  1:25:13
Exponential 166 22 9:58:00 5d8:5912  4:07:57 0:11:16
Forecast 135 32 9:22:51 1.d4:27:48 4:11:18 0:07:51

TABLE II: Job scheduling results.

our job scheduler, for our evaluation metric, we use the amount
of wasted work due to job denials and the average time from
job submission to job completion. We compare three different
scheduling methods:

e Constant Denial Time: This method uses the historical
average job resubmission delay for every job resubmission.

e Exponentially Increasing Denial Time: This method
starts with the historical average job resubmission delay for
the first job resubmission and then doubles this time upon
every subsequent resubmission of the same job.

o Forecasted Denial Time: This method calculates a
delay using historical license usage distribution information,
as described in Section IV-D.

From simulating multiple periods of high denial time,
(Table II), we observe that the least number of job denials
were obtained by using the forecasting delay method, which
has a 92% decrease in the amount of wasted CPU time and
a small decrease in job completion time — the time from a
job’s first submission to its completion. Exponential delay has
the least wasted work, at the cost of significantly increased
job completion time. Using constant delay has the highest job

Prediction — Ground Truth (min)

()

20
15
10

Prediction — Ground Truth (min)
(b)
Fig. 7: Histogram of distribution-based forecasting accuracies
during simulation for the forecasting (a) and exponential delay
(b) methods. The x-axis represents the difference between
forecast and ground truth in minutes.

denials and average wasted CPU time per denied job, but it has
the lowest average denied license-using job completion time,
resulting from the polling behavior of this method leading
to almost no overprediction, at the cost of wasting hardware
resources and increased denials. In our simulation, we assume
job queue time is unaffected by currently running jobs, as
explained in Sec. IV-E. However, in reality, the total wasted
work and denials would negatively affect the queue time
of jobs, due to occupying hardware resources and fairshare
policies, leading to higher job completion times than those
reported in our simulation results.

We analyzed how accurately our job scheduler predicts
when a license will become free by recording each prediction
and ground truth during our simulation. The results are shown
in Fig. 7 for the exponential and forecasting method. For the
forecasting method in Fig. 7a, we see that the model clusters
around the prediction and ground truth difference of O minutes,
with more predictions on the positive side, indicating that
the model can predict accurately, but tends to overpredict.
Note that underpredictions lead to job denials and further
delay predictions. For the exponential method in Fig. 7b, we
see that there are many underpredictions with few very large
overpredictions, which causes increased job completion time.

VII. RELATED WORKS

In the context of license-aware job scheduling, in [12], the
authors propose a license-aware job scheduler by adding a
queue on top of an existing job scheduler and only running
jobs when both the license manager and the job scheduler
indicate that resources are available. However, this depends
on the assumption that what licenses a job will use is known
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before execution and it results in idling on hardware resources.
In [29], a heuristic is presented and evaluated for license-aware
job scheduling. However, the proposed heuristic assumes that
the licenses used in a job and the runtime of a job are
known before execution. We believe, due to these assumptions,
such methods are not suitable for many HPC environments.
In contrast, our work can be infegrated with existing job
schedulers without requiring any future knowledge.

In the context of license usage forecasting, there exist
commercial tools, such as X-formation License Statistics [28]
and OpeniT License Predictor [16], which claim to work with
several types of software licenses. However, these solutions are
not open-source. Few works exist on license forecasting such
as [23] which uses the ARIMA forecasting algorithm [14]
to predict petroleum software and [18], which compares an
LSTM-based forecasting model with the OpeniT License
Predictor. However, these works contain insufficient details of
their implementations and are of limited use. In contrast, we
give the details of our proposed methods, and our software
will be put in the public domain.

VIII. CONCLUDING REMARKS AND FUTURE WORK
Our work shows that it is possible to accurately forecast
license usage, for up to a year, and we show that with the
ability to accurately forecast license usage in the short term,
it is possible to improve job scheduling in a license-aware
manner. We also show methods of parsing log files to obtain
data for use in forecasting. We plan to improve the simulator
by tracking CPU use, both cores and memory per CPU, to
simulate queue time instead of using historical queue time in
the future. Furthermore, we plan on adding compatibility for
interactive jobs both by identifying them in the log data and
simulating them correctly. We plan to analyze how forecasting
errors impact job performance and investigate different license
and job scheduling environments, including the requirement
of additional information at job submission, e.g. license and
workflow annotations. For the distribution-based forecasting
model, we plan to add a decaying distribution, so it can adapt
to recent changes in license durations and we plan on updating

this model to be able to deal with multi-license checkouts.
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