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Abstract— Open RAN (O-RAN) has the potential for revo-
lutionizing not only cellular communication but also spectrum
sensing by carefully controlling uplink/downlink traffic in shared
spectrum bands. In this paper, we present the design of
SenseORAN, which detects the presence of radar pulses within
the Citizens Broadband Radio Service (CBRS) band. SenseORAN
is especially useful for scenarios where these pulses (highest
priority) are fully overlapping with interfering LTE signals (sec-
ondary priority licensee), requiring immediate detection of such
an occurrence. This design paradigm of re-using existing cellular
infrastructure with ORAN-compliant sensing and communication
slices can potentially eliminate the need for dedicated spectrum
sensors along the coastline as well as severe restrictions on the
transmit power for the LTE operators that are enforced today.
Our approach involves a machine learning module deployed as
a Radar Detection xApp at the near-Real-Time (near-RT) Radio
Access Network (RAN) Intelligent Controller, i.e., near-RT RIC.
The base station or gNB: 1) uses the you-only-look-once (YOLO)-
based machine learning framework that is modified to detect
radar signals present within spectrograms generated from I/Q
samples collected during the regular uplink cellular operation;
and 2) maintains a list of ‘occupied’ channels in the 3.5-GHz
CBRS band that indicate radar presence. Our design is validated
with: 1) an over the air collected dataset composed of Type 1
radar and standard-compliant LTE waveforms; and 2) an experi-
mental testbed of SDRs running a complete Open RAN stack with
a near-RT RIC implementation integrated with our YOLO-based
xApp. We show radar detection accuracy of 100% under SINR
conditions 12-dB after combining 7 spectrograms into a single
decision. Furthermore, using testbed results, we demonstrate
that the gNB can be reconfigured to avoid radar interference
within 866-ms, which represents a reduction of 85.5% over the
60-s response time mandated for pausing cellular operation in
detecting radar presence in the CBRS band today.
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I. INTRODUCTION

THE scarcity of wireless spectrum has spurred interest
in spectrum sharing within federal bands, provided that

the priorities of the incumbents are protected. The CBRS
band in the 3.55-3.7 GHz frequency range is an illustrative
example of this shared-spectrum paradigm, where 4G LTE
and 5G operators (also called as Priority Access License or
PAL users) and unlicenced users (General Authorized Access
or GAA users) may coexist along with the higher priority
naval radar. CBRS defines a central entity, called SAS, that
requires PAL and GAA users to register and assigns medium
access according to the tiered priority scheme. Incumbent
and PAL users are protected from the GAA interference, but
no interference protection is guaranteed for GAA users [1],
as shown in Fig. 2.

Within the CBRS band today, a number of dedicated envi-
ronmental sensing capability (ESC) sensors are deployed along
the coast for detecting radar pulses. We propose a radically
different vision in this paper, wherein we suggest eliminating
the need for ESC sensors. Instead, in SenseORAN, O-RAN
compliant base stations (BSs or interchangeably denoted as
gNBs) perform the task of sensing, with the goal of max-
imizing the accuracy of radar detection while maintaining
acceptable level of service for the associated clients. While
we frame the problem in context of ship-borne radar detection
in the CBRS band, SenseORAN is designed to be extensible in
other bands that are being considered for mixed use operation,
such as the 3.1-3.5 GHz band, where the detection of mobile
radar incumbent becomes a challenging problem- no longer
can ESC be deployed only along the coastline (unlike CBRS).
These are complex decisions, where fixed policy-based
approaches do not adapt well to dynamically chang-
ing mobile radar trajectories, interference conditions, and
cellular-traffic.

•Limitations of today’s CBRS architecture: Current
CBRS rules adopt a conservative approach, where cellular
operators are forced to operate hundreds of kilometers away
from the coast [2]. The transmission power is limited to 50 W

(37 dBm/MHz) [3], such that the aggregated interference and
noise power at ESCs is below �109 dBm/MHz [4]. This aims
to minimize interference to the ESC, as the latter must detect
the radar even when there is an active PAL user transmitting
(see Fig. 1a). While effective, such rules drastically reduce
cellular coverage and connectivity in the coastal regions
of the country, which also contain high population density.
CBRS rules also do not specify how to detect radar pulses
if they are fully overlapping within a cellular signal. ESC
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Fig. 1. Currently, ESC sensors s1, s2, s3 detect radar in the CBRS band in
(a), which may be subject to interference from cellular BSs b1, b2, b3 shown
by red arrows. The data from ESC sensors is reported to the SAS. In the
proposed architecture in (b), the b1, b2, b3 are O-RAN compliant BSs, which
use machine learning based xApps in the near-RT RICs to accurately detect
radar and for optimal BS reconfiguration upon detected radars. This increases
the sensing region and reduces deployment overhead by re-using existing
cellular infrastructure.

sensors are deployed by private companies after federal
certification, which increases cost of the overall roll-out
and forces judicious selection of installation locations (there
are only 220 ESCs along the entire US seaboard as per
data retrieved in August 2020 [5]). Finally, other spectrum
bands, e.g., 3.1-3.45 GHz [6], are being considered for
sharing that have incumbent radar with greater flexibility
of motion, such as airborne or terrestrial radar. A limited
number of ESCs cannot cover the vast geographical span
needed to monitor for radar, and also wide-scale curtailing the
transmission power of cellular BSs may defeat the premise
of enhance connectivity through spectrum sharing. For these
reasons, we propose a solution based on two transformative
technologies: (i) machine learning for radar signal detection
and (ii) optimizing the parameters of a programmable and
O-RAN-compliant cellular network.

•Proposed approach: Our solution to the above problems
is intuitive: we propose to shift the burden of spectrum
sensing to the PAL users/cellular operators, where a gNB acts
as pseudo ESC, reporting any detected radar pulses to the
spectrum access system (SAS), as shown in Fig. 1b. While
dense deployment of such gNBs will undoubtedly increase
the sensing region, how to perform sensing effectively and
reconfigure the PAL users still remains an open challenge.
For this, we propose a two-stage approach involving machine
learning for radar detection. Stage I: Sensing slice: In this
stage, each gNB senses the RF spectrum of interest for a
finite duration of time to create a spectrogram, which is then
given as input to a trained image classification network using
machine learning and implemented as an xAPP in the near-RT
RIC. The use of spectrograms overcomes the privacy issues
related to storing and transporting in/quadrature-phase (I/Q)
samples. We show how off-the-shelf convolutional neural net-
work (CNN) architectures, e.g., YOLOv3 [7], can be effective
in detecting radar pulses, even when they fully overlap a wider
LTE/5G signal and under diverse traffic conditions. Stage II:
Network reconfiguration: In this stage, all cellular network
operations are turned off such that the bands where radar is
detected are excluded for future use for communication. This

is compliant with the current CBRS procedures, which gives
full priority to radar users.

Since these are both external approaches that are not
integrated within the 5G standard, the only way to realis-
tically deploy such forward looking strategies is to adopt
programmable cellular network standards, where interfaces are
open to hardware and software components from different ven-
dors. For this reason, we choose the O-RAN framework [8],
where both the Stage I YOLO and the Stage II BS recon-
figuration are executed within xApps, in near-RT RICs that
have access times of around 10 ms-1 s, as shown in Fig. 1b
(Sec. III-B gives more O-RAN details).

•Contributions in O-RAN based sensing for CBRS:
Incorporating sensing capabilities as part of the O-RAN
architecture, while being CBRS compliant, poses several chal-
lenges. We summarize them below:

• SenseORAN’s machine learning modules must be
wrapped within a specific format called as an xApp,
in which the time needed to collect sensed data, cre-
ate spectrograms, relay them over O-RAN standardized
interfaces (e.g., the E2 interface connects the PHY layer)
to the near-RT RIC, execute the models and then obtain
back the outcomes must be within a fraction of the per-
missible 60 s of reporting window allowed by the Federal
Communications Commission (FCC) for classical ESC
operation [4]. We characterize delays over interfaces,
compute end-to-end processing times, and other O-RAN
specific practical overheads that can impact latency and
accuracy of our xApp decision in Sec. VIII-A.

• We minimally modify YOLOv3 to enable the model
to detect embedded radar pulses within cellular signals.
Specifically, our model is trained in an over-the-air (OTA)
collected dataset. We consistently achieve a recall of
100% at the radar SINR level of 20 dB, which is the
highest allowed SINR value by the FCC [9]. In fact,
we obtain 100% recall at the radar SINR level of
as low as 12 dB under low-noise high-interference sce-
narios, exceeding the FCC requirement overwhelmingly.
We evaluate the performance of our model over different
traffic conditions, SINR and INR values, and num-
ber of available spectrograms. We showcase our SINR
dependent evaluation in Secs. VIII-B-VIII-C.

• The CBRS band mandates that cellular systems operate
in Time Division Duplexing (TDD), where both uplink
(UL) and downlink (DL) share the same frequency band.
Thus, given the cellular frame structure, continuous data
collection for radar detection might not be possible and
different sub-frames need to be appended to generate
a spectrogram that is representative of the band being
sensed. We discuss creating this custom-spectrogram fur-
ther in Sec. VI-A.

• As shown in Fig. 1b, a single near-RT RIC may serve
multiple BSs, which raises concerns of congestion on
the E2 interface. We evaluate the congestion effect in
Sec. VIII.

• Running radar detection as part of the O-RAN
architecture in form of an xApp presents certain system
level challenges. We have implemented the YOLO
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based xApp using open source libraries (srsRAN) and
real hardware (Sec. VII). We release all simulation
and over-the-air datasets for radar detection, YOLOv3
model [10], and open source O-RAN implementation
code [11] to the community for further research.

II. RELATED WORK

A. Prior Work on O-RAN
Polese et al. [12] provide detailed review of the fundamen-

tals of O-RAN architecture, interfaces, security, algorithms,
and outline future research areas. There are a number of
systems level and tool development efforts that continue to
benefit the research community: In [13], Upadhyaya et al.
create a prototype testbed for O-RAN for next generation
implementations using USRPs. Their implementation is based
on srsRAN and they focus on the E2 interface, by devel-
oping two xApps for the near-RT RIC. The first xApp is
an improved version of the KPIMON xApp, which collects
key performance indicators and developed by the O-RAN
Software Community. The second xApp is an extended ver-
sion of the RAN slicing xApp by POWDER [14]. However,
this work is yet to be integrated in other types of cellular
deployments, such as CBRS. Bonati et al. [15] introduce an
open and virtualized prototyping platform for next generation
cellular systems, called SCOPE. SCOPE is a ready-to-use
portable container that embodies various wireless deploy-
ments. SCOPE’s protocol stack is based on srsRAN, but
the authors introduce network slicing, additional MAC-layer
scheduling policies, the PHY-layer parameter change capabil-
ity, and a data collection module for ML/AI applications. The
authors tested SCOPE on the NSF Colosseum, world’s largest
wireless emulator, an indoor testbed called Arena, and NSF
POWDER, a community-scale testbed and part of the PAWR
family of externally accessible platforms by training a Deep
Q-Network agent, which is a Deep Reinforcement Learning
(DRL) solution for problems with discrete actions. This agent
adapts slicing and scheduling schemes at run time to maximize
the network throughput.

D’Oro et al. [16] introduce the concept of an rApp, named
OrchestRAN, which operates in the non-RT RIC and aims for
network automation in an O-RAN setting. They formulate the
problem in a tree structure, in which there is a flow of network
packages and also has option to share models among the
O-RAN nodes. The rApp in this work computes the optimal
set of data-driven algorithms and their execution location to
achieve specifications from network operators. The authors
evaluate the rApp using its model sharing feature, achieved
throughput, and buffer sizes.

In [17], Polese et al. propose an xApp for automatic control
of an O-RAN based cellular network. They again use DRL to
perform scheduling and network slicing, e.g. categorizing user
based on their data usage, which is based on [15]. In addition
to evaluating achieved throughput, they also show how online
training can help pre-trained models evolve and meet the
demands of the specific deployment environment.

B. Prior Work on CBRS
Soltani et al. [18] propose a new ESC sensor concept

in the CBRS band, called ESC+. Their aim is to detect

radar and cellular signals (authorized and unauthorized users).
They feed spectrograms into a custom made neural network
(NN) to detect aforementioned identities in two stages. In the
first stage, signal regions are detected coarsely to focus on,
because radar pulses have much smaller duration compared
to cellular users. Then, a finer search is applied to detect
radar signals. They achieve 100% accuracy using simulated
data. Lees et al. [19] show that deep learning methods out-
perform classical methods in signal detection when they use
spectrograms, by comparing 13 different methods. In the end,
they demonstrate that their 3-layer NN architecture offers the
best accuracy vs. computational complexity tradeoff, achieving
0.99 for the area under the curve (AUC) metric for Receiver
operating characteristic (ROC) curves. Caromi et al. [20] pro-
pose several CNNs to detect signals in the CBRS band.
They utilize raw signal magnitudes and spectrograms in their
models to detect the presence and absence of radar signals.
In their previous work [21], they propose detecting radar
signals through Support Vector Machines (SVM), which is
trained using field measurements with additional computer
generated LTE and Gaussian noise signals. Sarkar et al. [22]
propose a deep learning based real-time ESC sensor using
signal spectrograms for detecting radar signals and estimating
their bandwidth. Their YOLO-based method is able to detect
radar signals with the accuracy of 99% in the presence of noise
using SDRs. However, no prior work has studied this problem
under different noise and interference ratios, as we describe
in Sec. VI.

Ying et al. [23] propose a graph theory based formulation
that will allow SAS-assisted dynamic channel assignment
among PAL and GAA users in the CBRS band, by mitigating
their interference towards each other. They solve their formu-
lation via heuristic methods, which is evaluated in simulations
using WiFi hotspot data, achieving 93% consistent service
for GAA users. Grissa et al. [24] approach the channel access
problem in the CBRS band from a privacy angle, by reducing
the sensitive information required to share for GAA users to
obtain spectrum availability information, while still abiding the
FCC regulations. Their proposed framework, TrustSAS, makes
use of cryptography and blockchain elements, by forming
GAAs into clusters, where cluster leaders are responsible for
overall cluster dynamics by employing multi-server private
information retrieval (PIR) protocol.

C. Novelty Over Prior Work

In summary, state-of-the-art CBRS work has evolved in
two mutually exclusive directions i) signal detection, and
ii) channel allocation for secondary users. However, a fully
operational CBRS system must take both the aforementioned
direction together. Also, to the best of our knowledge, except
a conceptual study, where Smith et al. [25] propose utilizing
O-RAN for spectrum sharing between 5G and government
satelite systems, there is no actual implementation of CBRS
band channel access in the O-RAN context. SenseORAN
distinguishes itself from prior work for CBRS via i) integrating
signal detection, specifically radar, and channel allocation
into one holistic study, ii) implementing the proposed idea
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Fig. 2. CBRS tiers.

using well known standard-compliant software that facilitates
future adoption into the next generation cellular systems, i.e.,
O-RAN, iii) release of the dataset and models that we use
in this unique study. Additionally, we propose using already
available base stations for ESC sensors, and this architectural
novelty not only will provide cost reduction, but also expand
the radar sensing capability for aerial and terrestrial vehicular
radars.

III. MOTIVATION FOR O-RAN IN THE CBRS BAND

In this section, we describe the spectrum access method-
ology in the CBRS band and how the O-RAN relevant
architectural elements can be beneficial for radar detection in
this band.

A. Current Cellular Technology in the CBRS Band
As described in Sec. I, the CBRS band presents a tiered

structure (Fig. 2), where different users can access the medium
with different priority levels depending on their category.
In this work, we focus on the first two tiers, where radar and
5G are the incumbent and PAL users, respectively. Incumbents
can access the medium with no constraints and the ESC
sensors notify the SAS when they are detected in a specific
band. However, relying on dedicated sensing infrastructure for
radar detection requires sensors to be deployed all over the
coastline. Instead, we propose to reuse the existing cellular
infrastructure to also serve as sensing equipment. In particular,
we aim to use existing BSs to run radar detection algorithms on
top of their regular communication operations. However, such
paradigm is not supported by current cellular infrastructure,
which tend to be proprietary with vendor-locked black-box
designs. This makes it difficult for third parties to design
solutions that extend the abilities of the cellular infrastructure.
To this end, we leverage O-RAN, an emerging and trans-
formative paradigm for cellular technology that incorporates
computing capabilities and open interfaces. It allows ML
algorithms to run as part of the architecture and as we
show in this paper, the ML models can be deployed for
sensing tasks, apart from controlling network slices. In the
following subsection, we briefly review O-RAN concepts and
its architectural elements that are most relevant to this work.

B. O-RAN Vs. Existing Cellular Technologies
O-RAN allows disaggregated design, where multiple com-

ponents are interconnected through open interfaces. Addi-
tionally, O-RAN also introduces different RAN Intelligent
Controllers (RICs) that reconfigure and optimize the network

Fig. 3. Basic O-RAN architecture (given in (a)) consists of RAN nodes
(RU, DU, and CU), near-RT RIC and non-RT RIC, which hosts third party
xApps and rApps, respectively. RAN nodes provide network data to the RICs,
which in turn return critical network decisions through open interfaces. Higher
level O-RAN components are able to control multiple lower level components
(given in (b)), creating a tree-based control structure over the entire network.

by leveraging data collected at multiple points across the
protocol stack. This approach poses a radical change in the
way cellular networks are designed, where RAN components
are sold by vendors as integrated solutions. The latter typically
implement every layer of the protocol stack and provide no
reconfiguration opportunities to operators. All these features
that O-RAN has to offer reflect into lower operational and
deployment costs, also fostering agile updates, innovation,
and market competitiveness [12]. Therefore, we utilize the
possibility of defining custom sensing slices through O-RAN
to achieve our goal of radar detection in the CBRS band. Next,
we summarize the O-RAN interfaces, the node structure and
the RICs that are relevant to SenseORAN.

1) O-RAN Nodes: O-RAN architecture, shown in Fig. 3a,
extends 3GPP’s 7.2 split, distributing the functionalities of
the Radio Access Network (RAN) among Radio Unit (RU),
Distributed Unit (DU), and Control Unit (CU), which are
collectively known as RAN nodes. For further details, we refer
the reader to [12].

2) O-RAN Interfaces: Communication and data exchange
through open interfaces provide compatibility among network
components from different vendors. This eliminates the con-
cept of black box, enabling more democratic, innovative, and
competitive cellular market. In this work, we focus on the
E2 interface, which provides connectivity between the BS
and near-RT RIC (Fig. 3a). Solutions running at the near-RT
RIC are encapsulated into xApps, which are applications that
support custom logic for radio resource management through
standardized interfaces.

3) O-RAN Components: O-RAN introduces two RICs that
provide management and control in the network at i) near-
real-time (near-RT), with response times between 10 ms and
1 s, and ii) non-real-time (non-RT), with response times > 1 s

(Fig. 3a). In this work, we focus on the near-RT RIC, which
is where the BS reconfiguration and radar detection algorithm
will run as custom-designed xApps. As mentioned previously,
the near-RT is connected to the BS through the E2 interface,
which will be used to share spectrogram information at the
near-RT RIC and reconfigure the BS if a radar transmitter is
present.
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C. O-RAN in the CBRS Band
As mentioned earlier, regular 4G/5G cellular infrastructure

does not support radar detection, or running intelligence in
general, as part of an already existing deployment. Never-
theless, radar detection is a tempting service opportunity for
cellular operators, as this opens doors for service charge,
i.e. more revenue, and faster cellular service adaptation, i.e.
shutting down immediately rather than waiting for SAS orders,
which depend on ESC sensors. We describe the radar detection
steps as part of an O-RAN deployment in Fig. 5. The data
collection happens at the BS, where I/Q samples are captured.
Cellular systems in the CBRS band are required to operate
in TDD mode. Hence, both UL and DL transmissions are
scheduled within the band of interest. For seamless regu-
lar communication operation, we only collect spectrum data
during the UL time slots, where the BS is guaranteed to
be in receive mode and I/Q samples would be coming in
independently of the sensing approach proposed in this paper.
Notice that the O-RAN standard does not allow transmitting
I/Q samples to the RICs, given that such high volumes of
data could potentially saturate the interfaces. Additionally,
I/Q samples contain user information, which raises privacy
concerns if they are transferred outside of the BS. Therefore,
SenseORAN relies uniquely upon spectrogram images, which
completely resolve the privacy concern since they do not
allow data decoding. Next, the spectrogram is sent to the
near-RT RIC, where our custom-designed xApp runs the
ML-based radar detection module. We give further details
about our radar detection approach in Sec. VI. SenseORAN
also supports combining multiple spectrograms for improved
radar detection, which would require repeating the previous
steps over time. Finally, if radar presence is detected, the xApp
reconfigures the BS operation to vacate the channels where
radar is detected and actively operating.

IV. SENSEORAN SYSTEM MODEL

A. Interference During Sensing and Communications
We assume a cellular deployment in the CBRS band,

composed of a BS and a number of user equipments (UEs)
associated with the BS. As per the FCC CBRS regulations, the
cellular network works in TDD mode. Additionally, a radar
transmitter may also present and the resulting radar pulses
need to be sensed at the BS. The relative power level of these
signals are dependent on different scenario parameters, such as
distance, transmission power or noise floor, all of which impact
detection accuracy. We encompass such factors by defin-
ing the peak-to-average signal-to-noise-ratio (SINRsensing),
expressed as:

SINRsensing =
Pr/Br

PC/BC + Pn/fs

(1)

where Pr is the radar peak power and PC and Pn are the aver-
age cellular interference and noise powers. Additionally, Br,
BC and fs are the radar and cellular signal bandwidths, and
the sampling rate in MHz, respectively. Notice that every term
is normalized by its bandwidth and expressed in [W/MHz],
given that every signal might have different bandwidths.

Fig. 4. TDD frame structure, where each subframe has a duration of 1 ms.
An example standardized subframe configuration is shown above, where U
and D represent Uplink and Downlink, respectively.

Next, we define SINRcomms as the measured SINR
during regular cellular uplink operation, which translates into
S being the UE signal and I being the interfering radar signal.
We express SINRcomms as:

SINRcomms =
NFFT

T

↵PC

Pr + Pn

+
T �NFFT

T

↵PC

Pn

(2)

where T is the radar period and NFFT is the 5G FFT size. ↵
is the ratio Nsc/NFFT , with Nsc as the number of sub-carriers
used by the cellular waveform. Notice that not every OFDM
symbol will undergo radar interference. In particular, the
probability of radar interference can be computed with the
quotient NF F T

T
. Hence, Eq. 2 averages the instant SINR for

the symbols that will be affected by radar interference and the
symbols that do not.

B. Radar Detection Using TDD Uplink Subframes

Following the assumptions above, SenseORAN only relies
on UL subframes to collect sensing data. Notice that col-
lecting inference data during the DL operation would require
completely interrupting the regular communication operation,
given that the BS should stop all transmissions to the associ-
ated UEs to collect the I/Q samples necessary to generate one
or multiple spectrograms. Instead, UL-based sensing simply
reuses the I/Q samples that are passed through the regular
cellular receiver pipeline.

As we denote in Fig. 4, the number of UL and DL subframes
in a TDD frame varies depending on the link configuration. For
instance, 4G presents seven different subframe configurations
in its TDD structure [26], expressed as Ci, with 0  i  6.
Notice that the number of available UL subframes per TDD
frame will impact the total time required to capture I/Q
samples that are necessary to generate one spectrogram input
to the xApp. We further analyze the total delay required to
collect the required number of UL subframes in Sec. VIII-A.

Additionally, we note that different TDD UL subframes are
concatenated to generate a single spectrogram. Given that the
radar pulse repetition period is smaller than one subframe
length, each subframe is guaranteed to capture one radar pulse.
However, given that different UL subframes are not captured
sequentially, radar pulses will look unevenly separated within
the generated spectrogram. Our radar detection approach is
proven to be robust to such phenomenon, as we show in
Sec. VI.

C. SenseORAN System Overview

We show the overall system operation of SenseORAN in
4 steps, as depicted in Fig. 5. We describe them below:
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Fig. 5. The BS collects I/Q samples and generates a spectrogram image.
Then, the spectrogram is sent to the near-RT RIC over the E2 interface and
is used as an input to the radar detection xApp. Finally, the BS configuration
is updated if an operating radar is detected.

Fig. 6. Trade-off between SINRsensing and SINRcomms.

1) Generating Spectrogram From I/Q Samples: I/Q samples
are collected from UL subframes, as we describe in Sec. IV-B.
The number of subframes is dependent on the spectrogram size
and the total number of spectrograms. In this work, we fix
the spectrogram length to 10 ms. We further describe the
spectrogram generation in Sec. VI-A and the impact of using
multiple spectrograms in Sec. VIII. Spectograms are generated
at the BS itself, to avoid sending storage-heavy I/Q samples
over the E2 interface. Additionally, I/Q samples cannot leave
the BS due to privacy concerns.

2) Sending Spectrograms to the Near-RT RIC: The E2
interface is used to share the BS-generated spectrograms with
the near-RT RIC, which runs the radar detection ML models.
We analyze the E2 interface latency and spectrogram overhead
in Sec. VIII.

3) Running Radar Detection xApp: Using the spectrogram
input, the presence of radar, if any, is detected by the xApp that
we previously trained and deployed at the near-RT RIC. The
xApp is based on state-of-the-art YOLOv3 image detection
algorithm [7]. We provide further details on the radar detection
approach in Sec. VI-B and its performance in Sec. VIII.
Additionally, we describe the xApp implementation details in
Sec. VII.

Fig. 7. Percentage of max. throughput achieved versus SINRcomms (a) and
SINRsensing (b). Simulation specifications are detailed in Table. I.

4) Update BS Configuration: Upon radar detection, the
xApp notifies the BS about the presence of radar over the
E2 interface. Per FCC regulations, radar bands must be freed
from commercial use. Accordingly, BS appropriately cuts the
5G communication in the radar operating channels.

•Offline Model training: In this work, the dataset is col-
lected and radar detection model is trained offline. We provide
further details for the dataset collected as well as the radar
detection approach in Sec. VI. After training, the model is
deployed in the near-RT RIC.

V. PRELIMINARY RESULTS - RADAR INTERFERENCE ON
CELLULAR UL COMMUNICATIONS

While the primary objective of SenseORAN is to detect
radar pulses overlapping with cellular signals, the former
can also introduce interference on the latter. Thus, it is
mutually beneficial to detect such occurrences and immedi-
ately shift cellular operation into a different band. In this
preliminary study, we measure this impact quantitatively.
In Fig. 6, we compare the trade-off between SINRsensing

and SINRcomms, defined in Sec IV-A. Notice that depending
on the task of interest, either radar or communication signals
can act as interference (Eq. 2 and Eq. 1). Hence, the relative
power levels between both signals define the accuracy of radar
detection (Sec. VIII) and the quality of the cellular uplink,
which we analyze in this section

Next, we set up a UL connection between a BS and a
UE (Fig. 7), with simulation parameters listed in Tab. I.
We simulate different modulation schemes and analyze the link
performance over different SINR levels. First, we observe the
SINRsensing range where radar is detectable, > 12 dB under
low traffic conditions, the link performance remains unaffected
for all modulation schemes. This is partially achieved because
radar signals are bursty, and multiple OFDM symbols remain
interference-free. Additionally, symbol redundancy and coding
rates can help recover from isolated low SINR symbols.
However, as we explain in Sec. VIII-B, the SINRsensing

levels in which radar is detectable depends on other factors,
such as spectrum occupancy and INR. Hence, seamless com-
munication will not achieved under all conditions in which
radar is detectable (single spectrogram detection might require
SINRsensing up to 18 dB).

Next, we observe how radar and communication signals play
the interference role, depending on the task (Eq. 2 and Eq. 1).
Hence, the ratio between both signals defines the accuracy
of radar detection (Sec. VIII) and the quality of the cellular
uplink.
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TABLE I
NOTATION SUMMARY

Fig. 8. Data collection pipeline.

VI. RADAR DETECTION

In this section, we describe the ML model in SenseORAN
for radar detection and the dataset used for training and
evaluating the performance of our model.

A. Dataset

We collect the first ever publicly accessible radar detection
dataset for research purpose, consisting of overlapping over-
the-air cellular and radar signals, under different noise levels
and diverse traffic conditions. We use a testbed of 3 Ettus
Research USRP X310 SDRs, with two nodes running a 4G
cellular network and a third one to collect I/Q samples in the
srsRAN’s FDD mode in order to bypass the need of precisely
capturing the uplink transmission moment (Fig. 8). All the
SDRs are connected to the same host machine, using 10 Gbps

interfaces and Ethernet cables. We setup the 4G network by
running srsRAN [27], where one radio is configured as a UE
and the second one as the BS. FCC defines PAL channels
in the CBRS band to be 10 MHz. Here, we comply with this
requirement by assigning 51 resource blocks, which requires a
sampling rate of 15.36 MS/s. Additionally, we generate User
Datagram Protocol (UDP) traffic at different rates between
the UE and the BS. We setup an iperf3 server at the eNB
and a client on the UE side. As explained in Sec. III-C,
our sensing mechanism uniquely relies on UL sub-frames.
Hence, here we only capture UL transmissions. We collect
a total of 1800 10 ms UL frames under 3 different traf-
fic conditions, which capture different spectrum occupancy
levels.

•Spectrum occupancy: Considering that our system
achieves a maximum rate of ⇠ 20 Mbps, we generate UDP
traffic with data rates of 1 Mbps, 10 Mbps, and 30 Mbps,
meaning ⇠ 5%, 50% and 100% spectrum occupancies, respec-
tively. Notice that traffic of 30 Mbps ensures that all resource
blocks are used and guarantees full spectrum occupation.

Fig. 9. Radar sidelobes are visible depending on the INR and/or noise floor.

We depict examples for these three different scenarios in
Fig. 10. The impact of cellular signals on radar detection
(SINRsensing) is computed following the expression in Eq. 1.
Notice that this expression only considers the average interfer-
ing power over a certain band. However, interfering signals are
unlikely to appear in a homogeneous manner, and may occupy
the spectrum at different levels depending on the network
traffic. Hence, interfering signal power distribution can exhibit
considerable variance with the similar average power level
(i.e. High power bursty signals versus medium power constant
transmissions). How such behavior impacts radar detection,
even for a fixed SINR values, has not been investigated
before.

•Interference to noise ratio (INR): Similar to the spectrum
occupancy ratio discussed above, spectrograms with the same
SINRsensing might will look very different depending on
their INRs levels. In particular, high INR environments (high
interference, low noise) allow the sidelobes of the radar pulses
to be detectable outside of the band, where the cellular signals
are present. As opposed to this, low INR translates into higher
noise levels, which masks the radar sidelobes below the noise
floor. The dataset was collected with an average INR of
30 dB. We extend the dataset by adding Gaussian noise, which
generates the 4 extra INR values of 10 dB, 15 dB, 20 dB, and
25 dB. We exemplify the effect of different levels of INR on
the spectrogram and radar visibility in Fig. 9.

•SINRsensing and radar parameters: We complete the
dataset generation by digitally adding standard compliant
radar type-1 signals [9], with a pulse width of 8 samples,
period of 15208 samples, and a sampling rate of 15.36 MS/s.
We randomly assign the radar center frequency for every
different spectrogram, from the range [

�BC+Br
2 , BC�Br

2 ] to
ensure overlapping between the radar and cellular signals.
We generate spectrograms with the FFT size of 1024 and no
overlap, and with SINRs that range from 10 dB to 25 dB for
each different UDP traffic and INR value. Given the hardware
requirements for FCC-compliant power levels, we neglect
absolute power values and uniquely focus on relative power
levels, by generating a diverse SINR dataset. Notice that
SINR measures the relative power level between radar and
interferer, which is the only representative to analyze the radar
detection performance. Finally, as described in Sec. IV-B,
each UL subframe will capture a radar pulse at different time
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Fig. 10. Spectrograms with different spectrum occupancy rates of 5% (a), 50% (b) and 100% (c).

Fig. 11. YOLOv3 detects and localizes radar signals using spectrograms.

instants. Hence, we generate a random delayed radar pulse for
each captured UL subframe.

B. Approach
Our goal is to i) detect whether there is a radar signal present

in the spectrum of interest and ii) accurately predict what
frequency band the radar is operating on. To do so, we use a
YOLO architecture ('you only look once'), whose speed and
computational efficiency makes it one of the most popular
state-of-the-art object detection algorithms [7]. In particular,
similar to the work in [18], we select YOLO version 3
(YOLOv3) as it has been already proven in similar signal
detection and classification problems. YOLO predicts bound-
ing boxes for each detected object, which in this work, implies
locating the radar signals in the time and frequency space of
a spectrogram (see Fig. 11). While the spectrogram dataset
contains both cellular and radar signals, we focus only on
detecting and localizing radar transmissions. Since all 4G/5G
transmissions occur with synchronization between the BS and
the UEs, which frequency band and what time slots will be
occupied is part of information already available within the
network. Thus, our model solely focuses on detecting radar
signals.

VII. RADAR DETECTION XAPP DESIGN AND
IMPLEMENTATION IN SENSEORAN

In this section, we first provide an overview for the experi-
mental setup and design of the O-RAN compliant testbed for
the radar detection xApp in the near-RT RIC. Then, we detail
the end-to-end implementation steps within the near-RT RIC.

A. Experimental Setup
We leverage Open AI Cellular (OAIC) platform [28],

to build an LTE O-RAN system, which uses open-cellular
software and software-defined radios. Specifically, the proto-
typed O-RAN testbed comprises of an EPC core, one LTE

base station, and a varying number of UEs to establish the
near-RT closed control loop. Particularly, the near-RT RIC
uses E2 interface to interact with RAN. A custom E2 service
model (E2SM-SS) is developed to send spectrogram reports
and enable control of the RAN by the xApp. The near-RT RIC
is deployed on a virtualized workstation based on an AMD
EPYC processor, utilizing 16 CPU cores, 16 GB of RAM,
and ⇠80 GB of storage capacity. The base station and UEs
are implemented in the same virtual machine and communicate
to each other through ZeroMQ.

B. Implementation Workflow in the Near-RT RIC
Here, we describe how the connection between the gNB

and the near-RT is set up. For ease of implementation,
we chose an E2-like interface based on the SCTP protocol,
which functions similarly to the E2 interface and allows us
to carry out control and report messages. In the E2 standard,
RAN Functions define specifications and behavior of a service
facilitated through the E2 interface, and are communicated
by the RAN to inform the RIC of its supported capabilities.
In the E2-like interface, no RAN Functions are explicitly
communicated by the RAN, which initially simplifies the
connection setup. There is no subscription process and no
built-in differentiation of messages between E2-like nodes.
Fig. 12 illustrates the workflow of our implementation, and we
summarize the required steps to setup the E2-like connection
below:

Step-1) The xApp is deployed, it uses the E2-like interface
to accept connections from outside the RIC.

Step-2) The RAN finds the xApp and connects through the
SCTP interface, establishing an E2-like connection.

Step-3) The xApp sends an acknowledgement message
to the RAN which functions as a request to send E2-Like
Indication Messages.

Step-4) Upon receiving the acknowledgement message from
the xApp, the RAN starts collecting I/Q samples captured by
the RF/PHY layer buffers for a specified duration. The I/Q data
is reported to the xApp as an E2-Like Indication Message.

Step-5) The xApp receives the I/Q data and converts it into
a spectrogram. In our particular implementation, spectrograms
are created at the xApp itself. However, SenseORAN does not
require I/Q samples to leave the BS, and this alternative was
solely chosen to ease the implementation efforts. The spectro-
gram is fed as input to the Spectrum Classifier, which hosts
the YOLOv3 model for radar detection. The predictions from
our YOLOv3 model initiate the Policy Controller module.
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Fig. 12. Workflow for the radar detection xApp within the near-RT RIC and
its interaction with the RAN.

Step-6) Then, the Policy Controller makes decisions based
on the feedback from the YOLOv3 and issues a E2-Like
Control Message. If the radar is detected in the band of
interest, the control message dictates that all cellular operations
should be terminated, as per FCC requirement in the CBRS
band [29], which we comply by setting the transmitter power
to near 0 W in our testbed.

For our purposes, we implement a E2-like service model
on this interface that, unlike E2, does not rely on ASN.1 for
encoding and decoding of data. E2-Like Indication Messages
from the RAN are triggered by an indication request from the
xApp, unlike E2 where an event trigger may occur due to
internal events such as a timer. E2-Like Control Messages are
not required to be validated at the RAN and the success/failure
is not reported back to the xApp. In order to make this system
an O-RAN-compliant solution, implementing an E2 service
model is required. However, our implementation works as a
research proof of concept, and is conceptually the same as if
a fully O-RAN compliant solution was used.

While the RU may be connected to zero or more UEs, the
E2SM-SS service model collects I/Q samples according to the
frame structure previously defined in IV-B.

VIII. PERFORMANCE EVALUATION

A. Time Analysis

We first study the time required to run the radar detection
task when implemented within an O-RAN system. First,
we identify the two main contributors to the time overhead:
i) collecting I/Q samples in the time slots reserved for uplink
subframes, and ii) sending the generated spectrogram image to
the near-RT RIC over the E2 interface. We show where these
two processes are executed in Fig. 13, and we discuss them
in the remainder of this subsection.

1) Time for I/Q Sample Collection (TIQ): In order to not
interrupt the regular communication operation of the cellular
network, we rely on I/Q samples collected during uplink time
slots. Notice that the BS is already in receive mode during
the period reserved for UL sub-frames. Hence, SenseORAN
simply reuses I/Q samples to generate spectrograms that
are otherwise being processed through the regular receiver
pipeline. However, CBRS only supports TDD mode, which
implies that the sensing task will be dependent on the frame
configuration, as described in Sec. IV-B. The BS captures
�/NCi

UL
frames, to complete 1 full frame of uplink I/Q

data, where � = 10 ms (a frame duration in TDD) and
NCi

UL
denotes the number of uplink subframes for the frame

Fig. 13. Data flow and calculation steps for radar detection in an O-RAN
compliant cellular network that operates in the CBRS band.

Fig. 14. The effect of TDD subframe configuration in the time it takes to
collect enough I/Q samples at a BS for radar detection. For the plot above,
⌧spec = 10 ms and � = 10 ms. Note that even 1 uplink subframe is well
below the upper decision time limit for an xApp in the near-RT RIC (1 s).

configuration Ci. We express the total time needed for I/Q
sample collection as:

TIQ = ⌧spec ⇥
�

NCi
UL

, (3)

where ⌧spec is the time-axis duration (in s) of spectrograms
created within SenseORAN. How TIQ is affected by different
TDD configurations is shown in Fig. 14, in which � = 10ms

(default frame length in TDD, see Fig. 4). We also choose
⌧spec = 10 ms, because we want to make the I/Q sample
collection small enough to reliably detect radars and keep it
consistent with the complete TDD frame duration.

2) Time in the O-RAN Components (TORAN ): In order to
have a data flow running on the E2 interface, the end points
of the interface must be connected, i.e., near RT-RIC and
RAN (also called E2 nodes). E2 nodes and near RT-RIC first
establish an SCTP connection, after which E2 nodes send an
E2 setup request and if the near RT-RIC successfully delivers
acknowledgement, then the E2 interface is setup. Since this
is only required to establish a connection between the RAN
and near RT-RIC, this is a one-time cost, which we denote as
TE2�setup.

After the RAN to near RT-RIC connection is established,
the E2 interface is activated and the xApp is ready to function
within the O-RAN network. The data flow from RAN to
near-RT can occur either periodically or it might start through
a trigger event by E2 nodes, whereas the data flow in the
opposite direction can be initiated autonomously by the near
RT-RIC or by a trigger event. We envision that the radar
detection starts with a trigger from the near RT-RIC, as shown
in Fig. 13. We denote the aforementioned data transmission
times as TRAN!RIC and TRIC!RAN , subtexts indicating
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Fig. 15. Recall vs. SINRsensing for different INR (a) and spectrum occupancies (d). Average IoU vs. SINRsensing for different INR (c) and spectrum occupancies
(e). fc error estimate for different INR (c) and spectrum occupancies (f).

the directions of data flow. In the RAN ! RIC direction,
spectrograms are sent, whereas in the RIC ! RAN direction
small radar detection indicators are sent. Thus, assuming
that the cables in both directions in the E2 interface have
identical capacity, TRAN!RIC � TRIC!RAN , making the
latter practically negligible. Total data to send for a single
spectrogram is ⇣ = fs⇥�IQ⇥⌧spec, where fs is the sampling
rate (given in Tab. I), �IQ is the per sample size of the I/Q
data with the value of 32 bits (16 bits for real and imaginary
parts each), making ⇣ = 4.9 Mb. Thus, the time it takes to
deliver this data over the E2 interface is TE2 = TRAN!RIC =

⇣

rE2
, where rE2 is the data rate (in Mbps) over the

E2 interface.
Additionally, computations at xApps take some time.

In SenseORAN, spectrograms are provided to the xApp, which
detects radar pulses by applying the YOLOv3 algorithm on
the spectrograms. We denote this total time as TRIC , which
depends on both the model complexity and ⇣.

TORAN = TE2�setup + TE2 + TRIC (4)

3) Complete Time for Radar Detection (Trd): All in all, the
total time it takes for an O-RAN compliant base-station that
operates in the CBRS band is formulated as:

Trd = TIQ + TORAN , (5)

where TIQ and TORAN are provided in Eq. 3 and 4,
respectively.

B. Radar Detection
In this subsection, we evaluate the performance of the radar

detection approach in SenseORAN, described in Sec. VI. First,
we define the following metrics:

• Recall: The ratio of true positives among all true radar
labels. Notice that in radar detection, this metric is the
most relevant, given that radar signals have the highest
priority and the FCC mandates a radar detection of >
99% of radar pulses should be detected for an SINR of
20 dB.

• Average Intersection-over-Union (IoU): IoU for each
detected radar is computed as the area of overlap of true
and predicted bounding boxes, divided by the area of
their union. Average IoU is calculated by averaging IoU
for detected radars over the whole test set. IoU is used
as a quantitative metric to measure how well the model
was able to locate radar.

• Radar center frequency estimation error, defined as the
absolute difference between the predicted (fc) and the
ground truth (fc0) center frequencies (|fc� fc0|).

In Fig. 15, we evaluate the performance of our model in
terms of recall, average Intersection-over-Union (IoU), and
radar center frequency estimation error for different INR
and spectrum occupancy values. We observe that higher
SINRsensing improves all 3 metrics, as expected. However,
SINRsensing is not the only parameter that impacts the radar
detection performance. While SINRsensing models the radar
level in comparison to the interference and noise, the relative
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Fig. 16. Recall vs. SINRsensing while applying majority voting on predictions with different number of spectrograms. We compare spectrum occupancies of
5% (a), 50% (b), and 100% (c).

Fig. 17. Experimental time analysis in SenseORAN. The breakdown of the total round trip time (RTT), which is 925 ms (a), RTT vs. number of spectrograms
(b), and RTT vs. number of base stations (c).

power level between these two (INR) (high interference and
low noise floor), is also relevant. In Figs. 15a-15c, we analyze
show how all metrics improve with higher INR values, even
when the measured SINRsensing is the same. As explained in
Sec. VI-A, even if the radar bandwidth is limited to 2 MHz, the
sidelobe power dissipates beyond its allocated band. While this
generates undesired interference, it can facilitate radar detec-
tion when the sidelobe power is above the noise floor. Then,
in scenarios with high INR, our approach can easily detect
and localize radar in a spectrogram, which translates into better
recall, IoU and center frequency estimation. Next, we evaluate
the impact of different spectrum occupancy patterns generated
by different traffic levels. While noise is constant over time,
interference will depend on many factors. However, notice
that SINRsensing (Eq. 1) averages the interference levels for
the time/frequency of interest. In Figs. 15d-15f, we show the
lower the spectrum occupancy, the higher the radar detection
performance. When the average level of interference and noise
is the same, lower traffic/spectrum occupancy facilitates that
certain radar pulses might fall into an interference-free slot
while completely overlapping with an ongoing transmission.
Our results show that this scenario, where some radar pulses
undergo low interference while others undergo high interfer-
ence, is preferred over the case in which all pulses experience
the same medium level of interference.

C. Radar Detection Using Multiple Spectrograms
The previous results always assume radar is detected using a

single spectrogram. However, SenseORAN supports collecting

and using multiple spectrograms to improve robustness and
achieve detection at lower SINRsensing . We evaluate the
radar detection performance (recall) in Fig. 16 under different
traffic conditions. All results are averaged across all INR values
present in the dataset. When multiple spectrograms are used,
each spectrogram is used to obtain an independent decision,
and then all results are combined using a majority voting,
which takes a final decision (radar vs no radar) based on what
the majority decided. We observe how increasing the number
of spectrograms improves the detection performance for all
spectrum occupancy patterns, by reducing the SINRsensing at
which the FCC required 99% detection accuracy is necessary.
For instance, we achieve 100% accuracy at 12 dB, 13 dB, and
16 dB SINRsensing . Notice that we overwhelmingly improve
over the FCC thresholds in the CBRS band, which mandate
at least 99% detection accuracy at 20 dB SINRsensing .

D. SenseORAN System Round Trip Time

Fig. 17a presents the breakdown of overall round trip time
(RTT) incurred in SenseORAN. Noticeably, the YOLOv3
model inference is the bottleneck and accounts for 79.8%

of the total latency of 866 ms (< 1 s), which represents
85.5% improvement over the 60 s limit that is mandated by
the state-of-the-art CBRS SAS system. The next two most
time consuming steps take place at the BS for collecting I/Q
samples over the air (TIQ) and creating spectrograms from the
I/Q samples, which respectively account for nearly 11.5% and
7.4% of total RTT.
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Figs. 17b and 17c showcase the impact of varying number
of spectrograms and number of BS over the RTT time of
SenseORAN, respectively. The results are expected, as the
overall effect is the overhead increase in collecting higher
number of I/Q samples (multiple spectrograms from a given
BS in Fig. 17b) or multiple BSs (one spectrogram per BS
in Fig. 17c), and subsequent steps of I/Q to spectrogram
conversion and model inference time. To evaluate the multiple
BS configuration in Fig. 17c, we use the measurements for the
multi-spectrogram configuration in Fig. 17b and assume that
I/Q data collection happens in parallel. Finally, the E2 latency
is computed accounting for the traffic overhead of supporting
multiple base stations.

IX. CONCLUSION

We propose a novel architectural transformation within the
classical cellular systems enabled by O-RAN that allows a BS
to act as a spectrum sensor. In the CBRS band, SenseORAN i)
eliminates the need for dedicated radar detection infrastructure,
and ii) reduces the detection and system response times in
comparison to the legacy CBRS-SAS approach. In addition
to the reduction in cost and time, SenseORAN potentially
expands the radar sensing area, given the nation-wide coverage
of deployed cellular infrastructure. We demonstrate radar
detection feasibility under various levels of cellular signal
interference. We also analyze the practical delays and over-
heads using a real O-RAN system implementation with SDRs.
Our results conclude a radar detection recall of ⇠ 98% for
SINRs � 18 dB under all INR and spectrum occupancy sce-
narios, and achieve a 100% radar detection recall for SINRs
� 12 dB and under low traffic conditions when 7 spectrograms
are combined using majority voting. Finally, we implement our
radar detection as an xApp, where we show the feasibility of
SenseORAN with end-to-end response times of < 1 s, being
compliant with the near-RT RIC O-RAN specifications and
much lower than the permissible radar reporting time of 60 s

that is mandated by the FCC.

X. FUTURE WORK

SenseORAN is the first step towards using cellular systems
for both communications and sensing tasks. Here, we list
the challenges and research opportunities that we plan on
addressing in further development of SenseORAN:

• Hardware accelerated models: The radar detection
model uses a single CPU, which we show is sufficient
to achieve system response time of 1 s. In future
work, we will explore alternative hardware-optimized
NN implementations to speed up the radar detection
algorithm and achieve even faster end-to-end response
times. For example, Wang et al. [30] achieves object
detection run times of < 10 ms, by improving the
ever-evolving YOLO algorithm.

• Parallelization in RIC: O-RAN RICs are expected
to have multiple computing nodes tailored to run
AI applications. Together with more efficient NN
implementations, we will explore parallelization
techniques that will enable running inference on multiple
spectrograms simultaneously, given the available
computation resources on demand.

• Intelligent reconfiguration: Current CBRS systems,
as well as our implementation, simply forced a cellular
operator to stop transmissions after radar is detected
in a given band. In future work, we will explore more
intelligent solutions that exploit spectrum resources more
efficiently, while guaranteeing no impact on the radar
functionality.

• Extension to other sensing applications: The CBRS band
coexistence problem was chosen to showcase an appli-
cation, where running a sensing task as part of an xApp
could be beneficial. However, we envision this concept
can be extended to a wide range of problems including
mobile radar in the 3.1-3.5GHz band. We will explore
such alternative sensing applications, while considering
real system and O-RAN implementation limitations.
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