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ABSTRACT

Attracting and retaining new developers is often at the heart of

open-source project sustainability and success. Previous research

found many intrinsic (or endogenous) project characteristics asso-

ciated with the attractiveness of projects to new developers, but

the impact of factors external to the project itself have largely been

overlooked. In this work, we focus on one such external factor,

a project’s labor pool, which is de�ned as the set of contributors

active in the overall open-source ecosystem that the project could

plausibly attempt to recruit from at a given time. How are the size

and characteristics of the labor pool associated with a project’s

attractiveness to new contributors? Through an empirical study of

over 516,893 Python projects, we found that the size of the project’s

labor pool, the technical skill match, and the social connection be-

tween the project’s labor pool and members of the focal project

all signi�cantly in�uence the number of new developers that the

focal project attracts, with the competition between projects with

overlapping labor pools also playing a role. Overall, the labor pool

factors add considerable explanatory power compared to models

with only project-level characteristics.

CCS CONCEPTS
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computing.
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1 INTRODUCTION

The importance and economic value of open-source software are,

by now, undeniable [25]. Open source is used in all domains, by
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companies big and small, public institutions, scienti�c organiza-

tions, etc. There is a wealth of open-source libraries, frameworks,

and tools that can be reused and built upon to facilitate innovation

and increase software development productivity [59].

Much like any software [15], open source also requires consid-

erable e�ort to develop and maintain, e.g., to respond to evolving

user needs [5], unexpected bugs or issues [67], and ever-changing

dependencies [11]. However, since much of open source is still

being developed and maintained by volunteers [7, 55], for projects,

being able to attract and retain new contributors is essential [53].

Attracting and onboarding new contributors preserves the conti-

nuity of project development and maintenance, and can even save

the project from being abandoned when core developers leave [4].

The arrival of new contributors may also bring new knowledge and

perspectives to the project team, and thus help to produce software

of higher quality [54]. Yet, open-source projects often struggle to

�nd the right contributors [4] and this is aggravated by the volun-

tary nature of many open-source contributions — turnover rates

are high [31], disengagement of core project developers is com-

mon [30], and the reasons people drop out are often unavoidable,

e.g., a change of job or life status [48].

There has been considerable prior research to understand the

characteristics of projects that succeed in attracting and onboarding

new contributors, as well as the barriers faced by people placing

their �rst contributions in open-source projects [63]. For exam-

ple, there is empirical evidence that project popularity [13], age,

size in terms of the number of contributors [64], license [57], the

presence and quality of documentation [51], and even activity on

social media [29], are all associated with a project’s likelihood of

attracting new contributors. However, much less is known about

how factors external to the project, related to its position and role in

the overall open-source ecosystem, impact the process of attracting

and retaining new contributors.

Meanwhile, there is mounting evidence that open-source contrib-

utors, especially volunteers, have ample freedom to choose which

projects to contribute to [34], typically join existing communities

over starting new projects [34], and often jump around between

projects and programming language ecosystems [20, 39, 73], bring-

ing with them knowledge and skills. Therefore, it is insu�cient to

consider open-source projects as independent — their success or

failure to attract and retain new contributors is likely in�uenced

by the broader context they are part of and their relationships to

other projects in the overall open-source ecosystem.

With this holistic view, in this paper we take a step towards

better understanding an open-source project’s labor pool, de�ned

as the set of contributors active in the overall open-source ecosystem

that a given project could plausibly attempt to recruit from at a

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

42

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3611643.3616282
https://doi.org/10.1145/3611643.3616282
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3616282&domain=pdf&date_stamp=2023-11-30


ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Hongbo Fang, James Herbsleb, and Bogdan Vasilescu

given time. Using longitudinal data from a large sample of 516,893

Python projects, and holding constant project-level characteristics

previously reported in the literature, we show that 1) the level of

technical skill match between potential contributors and a focal

project, 2) the strength of their connection to existing teammembers

from past collaborations, and 3) the amount of ‘competition’ from

other similar projects in the overall ecosystem, are all statistically

associated with a project’s attractiveness to new contributors.

Our methodology and results can help open source practitioners,

community managers, platform designers, and funders to better

allocate typically already scarce resources, target promotional cam-

paigns, and monitor the health and sustainability of projects. By

illuminating, with quantitative empirical evidence, possible new

mechanisms through which open-source projects can attract (or

may struggle to attract) new contributors, our work also contributes

to our theoretical understanding of the ecosystem-level dynamics in

open source, an area in much need of additional research attention,

in our opinion.

2 RELATED WORK

The sustainability of open-source projects is one of the key ques-

tions emerging since the early days of open-source development.

Software development is a complex, e�ort-intensive process [15, 49],

and the maintenance of such products can be no less costly [8]. Be-

cause open-source teams often consist of volunteer developers,

being able to sustain contributions becomes especially challenging.

Multiple studies have looked at how developers become involved in

open-source projects. Krogh et al.proposed a “joining script” of de-

veloper participation in the open-source mailing list and described

the practice it took for a newcomer to become established in the

community [74]. Crowston and Howison studied an onion-like

structural model of open-source teams, with the transition between

di�erent layers being a result of team interaction and developer

contribution [21]. Steinmacher and others described the developer

contribution to a project as a multi-stage process that starts from

an initial motivation and attraction phase, then moves to the re-

tention phase in the later stage [64]. The developers’ advancement

towards becoming long-term contributors was also studied. Re-

searchers found that the developers’ relative sociality [77], their

attitudes [78], and the project environmental factors such as the

availability of work opportunities and project popularity [78, 79]

all play a role to in�uence the likelihood of long-term contributions.

Those works helped to support more sustainable open-source de-

velopment by providing guidance on tool design [6, 35, 60, 61, 66]

and project or task recommendations [58].

Attracting new developers to contribute to an open-source project

is an important part of the project’s sustainability and the early

stage of developer involvement in the project. Researchers have

identi�ed several factors that should help with attracting and on-

boarding new developers. For example, Hahn et al.reported that

developers tend to join projects where they have past collaboration

experience with the existing developers [36, 37], with a similar

result found by Casalnuovo et al. [18]. Tan and others found that

beginner-friendly tasks and their characteristics impact developer

onboarding [68]. More recently, studies looked at attracting new

contributors through the lens of signaling theory, reporting that

better READMEs [51], the adoption of badges [69], the project pop-

ularity metrics (e.g., the number of stars [13, 32]), and the time to

review pull requests [32] all help to make the project more attractive

to new contributors.

Our work provides an alternative perspective to understanding

the new contributors to a project by shifting the focus from the

project itself to the characteristics of potential contributors. Our

results also connect to the research on social media promotion [14,

29] for open-source projects and open-source project di�usion in

general [42], as we show that the characteristics of the community

that the promotion reaches impact the successful attraction of new

contributors. We further identify several such characteristics that

open-source promoters may pay attention to.

3 THEORETICAL FRAMEWORK AND
RESEARCH HYPOTHESES

Our study investigates the relationship between characteristics of

a project’s labor pool and its ability to attract new contributors.

As mentioned above, we de�ne labor pool as the set of developers

active in the overall open-source ecosystem around the same time,

that a given project could plausibly attempt to recruit new contrib-

utors from. That is, in our de�nition labor pools are always tied

to speci�c projects. For example, we expect that a text processing

project’s labor pool is di�erent from a bioinformatics project’s labor

pool, although the two may overlap if, for example, they involve

applications of machine learning. In addition, we require a notion

of plausible awareness of the focal project from developers in the

labor pool. Indeed, at the very least, one would need to be aware of

a project and possible opportunities to contribute before deciding

to do so. We discuss our operationalization later, in Section 4.1.

With this de�nition, we hypothesize about di�erences in tenden-

cies to join (i.e., start contributing changes to) a focal project for

developers in the labor pool, and the relationships (we theorize the

direction of in�uence as well) between such factors external to a

project and the project’s success at attracting new contributors. We

will operationalize and more formally test these hypotheses below,

in Section 5. Note also that we use the terms developer and contrib-

utor interchangeably, and inclusively of all types of contribution,

not just code.1

To begin with, the size of the project’s labor pool at some point

in time should be an important predictor of the number of new

contributors the project engages in the near future. A larger labor

pool size should indicate that more developers are aware of the

project, thus the possibility that some of those developers will be

interested to contribute increases. Therefore, we hypothesize:

H1. The number of developers in a project’s labor pool is positively

associated with the number of new contributors the project receives in

the near future.

For potential contributors in the labor pool, a social connection

with current project developers should reduce their uncertainty

about the project, as they may trust the information about the

project provided by their ‘friends’ and may be in a better position

to evaluate the outcome of contributing [44]. In addition, familiarity

1Although in our operationalization below we consider only contributions in the form
of commits (including pull request commits), to keep our analysis tractable. Commits
can still touch non-code parts of a project, e.g., documentation �les.
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with the current project members should help potential developers

to understand the working norms and the way of collaboration

better [26]. Finally, the focal project’s current developers are gen-

erally more likely to accept contributions from people they know

about [70]. We thus hypothesize:

H2. The strength of social connections between existing project mem-

bers and others in the labor pool is positively associated with the

number of new developers the project receives in the near future.

The development of open-source software is skilled work. To

provide valuable contributions to the project, developers need to be

familiar with the programming languages, technologies, and coding

style in the project [17], and align with the project’s goals and other

such constraints. The requirement for technical programming skills

is often a barrier for new contributors to join a project [65], and

the contributions of people with less of a track record of activity in

open source are also less likely to be accepted [70]. Going one step

further, we hypothesize that it’s not enough to have open source

contribution experience, but rather that the experience should be

technically relevant to the focal project:

H3. The degree of similarity (or �t) between the technologies used in a

project and the technical background of the developers in the project’s

labor pool is positively associated with the number of new developers

the project receives in the near future.

Finally, contributing to open-source projects takes a lot of ef-

fort [15, 49]. Given that the amount of time anyone can invest in

contributing to open source is unavoidably limited (at the very

least by the laws of physics), one can expect that the total number

of projects one can join should be limited as well. And while it is

common for people to contribute to multiple open-source projects

even during the same day [72], and one’s capacity for ‘multitasking’

across projects increases when the projects share the same pro-

gramming languages [72], there can still be more projects available

than one has capacity for. Therefore, a developer part of the labor

pool of multiple projects may be forced to choose from among them.

Stated di�erently, a developer’s tendency to join a project may not

only be in�uenced by the characteristics of the focal project, but

also by the amount of other ‘competing’ projects the developer is

exposed to. As competition for new contributors can exist between

projects with overlapping labor pools, we hypothesize:

H4. A project will engage fewer new contributors in the near future

the more overlap there is between its labor pool and labor pools of

other projects.

H5. The project will receive more new contributors if it is relatively

attractive compared to other projects that developers in its labor pool

are also possibly exposed to.

We describe our study design for testing these hypotheses next.

4 METHODS

This section �rst gives the high-level intuition behind our research

design, and then dives into the technical details for each step.

4.1 Key Study Design Decisions and Tradeo�s

Testing the hypotheses above requires a macro, ecosystem-level

analysis. Given a focal project at a given time, we need to opera-

tionalize its labor pool from among those people active across the

entire open-source ‘universe’ at that time (H1,H2). Then, for every

such person, we need tomake inferences about their past experience

with di�erent technologies across the open-source ‘universe.’ We

then need to use these estimates to compute the people’s technical

�t with the focal project (H3), as well as to compute, pairwise, their

technical �t with all other available projects in the open-source

‘universe’, to identify the ones which might be competing for their

attention (H4, H5).

Given the obvious computational complexity of such analysis,

we made several tradeo�s between computational feasibility, on

the one hand, and realism and statistical power, on the other hand.

This resulted in the following three key study design decisions.

Study Context: The Python Ecosystem. To keep our analysis

tractable we choose to analyze only one open-source ecosystem —

the Python programming language ecosystem — but consider all

projects part of the ecosystem. Python is among the most popular

and widely used programming languages in open source [9, 22],

and it is the language behind libraries and frameworks used in a

diversity of application domains.2 At the same time, the Python

open-source ecosystem contains a large set of projects, enabling

us to draw conclusions with high statistical power. Thus, a study

of the Python ecosystem provides important practical implications

and also signi�cant scienti�c value.

Labor Pool Sampling Frame: The Co-commit Network. We

operationalize the labor pool of a focal project at a given time based

on relationships between nodes in the project’s collaboration net-

work. Nodes in the network represent individual developers, and

edges indicate that those two developers made commits to a same

project in the same time period, i.e., a co-commit relationship. For

simplicity, we compute the collaboration network in yearly snap-

shots, with each snapshot capturing the activity in the respective

previous full calendar year ~ − 1, i.e., from 1st of January, ~ − 1 to

31st of December, ~ − 1. We construct the network starting from

the set of all contributors to the focal project in year ~ − 1. Then we

expand outwards, to include all their ‘collaborators’ from all other

projects each contributed to in year ~ − 1. Then, transitively, we

collect all their ‘collaborators’ in the same year ~ − 1 and so forth,

up to three hops away from the starting set of the focal project’s

contributors.3

The goal here is to approximate the number of developers who

might be aware of the focal project at a given time — awareness is a

�rst step towards deciding to contribute. Clearly, there are myriad

online and o�ine ways to learn about new projects, including social

media [12, 28, 62], recommendation systems [46], directly follow-

ing other developers on social coding platforms like GitHub [10],

meetings [14], and many other channels [50].

Identifying the exact set of developers who are aware of the

project at a given time is impossible. Instead, we use co-committing

relationships as a proxy for awareness of the focal project. Prior

research suggests that the collaboration between developers creates

opportunities for communication, and the information about a

project is likely to di�use as a result of developer interactions [2].

2https://www.python.org/about/apps/
3Note that all subsequent outcome measures in our models are computed in year ~, to
avoid soundness issues caused by the possibly reversed chronology of the ‘collabora-
tion’ and focal project joining events.
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Figure 1: Summary of our data preparation and analysis process.

Co-committing to a common project does not guarantee direct

collaboration or interaction [40], but is a prerequisite for both for

contributors who make changes to a project’s codebase — at the

very least, it provides an opportunity for interaction and direct

collaboration. Moreover, not all such co-committing relationships

will result in information about the focal project being di�used,

especially as the number of hops from the focal project’s developers

increases. However, we expect that, on average, the more such

opportunities for interaction exist, the more likely it becomes for

information about the focal project to be di�used.

This operationalization also has the advantage of being agnostic

to the platform where the source code repository is being hosted,

thereby allowing us to more easily scale the analysis beyond any

single platform where additional, platform-speci�c forms of inter-

action could also be considered, e.g., interactions via issue tracker

comments. While currently the dominant one, GitHub is not the

only platform for hosting open source.

Labor Pool Operationalization: People One-Hop Away From

Current Project Contributors in the Co-commit Network.

To further reduce the computational complexity of the analysis,

we operationalize the labor pool of a focal project at a given time

only as the set of developers within one hop away from current

project contributors in the collaboration network, who have never

contributed to the project before. The rationale is twofold.

First, information di�usion theory suggests that the closer nodes

are to the information source in a network, the more likely they

are to receive the information [56, 76]. Thus, one can expect that

awareness of the focal project should decrease substantially the

more hops away one is from the focal project’s current developers.

This is consistent with prior software engineering research [29]

reporting a relatively low tendency to join the focal project in

the future for people who saw it mentioned on Twitter — there is

arguably considerable distance between a focal open-source project

hosted on the GitHub platform and an average Twitter user.

Second, we analyzed the yearly snapshots of the collaboration

network between new contributors and the existing project devel-

opers across all projects in our sample, and computed the network

distances (number of hops) from the existing project developers.

Figure 2 visualizes the ratio

Õ
? #3?~Õ
? #?~

, where #3?~ is the number

of new contributors to project ? in year ~ who are 3-hops away

from the existing developers in the collaboration network in year

~ − 1,4 and #?~ is the total number of new contributors to project

? in year ~.5 As expected, the number of new contributors iden-

ti�able in the collaboration network decreases sharply with the

number of hops, with the one-hop distance capturing most of them

— around 61-65% of everyone identi�able within three hops. Given

the exponential increase in complexity with network distance, we

choose to restrict the operationalization of a project’s labor pool

to developers one-hop away in the collaboration network, as this

distance captures most identi�able developers.

Note that overall, the one-hop distance captures only around

19-23% of all new contributors, i.e., the majority of new contributors

are unidenti�able within one hop of the current project contributors

in the yearly collaboration graph (similarly, also within three hops).

There are many possible reasons. Perhaps the one-year horizon is

insu�cient to capture all ties, and ties surely also form through

many other means than our relatively strict operationalization of co-

committing to the same repository can capture. However, given the

considerable fraction of new contributors that our relatively simple,

but most scalable, operationalization can capture, we expect that

our resulting sample contains su�cient signal for our subsequent

4Recall that outcome measures are computed in subsequent years from collaboration
network edges, cf. footnote 3.
5We apply the same minimum activity �lter as in Section 4.5, for consistency.
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one hop two hops three hops four or more hops (or not connected)

Figure 2: Percentage of new contributions from di�erent

network distances to the existing developers, across years.

modeling needs, while at the same time keeping the data volume

and the computation needed for the analysis tractable.

4.2 Overview of the Analysis

Given these key design decisions, we structure our study in two

parts, as summarized in Figure 1. Both parts involve regression

models explaining the tendency and number of new developers

joining projects in a next time period as a function of the sets of

factors we formulate explicit hypotheses about, via their corre-

sponding variables computed in a current time period. In the �rst

part we take a developer-centric view — from the perspective of

an individual developer, they typically have a choice of projects

they could contribute to and a range of projects they’re in the labor

pool for, based on past collaborations. In the second part we take

a project-centric view, aggregating individual-level e�ects to the

level of the whole ecosystem, to reason about project labor pool

characteristics and competition e�ects.

First, we estimate the relative importance of the three sets of

factors we formulate explicit hypotheses about6 — the strength

of social connections to existing project members (H2), the �t be-

tween one’s technical background and the focal project (H3), and

the amount of competition (or choice one has) between available

projects with similar technical �t (H4, H5) — at the individual

level. To do this, we start by computing a data frame of (labor-pool-

developer, focal-project) pairs, with measurements of the relevant

variables (details below) for every developer in a given project’s

labor pool, across all projects in our sample; we also record a binary

outcome variable indicating whether or not that developer joined

the project in the next period. Using this data, we then construct a

logistic regression model explaining the developers’ tendency to

join a focal project in the next year as a function of the variables

of interest; the labor pool is operationalized as described above,

i.e., people one-hop away from the focal project’s developers. We

refer to variations of this logistic regression model (under di�erent

speci�cations) as individual models.

Note that the goal here is not to make individual predictions

about any one developer’s tendency to join a given project in the

next time period. Rather, the goal is to estimate the relative impor-

tance of the three sets of factors of interest, on average, across a

large sample, such that we can reuse these ‘weights,’ i.e., the es-

timated V coe�cients from the logistic regression model, in the

6Excluding H1 , which refers to the labor pool size, rather than its composition.

second part of our analysis. For example, we estimate how much

the technical background �t explains the joining tendency of an

average developer, compared to the strength of social connections

and the amount of competition from other projects, over a large

sample. Because we estimate the logistic regression over a very

large sample, we can assume that these coe�cients are stable,7 so

we estimate only one set of individual models8 to be used as input

for the second part.

Next, we lift9 the individual-level analysis to the project level by

estimating regressions that explain the number of new developers

joining projects in a next year as a function of their labor pool

characteristics (and control variables) in the current year. We refer

to these models as project models and we use them to formally

test all our hypotheses H1–H5.

To ensure the robustness of our conclusions, we repeat this

analysis for all the complete pairs of consecutive years in our data,

from 2015–2016 to 2020–2021. In the end, we quantify the amount of

variance that the labor pool characteristics explain when modeling

the number of new contributors a project will receive, interpret the

results, and discuss the implications of our �ndings.

4.3 Data Collection and Filtering

We mine our data from the World of Code (WoC) dataset [45],

which contains the git commit traces for all public projects hosted

on GitHub, Gitlab, Bitbucket, SourceForge, and many other smaller

ones. We expect that World of Code should give better coverage

of open-source development compared to other datasets typically

used in prior research.

To begin with, we de�ne the open-source Python ecosystem as

containing all repositories with over 50% of their �les written in

the Python language. We then apply several �lters to de-noise the

data, as typical with mining software repositories research [41].

First, we �lter out repositories with fewer than 10 commits that

involve changes to library import statements, i.e., adding or re-

moving dependencies. This step is needed because we later use

this dependency information to characterize the technical needs

of projects, i.e., we assume that a project using certain libraries

requires contributors with experience in those libraries. We chose

the threshold arbitrarily, balancing a desire to retain a large sample,

on the one hand, with an attempt to �lter out trivial projects (code

dumps, homework solutions, etc) and a need for ‘enough’ data for

the subsequent embeddings-based approach to work. Similarly, we

�lter out developers from labor pools if they authored fewer than

10 commits that involve changes to library import statements, for

analogous reasons. As a robustness validation, we run the same

analysis over datasets where projects and authors with less than

100 commits that involve change of packages are removed, and

the results are qualitatively similar (See the replication package for

validation study).

Second, we made sure to use the de-aliased activity records

from the World of Code dataset, which provides both raw data on

commit authors as well as data on de-aliased commit authors, after

merging developer identities when they use di�erent aliases; see

7We discuss robustness checks for this assumption below.
8We computed all independent variables in 2014 and the outcome variable in 2015.
9The estimated V coe�cients from the individual models enable this aggregation.
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Table 1: The de�nitions of variables in the individual model

Variables related to social connections

Social strength The total number of projects one has worked

on with any of the current project developers.

Variables related to technical �t

Technical similarity The similarity between one’s technical back-

ground and the project’s technologies.

Variables related to competition e�ects

Number of competing

projects

The total number of projects one is in the labor

pools for.

Relative advantage in

social connection

The percentile of the Strength of social connec-

tion variable de�ned above.

Relative advantage in

technical similarity

The percentile of the Technical �t variable de-

�ned above.

Fry et al. [33] for details on the random forest model used to merge

developer aliases based on their user IDs. It is important to use the

de-aliased activity records because the volume of developer aliases

in such data may skew our measurements of project contributors

and experience with Python libraries [3].

Finally, we also make a best e�ort attempt to �lter out bots and

unidenti�able accounts together with their associated commit ac-

tivities, for similar reasons [75]. Speci�cally, we use three heuristics

to identify bot-like accounts. First, we reuse a list of 13,169 bot ac-

counts in theWorld of Code dataset compiled by Dey et al. [24] after

developing a machine learning classi�er for this purpose, based on

author names, commit messages, �les, and projects modi�ed by the

suspected bot account. Second, we convert all account usernames

into lowercase characters and use string matching to �ag as bots

those with the last part of their username being -bot or -robot. Third,

we order all developer accounts in our dataset based on the num-

ber of commits they made, and we manually evaluate the top 100

accounts. This revealed a few additional bot-like and unidenti�able

accounts such as GitHub Merge Button <merge-button@github.com>.

Overall, all these commit authors are excluded from our analysis.

4.4 Part I: Individual Models

As discussed brie�y above, we use logistic regression to model

the factors associated with the individual tendency to join a focal

project, across all (labor-pool-developer, project) pairs in our sample.

The full model is speci�ed as:

% (�8?~) = logit(V0%?~−1 + V1(8?~−1 + V2)8?~−1 + V3⇠8?~−1), (1)

where % (�8?~) is the likelihood that developer 8 joins project ?

in year ~, and independent variables (8?~−1, )8?~−1, and ⇠8?~−1
represent the social connection between potential contributor 8

and the existing developers of project ? , the technical background

�t between developer 8 and project ? , and the factors relating to

the competitive advantage of project ? among the set of projects

developer 8 can potentially join, respectively, all computed in year

~ − 1. Table 1 gives de�nitions of the variables in the model; we

expand on how we operationalized the variables below.

Technical fitness Social connection

Project A 0.2 6

Project B 0.3 3

Project C 0.05 2

Project D 0.8 1

Technical fitness

DBAC
(0%) (25%) (50%) (75%)

Social connection

ABCD

(0%) (25%) (50%) (75%)

(a)

(b) (c)

Figure 3: Illustration of the project relative advantage.

Modeling Considerations. For simplicity, since the estimated V

coe�cients are stable, we compute only one individual model for

~ − 1 = 2014 and reuse the coe�cients throughout Part II.

We also restrict our sample only to the labor-pool developers

who were active (i.e., made at least one commit) in 2014, because

developers who are inactive for more than one year tend to have

a low probability to make commits in future years [16]. Until the

end of 2014, there are 104,899 Python developers in our sample

who made at least 10 valid commits with changes to import state-

ments, and were active in 2014. For each developer, we identify the

projects whose labor pools the developer was part of, and model

their tendency to join those projects in 2015. Since some developers

may be in the labor pools of a large number of projects, for each

developer, we randomly sample 30% of the labor pools they are part

of. Consequently, we also exclude developers who are part of the

labor pools of less than four projects, to ensure that at least one

project per person is sampled. In total, we have 47,788 developers

and 5,778,144 (developer–project) observations in our sample.

Finally, given the inherently nested structure of our data (the

same developer being in the labor pool for multiple projects), we

make clustering adjustments in the standard errors at both the

project and developer levels to account for the possible within-

cluster correlation [1].

Measuring the Technical Fit Between Projects and Develop-

ers. The �t between project technical requirements and individual

technical background is hypothesized to be an important factor

in�uencing the developer joining behavior. We use the packages

(or libraries) a project imports to measure the technical requirement

of a project, and the packages imported in past code commits of

a developer to measure their technical skills. While prior research

used the programming language as a proxy for technical skills [18],

this coarse-grained measure is not suitable for our study as all the

projects in our sample are mostly written in Python.

The World of Code dataset contains dependency information

extracted from each commit (i.e., the packages that a commit im-

ports).10 Therefore, we can obtain the packages that a project de-

pends on, and the packages that a developer has used in their past

commits. Following Dey et al. [23], we then train a Doc2Vec model

to obtain the technical skill embedding of developers and projects.

10https://github.com/woc-hack/tutorial
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Table 2: The de�nitions of the variables used in the project model.

Outcome Variable

Number of new

developers

The number of new developers joining the project in the

next year. New developers are de�ned as developers who

have never committed to the project before the study pe-

riod, and made their �rst commit in the following year.

We only count the new contributors that have at least 10

valid commits in the past across the entire WoC dataset.

Control variables

Project age The number of days elapsed since the �rst commit of the

project.

Total number of

developers

The number of all contributors to the project in the past.

Contributors are de�ned as the developers who made at

least one commit to the project.

Number of recent

developers

The number of all contributors who committed to the

project in the past year.

Total number of

commits

The number of commits developers made to the project

in the past.

Number of recent

commits

The number of commits developers made to the project

in the past year.

Has license A binary variable indicating whether the project had any

license by the time of the study.

Has readme A binary variable indicating whether the project had any

README �le by the time of the study.

Labor pool variables

Labor pool size The number of potential developers in the labor pool of

the project. See Section 4.1 for the de�nition and opera-

tionalization.

Labor pool

e�ective size,

non-competing

variables

The size of the labor pool with each individual weighted

by their tendency to join the project. The individual model

does not include the competition-related variable.

Labor pool

e�ective size, full

variables

The size of the labor pool with each individual weighted

by their tendency to join the project. The individual model

includes all e�ects as hypothesized in Section 3.

Analogous to a Doc2Vec model in natural language processing [43],

we consider the package names to be the tokens, and the develop-

ers (projects) to be the documents (consisting of tokens). We can

thus learn a vector embedding of each token (package), and each

document (developer and project). The cosine distance between

vector embeddings will be small if the two documents are similar in

terms of the tokens they contain, or the packages they use. There-

fore, the cosine distance between the developer’s and the project’s

embedding is a good proxy for technical skill �t.

Measuring the Project Relative Advantage. To operationalize

possible competition between projects over potential contributors,

we rank projects, from the perspective of an individual potential

contributor, in terms of strength of social connection and technical

similarity — we expect that given multiple options, on average,

developers will typically choose projects for which they are a better

socio-technical �t. For a potential developer, we obtain all projects

whose labor pools they are part of. For each project, we compute

the characteristics that we consider to be in�uential on the devel-

oper joining behavior as hypothesized in Section 3. The relative

advantage of each project is de�ned as the percentile of their char-

acteristics, among the set of projects where the focal developer is

part of the labor pool.

In Figure 3 (a), for example, assume that the focal developer is in

the labor pool of four projects (i.e., A, B, C, and D). We �rst order

projects based on their technical �t with the focal developer, and

the resulting rank (or percentiles, as labeled on top of the project ID

in Figure 3 (b)) is the relative advantage of projects in terms of their

skill �t. Similarly, we compute the relative advantage of projects

based on their strength of social connection with the potential

developer, as shown in Figure 3 (c).

4.5 Part II: Project Models

Given the previous individual models estimating the probability of

a labor-pool developer to join a focal project from Section 4.4, sum-

ming over all developers who are in the project’s labor pool gives

the mathematical expectation of the number of new contributors

joining at the project level:

%?~ =

’

8

% (�8?~), (2)

where %?~ is the tendency of all developers 8 in the project ?’s labor

pool to join the project in year ~, and % (�8?~) is the tendency for

any individual developer 8 to join project ? , given that developer 8

is part of ?’s labor pool.

Our modeling strategy is hierarchical regression, i.e., we estimate

separate individual models that incorporate di�erent sets of factors,

ranging from a baseline model with control variables only to a full

model that includes all hypothesized factors. Since the aggregation

to project level incorporates, therefore, the characteristics of devel-

opers in the labor pool, we refer to this outcome variable as the

“e�ective (labor pool) size” in Table 2. For example, the e�ective

labor pool of a project could be much smaller than the number of

one-hop potential contributors would suggest, if the technical �t is

relatively low or there is high competition from other projects.

Practically, we regress the number of new developers a project

receives in year ~. Similarly to the individual model, we restrict

our sample to only active projects (i.e., having at least one commit)

in year ~, as projects that are inactive for more than one year

should have lower probability of attracting new contributors in

the next year compared to active projects [52] and we do not want

our sample to be biased by the large number of inactive projects

which attract no new contributors. New developers are those who

made their �rst ever commit to the project in year ~. As before,

when measuring the number of new contributors (i.e., the outcome

variable), we only count the new contributors who made at least 10

commits involving import statements in the past. For new project

contributors without enough commit history to infer their technical

skills, we cannot estimate their ‘future’ commit tendency, and thus

we are unable to predict whether they will join a new project or

not in this study.
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The main result of this paper is reported for y = 2021, as this

was the most recent complete snapshot in our sample and also the

largest dataset; the 2021 snapshot contains 516,893 active Python

projects. Since the results are consistent for other values of ~, i.e.,

the regression coe�cients point in the same direction and have

similar scale and statistical signi�cance, we don’t discuss the other

models in detail but include the results in our replication package.

5 RESULTS

5.1 Models of Individual Joining Tendency

We �rst present the result for modeling the developers’ tendency to

join other projects, conditioned on them being part of the project’s

labor pool, in Table 3.

In model I, we include social and technical variables that corre-

spond to H2 and H3. Both the social connection between potential

new developers and the existing developers, and the technical sim-

ilarity between potential developers’ skill sets and the project’s

technical requirements are statistically signi�cantly and positively

associated to the likelihood of individuals joining new projects,

which con�rms H2 and H3.

In model II, we include the competition e�ects on the basis of

model I, as discussed in H4 and H5. H4 is con�rmed, as indicated

by the negative e�ect of variable Number of competing projects (log),

which suggests that the more projects a developer was potentially

exposed to (the more labor pools they are part of), the lower the

likelihood that the developer will join any speci�c one of them. H5

was also con�rmed by the signi�cant positive coe�cient for vari-

ables Social strength percentile and Technical similarity percentile,

suggesting that the project’s relative advantage among the set of

projects that a developer is potentially exposed to also in�uences

the developer’s tendency to join the project. Interestingly, the e�ect

of absolute technical similarity disappears after controlling for the

relative similarity e�ect, suggesting that the relative technical �t

among exposed projects is more important to in�uence the develop-

ers’ joining behavior compared to the absolute �tness. Compared

to model I, model II has a lower AIC (Akaike information criterion)

value overall which indicates a better match between the predicted

value and the ground truth.

To better analyze the impact of social-technical factors on in-

dividual joining tendencies, we examine project-developer pairs

where the developer belongs to the project’s labor pool and is a po-

tential new contributor. We categorize these pairs into four groups

based on whether the developer’s technical similarity to the focal

project and their social connection to existing developers are above

or below the median values observed in our sample. We then calcu-

late the joining probability for each project-developer pair within

each group. Figure 4 summarizes the results. Among (labor pool

developer, project) pairs where developers have strong social con-

nections (top 50%) and high technical similarity (top 50%) with the

project, we �nd an average of 8.7 new developers joining per 10,000

project-developer pairs. In contrast, for pairs where developers have

weak social connections and low technical similarity, this number

drops to only 0.6 new developers per 10,000 project-developer pairs.

Figure 4: Illustration of the social-technical e�ects on devel-

oper joining tendency (~=2021).

5.2 Models of the Number of New Contributors

Table 4 summarizes the models explaining the expected number of

new contributors that a project receives in the next year; note the

log-scaled outcome variable. Model I is our base model, where we

explain the number of new developers a project receives only with

the control variables (project-level characteristics). As the model

suggests, the current and historical size of the project’s developer

team is positively associated with the number of future developers

that a project receives, which suggests the existence of a preferential

attachment e�ect that developers tend to attach to popular and well-

known projects. This results is consistent with the one reported by

prior work [57, 71]. In addition, the use of licenses and the project

age both have a signi�cant positive e�ect on the number of new

developers. The e�ect of the current project size (or the number

of commits) is also signi�cant, though it is highly correlated with

the historical project size and commits, as expected. Overall, this

model explains 12.9% of the variance.

Next, we include the labor pool size variable in model II to ex-

plain the number of new developers a project will receive. As hy-

pothesized in H1, the size of the project’s labor pool is positively

associated with the number of new developers, and the model ex-

plains 14.8% variance in total, or about 2% of the overall variance

more than model I.

The simple measurement of the project’s labor pool size treats

all developers in the labor pool equally, and fails to capture their

di�erent tendencies to join. In models III and IV, each developer is

weighed di�erently based on their estimated tendency to join, as

computed by the individual model. For the variable E�ective size,

no-competition variables, the estimated joining tendency for each

developer is computed with non-competing variables only (model I
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Table 3: Modeling the project-joining tendency of developers

Model I Model II

Non-competition e�ects

Social strength (log) 1.17(0.02)∗∗∗ 0.89(0.03)∗∗∗

Technical similarity 2.03(0.21)∗∗∗ −0.14(0.25)

Competition e�ects

Num. competing projects (log) −0.68(0.02)∗∗∗

Social strength percentile 2.03(0.07)∗∗∗

Technical similarity percentile 0.93(0.13)∗∗∗

Observations 5, 778, 144 5, 778, 144

Akaike Inf. Crit. 64, 668.72 60, 465.68
∗? < 0.05; ∗∗? < 0.01; ∗∗∗? < 0.001

in Table 3), and the variable E�ective size, all variables is computed

based on both competition and no-competition variables (model II

in Table 3). Controlling for the simple measurement of the project’s

labor pool size, the e�ective labor pool size is still positively associ-

ated with the number of new contributors that a project receives,

and it provides additional explanatory and predictive power for our

outcome variable. Model III which includes the e�ective size com-

puted with only non-competing variables explains 14.9% variance,

slightly more variance compared to model II, and by adding the

e�ective size computed by both competition and no-competition

e�ects, model IV explains 16.4% variance in total, and 1.5% more of

the overall variance than model III – a sizeable increase. Therefore,

we conclude that all hypotheses in Section 3 are con�rmed at the

project level.

5.3 Analysis on the Generalizability of Labor
Pool Factors

To better understand when labor pool factors fail to explain the

number of new contributors, we plot in Figure 5 the number of new

developers that projects in our sample attract and the corresponding

e�ective labor pool size (computed with the full-variables individual

model). For better visualization, high-leverage points are removed

and we log-scale the e�ective labor pool size. The red dot represents

the mean of e�ective labor pool size with a given number of newly

attracted developers.

We focus on two areas of the graph. First, projects in area A of

Figure 5 have a large e�ective labor pool size, but they attract very

few new contributors, if at all, which di�ers from what we would

predict with the e�ective labor pool. In contrast, projects in area B

attract a large number of new developers in the next year but seem

to have a very small e�ective labor pool size. It is also interesting

to understand how they attract a large number of new developers

given a relatively small e�ective labor pool size. Therefore, we

manually explore the projects in area A and B in Figure 5 and list

possible factors that may lead to model misclassi�cation.

First, we �nd that many projects in area A (large e�ective la-

bor pool and a low number of new contributors) seem to be used

for storage purposes, such as workshops or student competition

projects (e.g., ai2cm/dsl_workshop, PlatziMaster/challenge-prework-

ds), rather than more traditional open-source development. Those
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Figure 5: The relationship between the e�ective labor pool

size and the attracted new contributors (Y=2021, excluding

outlier projects attracting more than eight developers).

projects tend to stop receiving new contributors after the workshop

or competition ends, thus their contribution is relatively indepen-

dent of the e�ective labor pool size. Second, projects in area A are

likely to receive no commits at all in the next year, being that not

only do they attract no new developers, but also they receive little

to no commits from the existing developers in the next year. This

suggests that the existing developers, which is the basis for identi-

fying a project’s labor pool in our study, may not be sending signals

to their collaborators and attracting new developers as they have

abandoned the project themselves. In addition to some existing de-

velopers being “forced“ to leave the project because of unavailability,

as also reported by prior research [48], another possible reason is

the completeness of project features or a decision to stop the devel-

opment, which leads to a natural end of the project development.

We �nd evidence for such projects as they have been archived [47]

(e.g., ansible-community/molecule-azure), or they receive no new

issues and updates in the future (e.g., FergusYip/DrinkMoreApp).

For projects in area B (low e�ective labor pool and a large number

of new contributors), we �nd the most common reason is that those

projects are owned by organizational accounts (e.g., skit-ai/dialogy,

panther-labs/panther-analysis, ZJU-OpenKS/OpenKS), and the labor

pool measured based on developer networks may not be an accurate

re�ection of developers who are aware of the project.

Overall, we found that factors such as project completion and

the disengagement of existing developers may complicate the esti-

mation of a project’s labor pool, which could bias predictions and

explanations of the number of future contributors. We further ac-

knowledge that it is harder to estimate the labor pool size based on

our current operationalization for projects owned by organizational

accounts, as we do not incorporate the organization in�uence into

our labor pool operationalization. However, we recommend that

future researchers and developers also consider these factors when

estimating a project’s e�ective labor pool or the number of future

contributors that may be expected. In addition, despite having con-

siderable explanatory power on the number of future developers,

the regression model with the labor pool and other controls in

our study has not yet produced practically usable predictions on

individual future contributors. We estimate that with the individual
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Table 4: Modeling the number of new developers a project will receive in the next year (~ = 2021)

Model I Model II Model III Model IV

Control variables

Project age (log) 0.01(0.0004)∗∗∗ 0.005(0.0004)∗∗∗ 0.005(0.0004)∗∗∗ 0.005(0.0004)∗∗∗

Project total developer size (log) 0.07(0.001)∗∗∗ 0.06(0.001)∗∗∗ 0.06(0.001)∗∗∗ 0.06(0.001)∗∗∗

Project recent developer size (log) 0.05(0.001)∗∗∗ 0.04(0.001)∗∗∗ 0.04(0.001)∗∗∗ 0.02(0.001)∗∗∗

Project total commits (log) 0.001(0.0004)∗ 0.0003(0.0004) 0.001(0.0004) 0.001(0.0004)∗

Project recent commits (log) 0.01(0.0004)∗∗∗ 0.01(0.0004)∗∗∗ 0.01(0.0004)∗∗∗ 0.01(0.0004)∗∗∗

Has readme −0.01(0.001)∗∗∗ −0.01(0.001)∗∗∗ −0.01(0.001)∗∗∗ −0.01(0.001)∗∗∗

Has license 0.03(0.001)∗∗∗ 0.02(0.001)∗∗∗ 0.02(0.001)∗∗∗ 0.03(0.001)∗∗∗

Labor pool variables

Labor pool size (log) 0.02(0.0002)∗∗∗ 0.01(0.0002)∗∗∗ 0.01(0.0002)∗∗∗

E�ective size, no-competing variables (log) 0.10(0.004)∗∗∗

E�ective size, full variables (log) 0.42(0.004)∗∗∗

Observations 516, 893 516, 893 516, 893 516, 893

Adjusted R2 0.129 0.148 0.149 0.164

Note: ∗? < 0.05; ∗∗? < 0.01; ∗∗∗? < 0.001

model (i.e., predicting whether a given developer will join a project

in the next year or not), making a prediction has 7% precision and

14% recall on average, and with the project model (i.e., predicting

the number of new contributors to a project in the next year) mak-

ing a prediction has 0.19 average di�erence, or the prediction on

the number of new contributors for each project will be o� by 0.19

compared to the ground truth on average. This accuracy may be

insu�cient for prediction tasks in practice, which go beyond the

scope of this work in which we focus on explanation instead, and

better understanding the underlying mechanisms.

6 DISCUSSION

In this paper, we explored the in�uence of the projects’ labor pool

on attracting new developers. We summarize the main results and

discuss limitations, the scienti�c value, and the practical implica-

tions of our results below.

6.1 Labor Pool as an Important Factor for
Project Sustainability

The prevailing empirical studies on open-source sustainability, and

attracting new contributors in particular, have focused on the in�u-

ence of project-level characteristics. In our paper, we provide an

alternative, ecosystem-level perspective by suggesting the project’s

labor pool as an important factor.

The labor pool of a project corresponds to the communities of

developers that may be of help to the development andmaintenance

of the project. They consist of developers who learn about the

project through many possible channels, like recommendations

from their friends or collaborators, exposure on social media spaces,

recommendation systems, web search engines, and many others.

They are the contribution resources potentially ‘accessible’ by the

project at a given time.

Considering labor pool factors following a methodology similar

to ours can help open-source stakeholders to better understand

and predict the amount of contributions projects may have in the

future, which helps with the project management and resource al-

location. Moreover, users who are seeking sustainable open-source

projects to adopt can use labor pool factors to better evaluate the

sustainability of candidate projects.

6.2 The Size of the Labor Pool Is Important, but
It Is Not All That Matters

It is not surprising that expanding the size of the project’s labor

pool helps to attract new developers, which is why so much e�ort

has been devoted to promoting open-source projects to a larger

audience [14, 29, 62]. However, our results indicate that the charac-

teristics of the developers in the project’s labor pool, in addition

to the raw number of developers, also have a signi�cant e�ect to

explain the number of new developers that a project will receive.

With many previous studies about attracting and retaining open-

source contributors focusing on expanding the in�uence of projects

and reaching out to a large community, our work adds to the con-

ventional wisdom by suggesting that expanding project in�uence

to a proper audience also matters. In addition, our work is the �rst,

to the best of our knowledge, to provide empirical evidence of the

competition e�ects between projects, and suggests the practice of

recruiting new developers is more complex beyond simply reaching

out to a large community.

6.3 Towards Targeted Project Promotion

For open-source project promoters seeking to attract more attention

and e�ort to their projects, our results suggest that it is not only the

number of developers that the promotion reaches that matters, but

also the characteristics of those developers. Therefore, a targeted

promotion that di�uses the project information to a developer

community that possesses the related technical skills and is socially

close to the project’s existing developers may be more e�cient and

e�ective to attract new developers compared to promotions to a

wide audience, as they reach a community that is more likely to join

the project as contributors. In addition, as the promotion of projects
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becomes more targeted, developers may be less overwhelmed by

the wide range of projects hosted online as the information and

promotion they are exposed to will be more relevant to their skills,

social connections, and needs. It can reduce the cognitive workload

for individual developers and should help to better allocate attention

and e�ort at the open-source ecosystem level [19].

Some project promotion channels or tools are potentially suitable

for targeted promotions. For example, project promotion on social

media such as Twitter may easily reach socially connected groups as

the di�usion of information depends on the social connections; and

the project recommendation tools can incorporate technical related-

ness and social connections as factors for project recommendations.

With most open-source promotion research so far concentrating on

the size of developers that a promotion reaches [14, 29], we argue

for the importance of studying the characteristics of developers

that those promotions reach, and reconsider the value of promotion

campaigns based on their e�ectiveness to reach a targeted audience

instead of reaching a large developer community.

6.4 The Relationship Between Projects and the
Success of Open-Source Ecosystems

The signi�cant competition e�ects between projects revealed by

our models suggest that the attraction of developers to projects

is not a local question. Given two projects with overlapping labor

pools, any e�ort to make one project more attractive is likely to

have a negative e�ect on the sustainability of the other, when they

are competing for the same e�ort pool.

This �nding raises the important question about the allocation

of e�ort among open-source projects, and the role of individual

projects in the success of the open-source ecosystem. While open-

source developers and researchers have devoted much e�ort to

making individual projects more successful and sustainable, little

was discussed about the in�uence of those e�orts on other projects

in the ecosystem. Our result is one of the �rst works to understand

the relationship and competition between projects, andwe call upon

future research in this direction to further study the sustainability of

individual projects jointly with that of the open-source ecosystem.

6.5 Validations and Robustness Checks

Validate the Robustness of Our Results Over Years. We evalu-

ate the e�ectiveness of labor pool factors over years and run the

same project model for data in three other years (i.e., selecting

~ = 2016, 2017, 2018, 2019, 2020 and 2021). The result suggests that

the labor pool factors are important predictors of the new developer

attraction for four consecutive years, see our replication package

for full results.

Validate the Results With a Negative Binomial Regression Model.

Negative binomial regression is a powerful tool to model discrete

outcome variables such as the number of new developers [38]. To

validate the in�uence of labor pool factors, we use a negative bino-

mial regression model to estimate the number of new developers

that a project receives, with all the independent variables the same

as the ordinary least squares (OLS) regression used to report the

main result; see replication package.

All labor pool factors are still signi�cantly associated with the

outcome variable, with the direction of e�ects qualitatively similar

except for the e�ect from E�ective size, no-competition variables in

model III, which changes from positive in the OLS regression model

to the current negative e�ect. Further analysis shows that the e�ect

is only negative when controlling for the Labor pool size variable,

but signi�cantly positive otherwise. Despite this inconsistency, the

e�ective labor pool size with the individual model of full variables

still shows a signi�cant positive e�ect, and the Akaike information

criterion (AIC) value decreases when adding labor pool variables,

which indicates better model �t. Therefore, we conclude the results

with negative binomial regression are generally consistent with the

OLS regression.

7 CONCLUSIONS

In this work, we show that an open-source project’s labor pool,

de�ned as the set of developers who are possibly aware of the

project and may serve as potential future project contributors, is an

important factor that can impact project sustainability. We found

that adding the labor pool factors, being both the amount and

characteristics of developers in a project’s labor pool, explains

27% more variance compared to baseline models that only include

project characteristics. We also show that the technical �t, the

social connection, and the project competition e�ects are three

factors that can a�ect how developers move between projects. Our

work contributes to the scienti�c understanding of what leads to

the attraction of new open-source developers beyond individual

project-level factors, and provides important implications to open-

source stakeholders for better project promotion and community

management.

8 DATA AVAILABILITY

The data and scripts to reproduce our results are available in the

replication package [27]. DOIDOI 10.5281/zenodo.825256010.5281/zenodo.8252560
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