


are not scalable to complex and diverse social scenarios.

On the other hand, learning-based approaches conveniently

enable social navigation behaviors in a data-driven manner,

but forfeit most of the benefits of their geometric counter-

parts. Moreover, most of these approaches have achieved

improvement in social compliance primarily in experiments

conducted in controlled lab environments.

Despite such academic successes, robotics practitioners

are still reluctant in deploying those state-of-the-art social

navigation systems on their robot fleet in the real world,

especially data-driven approaches, due to their lack of safety,

explainability, and testability. To the best of our knowledge,

most of the navigation stacks running on real-world service

robots are still geometric systems, which can be rigorously

tested, confidently deployed, and easily debugged from a

large-scale, real-world, software engineering perspective.

Considering the stark contrast between (i) our decade-long

research and the current public resistance to mobile robots in

public spaces and (ii) the active academic research in social

robot navigation and the industrial reluctance to use them

in real-world practices, we present a case study on social

compliance of different existing robot navigation systems us-

ing a state-of-the-art Socially CompliAnt Navigation Dataset

(SCAND) [10], [11] as a benchmark. We discover from the

case study that geometric navigation systems can produce

trajectories that align with human demonstrations in many

social situations (up to 80%, e.g., Fig. 1 left). This result mo-

tivates us to rethink the approach to social robot navigation

by adopting a hybrid paradigm that leverages both geometric-

based and learning-based methods. We validate this paradigm

by designing a proof-of-concept experiment in which we

develop a hybrid planner that switches between geometric

and learning-based planning. Our main contributions are:

• A social compliance definition based on how well a

navigation behavior aligns with a human demonstration.

• A case study on the SCAND dataset which provides evi-

dence that 1) geometric navigation systems can produce

socially compliant navigation behaviors in many social

scenarios (up to 80%, Fig. 1 left) but will inevitably fail

in certain social scenarios (Fig. 1 right); and 2) learn-

ing-based methods have the potential to solve challeng-

ing social scenarios where geometric approaches fail

but using them alone can suffer from distribution-shift

problems.

• A hybrid paradigm that leverages both geometric-based

and learning-based methods for social robot navigation.

We validate this paradigm using both playback tests on

SCAND and physical robot experiments on two robots.

II. BACKGROUND

A. Classical Geometric Navigation

As a research topic since decades ago, roboticists have

developed a plethora of classical navigation systems to

move robots from one point to another without collision

with obstacles. Most classical systems take a global path

from a high-level global planner, such as Dijkstra’s [34],

A* [35], or D* [36] algorithm, and seek help from a local

planner [1], [2] to produce fine-grained motion commands

to drive robots along the global plan and avoid obstacles.

Most classical navigation systems require a pre-defined cost

function [37] for both global and local planning and trade

off different aspects of the navigation problem, such as path

length, obstacle clearance, energy consumption, and in recent

years, social compliance. They then use sampling-based [1],

[38], [39], optimization-based [2], [40], or potential-field-

based [41] methods to generate motion commands. These

approaches enjoy benefits such as safety, explainability, and

testability, which can be provably or asymptotically optimal.

Such benefits are important when deploying physical robots

in the real world with humans around, and therefore these

classical navigation systems are still widely favored by

practitioners in the robot industry [6]–[9]. Implementing

classical navigation approaches in socially challenging en-

vironments, however, requires substantial engineering effort

such as manually designing cost functions [37] or fine-

tuning navigation parameters [42]. These drawbacks motivate

the use of learning-based approaches for the social robot

navigation problem.

B. Learning-Based Navigation

Learning-based approaches [28], [43] may be either end-

to-end [44], i.e., producing actions directly from percep-

tion, or in a structured fashion, e.g., learning local plan-

ners [45]–[52], cost functions [29], [53]–[55], kinodynamics

models [56]–[58], and planner parameters [59]–[66]. From

the learning perspective, most approaches fall under either

imitation learning [27], [29], [44], [54], [62] from expert

demonstrations or reinforcement learning [45]–[47], [52],

[65], [66] from trial and error. Despite the convenience

of learning emergent navigational behaviors purely from

data in social scenarios, these systems suffer from the lack

of safety and explainability, and cannot easily go through

rigorous software testing and be debugged and fixed to avoid

future failure cases. Therefore, robot practitioners rarely

use learning-based navigation systems in their robot fleets

deployed in the real world.

C. SCAND

SCAND [10], [11] contains 8.7 hours, 138 trajectories,

and 25 miles of socially compliant, human tele-operated

robot navigation demonstrations on the busy campus of The

University of Texas at Austin, USA. SCAND includes socially

challenging scenarios such as following, intersection, and

overtaking, making it an ideal dataset to test social robot

navigation methods. Additionally, SCAND provides multi-

modal information, including 3D LiDAR, RGB images,

joystick commands, odometry, and inertia readings, collected

on two morphologically different mobile robots—a Boston

Dynamics Spot and a Clearpath Jackal—controlled by four

human demonstrators in indoor and outdoor environments.

III. SOCIAL COMPLIANCE CASE STUDY

In our case study, we first propose a definition of social

compliance based on how well a navigation behavior aligns

with the human demonstration. Then, we use this metric

to benchmark the social compliance of a set of geometric



navigation systems on SCAND. Three major findings from

these analyses are:

1) Different geometric navigation systems show similar

performance, where their trajectories align with human

demonstrations in up to 80% SCAND scenarios.

2) A general purpose navigation planner, e.g.,

move base, even without tuning for specific scenarios

can often produce trajectories aligning with human

demonstrations.

3) Despite the inevitable failures of geometric navigation

planners that cannot be resolved through manual tuning,

such occurrences remain infrequent within SCAND.

Finally, we investigate the performance of geometric-based

and learning-based planners on both an in-distribution and

out-of-distribution test set and find that training on SCAND

can suffer from distribution-shift problems.

A. Defining Social Compliance on SCAND

SCAND is a dataset designed for learning from demon-

stration research, so we assume the human demonstrations

provided in the dataset to be the ground truth1. In this work,

we propose a definition of social compliance based on how

well a navigation behavior produced by a navigation system

aligns with the human demonstration.

Definition 1: Given a navigation scenario St with a human

demonstration behavior BD
t at a time step t, a navigation

behavior Bt is socially compliant if d = ‖Bt − BD
t ‖D < ǫ,

where ‖·‖D is a distance metric and ǫ is a small threshold.

In this work, we define the navigation scenario St to

be the robot sensor observations in the past two seconds

at a certain time step t of a demonstration trajectory in

SCAND. We also define human demonstration behavior BD
t

as a deterministic sequence of waypoints, PD
i = (xD

i , yDi ),
at every step i starting from time step t, to a navigation

goal, PD
tg

, 10m ahead of the robot at time step tg on the

human demonstrated path: BD
t = {PD

i }
tg
i=t, where tg is the

first time step when ‖PD
t − PD

tg
)‖ ≥ 10. Then we send

the same navigation goal, PD
tg

, to a navigation system to be

benchmarked and retrieve its planned trajectory Bt. Finally,

considering most geometric navigation systems use a global

trajectory planner before local motion planning and the

quality of the robot motions heavily depends on the quality

of the planned global trajectories Bt, we use the undirected

Hausdorff distance, which measures the distance from each

point in the planned trajectory Bt to the closest point in

the corresponding demonstration trajectory BD
t as ‖·‖D, to

measure the social compliance of the planned trajectory:

d = max{ sup
PD

i
∈BD

t

inf
Pi∈Bt

‖PD
i − Pi‖,

sup
Pi∈Bt

inf
PD

i
∈BD

t

‖PD
i − Pi‖}.

Fig. 2 shows trajectories with different Hausdorff distances

from a Bird’s Eye View (BEV). Empirically, navigation

systems that align better with human demonstrations are

expected to yield a lower Hausdorff distance.

1Human demonstrations may not always represent the sole socially
compliant behavior in certain scenarios, thereby challenging our assumption
that deviations from the ground truth inherently lack social compliance [10].

Fig. 2: Different Hausdorff distances between the human demon-
stration trajectory (green) and geometric planner trajectory (red).
White dots denote nearby humans and obstacles. Empirically,
navigation systems that align better with human demonstrations are
expected to yield a lower Hausdorff distance.

Fig. 3: Cumulative Distribution Function (CDF) curves illustrating
the Hausdorff distance and social scenario percentages for four
distinct geometric planners, analyzed on the SCAND.

B. Geometric Navigation Systems

We benchmark the social compliance of four publicly

available geometric navigation systems on SCAND:

1) move base [67]: The Robot Operating System (ROS)

move base is a well-known geometric navigation system

that consists of a global planner and a local planner. The

global planner uses Dijkstra’s algorithm to plan an optimal

trajectory on a static costmap and the local planner then

employs the Dynamic Window Approach (DWA) [1] to

generate real-time actions given the global trajectory.

2) move base with social layer (move base(s)) [68]:

This method enhances move base by incorporating a social

layer into the static costmap. It leverages real-time LiDAR

scans to identify humans and surrounds them with a Gaussian

filter for improved social awareness in planning.

3) Human-Aware Planner [20]: The Human-Aware Plan-

ner introduces a social cost function into path planning to

prioritize human comfort and ensure politeness and safety.

It uses time-dependent and kinodynamic path planning to

consider the spatial relationship of the robot and humans.

4) CoHAN [19]: CoHAN is a human-aware navigation

planner that uses an extension of the Human-Aware Timed

Elastic Band (HATEB) planner [69] as the local planner

to handle complex and crowded navigation scenarios. This

system is developed over the ROS navigation stack by in-

troducing human safety and human visibility costmap layers

into both global and local costmap.

We maintain the default parameterizations and configura-



Fig. 4: CDF curves of Geometric, Learning-Based, and Proposed
Hybrid Navigation Planners on In-Distribution SCAND and Out-of-
Distribution Test Data.

tions for all four geometric navigation systems. Each system

is evaluated by playing back SCAND data, recording the

planned trajectories Bt, and comparing them against the

SCAND demonstration trajectories BD
t to evaluate their social

compliance under Def. 1.

Fig. 3 illustrates four Cumulative Distribution Function

(CDF) curves comparing the performance of the four ge-

ometric navigation systems, indicating consistent trends

among the systems: across many social scenarios in SCAND,

they manage to maintain a moderate deviation from human

demonstrations within ǫ = 1.0. We find that move base

achieves the best alignment with human demonstrations in

over 80% of SCAND navigation scenarios. This outcome is

unexpected, given that move base is the only navigation

system among those evaluated that does not explicitly in-

corporate social factors into its algorithm. This observation

suggests that a general-purpose navigation planner even

without tuning for specific social scenarios can often produce

socially compliant trajectories.

Additionally, we observe a small portion (roughly 5%) of

scenarios where the geometric planners deviate significantly

from human demonstrations (more than 3 meters Hausdorff

distance). To understand the causes of such deviations, we

sample 50 of these scenarios and inspect the interactions be-

tween the robot and the environment. We discover that these

scenarios often require sophisticated reasoning skills that a

geometric planner does not possess. For example, Fig. 1

shows two common social scenarios that are challenging for

geometric planners and inevitably lead to poor compliance.

C. Comparing Geometric and Learning-Based Planner

In social robot navigation, human behaviors are unpre-

dictable and the environment can vary significantly at differ-

ent locations and times. Hence, it is challenging to create one

dataset to capture the full distributions of social scenarios.

This limitation could cause learning-based methods to suffer

from the distribution-shift problem [70].

In order to investigate this problem, in addition to training

and testing on SCAND, we follow SCAND’s procedure and

collect extra demonstrations as an out-of-distribution test set.

These demonstrations contain manually curated social sce-

narios in a lab environment, including intersection encounter,

frontal approach, and people following. We then train a

simple learning-based method, Behavior Cloning (BC) [71],

on the SCAND training set and evaluate its performance on

both the in-distribution SCAND test set and the manually

curated out-of-distribution test set. Finally, we compare it

with a general-purpose geometric planner, move base, on

both in-distribution and out-of-distribution data.

We plot the CDFs of the percentage of social scenarios

over different Hausdorff distance thresholds in Fig. 4. We ob-

serve that while BC can outperform move base on the in-

distribution SCAND test data, BC’s performance significantly

deteriorates on the out-of-distribution test set. move base’s

performance remains unchanged. This result indicates that

training on the SCAND dataset might be affected by the

distribution-shift problem, leading to poor generalization

when facing various unseen social scenarios.

IV. RETHINKING SOCIAL ROBOT NAVIGATION

Our case study results suggest 1) geometric navigation

systems can produce socially compliant navigation behaviors

in many social scenarios but will inevitably fail in certain

social scenarios; and 2) learning-based methods (in our case,

BC) have the potential to solve challenging social scenarios

where geometric approaches fail but using them alone can

suffer from distribution-shift problems.

Our case study motivates us to rethink the approach to

solving social robot navigation: can we take advantage of

both geometric and learning-based approaches? In this work,

we make an initial exploratory effort to answer this question:

we develop a hybrid planner that uses a geometric navigation

system as the backbone and complements it with a learned

model (BC) for handling difficult social navigation scenarios.

We also train a classifier to serve as a gating function,

determining when move base is likely to fail at generating

a socially compliant behavior, at which point we switch to

using the output from BC. To be specific, let St be a social

scenario at time step t. We instantiate our hybrid navigation

planner F(·) based on a geometric navigation planner C(·),
a learning-based planner Lθ(·) with learnable parameters θ,

and a gating function Gφ(·) with learnable parameters φ that

selects between the output from the geometric and learning-

based planners:

Bt = F(St) = Gφ(C(St),Lθ(St),St).

The parameters φ and θ can be learned using supervised

learning on the navigation scenario and behavior tuples

{St,B
D
t }Tt=1

in SCAND:

argmin
φ,θ

T
∑

t=1

d(St),

d(St) = ‖Bt − BD
t ‖,

Bt = Gφ(C(St),Lθ(St),St).

Among the many ways to learn Gφ(·) and Lθ(·) (either

jointly or separately), in this work, we present a simple

implementation that first learns a classifier Mφ(St) based on

the difference d between BD
t and C(St) to choose between

C(St) and Lθ(St):

Bt =

{

C(St), if Mφ(St) = 1,

Lθ(St), if Mφ(St) = 0.
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[53] N. Pérez-Higueras, R. Ramón-Vigo, F. Caballero, and L. Merino,
“Robot local navigation with learned social cost functions,” in 2014
11th International Conference on Informatics in Control, Automation
and Robotics (ICINCO), vol. 2. IEEE, 2014, pp. 618–625.

[54] M. Wigness, J. G. Rogers, and L. E. Navarro-Serment, “Robot
navigation from human demonstration: Learning control behaviors,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 1150–1157.

[55] K. S. Sikand, S. Rabiee, A. Uccello, X. Xiao, G. Warnell, and
J. Biswas, “Visual representation learning for preference-aware path
planning,” in 2022 International Conference on Robotics and Automa-
tion (ICRA). IEEE, 2022, pp. 11 303–11 309.

[56] X. Xiao, J. Biswas, and P. Stone, “Learning inverse kinodynamics for
accurate high-speed off-road navigation on unstructured terrain,” IEEE
Robotics and Automation Letters, vol. 6, no. 3, pp. 6054–6060, 2021.

[57] H. Karnan, K. S. Sikand, P. Atreya, S. Rabiee, X. Xiao, G. Warnell,
P. Stone, and J. Biswas, “Vi-ikd: High-speed accurate off-road nav-
igation using learned visual-inertial inverse kinodynamics,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2022, pp. 3294–3301.

[58] P. Atreya, H. Karnan, K. S. Sikand, X. Xiao, S. Rabiee, and J. Biswas,
“High-speed accurate robot control using learned forward kinody-
namics and non-linear least squares optimization,” in 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2022, pp. 11 789–11 795.

[59] D. Teso-Fz-Betoño, E. Zulueta, U. Fernandez-Gamiz, A. Saenz-
Aguirre, and R. Martinez, “Predictive dynamic window approach
development with artificial neural fuzzy inference improvement,”
Electronics, vol. 8, no. 9, p. 935, 2019.

[60] M. Bhardwaj, B. Boots, and M. Mukadam, “Differentiable gaussian
process motion planning,” arXiv preprint arXiv:1907.09591, 2019.

[61] X. Xiao, Z. Wang, Z. Xu, B. Liu, G. Warnell, G. Dhamankar, A. Nair,
and P. Stone, “Appl: Adaptive planner parameter learning,” Robotics
and Autonomous Systems, vol. 154, p. 104132, 2022.

[62] X. Xiao, B. Liu, G. Warnell, J. Fink, and P. Stone, “Appld: Adaptive
planner parameter learning from demonstration,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 4541–4547, 2020.

[63] Z. Wang, X. Xiao, B. Liu, G. Warnell, and P. Stone, “Appli: Adaptive
planner parameter learning from interventions,” in 2021 IEEE interna-
tional conference on robotics and automation (ICRA). IEEE, 2021,
pp. 6079–6085.

[64] Z. Wang, X. Xiao, G. Warnell, and P. Stone, “Apple: Adaptive planner
parameter learning from evaluative feedback,” IEEE Robotics and
Automation Letters, vol. 6, no. 4, pp. 7744–7749, 2021.

[65] Z. Xu, G. Dhamankar, A. Nair, X. Xiao, G. Warnell, B. Liu, Z. Wang,
and P. Stone, “Applr: Adaptive planner parameter learning from
reinforcement,” in 2021 IEEE international conference on robotics
and automation (ICRA). IEEE, 2021, pp. 6086–6092.

[66] Z. Xu, X. Xiao, G. Warnell, A. Nair, and P. Stone, “Machine
learning methods for local motion planning: A study of end-to-end
vs. parameter learning,” in 2021 IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR). IEEE, 2021, pp. 217–
222.

[67] “move base – ros wiki,” http://wiki.ros.org/move base, accessed:
2023-06-24.

[68] “social navigation layers - ros wiki,” http://wiki.ros.org/
social navigation layers, accessed: 2023-06-25.

[69] P. T. Singamaneni and R. Alami, “Hateb-2: Reactive planning and
decision making in human-robot co-navigation,” in International Con-
ference on Robot & Human Interactive Communication, 2020.

[70] L. T. Triess, M. Dreissig, C. B. Rist, and J. M. Zöllner, “A survey on
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