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Wasserstein space. Most available algorithms are based on computing the pairwise Wasserstein
distance matrix, which can be computationally challenging for large datasets in high dimensions.
Our algorithm leverages approximation schemes such as Sinkhorn distances and linearized optimal
transport to speed-up computations, and in particular, avoids computing a pairwise distance
matrix. We provide guarantees on the embedding quality under such approximations, including
when explicit descriptions of the probability measures are not available and one must deal with
finite samples instead. Experiments demonstrate that LOT Wassmap attains correct embeddings

Isomap and that the quality improves with increased sample size. We also show how LOT Wassmap

significantly reduces the computational cost when compared to algorithms that depend on
pairwise distance computations.
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1. Introduction

A classical problem in analyzing large volume, high-dimensional datasets is to develop efficient algorithms that classify points
based on a similarity measure, or based on a subset of preclassified training data points. Even when data points lie in high-dimensional
Euclidean space, they can often be approximated by low-dimensional structures, such as subspaces or submanifolds. This observation
has led to significant advances in the field, mostly through the development of manifold learning algorithms, which produce a low-
dimensional representation of a given dataset; see for example [8,15,26,38]. In many of these frameworks, the data points are
assumed to be sampled from a low-dimensional Riemannian manifold embedded in Euclidean space, and approximately preserve
intrinsic properties such as geodesic distances.

In many applications however, data points are more naturally interpreted as distributions { yi}ifi , over R, or finite samples
X, = {x;i) };V:’ , with x;i) ~ ;. Examples include imaging data [36], text documents (the bag-of-word model uses word count within a
text as features, creating a histogram for each document [45]), and gene expression data, which can be interpreted as a distribution
over a gene network [14,28]. In this setting, a Euclidean embedding space with Euclidean distances locally approximating the intrinsic
distance of the data may not be geometrically meaningful, and datasets are better modeled as probability measures in the Wasserstein
space [39].

We assume that our data points {y;} I’i , belong to the quadratic Wasserstein space W,(R") of probability measures with finite
second moment, equipped with the Wasserstein distance

L
2

Wy(u,v) i= inf / lx = yllPdz(x,»)| . &)
n€l(p,v)
2n

where 2(R?") is the set of all probability measures over R?" and ['(u,v) := {y € 2(R?) : y(A x R") = u(A), y(R" x A) =
v(A) for all A c R"} is the set of all joint probability measures with marginals ¢ and v. Under regularity assumptions on u, the
optimal coupling 7 has the form 7 = (id, T)yu, where T € L2(R", u) is the “optimal transport map” [10,39].

The Wasserstein space and optimal transport have gained popularity in the machine learning community, as they are based on a
solid theoretical foundation [39] (for example, (1) is a metric), while providing a versatile framework for applications (for example,
as a cost function for generative models [6], in semi-supervised learning [37], and in pattern detection for neuronal data [31]).

In this paper, we are interested in uncovering low-dimensional submanifolds in the Wasserstein space in a computationally feasible
manner as well as analyzing the quality of the embedding. To this end, we follow the idea of [21,40], which introduces the Wassmap
algorithm (see Section 2.6 for more details), a version of the Multidimensional Scaling algorithm (MDS) [27] (see Algorithm 1), or
more generally, the Isomap algorithm [38].

A central part of manifold learning algorithms like MDS or Isomap relies on the computation of the pairwise Euclidean distances.
Wassmap uses the pairwise Wasserstein distance matrix instead, which leads to O(N 2) Wasserstein distance computations, each of
which is of the order O(n’ log(n)) if one uses interior point methods to solve the linear program (1). If both N and n are large, comput-
ing all pairwise distances becomes infeasible. To deal with this issue, approximations of the Wasserstein distance can be considered.
In this paper, we are interested in entropic regularized distances (Sinkhorn distances) [2,17], which deal with the computational issue
involving n, and in linearized optimal transport (LOT) [20,40], to reduce the computational cost in N.

Our results are twofold:

(1) Approximation guarantees:
» We provide bounds on the embedding quality of the Multidimensional Scaling algorithm (MDS) [27] (see Algorithm 1) applied
to a dataset in the Wasserstein space, where the pairwise Wasserstein distances are only available up to an error 7.
» We study the size of 7 in common approximation schemes such as entropic regularization and linearized approximations, and
when explicit descriptions of the data points y;,i =1,..., N are not available, and one must deal with finite samples instead.
(2) Efficient algorithm (LOT Wassmap): We provide an algorithm, “LOT Wassmap”, inspired by the Wassmap algorithm of [21]. It
essentially uses linearized Wasserstein distance approximations through LOT in the Multidimensional Scaling algorithm, lever-
aging our approximation guarantees from (1). However, we do not compute the LOT-Wasserstein distance matrix and feed it into
MDS, but instead compute the truncated SVD of centered transport maps. This is the same in theory, but computationally more
efficient.
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1.1. Previous work

The idea of replacing pairwise Euclidean distances with pairwise Wasserstein distances in common manifold learning algorithms
has been explored in many settings; for example in [44] to study shape spaces of proteins, in [28,14] to analyze gene expression data,
and in [40] for cancer detection.

Theoretical results on the reconstruction of certain submanifolds in W, (R") through the MDS algorithm using pairwise Wasserstein
distances are presented in [21]. The associated algorithm, Wassmap, is the basis for our LOT Wassmap algorithm.

Related to the idea of uncovering submanifolds in the Wasserstein space is “Wasserstein dictionary learning” as discussed in
[33,42]. The authors propose to represent complex data in the Wasserstein space as Wasserstein barycenters of a dictionary.

1.2. Approximation guarantees

Using approximations of the Wasserstein distance in manifold learning algorithms such as MDS may change the embedding quality,
and our main result provides theoretical bounds on the error:

Theorem 1.1 (Informal version of Theorem 3.3). Assume that data points {y; } ,]i , are 7 ~close to a d-dimensional submanifold %" in the
Wasserstein space, which is isometric to a subset 2 of Euclidean space R?. Furthermore assume that we only have access to approximations
A;; of the pairwise distances W, (u;, u;), and that the approximation error is z,.

Then, under some technical assumptions, the Multidimensional Scaling algorithm using distances 4;; as input recovers data points {z; } fi G
R, which are Cyy  (t) + 7,)-close to & up to rigid transformations.

Some remarks on this result:

« The first source of error, 7;, depends on how close the data points are to the submanifold 7 isometric to a subspace of R¢, which
is completely determined by the dataset.

+ The second source of error, 7,, depends on the approximation scheme used, and can be made arbitrarily small with sufficient
computational time or good choice of parameters.

A significant part of this paper is dedicated to providing bounds for 7,, when common approximation schemes for W, (u;, u;) are

used, and when {y; }ﬁ | are only available through samples, i.e. when y; ~ i; = ml Z:";l 5),(,-) with Yj([) ~ p; ii.d. In particular, we
i j

introduce empirical linearized Wasserstein-2 distance, VVZLST, which uses two approximation schemes:

(a) Entropic regularized formulation: A very successful approximation framework for efficient Wasserstein distance computation is the
entropic regularized formulation of (1), which depends on a parameter f, and leads to Sinkhorn distances [17]:

. 1
min / L= JIPdr(x.y) + B Dyl @ V), @
zel(u.v) 2
RZH

where Dy; is the Kullback-Leibler divergence of measures [23]. This formulation leads to a unique solution (in contrast to (1)),
and to a significant computational speed-up in #, achieving O(n? log(n)) through matrix scaling algorithms (Sinkhorn’s algorithm)
[2,17].

(b) Linearized Wasserstein distances: Linearized optimal transport (LOT) [20,40] approximates Wasserstein distances by linear L2-
distances in the tangent space at a chosen reference measure o:

1/2

Wyl (p,v) 1= / ITA) = TYol*do(x)| . 3
Rn

where T denotes the optimal transport map from ¢ to u (either computed through (1) or (2), and using barycentric projections
to make a transport plan into a transport map). Instead of computing all pairwise optimal transport maps, in this framework, one
computes T2" from o to y;, and approximates pairwise maps between y; and u ; as a composition of T and T,f 7, reducing the
computation in N to O(N). This framework has been successfully applied signal and image classification tasks [34,41], such as
visualizing phenotypic differences between types of cells [7]. There furthermore exist error bounds for W;{?T [9,19,20,25,29,32].

With these approximation schemes at hand, we define the empirical linearized Wasserstein-2 distance:

n 172
—~ A 1 o -
Wy @) = <E 2T - T;(X,.)||2> , @
j=1
where X j~o i.i.d. and the transport maps are either computed by (1) or (2) (and with barycentric projections, if necessary).

3
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We provide values for 7, as in Theorem 1.1, by bounding |W,(u, v)? — WZLST(;?, ¥)?|, using either a linear program or Sinkhorn
iterations to compute the transport plans. These bounds are derived by combining the following results:

- Estimation of optimal transport maps with plug-in estimators, i.e. bounds on ||TY — T;ll > which are provided by [18] for the
linear program case, and by [35] in the regularized case. Both [18] and [35] assume compactly supported u and v, while we are
able to relax the compact support assumption on the target measure, as long as it can be approximated by compactly supported
measures.

« Approximation results for W T, which are provided in [25,32], and are based on the idea that y; are generated by almost

2,0
compatible functions .7# applied to a fixed generator u. We also strengthen some of the approximation results in [25,32].

1.3. Efficient algorithm: LOT Wassmap

The Wassmap algorithm of [21] requires computing the pairwise Wasserstein distance matrix W, (y;, p)), i,j =1,..., N, which
leads to O(N?2) expensive computations. We introduce LOT Wassmap (see Algorithm 2), which uses LOT distances (3) to linearly ap-
proximate W, (u;, u;) (since the input of our algorithm are empirical samples ji;, we actually use the empirical linearized Wasserstein-2
distance (4)). This results in only O(NN) optimal transport computations.

However, in practice, we avoid computing the pairwise LOT distance matrix. Instead, we compute the truncated SVD of the
centered transport maps, which is computationally more efficient. We show that in theory this produces a result equivalent to Theo-
rem 1.1:

Corollary 1.2 (Informal version of Corollary 3.4). Assume that data points { y; }l_]i | are ty~close to a d-dimensional submanifold ¥ in the
Wasserstein space, which is isometric to a subset Z of Euclidean space R?. Choose a reference measure ¢ and compute all transport maps
T2 (either with a linear program (1) or with Sinkhorn approximations (2), and with barycentric projections, if necessary). Let t, be the error
between the empirical linearized Wasserstein-2 distance V/VZI:?T(ﬁi, n j) of (4) and the actual Wasserstein-2 distance W, (u;, u j).

Then, under some technical assumptions, the truncated SVD of the centered transport maps T, (column-stacked) produces data points
{z; }1111 C R?, which are Cy o (71 + 73)-close to E up to rigid transformations.

We note that Corollary 1.2 is a corollary of Theorem 1.1 and that the technical assumptions and constants are the same in both
results.

In Section 8, we provide experiments demonstrating that LOT Wassmap does attain correct embeddings given finite samples
without explicitly computing the pairwise LOT distance matrix. In particular, we show that the embedding quality improves with
increased sample size and that LOT Wassmap significantly reduces the computational cost when compared to Wassmap.

1.4. Organization of the paper

This paper is organized as follows: We start by introducing important notation and background in Section 2. This includes dis-
cussion of the MDS and Wassmap algorithms, (linearized) optimal transport, and plug-in estimators. Section 3 introduces the LOT
Wassmap algorithm and provides the main results. Sections 4 and 5 provide approximation guarantees for I//I72];?T(ﬁ, 9) for compactly
and non-compactly supported target measures, respectively. The approximation guarantees come with many technical assumptions,
and Sections 6 and 7 are dedicated to discussing settings in which these assumptions hold. The paper concludes with experiments in
Section 8, which show the effectiveness of LOT Wassmap. Proofs are provided in Appendices A to D.

2. Notation and background

This paper has a significant amount of background and notation which is summarized categorically here. See Table 1 for an
overview of notation used in the paper.

2.1. Linear algebra preliminaries

Given A € R"™", its Singular Value Decomposition (SVD) is given by A = UZV T, where U € R™ and V € R™" are orthogonal
matrices and £ € R™" has non-zero entries along its main diagonal (singular values). The singular values are the square roots
of the eigenvalues of AT A and are taken in descending order 6, > 6, > *** > Gpin (mny = 0. The truncated SVD of order d of A is
Ay = UdZdVdT where U, and V, consist of the first d columns of U and V, respectively, and X, = diag(,,...,0,) € R4, The
Moore-Penrose pseudoinverse of A € R"*" is the n X m matrix denoted by AT and defined by AT = VZTUT where =¥ is the n x m
matrix with entries 51_1’ vy along its main diagonal.

Omin{m,n

The Schatten p-norms (1 s‘p S) o) are a general class of unitarily invariant, submultiplicative norms on R™" and are defined to
be the £” norms of the vector of singular values: || A|| s, ' = l(o1s - s Omingmup)ll ‘) The Frobenius norm, which is the Schatten 2-norm
is denoted by || - ||g, and the spectral norm, which is the Schatten co-norm is denoted simply by || - ||. We also use || - || to denote the
Euclidean norm of a vector.
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Table 1
Overview of notation used in the paper.

Notation Definition Reference
A Square Euclidean distance matrix Algorithm 1
A Perturbed distance matrix Corollary 3.2
b el Moore-Penrose pseudoinverse of matrix X Section 2.1
m Template measure Section 2.4
n Empirical measure approximating u 7)

c Reference measure for LOT Section 2.4
-1 s, Schatten p-norm Section 2.1
-1l Spectral norm of a matrix or Euclidean norm of a vector Section 2.1
Il Frobenius norm of a matrix Section 2.1
I Ml max (Entrywise) maximum norm of a matrix Section 2.1
-, Norm on L*(R", u) Section 2.3
n Dimension of Euclidean space that probability measures are defined on Section 2.3
2(R") Probability measures on R” Section 2.3
2, (R") Absolutely continuous probability measures on R” Section 2.3
W, (R") Wasserstein-2 space over R" Section 2.3
W, (u,v) Wasserstein-2 distance between y and v 5)
WzlfT(u, v) Linearized Wasserstein-2 distance between y and v, with ¢ as reference (6)
W;{:’T(y, v)  Empirical linearized Wasserstein-2 distance 12)

T Optimal transport (Monge) map from o to p Section 2.3
Tip Pushforward of u with respect to T' Section 2.3
Tf Barycentric projection of an optimal transport plan (Kantorovich potential) (10)
d Embedding dimension of MDS Section 2.2
k Sample size that generates I 7)
m Sample size that generates 6 Algorithm 2
N Number of data points Algorithm 2
€ Distance from compatibility Definition 2.2
p Regularizer for Sinkhorn OT Section 4.2

2.2. Multidimensional scaling

Let 1 be the all-ones vector in RY, and J :=1 — %IIT. Then Multidimensional Scaling (MDS) is summarized in Algorithm 1. For
more details see [27].

Algorithm 1: Multidimensional Scaling (MDS) [27].

Input: Points {y,}” CRP”; embedding dimension d < D.
Output: Low-dimensional embedding points {z,} c R’
Compute pairwise distance matrix A;; = ||y, — y; 1>
B=—3JAJ

(Truncated SVD): B, =V, 2,V

2, =(V, 2,0, 1), fori=1,...,N

Return {z,}Y,

MDS produces an isometric embedding R? — R? if and only if the matrix B is symmetric positive semi-definite with rank d, a
result that goes back to Young and Householder [43]. In this case, the embedding points {z; }iji , C R? satisfy llz; =zl = lly; — ¥l
and are unique up to rigid transformation.

2.3. Optimal transport preliminaries

Let Z(R") be the space of all probability measures on R”, with &, .(R") being the subset of all probability measures which are
absolutely continuous with respect to the Lebesgue measure. Given u € Z,.(R"), we denote its probability density function by f,,.
The quadratic Wasserstein space W, (R") is the subset of Z?(R") of measures with finite second moment /IR" [lx|?d u(x) < o equipped
with the quadratic Wasserstein metric given by

2
Wy(u,v) := inf / lx = yllPdz(x,»)| . 5)
zel(pu,v)
2n

where T'(u,v) := {y € Z(R?) : y(A x R") = u(A), y(R" X A) = v(A) for all A c R"} is the set of couplings, i.e., measures on the
product space whose marginals are y and v.
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In [10], Brenier showed that if y is absolutely continuous with respect to the Lebesgue measure, the optimal coupling of (5) takes
the special form 7 = (id, T;)ﬁ u, where { is the pushforward operator (Spu(A) = u(S~1(A)) for A measurable) and T‘f € L2(R", p)
solves

i T(x) - x|I* du(x).
pain [ 1760 = <IP dyco)
Rn

For simplicity, we denote the norm on L?(R”, u) by || f ”/24 = fan If )12 d u(x). Note that if T exists, then

Wauv) = T ~id .

Furthermore, [10] shows that when u is absolutely continuous with respect to the Lebesgue measure, the map TMV is uniquely defined
as the gradient of a convex function ¢, i.e. T; = V¢ (up to an additive constant).

2.4. Linearized optimal transport

Linearized optimal transport (LOT) [20,29,34,41] defines an embedding of #(R") into the linear space L>(R", ), with ¢ being
a fixed reference measure. Under the assumption that the optimal transport map exists, the embedding is defined by y ~ T7. This
embedding can be used as a feature space, for example, to classify subsets of Z(R"), to linearly approximate the Wasserstein distance,
or for fast Wasserstein barycenter computations [1,25,29,32,34].

In particular, the LOT embedding defines a linearized Wasserstein-2 distance:

LOT .
WEOT (v := 1T = T2, ©)

In certain settings, this linearized distance approximates the Wasserstein-2 distance. The strongest results can be obtained when the
so-called compatibility condition is satisfied:

Definition 2.1 (Compatibility condition [1,32,34]). Let o, u € W5H(R") N Z,.(R"). We say that the LOT embedding is compatible with
the y-pushforward of a function g € L2(R", u) if
thﬂ” = gOTD’_J .

The compatibility condition describes an interaction between the optimal transport map and the pushforward operator, namely
it requires invertability of the exponential map [20].

When the compatibility condition holds for two functions g, g,, then LOT is an isometry, i.e. I/VZLST(gl Hs 8ag i) = Wo(g 1y, 8op i)
as shown in Lemma A.3 and [32,34]. In particular, this is the case when g is either a shift or scaling, or a certain type of shearing
[25,32,34].

We can furthermore consider a generalization to “almost compatible” functions, also termed e-compatible:

Definition 2.2 (e-compatibility). Let o, u € WH(R") n Z,.(R"). We say that JZ is e- compatible with respect to ¢ and y, if for every

. . . ]
h € 7, there exists a compatible transformation g such that ||g — 4|, <&, where goT, W= wa .

We remark that compatibility is stable. Similar to compatibility implying isometry, there exist results that imply e-compatible
transformations imply “almost”-isometry between VV;:ST and W,. Some of these results are accounted for in [32, Proposition 4.1];
however, we also extend these almost-compatibility results in Theorem A.4. These results make use of the Holder regularity bounds for
VV;;?T of [20,29]. We note that the “isometry under compatibility” result mentioned above is a direct consequence of the preceding
proposition, namely by setting € = 0.

In this paper, we consider measures y;,i =1, ..., N of the form y; = h[u u, where y is a fixed template measure, and h € 57 with 7
a space of functions in L?>(R", y). This is similar to assumptions in [1,25,32,34], where .# consists of shifts and scalings, compatible
maps, or has other properties, such as convexity and compactness. We will write y; ~ S u to indicate that y; is of such a form for
all i=1,...,N, and s will be specified in the respective context. Note that [1] calls this data generation process an “algebraic
generative model”.

2.5. Optimal transport with plug-in estimators

Explicit descriptions of the measures u are often unavailable in applications, and one must instead deal with finite samples of the
measure. In this paper, we consider empirical distributions

ﬁ:

==
™-

5y, @)

i=1

with Y; ~ y i.i.d. In what follows, we will consider approximations of both the target and reference distributions via empirical
distributions.
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The Kantorovich problem (5) has a (possibly non-unique) solution for transporting an absolutely continuous measure ¢ to an
empirical measure of the form (7). Following [18], we define the set of Kantorovich plans

Linip ©= argmin / llx = yl*da(x. y), ®
nEF(o‘,ﬁ)Rzn

which may contain more than one transport plan. In practice, these optimal transport plans are exactly computed via linear program-
ming to solve (8). We call optimal transport plans solved with linear programming y; p. It is much faster, however, to approximate
the optimal transport plan by using an entropic regularized plan [17]. In particular, we get a unique solution by solving

. 1 A~
¥pi= argmln/ 2 lx — ylI2dz(x, y) + fDy (z]lc ® ), ©)
n€l(o,1)

where Dy, is the Kullback-Leibler divergence of measures [23], ¢ ® 4 is the direct product measure on the product space R” X R",
and f# denotes the regularizer. We solve (9) with Sinkhorn’s algorithm, which yields entropic potentials f; and g4 corresponding to
o and Ji, respectively.

Regardless of whether we solve the optimal transport plan using (8) or (9), we can make a transport plan y € I" into a map by
defining the barycentric projection

/, ydy(x,)

, f . 10
/y D7y or x € supp(o) (10)

TH(x;y) 1=

Remark 2.3. Notice that if y = Ji (i.e. u is a finite atomic measure), then T} and T}’ are the same c-almost everywhere assuming ¢ is
the absolutely continuous. If ¢ is absolutely continuous, then the Kantorovich solution can be written as a product measure with the

Monge solution as one of the products. Thus, since no mass from ¢ splits, the barycentric projection T} is the same as T} o-almost
everywhere.

This leads to a natural way to consider linearized Wasserstein-2 distances of the form (6) with absolutely continuous reference o,
and for empirical distributions:

WY@, 0,7 = ITEC ) =T 50l (68D
where y € {y; p, 75} denotes the method used to calculate the transport plans y; and y;, which are transport plans from o to i1 and

v, respectively. We suppress this notation and will simply use Tf (- 5yLp) or Tf (- ;7p) to denote the barycentric projection map
computed via linear programming and Sinkhorn, respectively, so that y; p and y, are understood to be in I'(s, /i). Notice that the

solution y; p is not necessarily unique. In this case, the results we derive for VVszT and TY( - ;y, p) still work with high probability
as we use concentration inequalities and results that hold with high probability.
To account for m finite samples of the reference distribution, we define the empirical linearized Wasserstein-2 distance by

m 1/2
= PN 1 Iy o
WyoT(@, ;) i = <; P ANTEX 72 =T, (X,-;yo)llz> . (12)
j=1
where X;~o ii.d.

Remark 2.4. When we use y,; for a transport plan between & and i, note that our barycentric projection map is given by

X viexp <<g,;,k(y,-) - 2x- y,-llz)/ﬂ>

T&ﬁ(x;yﬂ) = (13)

i Zic1 ©XP ((g,;,uy,-) —3lx- y,-||2)/ﬂ>

where g, denotes the entropic potential corresponding to /i, y; € supp(j), and k is the sample size for both & and fi.

Remark 2.5. Since our approximations will require us to use m samples from the reference distributions, the barycentric projection
map T¥(x) will only work for x € supp(); however, for general computation, we can just interpolate to calculate T(x) for x €
supp(c) \ supp(&).

In what follows, we are interested in bounds for

[Wa(u,v)* = Wy 0T (@, 057 )?)
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for y € {rpp.74}. In particular, we want similar results to Theorem A.4 (Wasserstein-2 compared to LOT) and results in [18]
(Wasserstein-2 compared to Wasserstein-2 on empirical distributions). This requires comparisons between all of W, (u, v), I/VZLGOT(/;, V),

VVZLST(ZI, v;7), and V/I%LST(/Z V;7), which are discussed in Section 4 and Section 5.
2.6. Wassmap

Various generalizations of MDS have been explored [16] including stress minimization, which is useful in graph drawing [24,30],
Isomap [38] which replaces pairwise distance by a graph estimation of manifold geodesics, and is useful for embedding data from
d-dimensional nonlinear manifolds in RP. Wang et al. [40] utilized MDS with A, =Wy pj )? for data considered as probability
measures in Wasserstein space with applications to cell imaging and cancer detection. Subsequently, Hamm et al. [21] proved that
several types of submanifolds of W, can be isometrically embedded via MDS with Wasserstein distances (as in [40]) and empirically
studied Wassmap: a variant of Isomap that approximates nonlinear submanifolds of W,. In particular, [21] shows that for some
submanifolds of W,(R™) of the form J#u where 2 ={hy : 0 €6 C R?} which are isometric Euclidean space, the parameter set
® C R? can be recovered up to rigid transformation via MDS with Wasserstein distances (e.g., translations and anisotropic dilations).

2.7. Other notations

For scalars a and b we use a V b to denote the maximum and a A b to denote the minimum value of the pair. Throughout the paper,
constants will typically be denoted by C and may change from line to line, and subscripts will be used to denote dependence on a
given set of parameters. We use a < b to mean that ca < b < Ca for some absolute constants 0 < ¢, C < .

For a random variable X,,, we say that X,, = O,(a,,) if for every € > 0 there exists M >0 and N > 0 such that

(12
an

We denote by &(d) the orthogonal group over R?, and the related Procrustes distance (in the Frobenius norm) between matrices
X, Y eR™Nis min || X — QY |-
Qeo(d)

>M><£ Vn> N.

3. LOT Wassmap algorithm and main theorem

Here we present our main algorithm which is an LOT approximation to the Wassmap embedding of [21], and our main theorem
which describes the quality of the embedding using some existing perturbation bounds for MDS.

3.1. The LOT Wassmap embedding algorithm

The algorithm presented here (Algorithm 2) takes discretized samples of a set of measures {y; } 111 . C W,(R") and a discretized
sample of a reference measure o € W,(R"), computes transport maps from the empirical reference measure & to each empirical target
measure /i; using optimal transport solvers and barycentric projections. Finally, the truncated right singular vectors and singular values
of the centered transport map matrix are used to produce the low-dimensional embedding of the measures. Two things are important
to note here: first, the output of the algorithm is the same as the output of multi-dimensional scaling using pairwise squared LOT
distances (or Sinkhorn distances in the approximate case), but we use the same trick as the reduction of PCA to the SVD to avoid
actually computing the distance matrix; second, in contrast to the Wassmap embedding of [21] which requires O(N?) Wasserstein
distance computations, Algorithm 2 requires computation of only O(N) optimal transport maps. Given the high cost of computing a
single optimal transport map for densely sampled measures, this represents significant savings.

Note that the factor of Lm appearing in the computation of the final embedding is due to (12) where the i appears in the definition

\/_

of the empirical LOT distance. Lemma A.1 shows that TTT where 7 is as in Algorithm 2 is actually the MDS matrix —%J AJ where

A consists of the empirical LOT distances between the data, hence we absorb the i into the norm in (12) to get the matrix T in
Algorithm 2. If we have a £ X k matrix A, colstack(A) is a £ - k vector constructed by stacking the columns on top of each other.

3.2. MDS perturbation bounds

As stated above, the output of Algorithm 2 is equivalent to the output of MDS on the transport map matrix 7' therein. Consequently,
the analysis of the algorithm will require some results regarding MDS. On the road to stating our main result, we summarize some
nice MDS perturbation results of [5].

Theorem 3.1 ([5, Theorem 1]). Let Y, Z € RN with d < N such that rank(Y) =d, and let €* := || Z7 Z — YTYllsp for some p € [1, 0].
Then,
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Algorithm 2: LOT WassMap embedding.
Input: Reference point cloud {w;}" | ~ o € W,(R")
Sample point clouds {xf}:kzl ~ e EWH(RM (k=1,...,N)
OT solver (with regularizer if Sinkhorn)

Embedding dimension d
Output: Low-dimensional embedding points {z,} CR?
fork=1,...,N do
Calculate cost matrix C;; = |lw; — x
Compute OT plan y, € R"*" between {w, }I.

k2
I
J
, and {x}}* | using C and OT solver
Calculate barycentric projection T, (w,) = ( ij:] Xy ) / ( Z;';] ) j)
T= [(:olstack{i-(w,)}l"’:l]j,,v:I
for k=1,...,N do
[P L yN &
| T, = W(T:k N Zk:l T.)
Compute the truncated SVD of T as T, =U,X, V‘;r
Return z; =V, Z,(i, )

1 L .
. Yl + (= I FIRERT2IY I ) Ad e, 1Y Flle <1,
oMin I1Z-0Yls, < N
Y T|le? +d e, o.w.

Consequently, if |YT|le < L then

\/5;

in |1Z-0Ylls <+ V2lYT|e.
Qmin 12 =0V lls, <1+ V)Y lle

Corollary 3.2. Let y,...,yy € R? be centered, span R?, and have pairwise dissimilarities A =1lyi—y; 2. Let {A; }‘Nj=1 be arbitrary real
1

numbers and p € [1,00]. If ||[Y T|||A = Alls2 < %, then MDS (Algorithm 1) with input dissimilarities {A;; }f\;_l and embedding dimension d
P J=

returns a point set z,, ...,z € R? satisfying

in |Z-0Y|ls <A+ V)IYTIIA=A .
Qmin 112 = QY g, < (1+ VDY IlIA = Alls,

Proof of Corollary 3.2. The proof follows along similar lines to that of [5, Corollary 2] with some modifications. First, note that the
centering matrix J in MDS satisfies ||J|| = 1 as it is an orthogonal projection. Then, by using the fact that ||AB||sp <Al ||B||sp, we
can estimate

1 1 1
SITA= 8 lls, < SITIPIA = Allg, < SIIA = Allg, < o3P, a4

where the final inequality follows by assumption.
Since Y is a centered point set, we have Y'Y =JY Y J = —%J AJ (Lemma A.1). Thus by Weyl’s inequality, the fact that || - || <
[l - ||s,, for all p, and (14),

1 1 1
oy (—EJAJ> >0, (—EJAJ> A=),
1
=o3(Y)- SIT@A=8)J1s,

> 0.

Consequently, —%J AJ has rank at least d, so if Z contains the columns of the MDS embedding corresponding to A, then Z7T Z is the

best rank-d approximation of —%J AJ (by construction). It follows from Mirsky’s inequality and the facts that — % JAJ =YTY and
rank(Y) = d that

|

Combining (14) and (15), we have

1

ZTZ+§JAJH < %J(A—A)J (15)
SP

Sp

£ :=||ZTZ—YTY||Sps‘ <A =) T]ls,

Z'Z+ lJAJ“ + HlJ(A—A)J
2 s, 112

Sp

<IIA - Al
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1
Thus, ||Ylle <|YT|[IA - Allszp < %, so we may apply the final bound of Theorem 3.1 to yield the conclusion. []

3.3. Main theorem

The following theorem shows the quality of an MDS embedding of a discrete subset of W, (R") when approximations of the pairwise
W,(R") distances are used (via, for example, LOT approximations, Sinkhorn regularization, or other approximation techniques). The
embedding quality is understood in two parts: first, how far away the set is from a subset of W,(R") that is isometric to R4, and
second, how good an approximation to the Wasserstein distances one utilizes in MDS. The second source of error can always be made
arbitrarily small given sufficient computation time or judicious choice of parameters (as in Sinkhorn, for example). However, the first
source of error arises from the geometry of the set of points, and may or may not be small.

Note that using Corollary 3.2 outright would require computing a proxy distance matrix and applying MDS; however, to make
Algorithm 2 computationally efficient, we instead compute the truncated SVD of the centered transport maps rather than on the
distance matrix between the transport maps. These are the same in theory, but allow for significantly less computation in practice.
Below, we state our main theorem, which is stated in terms of the output of MDS on an estimation of Wasserstein distances between
measures; but we stress that we are able to easily transfer the bounds to the output of Algorithm 2, which does not require any
distance matrix computation.

Theorem 3.3. Let {y;} fi | C WL(R™). Suppose W C W, (R") is a subset of Wasserstein space that is isometric to a subset of Euclidean space
ECRY, and {v;}Y, C# and {y;} CE are such that |y; - y;| = Wa(v;, v)). Let Ayj i= Wa (v, v)%, Ty o= Waluy, )%, and Ay = /11.21. for
some 4;; €R. Let {z;} l’i | be the output of MDS (Algorithm 1) with input A.
I IWa(uyo 1 = Wa v vy P| < 7y and [ Wiy 1))* = 42| < 7, for some 7y and 7,, and
1
; I
IYTIVN (7, +71,)% < 7 (16)
2

then {Zi},-]il C R? satisfies

in [|Z-0Y|s<( HIYFIN .
omin 117 = 0¥ llp < ¢ +VDIYTIN (7, + 1)

Proof. Note that

IA=Allg < IT = Allg + [IA=Tllg < N(z; + 7).

Consequently, (16) allows us to apply Corollary 3.2 to yield the conclusion. []

Specializing Theorem 3.3 to the case of Algorithm 2 yields the following corollary, which shows that the truncated SVD of the
centered LOT transport matrix 7 is equivalent to the output z; of MDS in Theorem 3.3.

Corollary 3.4. Invoke the notations and assumptions of Theorem 3.3. Choose a reference measure ¢ € W,(R") and compute all transport

maps T.'. Let T be the transport map matrix created by centering and column-stacking the transport maps T~" as in Algorithm 2. Let U, X,V dT

be the truncated SVD of T, and let z; =V;X,(i, :) for 1 <i < N (i.e., z; is the output of Algorithm 2). Then z; is the output of MDS with A
being the empirical linearized Wasserstein-2 distance (12), and if (16) holds, then

in |Z-0Y|p<(L+VDIYTIN (7 +13).
Qin, 11Z = 0V llp <( VDIYTIN (71 +17,)

Proof. Since T is centered, Lemma A.1 implies that TTT = JTTTJ = —%J AJ. Consequently, if —%J AT =VE*WT =TTT, then T

has truncated SVD T, =U,;%,; VdT, and therefore z; = V,X,(i, :) arises from the truncated SVD of T" and is also the output of MDS
with input A. The conclusion follows by direct application of Theorem 3.3. []

In the rest of the paper, we will discuss how various LOT approximations to Wasserstein distances affect the value of the bound
7, appearing in Theorem 3.3 and Corollary 3.4. In particular, we get different values of 7, when we have compactly supported
target measures (as in Theorem 4.2 for linear programming estimators and Theorem 4.8 for Sinkhorn estimators) and non-compactly
supported target measures (as in Theorem 5.4 for linear programming estimators and Theorem 5.5 for Sinkhorn estimators).

4. Bounds for compactly supported target measures

To capture the bound 7, of Theorem 3.3, we turn our attention to approximating the pairwise square-distance matrix
[sz(llp ”j)]tj=1 appearing in the theorem statement with the finite sample, discretized LOT distance matrix that comes from

10
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differences between transport maps to a fixed reference, a finite sampling of y;, and a discretization of the reference distribution .
In particular, the main approximation argument consists of the following triangle inequality:

Walur, 1) = Wy Gy s 12| < Watug i) = Wa2 Gy )|
- S/

~
LOT error

Nep

+ ‘WZ%ST(M,/&V - WOty s 7/)2‘

/

finite sample and optimization error

+

WO Gy iz r)* = Wy T (i g )

" J

discretized ¢ sampling error

There are four sources of error between these two distance matrices:

(1) approximating the Wasserstein distance with LOT distance,

(2) approximating LOT embeddings between y; and u; with the barycentric approximations computed using finite samples i1; and
Hj>

(3) approximating the integral with respect to the reference measure ¢ by the discretized sampling &, and

(4) optimization error in approximating the optimal transport map.

The errors from (1) and (3) are handled in Appendix B whilst the error from (2) gives us the main theorems of this section. Error from
(4) is also implicitly considered by handling error from (2) since the optimization error for using a linear programming optimizer
versus a Sinkhorn optimizer is seen in the error bounds of Theorem 4.2 and Theorem 4.8. We deal with each error separately and
chain the bounds together at the end.

Before dealing with any of the details of the proofs, we need the following assumptions on o, y, and ¢

Assumption 4.1. Consider the following conditions on o, y, and .77

@) o€ 2,.(Q) for a compact convex set Q C B(0, R) C R” with probability density f, bounded above and below by positive
constants.
(ii) u has finite p-th moment with bound M, with p>n and p > 4.
(iii) There exist a, A > 0 such that every h € 7 satisfies al|x|| < ||h(x)|| < A||x]|| for every x € supp(u).
(iv) 2 is compact with respect to the L?(u)-norm and e-compatible with respect to o, 4 € W, (R"). Moreover, sup nese Ih=H | s
M.
V) pi~ Hu ii.d.

These assumptions ensure that e-compatible transformations are also “e-isometric” as shown in Theorem A.4. Moreover, note that
M # M, as M, is important for extending theory to non-compactly supported measures while M handles bounds associated with
the complexity of the function class .7 of pushforwards.

4.1. Using the linear program to compute transport maps

In this subsection, we assume that the classical linear program is used to compute the optimal transport maps from j; to the
reference (and its discretization).

Theorem 4.2. Let § > 0. Along with Assumption 4.1 and that y € 2,.(R2) for the Q in Assumption 4.1 with simply connected support,
assume that

(i) T is Lipschitz.
(ii) We estimate p; with an empirical measure ji; using k samples and discretize ¢ with m samples. Let our estimator be given by (10) with

y solved using linear programming.

Then with probability at least 1 — 6,

—~ PN _r__ 2log(2/6
Wauy, 1) = WEOT Gy, Ty p P < (M +24R) <c£ T 120,V log(1 +k)'") + Ry %”) . a7

Here C is the constant from Theorem A.4 depending on n,p,Q, M. » the constants a and A come from Assumption 4.1 (iii), and

11
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26172 n=2,3 5
(k) -1/2 2 n<d
O =12k 21og(1 +k) n=4 , t,= 21 451 4’
k=2 n>5 (I+n"") n>

so that rf,k) is on the order of k='/" and t,, is on the order of 2(1 + n~"). In this case, 7, of Corollary 3.4 is bounded above by the right-hand

side of (17).

Proof. Note that the transport plan that we are using for the following proof is y; p. Henceforth, we will suppress y; p from the terms
= o~ iy T
VVZ%;)T(M,/;Z; yrp) and T, (-;y; p) for simplicity.

Since |x% — y?| = |x + y||x — y|, we need to bound both

@ |[Waky i)+ WO G )|,
®) |Watu, up) = WEOT Gy, 72|

We start with (a): Since both y; and u, are pushforwards of a fixed template distribution y, we know that y; = htn u, where by [3, Eq.
2.1] and our assumptions, it follows that

Wolpy, up) = Wahygp, hogp) < | lhy — holl, < M.

Moreover, since y is compactly supported for Q C B(0, R) and y; = (h;)yp with h; € 5 and al|x|| < ||h;(x)|| < Al|x||, we know that
u; is compactly supported with supp(y;) C B(0, AR) for all i. This implies that

1/2

m

= ~ e~ 1 n iz

Wi = P XD = TP | <24R.
j=l d

<(2AR)?
Putting these estimates together, we have
|Watus, i) + WL Gy, )| < M +24R.
We continue with (b): From the triangle inequality we get
|VV2(M1, M) — VVZL‘?T(I/JT, ﬁ;)| < ‘VVz(#p M) — I’VZI’“OT(Ml > M2)| + ‘W/zl’“gT(#l, M) — Wzlng(l/'lT, )
+ | WOt G ) - WO Gy )
We now bound these three parts individually:

a) By Assumption 4.1, we can use e-compatibility of .7’ in Theorem A.4 to get that

P
Wauy, mp) — W/ZI:ST(ﬂl’Hz)| < CebrHitn

where C is from Theorem A.4.
b) For the second term, we again assume that any transport maps involving discrete measures are obtained from the linear program.
In particular, we see that

LOT M M

VVZJ (1) = T5" =152l
1z i i ﬁ I u

< ”Tcl _Tn'l “o— + ”To'l _To‘zllu + ”To'z _Tczllrr

=T =T N + 1T = T2 o + Wy (i, Fi2)-

Notice that we can equivalently apply the triangle inequalities starting from VVZLST(/?], i) to get
LOT -~ -~ A H:
I’VZJ (1, ) = T3 — Taz lls
ST -T2 N + TS =T Ml + 1757 = T2,
=T =T o + 1T = T2 o + Wy (ks )

Note that Assumption 4.1(i) implies that for every ¢ > 0 and a > 0, E[exp(#||x||*)] < co as & is compactly supported. Because T
is L-Lipschitz, this allows us to use Theorem B.1 and optimize the exponents 7, , over « > 0 to conclude that

Wy g ) = Wy TG Dl S IT =T g + 1T = T2 Ml <20,(r Tog(L + k).

N

12
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¢) From Theorem B.3 we know that with probability at least 1 — 6,

~~ S ~ o~ 2log(2/6)
WO ) - WO G, )| < Ry )

Putting these bounds together yields the result. []

Remark 4.3. There exist conditions on .7 that ensure T." is Lipschitz, which is the setting needed to apply Theorem B.1. We cover
these conditions in Section 6. When 7 is not exactly compatible, we have Theorem 6.1 which requires more technical assumptions.
For the case when .77 is exactly compatible, we have Theorem 6.2 which only requires that .7# is comprised of Lipschitz functions.
Similar results in Section 6 hold for using Sinkhorn transport plans.

4.2. Using entropic regularization (Sinkhorn) to compute transport maps
Although [18] gives estimation rates in terms of a transport map constructed from solving the linear program associated to the
optimal transport problem, solving the regularized optimal transport problem (9) and using the barycentric projection map (13)

is much faster. For this section, we will assume that the target and reference measures are discretized with the same number of
samples k.

Remark 4.4. Since we can choose ¢ as well as the sample size for 5, we can allow k = m in this case. We believe, however, that
choosing a larger sample size for ¢ than y; (i.e. m > k) will result in better approximation.

For the following results, we make use of the following quantity:

Definition 4.5. Consider the Wasserstein geodesic between ¢ = y;, and y = p; with y, being the measure on the geodesic for 7 € (0, 1).
Let f(t,x) be the density corresponding to y,. Then the integrated Fisher information along the Wasserstein geodesic between ¢ and
u is given by

1
Io(c,u>=//|
0 R”

Moreover, recall that the convex conjugate of a function ¢ : R" — R is given by

V. log f(t, x)”z £(t,x)dxdt.

¢*(x*) = sup x* x — (x),

x€R”

see, e.g., [4, p. 45]. Now by using Theorem 3 from [35], we will show that under suitable conditions the entropic map T; i 37p) is
close to T2

Theorem 4.6 ([35, Theorem 3]). Assume that

(A1) o,p; € P4 () for a compact set Q C R" with densities satisfying f,, f, < Band f, >b>0 forall x € Q.
(A2) ¢ € CAQ) and ¢p* € C*T1(Q) for a > 1, where ¢* denotes the convex conjugate of ¢.
(A3) TY = V¢ with mI < V*¢(x) < LI for m, L > 0 for all x € Q.

~ 1
Then the entropic map T; '(- ;) from & to ji; with regularization parameter f < k™ W+a+1 satisfies

a+l
< (1 + Iy (o, ,,,l.))k“zn—uraﬁ logk,

n 12
B[ ¢ -,

where n' =2[n/2], @ =a A3, k is the sample size for both ¢ and ji;, and 1(c, ;) is the integrated Fisher information along the Wasserstein
geodesic between ¢ and y;.

Given the sample size k for both & and j;, if we let

>
[

zy =i -1

then by Jensen’s inequality (for concave functions) and Theorem 4.6 we have that

E[Z,<E[z2]" < \/(1 +1y(o, M,-))k_—zn’a:ﬂlﬂ logk

13
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__a+l
= \/log(k)(l + 1y(o, up))k 2 +a+0) |

Now using Markov’s inequality, we easily have the following corollary.

Corollary 4.7. Assume that o and y; satisfy (A1)-(A3) of Theorem 4.6 and let 6 > 0. Then with probability at least 1 — 6, we have that

__ @+l
< log(k)(1+ Io(o, )k 2@+ .

I om izl <

Now we can approximate T with the entropic map that is derived from using Sinkhorn’s algorithm. Although the barycentric
projection map and entropic map approximations have similar rates of convergence, the entropic map is computationally faster at
the cost of more stringent assumptions in the theorem. The main difference in assumptions below is the addition of (A1)-(A3) from
Theorem 4.6 and the asymptotic bound on the regularization parameter f used in the entropic regularization.

Theorem 4.8. Let 6 > 0. Along with Assumption 4.1 and y € &,.(Q) for the Q in Assumption 4.1, assume that

() o and p; satisfy assumptions (A1)—(A3) from Theorem 4.6 for all i. Note that (A1), regularity of ¢ in (A2), and the upper bound of
(A3) are satisfied under the conditions of Caffarelli’s regularity theorem.
(ii) Given empirical distributions ¢ and j1; both with k sample size, assume that we have associated entropic potentials (f .k 8p.k)» where

1 ~
f =<k w+&1 and n' and @ are defined in Theorem 3 from [35]. Assume our estimator is T; '(-;7p) given by (13).
Then with probability at least 1 — 6,

— p
Walkys 1,? = WEOT G i1y | < (M 4+ 24R) (Cermn+

-+l 2log(2/6
2 VORI + To(o )k T + Ry %“) ,

where C is from Theorem A.4 and I(c, ;) is defined in Theorem 4.6. In this case, 7, in Corollary 3.4 is bounded above by the right-hand
side of the inequality above.

Proof. Note that the transport plan that we are using for the following proof is y;. Henceforth, we will suppress y; from the notation
I//I\/ZEST(//Q, W vy for simplicity.
Using the same reasoning as in Theorem 4.2, we find that
(Wz(ui,uj) + W;?T(ﬁi,;?j)) <M +2AR.

Similar to the proof of Theorem 4.2, we bound

T -1

o

|Wathuso ) = WO G )| < [Wahio ) =

6|

Hj i
+ T, -T.(- ;Yﬂ)”O_

T =T )| +

i B TDLOT A~ A
#|lric =1l G, -y

The first and is bounded the same way as in the proof of Theorem 4.2 above. For the last term, we apply Corollary B.4. Since
assumption (i) of Assumption 4.1, implies assumption (A1) of Theorem 4.6, we get that with probability at least 1 —

. __a+l
=T < %wogwxl +1o(0, ue )k 207D

for # =i and ¢ = j. Putting the bounds together, we get the result. []

Using Theorem 4.2 and Theorem 4.8, we see that as long as yu; are e-compatible push-forwards of 4 and the number of samples
used in the empirical distribution is large enough, then our LOT distance is a computationally efficient and a tractable approximation
for the Wasserstein distance and the distortion of the LOT Wassmap embedding of {; } is small with high probability.

5. Bounds for non-compactly supported target measures

In the last section, we saw that for compactly supported y; ~ % u (as well as a few other conditions), either the barycentric

estimator Ta" "(- 37z p) or the entropic estimator Té‘ ") will allow for fast yet accurate approximation of the pairwise Wasserstein
distances W, (y;, u;), which in turn allows for fast, accurate LOT approximation to the Wassmap embedding [21] via Algorithm 2.
In this section, we show that we can adapt Theorem 4.2 and Theorem 4.8 to non-compactly supported measures as long as we can

14
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approximate the non-compactly supported measure with a compactly supported and absolutely continuous measure. To this end, we
use the main theorem of [19].

Theorem 5.1 ([19]). Let Q be a compact convex set and let o be a probability density on Q, bounded from above and below by positive
constants. Let p > n and p > 4. Assume that u,v € W,(R") have bounded p-th moment, and max(M ,(u), M,(v)) < M, < co. Then

4
T2 =Ty < Co o, Wi (s 5

To achieve our purposes, we will assume that u is a non-compactly supported measure that has a suitable tail decay rate, and then
show that there exists a compactly supported absolutely continuous y that approximates y well (i.e., W, (u, i) < n.). The particular
compactly supported s will be formed by a pushforward that is the identity on B(0, R) and applies a modified version of the m
map near the boundary of B(0, R). We achieve this in the following lemma.

Lemma 5.2. Fix n > 0, and let ¢ satisfy the assumptions of Theorem 5.1. Moreover, let u € W,(R") with density f,, have a bounded p-th
moment for some p > n and p > 4. Finally, assume that there exists some R > 0 such that for every x ¢ B(0, R), we have
6p+16n
n p 1
flx[|m+2”

VMEIRS < =~

n,p,QM »
where 5,,%& M, denotes a combination of the constant from Theorem 5.1 and a constant from integrating over concentric n-spheres. Then
there exists a compactly supported absolutely continuous measure J such that

1Ty = TH s <n-

For many of the results before, we require that our compactly supported measures have a density bounded away from 0 and oo.
The next lemma will be useful in establishing conditions on 27 and y so that our truncated measure g has a density that is bounded
away from 0. In particular, we construct j by constructing a density that is compactly supported and remains bounded away from 0
and oo rather than using a pushforward. The proof uses that a pushforward must exist between u and .

Lemma 5.3. Let o satisfy the assumptions of Theorem 5.1 and let y € W,(R") with density f,, < C < co have a bounded p-th moment for
some p > n and p > 4. Moreover, assume that there exists some R >0 and n > 0 such that for x € B(0, R), we have f, u(x)2¢>0; and for
every x & B(0, R), we have

6p+16n
n 4 1
x) <
Tu) < <5/ lll+2”
n,p,QM »
where C’: pa.m omes from combining the constant from Theorem 5.1, a constant from integrating over concentric n-spheres, and another
PQM,

constant from our approximation method. Then there exists a compactly supported, absolutely continuous measure ji with density 0 < ¢ <b <
S < B < oo such that

ITY =TH, <n.

The proofs of both Lemma 5.2 and Lemma 5.3 are located in Appendix C. Notice that the condition on the density f, ensures that
W, (u, #) < n for the two different truncated measures ji. With these two lemmas above, we obtain the following theorems. Note that
Theorem 5.4 replaces the assumption that u is compactly supported with one of polynomial (in the ambient dimension) tail decay;
while the second assumption below is the same as Theorem 4.2, the final assumption differs from that of Theorem 4.2 by requiring
the discretizations of ¢ and y; to have the same sample size to apply the lemmas above.

Theorem 5.4. Let 5 > 0. Along with Assumption 4.1, assume that

(i) Every u; has bounded p-th moment for some p > n and p > 4. Moreover, assume that for all i, there exists some R > 0 such that for
every x & B(0, AR), we have

6p+16n
n ’ 1
<(= —
T <C> [+
where C = 5,,’ pom, o C= 5; oM, depending on if we use the truncated measure [i; to be from Lemma 5.2 or Lemma 5.3 so that
I’Vl(ﬂi’ IZ) <n.

(ii) T is L-Lipschitz (this happens, e.g., if o and Ji; are both compactly supported).
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(iii) Given empirical distributions & and ji; with supp(i1;) € B(0, AR) and sample sizes m and k, respectively, let our estimator be the
barycentric estimator (10), with y; p.

Then with probability at least 1 — 6,

S OT A A _p_ 210g(2/5
Wi ) = Wy 2T (. i vpp)* | < (M +2AR) <C56P+16" +20+20,("% log(1 + kyne) + Ry / M) ,
i m

where rf,k) and t, , are defined in Theorem 4.2 and C is a constant coming from Theorem A.4. In this case, 7, of Corollary 3.4 is bounded

above by the righi—hand side of the inequality above.

Similarly for the entropic map case we have the following. Note that the primary difference in assumption between Theorem 5.5
and Theorem 5.4 is the addition of (A1)-(A3) from Theorem 4.6 and the asymptotic assumption on the regularization parameter for
the entropic map. The assumptions (i) and (ii) below are essentially the same as those of Theorem 4.8, but with z; replaced with ;
arising from Theorem 5.4, whereas the additional assumptions below are that y; have decaying tails as opposed to being compactly
supported.

Theorem 5.5. Let 6 > 0. Along with Assumption 4.1 and (i) of Theorem 5.4, assume that

() o and §; satisfy assumptions (A1)—(A3) in 4.6 for all i, where [, is the truncated measure from Theorem 5.4.
(ii) Given empirical distributions ¢ and fi; with supp(i1;) C B(0, AR) and sample size k for both, assume that we have associated entropic
1

potentials (f, .k 8p.kc)s where f < k #+a+1 and n' and & are defined in Theorem 4.6. Moreover, assume our estimator is given by (13).

Then with probability at least 1 — 6,

O~ A » o @l [210g(2/5
Wi u)* = Wy 0T (@, 1)) S(M+2AR)<C£GP+‘6" +2n+§ log(k)(1 + Io(o, )k 227+&D 4+ R #)

where 1y(o, ;) is defined in Theorem 4.6 and C is a constant from Theorem A.4. In this case, 7, of Corollary 3.4 is bounded above by the
right-hand side of the inequality above.

The following is a proof for both theorems above.

Proof of Theorems 5.4 and 5.5. In the following, we let 2" denote the optimal transport map estimator that we are considering
(either the barycentric estimator with y, p or the entropic estimator with y,) since the same proof works for both cases. The only
difference in the compactly supported case and these theorems is that our approximation now becomes

= ~ A~ ;i Hj
Wil 1) = Wo o Gy )| < | Wakis ) = 1T =T,

H Hj 1 m
N 'IIT(;‘ —T), - T -1,

A s 7 ;
N 'MT:' —T, T T,

+

)

R S1O0T,~ ~
IS =T Ny = W G i)

where Ji; is defined as in the theorem statement and /i; denotes the empirical measure of ;. For the following consider the truncation
radius of Ji to be AR rather than R as was the case in Lemma 5.2 and Lemma 5.3. We assume that supp(fz;) C B(0, AR); thus, let us
assume that we sample from y; conditioned that we restrict to B(0, AR). Since ji; | ar) = H;| po,ar)> We see that fi; can equivalently
be thought of as being sampled from i; rather than y; conditioned that ji; C B(0, AR). This means that the same bounds as before
hold for most of the terms, while additionally,

Hi _ b A _rhi Hi _ ol Hi ool
”To' _To'j“g_”To" _Ta'l"o- S”’Tz)"_T‘o"“u--"”To'j_To'l“a- S2}1
N Y

<n <n

The rest of the terms are bounded the same exact way as before, and the result follows. []

In this section, we have shown that results for the case when the y; are compactly supported can be extended to non-compactly
supported y; as long as their densities decay fast enough and the reference distribution ¢ has a compact and convex support.
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6. Conditions on /# and u (compact case)

In this section, we derive conditions on # and u so that the assumptions of the theorems above are satisfied for y; ~ #u. In
particular, we can break down our requirements on J# and u by noting the necessary conditions on y; for the barycentric map
estimator and entropic map estimator separately. For simplicity, we will assume that .7 is exactly compatible with respect to ¢
and u.

In Theorem 6.1, we first describe the conditions to have Theorem 4.2 hold when .7 is not made of exactly-compatible transfor-
mations. Next, we consider the easier case of exactly-compatible transformations in Theorem 6.2 and Theorem 6.3 to ensure that
Theorem 4.2 and Theorem 4.8 works.

Theorem 6.1 (Barycentric Map Case (compact, non-compatible)). Let Assumption 4.1 hold true. If u has simply connected compact support
with density such that 0 < ¢ < f, < C < o0, h; € I is continuously differentiable with L, I < J}, (x) for some L, >0, and (h;)yp has convex

DiH

h
support, then T; is Lipschitz. Hence condition (i) of Theorem 4.2 holds.

Theorem 6.2 (Barycentric Map Case (compact, compatible)). Along with Assumption 4.1 (with € =0 so that every h € J is exactly
compatible with o and ), assume that h € J¢ is continuous, y; ~ #4u iid., and that

(i) y has and has simply connected compact supported;
(i) o is chosen such that T? is Lipschitz.

Then y; satisfies the condition (i) of Theorem 4.2 i.e., T." is Lipschitz.

For the entropic case, the assumptions on y and ¢ are the same, but we require an additional assumption regarding the Jacobian
of elements of /7.

Theorem 6.3 (Entropic Map Case (compact)). Along with Assumption 4.1, assume that
(iii) Conditions for o and yu: o and u satisfy (A1)-(A3), and u has simply connected compact support;
(iv) Conditions for ¢ for each h € 7, we have h is continuous and LI < J,(x)I for some L, > 0; moreover, each h € 5 is exactly
compatible (i.e., e =0).
Then u; satisfies the condition (i) of Theorem 4.8.
The proofs of Theorem 6.1, Theorem 6.2, and Theorem 6.3 are given in Appendix D.1.

7. Conditions on /# and u (non-compact case)

For the non-compactly supported cases, we need to add assumptions that .7 is closed under inversion as well as lower and upper
boundedness of the density f),. This gives us the following theorems.

Theorem 7.1 (Barycentric Map Case (non-compact)). Along with Assumption 4.1 (with € =0 so that every h € ¢ is exactly compatible
with o and p), assume that y; ~ G u ii.d. Assume further that

(i) for every h € J¢, there exists an inverse hWlewr.
(ii) The density of u is supported on all of R" with fu(x)<C<oo for all x, and Fu() 2> 0 for all x € B(0, AR). Moreover, Su has a
decay rate as in Lemma 5.3 for x ¢ B(0, R).
(iii) every h € S, is bi-Lipschitz with L;|x — y| < |h(x) — h(y)| < L,|x — y|, where a, A > 0 is from Assumption 4.1.
Then y; satisfies the conditions of Theorem 5.4.

Theorem 7.2 (Entropic Map Case (non-compact)). Assume that y; ~ #;u i.i.d. and that u, 7, and o satisfy the conditions of Theorem 7.1.
Then y; satisfies the conditions of Theorem 5.5.

The proofs of both Theorems 7.1 and 7.2 are found in Appendix D.2.
8. Experiments

We demonstrate that Algorithm 2 does in fact attain correct embeddings given finite sampling and without explicitly computing
the pairwise Wasserstein distances. We test both variants of our algorithm above using the linear program or entropic regularization
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Data True Embedding Points Linear Program Embedding Sinkhorn Embedding
10 X 0 0 . ° . 0
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Fig. 1. 1-D Manifold of translations: (Left) reference measure o ~ .4'(0, I) in blue and data measures y; which are Gaussians with the same covariance matrix and
means x; uniformly sampled from the circle of radius 8. (Left Middle) Means x; of x; which are the true embedding points. (Right Middle) Embedding attained with
Algorithm 2 using the linear program. (Right) Embedding attained with Algorithm 2 using the Sinkhorn distance with A = 1. (For interpretation of the colors in the
figure(s), the reader is referred to the web version of this article.)
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Fig. 2. Embedding error vs. m (number of sample points from data and reference distributions for the 1-D translation manifold. Optimal transport maps are computed
via the Linear Program (Left) and Sinkhorn with 4 =1 (Right).

to compute the transport maps from the data to the reference measure, and illustrate the quality of embeddings as well as the relative
embedding error

IY - OXllg
mmn ————
o Yl

as a function of the sample size m of the data and reference measures.

In all experiments, we generate N data measures, y;, which are Gaussians of various means and covariance, and a fixed reference
measure ¢ drawn from the standard normal distribution .4#(0, I'). We randomly sample m points from each measure to form the
empirical measure, and random noise from a Wishart distribution is added to the covariance matrices of the data measures ;.
Additionally, in each experiment we compute the optimal rotation of the embeddings to properly align them with the true embedding
and thus give an accurate error estimate for each trial.

For each experiment, we provide a figure for qualitative assessment of the embedding as well as a quantitative figure in which we
compute the relative error as above for the embeddings as a function of m, the sample size used to generate the empirical data and
reference measures. For the latter figures, we run 10 trials of the embedding and average the relative error; error bands showing one
standard deviation are shown on each figure. A Jupyter notebook containing all of the experiments that generate the figures below
can be found at https://github.com/varunkhuran/LOTWassMap.

8.1. Experiment 1: circle translation manifold

First, we consider a 1-dimensional manifold of translations as follows. We uniformly choose N = 10 points on the circle of radius

1 -5
-5 1
is a set of Gaussians translated around the circle. The Wishart noise added to the covariance matrix prior to sampling the y; is of
the form GGT where G has i.i.d. 4#(0,0.5) entries. We choose the standard normal distribution .#'(0, I) as our reference measure o.
We randomly sample m = 1000 points from each data measure and the reference measure independently. Fig. 1 shows the original
sampled data and the reference measure (in blue), the true embedding points x;, and the embeddings of Algorithm 2 when using the
linear program and Sinkhorn with regularization parameter A = 1.

One can easily see that the embeddings are qualitatively good as expected given the theory above and the results of [21] in similar

experiments. Fig. 2 shows the relative error vs. sampling size m of the measures, and one can see the good performance for modest
sample sizes.

8, which we denote x;, and each data measure y; is a Gaussian with mean x; and covariance matrix [ ] Thus, our data set

8.2. Experiment 2: rotation manifold
Next, we consider a 1-dimensional rotation manifold in which we generate N = 10 data measures of Gaussians whose means lie at

. . . . . . . . 2 0
uniform samples of the circle of radius 8, which we denote (8 cos §;, 8sin6;), and whose covariance matrices are rotations of [ 0 5]
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Data True Embedding Points Linear Program Embedding Sinkhorn Embedding
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Fig. 3. 1-D Manifold of rotations: (Left) reference measure ¢ ~ .4'(0, I) in blue and data measures y; which are Gaussians with means lying on the circle of radius
8 and covariance matrices that are rotations of each other. (Left Middle) Means x; of y;, which are the true embedding points. (Right Middle) Embedding attained
with Algorithm 2 using the linear program. (Right) Embedding attained with Algorithm 2 using the Sinkhorn distance with 2= 1.
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Fig. 4. Embedding error vs. m (number of sample points from data and reference distributions for the 1-D rotation manifold. Optimal transport maps are computed
via the Linear Program (Left) and Sinkhorn with A =1 (Right).
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Fig. 5. 2-D Manifold of translations: (Left) data measures y; which are Gaussians with the same covariance matrix and means x; taken from a 5 X 5 uniform grid
on [-10,10]?. (Left Middle) Means x; of y; which are the true embedding points. (Right Middle) Embedding attained with Algorithm 2 using the linear program.
(Right) Embedding attained with Algorithm 2 using the Sinkhorn distance with A = 10.
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Fig. 6. Embedding error vs. m (number of sample points from data and reference distributions for the 2-D translation manifold. Optimal transport maps are computed
via the Linear Program (Left) and Sinkhorn with A = 10 (Right).

by the angles 6;. As in experiment 1, the noise level added is 0.5 and we sample m = 1000 points from each measure. Fig. 3 shows
the data measures, true embedding, and embeddings from Algorithm 2 using both the linear program and Sinkhorn (with A= 1) to
compute the optimal transport maps. Fig. 4 shows the relative error vs. sample size.

8.3. Experiment 3: grid translation manifold

Here, we consider a 2-dimensional translation manifold in which we generate N = 25 data measures of Gaussians whose means

lie on a 5 x 5 uniform grid on the cube [—10, 10]> and which have constant covariance matrix [_1 s 1 ] We sample m = 1000

points from each measure and the noise level is again 0.5. In the Sinkhorn embedding, we use regularization A = 10. Figs. 5 and 6
show the data, embeddings, and relative error vs. sample size.
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Fig. 7. 2-D Manifold of Anisotropic Dilations: (Left) data measures y; which are Gaussians with mean 0 and anisotropically dilated covariance matrices where dilations
are taken from a 3 x 3 uniform grid on [1,4]%. (Left Middle) Dilation factors (x;,y;) of u; which are the true embedding points. (Right Middle) Embedding attained
with Algorithm 2 using the linear program. (Right) Embedding attained with Algorithm 2 using the Sinkhorn distance with 4 = 100.
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Fig. 8. Embedding error vs. m (number of sample points from data and reference distributions for the 2-D translation manifold. Optimal transport maps are computed
via the Linear Program (Left) and Sinkhorn with A = 10 (Right).

8.4. Experiment 4: dilation manifold

Here, we consider a 2-dimensional anisotropic dilation manifold in which we generate N =9 data measures of Gaussians with
mean 0 and anisotropically scaled covariance matrices of the form diag(aiz, /5’,.2) for (a;, §;) taken from a uniform 3 X 3 grid on [1,412.
We sample m = 1000 points from the reference measure and n = 2500 points from the data measures and the noise level added to the
covariance matrices is 0.5 as before. In the Sinkhorn embedding, we use regularization A = 100. Fig. 7 show the data measures, true
embedding parameters, and embeddings from Algorithm 2. Note that the true embedding parameters are centered to allow them to
be comparable to the output of Algorithm 2 which are naturally centered.

Fig. 8 shows the relative error vs. m, and for this experiment we choose n = m so that the sampling order of the data and reference
measure are the same. For this case, we see that the relative error of the embedding decays much more slowly than the previous
experiments. One possible reason for this is that there is significant overlap in the distributions for the dilated measures, and to
overcome this issue one may have to sample many more points in forming the empirical distribution so that the tails of the data
measures are sampled more frequently.

8.5. Experiment 5: time comparison

Here, we repeat Experiment 3 in which data measures are centered on a uniform grid and are translations of a fixed Gaussian
measure. We plot the time it takes to compute the embedding via Algorithm 2 using the Linear Program or Sinkhorn with A= 1 and
the Wassmap algorithm of [21] which requires computing the entire square Wasserstein distance matrix [W, (u;, #;)] I{Vj:l and the SVD
of its centered version as in Algorithm 1 (Fig. 9). For this experiment, we always choose n = m so that the reference measure and
data measure sampling rates are the same. One can easily see that a substantial gain in timing is achieved by LOT Wassmap, while
previous experiments show that the quality of the embedding does not degrade significantly when LOT is used.

Finally, we plot the timing for the same experiment for the Linear Program and Sinkhorn with 4 =1 and 4 = 10 for larger sample
sizes to illustrate the character of these choices (Fig. 10). As expected, larger regularization parameter yields faster computation time,
though the difference is relatively small even for modestly large sample size.
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Fig. 9. Timing vs. sample size m of the reference distribution and data measures. The data set consists of N =25 measures translated on a 5 x 5 uniform grid on

[-10,10]? as in Experiment 3. Shown are the computation times to compute the Wassmap embedding and the embeddings of Algorithm 2 using the Linear Program
(LP) and Sinkhorn with regularization parameter A= 1.
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Fig. 10. Timing vs. sample size m of the reference distribution and data measures. The data set consists of N =25 measures translated on a 5 X 5 uniform grid

on [—10, 10]* as in Experiment 3. Shown are the computation times to compute the embeddings of Algorithm 2 using the Linear Program (LP) and Sinkhorn with
regularization parameters A =1 and 1= 10.
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Appendix A. Helper theorems and lemmas

We use the following lemma to extend Corollary 3.2 to get our main theorem (Theorem 3.3). The proof follows standard arguments,
e.g., as in [27]; the proof is included for completeness.

Lemma A.1 ([27, Theorem 14.2.1], for example). Consider a matrix V whose columns are centered vectors vy, ..., v, such that Z;=1 v; =0.

Let J =1 — 1117 be the centering matrix from MDS (Algorithm 1), G =V TV be the Gram matrix for V, and D be the squared distance

n

matrix D; = ||, - v;|%. Then G ==1J DJ.
Proof. Note first that

n n

1 1

DIy =D+ — Y Dy - - DDy + Dy
k=1 k=1

—, T T T
Moreover, because D;; =v; v; +v V= 2v; v;, we get that
1 n
T T T T TyT
(IDJ)j=v;v;+v;0; =20, v; + n—2<2nkavk -21'V Vl)
k=1
1 n
- <nUl.TU,- + nUJTUj +2 Z UZUk - 21TVTUj - 2viTV1>.
k=1
Note here that 1 =0 since Y."_ v; = 0. After canceling terms, we get
j=1"J

21



A. Cloninger, K. Hamm, V. Khurana et al. Applied and Computational Harmonic Analysis 74 (2025) 101718

(IDJ),; =-2w]v; =-2G,;.

So our result is immediate. []

The next results are used to recount the e-compatibility as well as its effects on LOT. First, we show that every e-compatible map
has a compatible map (with £ = 0) nearby whose LOT distance from the e-compatible map is small.

Lemma A.2. Assume that

(i) o is supported on a compact convex set Q C R" with probability density f, bounded above and below by positive constants.
(i) has finite p-th moment with bound M, with p>d and p > 4.
(iii) There exist A > 0 such that every h € S satisfies ||h(x)|| < A||x|| for every x € Q.

Let ./ be e-compatible with respect to o and . Then for every h € ¢ there exists a compatible g such that

gyH hyu e
HTO' - To‘ Hg < C".I’,Q,APMP - £ Op+16

hau _r
lhoT* =T, ll, <&+ Cypoarn, - €710

Proof. Let h € /7, then there exists an exactly compatible transformation g such that goT* = T;’W with [|h — g||, < € by definition

of e-compatibility. Then notice that

|

=127,

h
hoT} — goT) +chw _TGWHG

h
Tgw _ Tgw“ ]
c

c

<lr-egl,+

By assumption, we know that ||A — g, <. Since h € S satisfies (iii), we have

[ 1P iy 00x= [t = [ 1neole auc < aru,
——

e e © <arx|p

Similarly, note that g € /# because .7 consists of all e-compatible pushforwards with respect to ¢ and u (i.e. there exists compatible

!
g’ such that ||g — g'|| u <€ and g'oT) = T;g W), and we can see that g is itself the compatible transformation. This implies that we

have the same moment bound for g. Now using Theorem 5.1 and equation 9 of [3], we get that

8iH hyp -
HTo'ﬁ _ To'n ||6 < Cn,p,Q,APMpWI(gﬁ”’hﬂﬂ)6p+l6n

_r__
< Cn,p,Q,AI' M, I’Vz(gﬁll, hn/‘) bp+16n

P
6p+161
< Cn,p,Q,APMp”h _g””p+ "

o
. 1
S Cupaarm, €70

This implies that

hyu _r
lhoT =T, ll, <& +Cypoaon, - €7, O

Now we can show that the LOT embedding between exactly compatible transformations is isometric with the Wasserstein manifold.

Lemma A.3. Let g, and g, be exactly compatible transformations, i.e. g,oT\ = T;gl)w and g,oT) = T;gz)w, then

(81)gu (82)p4
T, =T, ||6=Wz((gl>ul4=(g2)ﬁ”)'

Proof. First notice that since everything is absolutely continuous, we can use a change of variables formula to get

“T;gl)w B T;gz)nu I_ T;gz)uﬂng .
(&1)gH
4 (81)gu
(&2)gH . o . . . .
Because T(;Z):: is the minimizer of the optimal transport problem and the triangle inequality, we get

< ”I _ T;gz)u”oT”
(81)gu

VVz((&)u%(&)nﬂ) = 'I T

T Negm

(&1)gH (@)

22



A. Cloninger, K. Hamm, V. Khurana et al. Applied and Computational Harmonic Analysis 74 (2025) 101718

&gt 8k 16

(82)44
<|lr =
I-T (81)gu o (&1)gu

- “ @)y

(81)gH ' (81)gH

Note that Theorem 24 of [25] implies that given an exactly compatible transformation g, J, o (T[f (x)) must share the same eigenspaces as
Jpu(x). By Corollary 4 of [25], we know that exactly compatible transformations are optimal transport maps themselves. This means

’
that wa = g for exactly compatible transport maps. Moreover, for an exactly compatible 4’ € 57, this means that Tg(f”)w =glog™

1

1

because g’og™! is a gradient of a convex function (since the Jacobian of g and g’ share the same eigenspaces) that pushes gyH to
(g )#- In the context of g; and g, this gives us that

(82)yH
(81)gH

_ -1 _ u o -1 _ (gz)uﬂ o
=gy08] =goT} oT” og, =T, oT(g])W.

In particular, we get that

(&1)gH (821
T, T, ||6=Wz((g1)w,(gz)nﬂ)- O

_r_
Finally, we show that e-compatible transformations have LOT embeddings that are “¢ ¢++161 -isometric” in the sense of the following
theorem.

Theorem A.4. Assume that

(D) o is supported on a compact convex set £ C R" with probability density f, bounded above and below by positive constants.
(i) has finite p-th moment with bound M, with p>n and p > 4.
(iii) There exist constants a, A > 0 such that every h € J7 satisfies a||x|| < ||h(x)|| < Al x]|.

Let 7 be e-compatible with respect to absolutely continuous measures o and u and assume that hyu is absolutely continuous. Then for
hy,h, € H,

h
T( DgH

[

h
T( 2)gH

_p_ _p_
. 1 1
o < 2<5 +Cipoatarm, €7 ) < Cgbption

VVz((hﬂﬁﬂ,(hz)uM) -

o

Proof. By definition, we know that there exist g, and g, such that ||g; — ||, <€ and ||g, — A, ||, < &. First, note that

(hgp o (h)yu

hy) )
T T hogn 1 (80gH

< “To' T &Ugn . (82)gm
o

(82)g1 (hy)gp
c

o o

+|
o

.
By Lemma A.3, we know that

T(gl)w _ Ta(g2)uﬂ||
o

[

= VVZ((gl)]j,“,(gZ)ﬁﬂ)-

However, by equation 2.1 of [3] and the triangle inequality, we have

Wa((ems ()sn ) < Wa((ergm (g ) +Wa ((hogis (hgn ) + Wa (hgms (g)gn)
(R —— (R ——

<llgr=hyll, <e <llhy—g |l <e

<Wa( (g (hyygn ) + 2.

Moreover, by Lemma A.2, for i = 1,2, we know that

i h; »
T T <€ arm, £
- PR, )
This implies that
(g (hygu
VV2((hl)ﬁﬂ’(h2)uM> < ||T'y i TO’ o HJ

P
<Wa (g (r)gn ) + 24 Cppy i aoas, €775 ),

and the proof is complete. []

Appendix B. Plug-in estimator approximation results

In this section, we provide some auxiliary results that are used along the way to prove the theorems of Section 4.
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B.1. Using the linear program to compute transport maps
Recall that for a random variable X, we say that X,, = O,(a,,) if for every € > 0 there exists M >0 and N > 0 such that
[P’(le/am| > M) <& Vm>N.

The following theorem from [18] is used in the proofs of our main results, including Theorem 4.2.

Theorem B.1 ([18, Theorem 2.2]). Suppose that T is L-Lipschitz, and u is compactly supported and E[exp(t||x||*)] < co for some
t>0,a > 0. Assume we draw k i.i.d. samples from p and consider the estimator ji. Then

sup / TP (xs 7, p) — TP (x) < 0, (- log(1 + k)'ne),

J/Grmin
where
2k=1/2 n=2,3 @) '4 +(Qa+2na—n)v0) n<4
rB =30k 1210g(1+ k) n=4 , t,,=3@'v7/2)—1 n=4,
2k=2/n nx5 21 +n7h) n>4

so that rE,k) and t, , are on the order of k=17 and 2(1 + n~Y), respectively.

We utilize the above theorem for the case that ¢ is compactly supported in the proof of Theorem 4.2. Consequently, the expectation
bound holds for all #,a > 0. We see that for n < 4, one can choose a large enough so that 7, , is arbitrarily close to 1 if n=1, % if

n=2, and 2 if n = 3. Similarly, for n = 4 we may choose « large enough so that 7, , = % This simplifies the statement in Theorem 4.2.

Remark B.2. We note that Theorem B.1 is the “semi-discrete” version described in [18]. The paper also provides equivalent bounds
in the instance that ¢ is similarly estimated. However, the bounds only guarantee that the transport maps agree when integrated
against 6, whereas we need the bound for ¢ itself.

B.2. Approximating with finite samples from the reference distribution

Some of the norms from Theorem 4.2 and Theorem 4.8 are assumed to be integrated against the true o. However, we need to
consider the discretized o for each norm, and establish that we can estimate these norms with high probability. For these bounds, we
use McDiarmid’s inequality on the function

u my 2 T A~ A~
T X r) = T2 (Xsv) | = Wh T, sy

S Xp) =2 D

where X; ~ o, Y is a transport plan between ¢ and ;?j for j=1,2, and y € {y,.p,7s} denotes the optimization method used to get
Vi If y; are supported in a ball of radius R, then McDiarmid’s inequality implies

m 2
1 — — — — _ 1
P( — 2T X)L X P = T Corg) = T2 G >r> <2¢”" TR
j=1

Note that since f = V/I72L£T(/T1,ﬁ§; 7)?, we get
—~ mt
P (|WEOTGar, fis 1) = WeOT iy TP > 1) <27 (18)
Theorem B.3. Consider y;,c € W,(R"). Assume supp(u;) C B(0, R) for i =1,2. Let 6 > 0. Then with probability at least 1 — 6,

e ot 2log(2/5)
|Wa2T iy s ) = Wao Gy s )| < R —

where m is the number of samples used to estimate c. Here, if ¢ is not absolutely continuous, then the transport maps are constructed from
barycentric projections of transport plans.

Proof. Define
a=Wy @y i), b=Wy (@ Haiy).
Then both @ < 2R and b < 2R. Now, since a2 — b? = (a + b)(a — b), we get that
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1,2 12
la=bl 2 —la”—b7|.
4R

This, together with (18), implies that

2

= —~ ~ o~ o~ —-_m—7x
P ( WZLOT(Ml,lQ;}’) - Wz%OT(Ml’ﬂz;V)) > t) <2 287,

o
2
Solving § =2¢ 282 for ¢ yields the conclusion. []

The following corollary is geared towards showing Theorem 4.8 as we use the estimated optimal transport map generated from
using the Sinkhorn transport plan solution.

Corollary B.4. Under the assumptions of Theorem B.3, suppose X ; ~ ¢ L.i.d. for (j=1,...,m) and let s=1 >

m
at least 1 — 6,

m = —~ A 2log(2/6)
T svm ) = T2 s I = WO Gl )| < Ry .

Proof. Use the sampling X; ~ o that generates 5, we can use McDiarmid’s inequality to get

m

=1 8 X, Then with probability

m 2

1 Aoy . By . 2 TP W 2 —m

P( EZ}'TG X p) = TEX v D = TS Civa ) = TS C v pla| > 1 ) <2¢7" 5w
P

We use the same sampling for G as we do for the concentration for McDiarmid’s inequality. Notice, however, that

m
1 By . PN S B >
T Xy ) = T X )P = I C v ) = T2 C sl

j=1

.

LOT (7 =~
WLOT (4. 775) W5 Gihp)
T (.15
25 j

This yields the result. []

Appendix C. Non-compactly supported measures proofs and results

Here, we give the proofs of the lemmas preceding Theorems 5.4 and 5.5.

Proof of Lemma 5.2. We will construct the measure u by constructing a transport map that sends u to a compactly supported
absolutely continuous measure. In particular, for some 0 < p < 1, consider the map

X x € B(0,R)
SR,,,(X) =

X : X *
RS +min{lxll - R p} = x @ BO,R)

Let i = (Sg,p)gH, then the compact set that 1 will be supported on is B(0, R + p) since for x € R" with ||x|| > R we have 1Sk, (Ol <
R + p. Now note that

Wiu, )= _min _ [ |IS&x) = xlldu) < [ 1Sk, (x) = x|ldu(x)
SCSn/l=/4
R" R"

=/IIX—XIIdﬂ(X)+ / (1 R w)x“dﬂ(x)
——

[lx]] L+ Ix|]
BOR) R\ B(0,R)
[lxl min{||x]| — R, p}
< / Ixll+ R + du(x) < 3|Ix[ld u(x).
N——" L+ |||
R"\ B(0,R) <l R"\B(0,R)
<p<IL||x]|

To bound this integral, recall that

6p+16n
n P 1
flx|+2

£, < ( _

npQ.M,
with
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- P
Cupam, = Cupam,GC) ¥+

where C denotes a constant of integration over concentric n-spheres. Recall that d u(x) = f,(x)dx; thus,

3lixlldux) = / 3llxl.f, (e)d x

R\ B(0,R) R"\B(0,R)
6p+16n
P
S / < ; > 1 ! dx
Cn,p,Q,Mp C”x”n+
R"\B(0,R)
6p+16n 1
p e
s <C ! n+1 dr
PQM r
P P r>R
—_——
<1
6p+16n
Cn,p,Q,M »
where C is a constant from integrating over concentric n-spheres. Invoking Theorem 5.1, this means that
U I T n
1T =T lly < Crpng, Wi Y1 < C, o, =11
n,p,Q,Mp

To see that i is compactly supported, notice that for x € R" \ B(0, R), we have

__ . x|
IS (x>||=||R—+mm{||x||—R,p} |SR+ <
Ry I ] R
——
<1

The case for when x € B(0, R) is trivial since Sy , is the identity map on B(0, R). Moreover, to see that /i is absolutely continuous
with respect to the Lebesgue measure, we will take a generic set A and break it up into components and analyze each component.
We first notice that S , is continuous. Indeed, for x such that ||x|| = R, we see that
x . x
R— +min{||x|| — R, p} =x.
T A Py ]
v =[lx]I-R=0

X

Now, let A € R” such that 4(A) =0 for the Lebesgue measure 4, then

A=(ANnB(0,R) @ (A\ B(O,R)) ® (AnoB(0,R))
= (Sg,)gH(A) = (Sk )yu(AN BO, R) +(Sg ,)pu(A\ BO. R) + (Sg ,);u(ANIBO, R))
= u(Sg, (AN BO,R)) + u(Sg,” (A\ BO, R)) + u(Sg,” (AN IB(O, R)

= u(AN B, R) + u(ANIB(O, R)+u(Sg ,~ (A \ B(0, R))),
—_——
<u(9B(0.R))=0

where we use the additivity of measures over disjoint sets, the form of Sy , on B(0, R), and the absolutely continuity of u so that

1(0B(0, R)) < A(0B(0, R)) = 0. Moreover, note that u(A N B(0, R)) < u(A) < A(A) = 0. The only term left is A \ B(0, R). Since Sg, is
smooth on R" \ B(0, R), there exists a density g for (Sg ,)yu With respect to u for sets in R" \ B(0, R). This means (Sg ,)su < p on

R"\ B(0, R). Since u < 4, we have

MA)=0 = u(A)=0 = u(A\ B(O,R))=0 = (Sg ,)yu(A\ B(0,R))=0.

This shows that (Sg ,)4¢ is absolutely continuous with respect to 4, so the proof is complete. []

Proof of Lemma 5.3. Rather than constructing a transport map, we will construct a density f3; and will argue that the transport
map from u to ji (the measure with density f;;) behaves nicely. To do this, consider the following density

fu() x € B(0,R)
7ar® =41, (R ) +a(Bl-1) xeBO.0\BOR).
0 otherwise
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for some a > 0. Notice that a is not specified at the moment, but it depends on R and «. Since we want /i to be a probability measure,
we note that

a

- . Il
iR = / f,,(x)dx+/rd lc<r>(f,,(Rﬁ)+a(T—1)>dr,

B(O.R) R

#(B(0,R)) I(a)

where C(r) is the integral over the sphere at radius r. Notice that I(a) has an integrand that is increasing as a function of r so that
1(a) itself is increasing as a function of a (i.e. lim,_, , I(a) = c0). Moreover, because /(R) =0, we know from the intermediate value
theorem that there exists some a* such that I(a*) = pu(R? \ B(0, R)). Note that from this construction, j is compactly supported,
absolutely continuous with respect to the Lebesgue measure, and 0 < ¢ <b < fﬁ < B < oo for some constants b and B.

Now, we would like to bound W (u, ii). Because we assume that u has a density, there exists pushforwards that push y to i, but
we will consider .S such that Syp = # and S(x) = x if x € B(0, R). The set of such maps S is non-empty, because we can consider the
optimal transport problem between the restricted measures p|ga\ p(o gy t0 Hlre\ p(o,r) With the same total mass. There certainly exist
pushforwards, say S| between the restricted measures because the measures have densities. To form a map S, let S be the identity
on B(0, R) and S| on R\ B(0, R). Note that S(x) € B(0, a) for x € B(0,a) \ B(0, R); thus, there exists C such that ISl < 5||x|| >f
a < 2R, then C <2). For the following calculation, we assume that

Gp+16n
n P 1
llx(|m+2

S0 < < =
npQ.M,

6p+16n

- : .
- o i n+2
C POM, ((C + I)Csphere) p+16n [1]|

n

6p+16n

(em) " e
C"vP’Q’Mp (Cc+ 1)Csphere”x||n+2

where C, denotes a constant from integrating over concentric n-spheres and C denotes the constant from Theorem 5.1.
sphere npQ.M,
Now note that

M(u,ms/nS(x)—xndu(x): / llx — x|l du(x) + / 15(x) = xlld u(x)
R4 B(0,R) -0 R4\ B(0,R)

< / 1SN+ Nlxlld () < / (€ + DlIx|lf, (x)dx

R4\ B(0,R) R\ B(0,R)
6p+16n
~ P
: / © 1)< C ; ) =~ ! . dx
n+
R4\ B(0,R) mpALM, (Cc+ 1)Csphere |BY|
bp+16n ) 6p+16n
n— 6p+16
5(% ' r+1drs<c ; '
1
n.p.Q.M, IR r .M,
N——
<1

Invoking Theorem 5.1, this means that

~ P
”To-” - T;l ”o‘ < Cn,p,Q,M‘,J WI(M’ m6p+l6n < Cn,p,Q,M =1n.

’ Cn,p,Q.M,,

Thus, we have the desired result. []

Appendix D. Proofs and results for conditions on .7# and u
This section provides the proofs of the results in Sections 6 and 7.
D.1. Compact case proofs and results

Here we prove the results of Section 6 which provide conditions on o, y, and ¢ which guarantee that y; ~ J#u satisfy the
conditions of the theorems from Section 4.
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Proof of Theorem 6.1. Caffarelli’s regularity theorem implies that T;hi)u” is continuous, hence Lipschitz (since supp(u) is compact).
To show that Caffarelli’s theorem applies, (%;)3u needs convex support and its density needs to be bounded away from 0 and co. One
of the assumptions in this theorem is that (h;)y 4 has convex support; thus we must show the density is bounded away from 0 and co.
If h; is continuously differentiable with 01 < LI < J;, (x), then the minimum eigenvalue of J;, is bounded away from 0. Noticing
that h; is a proper map, we can use Hadamard’s global inverse function theorem to see that hi_1 exists. Recalling y has density f,,
we can use the change of variables density formula

Finpgu ) = LT GO (1

Since y has a density such that 0 < ¢ < f,, < C < o0, we can see that [, , o is bounded away from 0 and oo by using the change
of variables density formula. In particular, note that f, " > cL; > 0. For the upper-bound, we need that h; is Lipschitz. This is
immediate since h; is a continuously differentiable (hence continuous) map over a compact set; thus, A; is Lipschitz with some
Lipschitz constant L,. This means that f(, ’ 4 <CLy<oo. [

Proof of Theorem 6.2. For the barycentric map estimator, we already showed that the y;’s are compactly supported in a ball of
radius AR in the proof of Theorem 4.2. We now show that T(f ! is Lipschitz. To make sure that each T,f " is Lipschitz, we will only need
that h; is continuous because continuous maps over compact sets are Lipschitz. In particular, note that y; = (h;)3u for some h; € /7.
Moreover, notice that we only care about how h; acts on supp(u), which is compact; thus, A; is Lipschitz on the set of interest. Now,
by compatibility, we know that T = h;oT}, which implies that if 4; is Lipschitz and T is Lipschitz, then T}’ is Lipschitz. []

Proof of Theorem 6.3. For the entropic map estimator, the y,’s need to again be compactly supported, T needs to be Lipschitz,
and o and y; together satisfy assumptions (A1) — (A3). It will turn out, that we will only need that there exist constants L, L, >0
such that

LI <J,(x)<L,I.

This occurs if 4 is continuous, compatible, and has lower bound on Jacobian as L1 < J,(x). To see the upper bound, we just see that
h being a continuous map on a compact set (support of y) gives that on the support of y, we have J,(x) < L,I for some L,. Now
similar to Remark 4.3, we can use Hadamard’s global inverse function theorem to see that h~! exists with L; 1<y 1) < Ll’ll .
Since we only sample a finite number of measure-valued data points y;, we know that there must be a maximum L, that applies for
all y;.

That ; is compactly supported and each T." are Lipschitz follow from the same analysis as in the proof of Theorem 6.2.

Ensuring that y; satisfy (A1): Recall that the change of variables formula for the density of a pushforward measure i = hyp is
given by

[720) = £, (A DT -1 ()],

where |J,-1(x)| denotes the determinant of the Jacobian of A~!.
From the discussion above, we get that |J,-1| > 0 for all x. In particular, since the determinant of a matrix is the product of its
eigenvalues, we have that

n
Ly" <m0l =[] 4, ) < L7
j=1

Finally, since y itself adheres to (A1), this implies that
< B

b
= SO 1 (0] < —;
H h L1

Lg -
So (A1) holds for i if there are constants L, L, > 0 such that

Lyl <J,(x) < Ly

Ensuring that y; satisfy (A2): From [22, Corollary 4.2.10], we can ensure that (A2) is satisfied if (A3) is satisfied, which is
proved below.

h
Ensuring that 4, satisfy (A3): First, notice that by compatibility of 4, we have that T, = hoT}; thus, a direct corollary of [25,
Theorem 24] gives that

(LI =T g (x) < (Lo LI

for all x, where m and L come from assuming ¢ and u satisfy (A3) whilst L; and L, come from above. So (A3) holds for ¢ and

u
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The result above essentially states that the entropic estimator works if every h € 5 is (exactly) compatible and is uniformly
positive definite.

D.2. Non-compact case proofs and results

Here we prove the results of Section 7 which provide conditions on o, y, and ¢ which guarantee that y; ~ #u satisfy the
conditions of the theorems from Section 5.

Proof of Theorem 7.1. Assume that y is the truncated measure approximating hyu for h € . Given the assumptions of Lemma 5.3,
the truncated measure j is compactly supported, upper and lower bounded, and absolutely continuous. If we can ensure that the trun-
cated measure /i also has uniformly convex support, we will fulfill the conditions of Caffarelli’s regularity theorem, which guarantees
that the optimal transport map is Lipschitz continuous.

* Decay rate condition: Assuming that y has the necessary decay rate f,(x) <C < o0 and 0 <c¢ < f,(x) on a large enough ball
where the decay rate is active, we need that hyu = i also has the same decay rate up to a constant. For what follows, we must
show that 4 € % has an inverse 2~!. Indeed, because of the bi-Lipschitz assumption (iii) of Theorem 7.1, we know that

LiI<J,(x)<L,I.

Because J(x) is invertible for all x, we can Hadamard’s inverse function theorem to conclude that h~! exists. Moreover, this
implies that

L' T < T ()< L]'T.
Since J# satisfies Assumption 4.1 (iii) (i.e.
al|x|l < Al < Allx|l

for some a, A > 0), then we know that

AMIx < 1A ol <@ ixl,
or equivalently,

-1 -1
A L
IA=1Cll ~ llxll = A=l

Thus, for ||x|| > AR (so that ||A~!(x)|| > R) and the bounds above, we find that

[20) = £, (7 ) [T -1 (0]
——
sLl‘”

6p+16n

<<L> ? %L_"
“\Cupom, C'llA= 1ol !

6p+16n
<< n P 1 —n gn+2
S\ — PTG Rl | .
Cupam, C’ x|+

The constants L; and A can be absorbed into the other decay rate constants; thus, Assumption 4.1 (iii) and our bi-Lipschitz
assumption (iii) gives us the decay rate we want. Noting that the form of the density f; also implies that cL|" < fz(x) on some
large enough ball. In particular, we get that the truncated measure  has a density 0 < b < fj(x) < B < oo from Lemma 5.3.
Uniformly convex support: If 4 is supported on all of R”, we would want & € 7 such that y = hyu is also supported on all of
R". Recall that the resulting density of u is given by

J7) = £, (B ) |1 (0)]
——
<L
Note that  is supported on all of R” if ||A~!(x)|| = oo as ||x|| = oo. Indeed, if we assume Assumption 4.1 (iv), then A~!||x|| <
[lA=1(x)||, which implies that % is supported on all of R”. This would imply that the truncated measure ji will be supported on a

ball of some radius. This implies that the support of /i is uniformly convex and compact.
From the decay rate condition and the uniformly convex support condition, we get that the truncated measure # will satisfy the
assumptions of Caffarelli’s regularity theorem. This implies that T” will be a C2 and Lipschitz function (since T” pushes forward a

compact support to a compact support). The other assumptions of the theorem are trivially satisfied. []
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Proof of Theorem 7.2. From the proof of Theorem 7.1 above, we easily see that if Assumption 4.1 is fulfilled and y fulfills the
conditions of Lemma 5.3 and is supported on all of R”, then T will be Lipschitz. We need, however, that ji also satisfies (A1)-(A3)
from 4.6. We get (A1) for free since the density f; is lower bounded from the proof of Lemma 5.3. We also get (A2) since T is
differentiable from Caffarelli’s regularity theorem [11-13] and if (A3) is satisfied, which comes from [22, Corollary 4.2.10].

Now we only need to ensure that (A3) holds. Indeed, since Caffarelli’s regularity theorem holds, we know that the potential ¢
such that T} = V¢ is strictly convex, which implies that V2¢(x) is positive definite. Moreover, the minimum eigenvalue of VZ¢(x) is
a continuous function of x. Since x € supp(c), which is compact, we know that 0 < A, (6) = minXESupp(g) /lmi“(V2¢(x)), which implies
that JTJ;(x) > Amin(0)1. This guarantees that (A3) is satisfied for ¢ and j. []

Data availability
No data was used for the research described in the article.
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