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We introduce LOT Wassmap, a computationally feasible algorithm to uncover low-dimensional 
structures in the Wasserstein space. The algorithm is motivated by the observation that many 
datasets are naturally interpreted as probability measures rather than points in ℝ𝑛, and that 
finding low-dimensional descriptions of such datasets requires manifold learning algorithms in the 
Wasserstein space. Most available algorithms are based on computing the pairwise Wasserstein 
distance matrix, which can be computationally challenging for large datasets in high dimensions. 
Our algorithm leverages approximation schemes such as Sinkhorn distances and linearized optimal 
transport to speed-up computations, and in particular, avoids computing a pairwise distance 
matrix. We provide guarantees on the embedding quality under such approximations, including 
when explicit descriptions of the probability measures are not available and one must deal with 
finite samples instead. Experiments demonstrate that LOT Wassmap attains correct embeddings 
and that the quality improves with increased sample size. We also show how LOT Wassmap 
significantly reduces the computational cost when compared to algorithms that depend on 
pairwise distance computations.
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 Introduction

A classical problem in analyzing large volume, high-dimensional datasets is to develop efficient algorithms that classify points 
sed on a similarity measure, or based on a subset of preclassified training data points. Even when data points lie in high-dimensional 
clidean space, they can often be approximated by low-dimensional structures, such as subspaces or submanifolds. This observation 
s led to significant advances in the field, mostly through the development of manifold learning algorithms, which produce a low-
mensional representation of a given dataset; see for example [8,15,26,38]. In many of these frameworks, the data points are 
sumed to be sampled from a low-dimensional Riemannian manifold embedded in Euclidean space, and approximately preserve 
trinsic properties such as geodesic distances.
In many applications however, data points are more naturally interpreted as distributions {𝜇𝑖}𝑁𝑖=1 over ℝ

𝑛, or finite samples 

𝑖 = {𝑥(𝑖)𝑗 }𝑁𝑖
𝑗=1 with 𝑥

(𝑖)
𝑗 ∼ 𝜇𝑖. Examples include imaging data [36], text documents (the bag-of-word model uses word count within a 

xt as features, creating a histogram for each document [45]), and gene expression data, which can be interpreted as a distribution 
er a gene network [14,28]. In this setting, a Euclidean embedding space with Euclidean distances locally approximating the intrinsic 
stance of the data may not be geometrically meaningful, and datasets are better modeled as probability measures in the Wasserstein 
ace [39].

We assume that our data points {𝜇𝑖}𝑁𝑖=1 belong to the quadratic Wasserstein space 𝑊2(ℝ𝑛) of probability measures with finite 
cond moment, equipped with the Wasserstein distance

𝑊2(𝜇, 𝜈) ∶= inf
𝜋∈Γ(𝜇,𝜈)

⎛⎜⎜⎝ ∫ℝ2𝑛

‖𝑥− 𝑦‖2𝑑𝜋(𝑥, 𝑦)⎞⎟⎟⎠
1
2

, (1)

here P(ℝ2𝑛) is the set of all probability measures over ℝ2𝑛 and Γ(𝜇, 𝜈) ∶= {𝛾 ∈ P(ℝ2𝑛) ∶ 𝛾(𝐴 × ℝ𝑛) = 𝜇(𝐴), 𝛾(ℝ𝑛 × 𝐴) =
𝐴) for all 𝐴 ⊂ ℝ𝑛} is the set of all joint probability measures with marginals 𝜇 and 𝜈. Under regularity assumptions on 𝜇, the 
timal coupling 𝜋 has the form 𝜋 = (id, 𝑇 )♯𝜇, where 𝑇 ∈ L2(ℝ𝑛, 𝜇) is the “optimal transport map” [10,39].
The Wasserstein space and optimal transport have gained popularity in the machine learning community, as they are based on a 
lid theoretical foundation [39] (for example, (1) is a metric), while providing a versatile framework for applications (for example, 
 a cost function for generative models [6], in semi-supervised learning [37], and in pattern detection for neuronal data [31]).
In this paper, we are interested in uncovering low-dimensional submanifolds in the Wasserstein space in a computationally feasible
anner as well as analyzing the quality of the embedding. To this end, we follow the idea of [21,40], which introduces the Wassmap
gorithm (see Section 2.6 for more details), a version of the Multidimensional Scaling algorithm (MDS) [27] (see Algorithm 1), or 
ore generally, the Isomap algorithm [38].
A central part of manifold learning algorithms like MDS or Isomap relies on the computation of the pairwise Euclidean distances. 
assmap uses the pairwise Wasserstein distance matrix instead, which leads to 𝑂(𝑁2) Wasserstein distance computations, each of 
hich is of the order 𝑂(𝑛3 log(𝑛)) if one uses interior point methods to solve the linear program (1). If both 𝑁 and 𝑛 are large, comput-
g all pairwise distances becomes infeasible. To deal with this issue, approximations of the Wasserstein distance can be considered. 
 this paper, we are interested in entropic regularized distances (Sinkhorn distances) [2,17], which deal with the computational issue 
volving 𝑛, and in linearized optimal transport (LOT) [20,40], to reduce the computational cost in 𝑁 .
Our results are twofold:

) Approximation guarantees:
• We provide bounds on the embedding quality of the Multidimensional Scaling algorithm (MDS) [27] (see Algorithm 1) applied 
to a dataset in the Wasserstein space, where the pairwise Wasserstein distances are only available up to an error 𝜏 .

• We study the size of 𝜏 in common approximation schemes such as entropic regularization and linearized approximations, and
when explicit descriptions of the data points 𝜇𝑖, 𝑖 = 1, … , 𝑁 are not available, and one must deal with finite samples instead.

) Efficient algorithm (LOT Wassmap): We provide an algorithm, “LOT Wassmap”, inspired by the Wassmap algorithm of [21]. It 
essentially uses linearized Wasserstein distance approximations through LOT in the Multidimensional Scaling algorithm, lever-
aging our approximation guarantees from (1). However, we do not compute the LOT-Wasserstein distance matrix and feed it into 
MDS, but instead compute the truncated SVD of centered transport maps. This is the same in theory, but computationally more 
2

efficient.
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1. Previous work

The idea of replacing pairwise Euclidean distances with pairwise Wasserstein distances in common manifold learning algorithms 
s been explored in many settings; for example in [44] to study shape spaces of proteins, in [28,14] to analyze gene expression data, 
d in [40] for cancer detection.
Theoretical results on the reconstruction of certain submanifolds in 𝑊2(ℝ𝑛) through the MDS algorithm using pairwise Wasserstein 
stances are presented in [21]. The associated algorithm, Wassmap, is the basis for our LOT Wassmap algorithm.
Related to the idea of uncovering submanifolds in the Wasserstein space is “Wasserstein dictionary learning” as discussed in 
3,42]. The authors propose to represent complex data in the Wasserstein space as Wasserstein barycenters of a dictionary.

2. Approximation guarantees

Using approximations of the Wasserstein distance in manifold learning algorithms such as MDS may change the embedding quality, 
d our main result provides theoretical bounds on the error:

eorem 1.1 (Informal version of Theorem 3.3). Assume that data points {𝜇𝑖}𝑁𝑖=1 are 𝜏1-close to a 𝑑-dimensional submanifold W in the 
asserstein space, which is isometric to a subset Ξ of Euclidean space ℝ𝑑 . Furthermore assume that we only have access to approximations 
𝑗 of the pairwise distances 𝑊2(𝜇𝑖, 𝜇𝑗 ), and that the approximation error is 𝜏2.
Then, under some technical assumptions, the Multidimensional Scaling algorithm using distances 𝜆𝑖𝑗 as input recovers data points {𝑧𝑖}𝑁𝑖=1 ⊂

𝑑 , which are 𝐶𝑁,W (𝜏1 + 𝜏2)-close to Ξ up to rigid transformations.

Some remarks on this result:

• The first source of error, 𝜏1, depends on how close the data points are to the submanifold W isometric to a subspace of ℝ𝑑 , which 
is completely determined by the dataset.

• The second source of error, 𝜏2, depends on the approximation scheme used, and can be made arbitrarily small with sufficient 
computational time or good choice of parameters.

significant part of this paper is dedicated to providing bounds for 𝜏2 , when common approximation schemes for 𝑊2(𝜇𝑖, 𝜇𝑗 ) are 
ed, and when {𝜇𝑖}𝑁𝑖=1 are only available through samples, i.e. when 𝜇𝑖 ≈ 𝜇𝑖 =

1
𝑚𝑖

∑𝑚𝑖
𝑗=1 𝛿𝑌 (𝑖)

𝑗
with 𝑌 (𝑖)

𝑗 ∼ 𝜇𝑖 i.i.d. In particular, we 

troduce empirical linearized Wasserstein-2 distance, 𝑊 LOT
2,𝜎 , which uses two approximation schemes:

) Entropic regularized formulation: A very successful approximation framework for efficient Wasserstein distance computation is the 
entropic regularized formulation of (1), which depends on a parameter 𝛽, and leads to Sinkhorn distances [17]:

min
𝜋∈Γ(𝜇,𝜈) ∫

ℝ2𝑛

1
2
‖𝑥− 𝑦‖2𝑑𝜋(𝑥, 𝑦) + 𝛽𝐷KL(𝜋‖𝜇 ⊗ 𝜈), (2)

where 𝐷KL is the Kullback–Leibler divergence of measures [23]. This formulation leads to a unique solution (in contrast to (1)), 
and to a significant computational speed-up in 𝑛, achieving 𝑂(𝑛2 log(𝑛)) through matrix scaling algorithms (Sinkhorn’s algorithm) 
[2,17].

) Linearized Wasserstein distances: Linearized optimal transport (LOT) [20,40] approximates Wasserstein distances by linear L2-
distances in the tangent space at a chosen reference measure 𝜎:

𝑊 LOT
2,𝜎 (𝜇, 𝜈) ∶=

⎛⎜⎜⎝∫ℝ𝑛 ‖𝑇 𝜇𝜎 (𝑥) − 𝑇 𝜈𝜎 (𝑥)‖2 𝑑𝜎(𝑥)⎞⎟⎟⎠
1∕2

, (3)

where 𝑇 𝜇𝜎 denotes the optimal transport map from 𝜎 to 𝜇 (either computed through (1) or (2), and using barycentric projections 
to make a transport plan into a transport map). Instead of computing all pairwise optimal transport maps, in this framework, one 
computes 𝑇 𝜇𝑖𝜎 from 𝜎 to 𝜇𝑖, and approximates pairwise maps between 𝜇𝑖 and 𝜇𝑗 as a composition of 𝑇

𝜇𝑖
𝜎 and 𝑇 𝜇𝑗𝜎 , reducing the 

computation in 𝑁 to 𝑂(𝑁). This framework has been successfully applied signal and image classification tasks [34,41], such as 
visualizing phenotypic differences between types of cells [7]. There furthermore exist error bounds for 𝑊 LOT

2,𝜎 [9,19,20,25,29,32].

ith these approximation schemes at hand, we define the empirical linearized Wasserstein-2 distance:

𝑊 LOT
2,𝜎 (𝜇, 𝜈) ∶=

(
1
𝑚

𝑚∑
𝑗=1

‖𝑇 𝜇𝜎 (𝑋𝑗 ) − 𝑇 𝜈𝜎 (𝑋𝑗 )‖2
)1∕2

, (4)
3

here 𝑋𝑗 ∼ 𝜎 i.i.d. and the transport maps are either computed by (1) or (2) (and with barycentric projections, if necessary).
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We provide values for 𝜏2 as in Theorem 1.1, by bounding |𝑊2(𝜇, 𝜈)2 −𝑊 LOT
2,𝜎 (𝜇, ̂𝜈)2|, using either a linear program or Sinkhorn 

rations to compute the transport plans. These bounds are derived by combining the following results:

• Estimation of optimal transport maps with plug-in estimators, i.e. bounds on ‖𝑇 𝜈̂𝜇 − 𝑇 𝜈𝜇 ‖𝜇 , which are provided by [18] for the 
linear program case, and by [35] in the regularized case. Both [18] and [35] assume compactly supported 𝜇 and 𝜈, while we are 
able to relax the compact support assumption on the target measure, as long as it can be approximated by compactly supported 
measures.

• Approximation results for 𝑊 LOT
2,𝜎 , which are provided in [25,32], and are based on the idea that 𝜇𝑖 are generated by almost 

compatible functions H applied to a fixed generator 𝜇. We also strengthen some of the approximation results in [25,32].

3. Efficient algorithm: LOT Wassmap

The Wassmap algorithm of [21] requires computing the pairwise Wasserstein distance matrix 𝑊2(𝜇𝑖, 𝜇𝑗 ), 𝑖, 𝑗 = 1, … , 𝑁 , which 
ads to 𝑂(𝑁2) expensive computations. We introduce LOT Wassmap (see Algorithm 2), which uses LOT distances (3) to linearly ap-
oximate 𝑊2(𝜇𝑖, 𝜇𝑗 ) (since the input of our algorithm are empirical samples 𝜇𝑖 , we actually use the empirical linearized Wasserstein-2 
stance (4)). This results in only 𝑂(𝑁) optimal transport computations.
However, in practice, we avoid computing the pairwise LOT distance matrix. Instead, we compute the truncated SVD of the 
ntered transport maps, which is computationally more efficient. We show that in theory this produces a result equivalent to Theo-
m 1.1:

rollary 1.2 (Informal version of Corollary 3.4). Assume that data points {𝜇𝑖}𝑁𝑖=1 are 𝜏1-close to a 𝑑-dimensional submanifold W in the 
asserstein space, which is isometric to a subset Ξ of Euclidean space ℝ𝑑 . Choose a reference measure 𝜎 and compute all transport maps 
𝑖 (either with a linear program (1) or with Sinkhorn approximations (2), and with barycentric projections, if necessary). Let 𝜏2 be the error 
tween the empirical linearized Wasserstein-2 distance 𝑊 LOT

2,𝜎 (𝜇𝑖, ̂𝜇𝑗 ) of (4) and the actual Wasserstein-2 distance 𝑊2(𝜇𝑖, 𝜇𝑗 ).
Then, under some technical assumptions, the truncated SVD of the centered transport maps 𝑇 𝜇𝑖𝜎 (column-stacked) produces data points 
𝑖}𝑁𝑖=1 ⊂ℝ𝑑 , which are 𝐶𝑁,W (𝜏1 + 𝜏2)-close to Ξ up to rigid transformations.

We note that Corollary 1.2 is a corollary of Theorem 1.1 and that the technical assumptions and constants are the same in both 
sults.

In Section 8, we provide experiments demonstrating that LOT Wassmap does attain correct embeddings given finite samples 
ithout explicitly computing the pairwise LOT distance matrix. In particular, we show that the embedding quality improves with 
creased sample size and that LOT Wassmap significantly reduces the computational cost when compared to Wassmap.

4. Organization of the paper

This paper is organized as follows: We start by introducing important notation and background in Section 2. This includes dis-
ssion of the MDS and Wassmap algorithms, (linearized) optimal transport, and plug-in estimators. Section 3 introduces the LOT 
assmap algorithm and provides the main results. Sections 4 and 5 provide approximation guarantees for 𝑊 LOT

2,𝜎 (𝜇, ̂𝜈) for compactly 
d non-compactly supported target measures, respectively. The approximation guarantees come with many technical assumptions, 
d Sections 6 and 7 are dedicated to discussing settings in which these assumptions hold. The paper concludes with experiments in 
ction 8, which show the effectiveness of LOT Wassmap. Proofs are provided in Appendices A to D.

 Notation and background

This paper has a significant amount of background and notation which is summarized categorically here. See Table 1 for an 
erview of notation used in the paper.

1. Linear algebra preliminaries

Given 𝐴 ∈ ℝ𝑚×𝑛, its Singular Value Decomposition (SVD) is given by 𝐴 = 𝑈Σ𝑉 ⊤, where 𝑈 ∈ ℝ𝑚×𝑚 and 𝑉 ∈ ℝ𝑛×𝑛 are orthogonal 
atrices and Σ ∈ ℝ𝑚×𝑛 has non-zero entries along its main diagonal (singular values). The singular values are the square roots 
 the eigenvalues of 𝐴⊤𝐴 and are taken in descending order 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎min{𝑚,𝑛} ≥ 0. The truncated SVD of order 𝑑 of 𝐴 is 
𝑑 = 𝑈𝑑Σ𝑑𝑉 ⊤𝑑 where 𝑈𝑑 and 𝑉𝑑 consist of the first 𝑑 columns of 𝑈 and 𝑉 , respectively, and Σ𝑑 = diag(𝜎1, … , 𝜎𝑑 ) ∈ ℝ𝑑×𝑑 . The 
oore–Penrose pseudoinverse of 𝐴 ∈ ℝ𝑚×𝑛 is the 𝑛 × 𝑚 matrix denoted by 𝐴† and defined by 𝐴† = 𝑉 Σ†𝑈⊤ where Σ† is the 𝑛 × 𝑚
atrix with entries 1

𝜎1
, … , 1

𝜎min{𝑚,𝑛}
along its main diagonal.

The Schatten 𝑝-norms (1 ≤ 𝑝 ≤∞) are a general class of unitarily invariant, submultiplicative norms on ℝ𝑚×𝑛 and are defined to 
 the 𝓁𝑝 norms of the vector of singular values: ‖𝐴‖S𝑝 ∶= ‖(𝜎1, … , 𝜎min{𝑚,𝑛})‖𝓁𝑝 . The Frobenius norm, which is the Schatten 2-norm 
denoted by ‖ ⋅ ‖F, and the spectral norm, which is the Schatten ∞-norm is denoted simply by ‖ ⋅ ‖. We also use ‖ ⋅ ‖ to denote the 
4

clidean norm of a vector.
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Table 1

Overview of notation used in the paper.
Notation Definition Reference

Δ Square Euclidean distance matrix Algorithm 1

Λ Perturbed distance matrix Corollary 3.2

𝑋† Moore–Penrose pseudoinverse of matrix 𝑋 Section 2.1

𝜇 Template measure Section 2.4

𝜇 Empirical measure approximating 𝜇 (7)

𝜎 Reference measure for LOT Section 2.4‖ ⋅ ‖S𝑝 Schatten 𝑝-norm Section 2.1‖ ⋅ ‖ Spectral norm of a matrix or Euclidean norm of a vector Section 2.1‖ ⋅ ‖F Frobenius norm of a matrix Section 2.1‖ ⋅ ‖max (Entrywise) maximum norm of a matrix Section 2.1‖ ⋅ ‖𝜇 Norm on L2(ℝ𝑛, 𝜇) Section 2.3

𝑛 Dimension of Euclidean space that probability measures are defined on Section 2.3

P(ℝ𝑛) Probability measures on ℝ𝑛 Section 2.3

Pac(ℝ𝑛) Absolutely continuous probability measures on ℝ𝑛 Section 2.3

𝑊2(ℝ𝑛) Wasserstein-2 space over ℝ𝑛 Section 2.3

𝑊2(𝜇, 𝜈) Wasserstein-2 distance between 𝜇 and 𝜈 (5)

𝑊 LOT
2,𝜎 (𝜇, 𝜈) Linearized Wasserstein-2 distance between 𝜇 and 𝜈, with 𝜎 as reference (6)

𝑊 LOT
2,𝜎 (𝜇, 𝜈) Empirical linearized Wasserstein-2 distance (12)

𝑇 𝜇𝜎 Optimal transport (Monge) map from 𝜎 to 𝜇 Section 2.3

𝑇♯𝜇 Pushforward of 𝜇 with respect to 𝑇 Section 2.3

𝑇 𝜇𝜎 Barycentric projection of an optimal transport plan (Kantorovich potential) (10)

𝑑 Embedding dimension of MDS Section 2.2

𝑘 Sample size that generates 𝜇 (7)

𝑚 Sample size that generates 𝜎 Algorithm 2

𝑁 Number of data points Algorithm 2

𝜀 Distance from compatibility Definition 2.2

𝛽 Regularizer for Sinkhorn OT Section 4.2

2. Multidimensional scaling

Let 𝟏 be the all-ones vector in ℝ𝑁 , and 𝐽 ∶= 𝐼 − 1
𝑁
𝟏𝟏⊤. Then Multidimensional Scaling (MDS) is summarized in Algorithm 1. For 

ore details see [27].

lgorithm 1: Multidimensional Scaling (MDS) [27].
Input: Points {𝑦𝑖}𝑁𝑖=1 ⊂ℝ𝐷 ; embedding dimension 𝑑 ≪𝐷.
Output: Low-dimensional embedding points {𝑧𝑖}𝑁𝑖=1 ⊂ℝ𝑑
Compute pairwise distance matrix Δ𝑖𝑗 = ‖𝑦𝑖 − 𝑦𝑗‖2
𝐵 = − 1

2
𝐽Δ𝐽

(Truncated SVD): 𝐵𝑑 = 𝑉𝑑Σ𝑑𝑉 ⊤𝑑
𝑧𝑖 = (𝑉𝑑Σ𝑑 )(𝑖, ∶), for 𝑖 = 1, … , 𝑁
Return {𝑧𝑖}𝑁𝑖=1

MDS produces an isometric embedding ℝ𝐷 → ℝ𝑑 if and only if the matrix 𝐵 is symmetric positive semi-definite with rank 𝑑, a 
sult that goes back to Young and Householder [43]. In this case, the embedding points {𝑧𝑖}𝑁𝑖=1 ⊂ ℝ𝑑 satisfy ‖𝑧𝑖 − 𝑧𝑗‖ = ‖𝑦𝑖 − 𝑦𝑗‖
d are unique up to rigid transformation.

3. Optimal transport preliminaries

Let P(ℝ𝑛) be the space of all probability measures on ℝ𝑛 , with Pac(ℝ𝑛) being the subset of all probability measures which are 
solutely continuous with respect to the Lebesgue measure. Given 𝜇 ∈ Pac(ℝ𝑛), we denote its probability density function by 𝑓𝜇 . 
e quadratic Wasserstein space 𝑊2(ℝ𝑛) is the subset of P(ℝ𝑛) of measures with finite second moment ∫ℝ𝑛 ‖𝑥‖2𝑑𝜇(𝑥) <∞ equipped 
ith the quadratic Wasserstein metric given by

𝑊2(𝜇, 𝜈) ∶= inf
𝜋∈Γ(𝜇,𝜈)

⎛⎜⎜⎝ ∫ℝ2𝑛

‖𝑥− 𝑦‖2𝑑𝜋(𝑥, 𝑦)⎞⎟⎟⎠
1
2

, (5)

here Γ(𝜇, 𝜈) ∶= {𝛾 ∈ P(ℝ2𝑛) ∶ 𝛾(𝐴 × ℝ𝑛) = 𝜇(𝐴), 𝛾(ℝ𝑛 × 𝐴) = 𝜈(𝐴) for all 𝐴 ⊂ ℝ𝑛} is the set of couplings, i.e., measures on the 
5

oduct space whose marginals are 𝜇 and 𝜈.
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In [10], Brenier showed that if 𝜇 is absolutely continuous with respect to the Lebesgue measure, the optimal coupling of (5) takes 
e special form 𝜋 = (id, 𝑇 𝜈𝜇 )♯𝜇, where ♯ is the pushforward operator (𝑆♯𝜇(𝐴) = 𝜇(𝑆

−1(𝐴)) for 𝐴 measurable) and 𝑇 𝜈𝜇 ∈ L2(ℝ𝑛, 𝜇)
lves

min
𝑇 ∶𝑇♯𝜇=𝜈∫

ℝ𝑛

‖𝑇 (𝑥) − 𝑥‖2 𝑑𝜇(𝑥).
r simplicity, we denote the norm on L2(ℝ𝑛, 𝜇) by ‖𝑓‖2𝜇 ∶= ∫ℝ𝑛 ‖𝑓 (𝑥)‖2𝑑𝜇(𝑥). Note that if 𝑇 𝜈𝜇 exists, then

𝑊2(𝜇, 𝜈) = ‖𝑇 𝜈𝜇 − id‖𝜇.
rthermore, [10] shows that when 𝜇 is absolutely continuous with respect to the Lebesgue measure, the map 𝑇 𝜈𝜇 is uniquely defined 
 the gradient of a convex function 𝜙, i.e. 𝑇 𝜈𝜇 =∇𝜙 (up to an additive constant).

4. Linearized optimal transport

Linearized optimal transport (LOT) [20,29,34,41] defines an embedding of P(ℝ𝑛) into the linear space L2(ℝ𝑛, 𝜎), with 𝜎 being 
fixed reference measure. Under the assumption that the optimal transport map exists, the embedding is defined by 𝜇 ↦ 𝑇 𝜇𝜎 . This 
bedding can be used as a feature space, for example, to classify subsets of P(ℝ𝑛), to linearly approximate the Wasserstein distance, 

 for fast Wasserstein barycenter computations [1,25,29,32,34].
In particular, the LOT embedding defines a linearized Wasserstein-2 distance:

𝑊 LOT
2,𝜎 (𝜇, 𝜈) ∶= ‖𝑇 𝜇𝜎 − 𝑇 𝜈𝜎 ‖𝜎 . (6)

 certain settings, this linearized distance approximates the Wasserstein-2 distance. The strongest results can be obtained when the 
-called compatibility condition is satisfied:

finition 2.1 (Compatibility condition [1,32,34]). Let 𝜎, 𝜇 ∈𝑊2(ℝ𝑛) ∩Pac(ℝ𝑛). We say that the LOT embedding is compatible with 
e 𝜇-pushforward of a function 𝑔 ∈ L2(ℝ𝑛, 𝜇) if

𝑇
𝑔♯𝜇
𝜎 = 𝑔◦𝑇 𝜇𝜎 .

The compatibility condition describes an interaction between the optimal transport map and the pushforward operator, namely 
requires invertability of the exponential map [20].
When the compatibility condition holds for two functions 𝑔1, 𝑔2, then LOT is an isometry, i.e. 𝑊 LOT

2,𝜎 (𝑔1♯𝜇, 𝑔2♯𝜇) =𝑊2(𝑔1♯𝜇, 𝑔2♯𝜇)
 shown in Lemma A.3 and [32,34]. In particular, this is the case when 𝑔 is either a shift or scaling, or a certain type of shearing 
5,32,34].

We can furthermore consider a generalization to “almost compatible” functions, also termed 𝜀-compatible:

finition 2.2 (𝜀-compatibility). Let 𝜎, 𝜇 ∈𝑊2(ℝ𝑛) ∩Pac(ℝ𝑛). We say that H is 𝜀- compatible with respect to 𝜎 and 𝜇, if for every 
∈ H , there exists a compatible transformation 𝑔 such that ‖𝑔 − ℎ‖𝜇 < 𝜀, where 𝑔◦𝑇 𝜇𝜎 = 𝑇

𝑔♯𝜇
𝜎 .

We remark that compatibility is stable. Similar to compatibility implying isometry, there exist results that imply 𝜀-compatible 
nsformations imply “almost”-isometry between 𝑊 LOT

2,𝜎 and 𝑊2. Some of these results are accounted for in [32, Proposition 4.1]; 
wever, we also extend these almost-compatibility results in Theorem A.4. These results make use of the Hölder regularity bounds for 
LOT
2,𝜎 of [20,29]. We note that the “isometry under compatibility” result mentioned above is a direct consequence of the preceding 
oposition, namely by setting 𝜀 = 0.
In this paper, we consider measures 𝜇𝑖, 𝑖 = 1, … , 𝑁 of the form 𝜇𝑖 = ℎ𝑖♯𝜇, where 𝜇 is a fixed template measure, and ℎ ∈ H with H

space of functions in L2(ℝ𝑛, 𝜇). This is similar to assumptions in [1,25,32,34], where H consists of shifts and scalings, compatible 
aps, or has other properties, such as convexity and compactness. We will write 𝜇𝑖 ∼ H♯𝜇 to indicate that 𝜇𝑖 is of such a form for 
l 𝑖 = 1, … , 𝑁 , and H will be specified in the respective context. Note that [1] calls this data generation process an “algebraic 
nerative model”.

5. Optimal transport with plug-in estimators

Explicit descriptions of the measures 𝜇 are often unavailable in applications, and one must instead deal with finite samples of the 
easure. In this paper, we consider empirical distributions

𝜇 = 1
𝑘

𝑘∑
𝑖=1
𝛿𝑌𝑖 (7)

ith 𝑌𝑖 ∼ 𝜇 i.i.d. In what follows, we will consider approximations of both the target and reference distributions via empirical 
6

stributions.
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The Kantorovich problem (5) has a (possibly non-unique) solution for transporting an absolutely continuous measure 𝜎 to an 
pirical measure of the form (7). Following [18], we define the set of Kantorovich plans

Γmin ∶= argmin
𝜋∈Γ(𝜎,𝜇) ∫

ℝ2𝑛

‖𝑥− 𝑦‖2𝑑𝜋(𝑥, 𝑦), (8)

hich may contain more than one transport plan. In practice, these optimal transport plans are exactly computed via linear program-
ing to solve (8). We call optimal transport plans solved with linear programming 𝛾𝐿𝑃 . It is much faster, however, to approximate 
e optimal transport plan by using an entropic regularized plan [17]. In particular, we get a unique solution by solving

𝛾𝛽 ∶= argmin
𝜋∈Γ(𝜎,𝜇)∫

1
2
‖𝑥− 𝑦‖2𝑑𝜋(𝑥, 𝑦) + 𝛽𝐷KL(𝜋‖𝜎 ⊗ 𝜇), (9)

here 𝐷KL is the Kullback–Leibler divergence of measures [23], 𝜎 ⊗ 𝜇 is the direct product measure on the product space ℝ𝑛 ×ℝ𝑛, 
d 𝛽 denotes the regularizer. We solve (9) with Sinkhorn’s algorithm, which yields entropic potentials 𝑓𝛽 and 𝑔𝛽 corresponding to 
and 𝜇, respectively.
Regardless of whether we solve the optimal transport plan using (8) or (9), we can make a transport plan 𝛾 ∈ Γ into a map by 
fining the barycentric projection

𝑇 𝜇𝜎 (𝑥; 𝛾) ∶=
∫𝑦 𝑦𝑑𝛾(𝑥, 𝑦)
∫𝑦 𝑑𝛾(𝑥, 𝑦)

, for 𝑥 ∈ supp(𝜎). (10)

mark 2.3. Notice that if 𝜇 = 𝜇 (i.e. 𝜇 is a finite atomic measure), then 𝑇 𝜇𝜎 and 𝑇
𝜇
𝜎 are the same 𝜎-almost everywhere assuming 𝜎 is 

e absolutely continuous. If 𝜎 is absolutely continuous, then the Kantorovich solution can be written as a product measure with the 
onge solution as one of the products. Thus, since no mass from 𝜎 splits, the barycentric projection 𝑇 𝜇𝜎 is the same as 𝑇 𝜇𝜎 𝜎-almost 
erywhere.

This leads to a natural way to consider linearized Wasserstein-2 distances of the form (6) with absolutely continuous reference 𝜎, 
d for empirical distributions:

𝑊 LOT
2,𝜎 (𝜇, 𝜈; 𝛾) ∶= ‖𝑇 𝜇𝜎 ( ⋅ ; 𝛾𝜇) − 𝑇 𝜈𝜎 ( ⋅ ; 𝛾𝜈)‖𝜎 , (11)

here 𝛾 ∈ {𝛾𝐿𝑃 , 𝛾𝛽} denotes the method used to calculate the transport plans 𝛾𝜇 and 𝛾𝜈 , which are transport plans from 𝜎 to 𝜇 and 
 respectively. We suppress this notation and will simply use 𝑇 𝜇𝜎 ( ⋅ ; 𝛾𝐿𝑃 ) or 𝑇

𝜇
𝜎 ( ⋅ ; 𝛾𝛽 ) to denote the barycentric projection map 

mputed via linear programming and Sinkhorn, respectively, so that 𝛾𝐿𝑃 and 𝛾𝛽 are understood to be in Γ(𝜎, ̂𝜇). Notice that the 
lution 𝛾𝐿𝑃 is not necessarily unique. In this case, the results we derive for 𝑊 LOT

2,𝜎 and 𝑇 𝜇𝜎 ( ⋅ ; 𝛾𝐿𝑃 ) still work with high probability 
 we use concentration inequalities and results that hold with high probability.
To account for 𝑚 finite samples of the reference distribution, we define the empirical linearized Wasserstein-2 distance by

𝑊 LOT
2,𝜎 (𝜇, 𝜈; 𝛾) ∶=

(
1
𝑚

𝑚∑
𝑗=1

‖𝑇 𝜇𝜎 (𝑋𝑗 ; 𝛾𝜇) − 𝑇 𝜈𝜎 (𝑋𝑗 ; 𝛾𝜈)‖2
)1∕2

, (12)

here 𝑋𝑗 ∼ 𝜎 i.i.d.

mark 2.4. When we use 𝛾𝛽 for a transport plan between 𝜎 and 𝜇, note that our barycentric projection map is given by

𝑇 𝜇
𝜎
(𝑥; 𝛾𝛽 ) ∶=

1
𝑘

∑𝑘
𝑖=1 𝑦𝑖 exp

((
𝑔𝛽,𝑘(𝑦𝑖) −

1
2‖𝑥− 𝑦𝑖‖2)∕𝛽)

1
𝑘

∑𝑘
𝑖=1 exp

((
𝑔𝛽,𝑘(𝑦𝑖) −

1
2‖𝑥− 𝑦𝑖‖2)∕𝛽) , (13)

here 𝑔𝛽,𝑘 denotes the entropic potential corresponding to 𝜇, 𝑦𝑖 ∈ supp(𝜇), and 𝑘 is the sample size for both 𝜎 and 𝜇.

mark 2.5. Since our approximations will require us to use 𝑚 samples from the reference distributions, the barycentric projection 
ap 𝑇 𝜇𝜎 (𝑥) will only work for 𝑥 ∈ supp(𝜎); however, for general computation, we can just interpolate to calculate 𝑇 𝜇𝜎 (𝑥) for 𝑥 ∈
pp(𝜎) ⧵ supp(𝜎).

In what follows, we are interested in bounds for
7

|𝑊2(𝜇, 𝜈)2 −𝑊 LOT
2,𝜎 (𝜇, 𝜈; 𝛾)2|
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r 𝛾 ∈ {𝛾𝐿𝑃 , 𝛾𝛽}. In particular, we want similar results to Theorem A.4 (Wasserstein-2 compared to LOT) and results in [18]
asserstein-2 compared to Wasserstein-2 on empirical distributions). This requires comparisons between all of 𝑊2(𝜇, 𝜈), 𝑊 LOT

2,𝜎 (𝜇, 𝜈), 
LOT
2,𝜎 (𝜇, ̂𝜈; 𝛾), and 𝑊 LOT

2,𝜎 (𝜇, ̂𝜈; 𝛾), which are discussed in Section 4 and Section 5.

6. Wassmap

Various generalizations of MDS have been explored [16] including stress minimization, which is useful in graph drawing [24,30], 
map [38] which replaces pairwise distance by a graph estimation of manifold geodesics, and is useful for embedding data from 
dimensional nonlinear manifolds in ℝ𝐷 . Wang et al. [40] utilized MDS with Δ𝑖𝑗 =𝑊2(𝜇𝑖, 𝜇𝑗 )2 for data considered as probability 
easures in Wasserstein space with applications to cell imaging and cancer detection. Subsequently, Hamm et al. [21] proved that 
veral types of submanifolds of 𝑊2 can be isometrically embedded via MDS with Wasserstein distances (as in [40]) and empirically 
died Wassmap: a variant of Isomap that approximates nonlinear submanifolds of 𝑊2 . In particular, [21] shows that for some 
bmanifolds of 𝑊2(ℝ𝑚) of the form H♯𝜇 where H = {ℎ𝜃 ∶ 𝜃 ∈ Θ ⊂ ℝ𝑑} which are isometric Euclidean space, the parameter set 
 ⊂ℝ𝑑 can be recovered up to rigid transformation via MDS with Wasserstein distances (e.g., translations and anisotropic dilations).

7. Other notations

For scalars 𝑎 and 𝑏 we use 𝑎 ∨ 𝑏 to denote the maximum and 𝑎 ∧ 𝑏 to denote the minimum value of the pair. Throughout the paper, 
nstants will typically be denoted by 𝐶 and may change from line to line, and subscripts will be used to denote dependence on a 
ven set of parameters. We use 𝑎 ≍ 𝑏 to mean that 𝑐𝑎 ≤ 𝑏 ≤ 𝐶𝑎 for some absolute constants 0 < 𝑐, 𝐶 <∞.

For a random variable 𝑋𝑛, we say that 𝑋𝑛 =𝑂𝑝(𝑎𝑛) if for every 𝜀 > 0 there exists 𝑀 > 0 and 𝑁 > 0 such that

ℙ
(||||𝑋𝑛𝑎𝑛 |||| >𝑀

)
< 𝜀 ∀𝑛 ≥𝑁.

We denote by O(𝑑) the orthogonal group over ℝ𝑑 , and the related Procrustes distance (in the Frobenius norm) between matrices 
, 𝑌 ∈ℝ𝑑×𝑁 is min

𝑄∈O(𝑑)
‖𝑋 −𝑄𝑌 ‖F.

 LOT Wassmap algorithm and main theorem

Here we present our main algorithm which is an LOT approximation to the Wassmap embedding of [21], and our main theorem 
hich describes the quality of the embedding using some existing perturbation bounds for MDS.

1. The LOT Wassmap embedding algorithm

The algorithm presented here (Algorithm 2) takes discretized samples of a set of measures {𝜇𝑖}𝑁𝑖=1 ⊂ 𝑊2(ℝ𝑛) and a discretized 
mple of a reference measure 𝜎 ∈𝑊2(ℝ𝑛), computes transport maps from the empirical reference measure ̂𝜎 to each empirical target 
easure 𝜇𝑖 using optimal transport solvers and barycentric projections. Finally, the truncated right singular vectors and singular values 
 the centered transport map matrix are used to produce the low-dimensional embedding of the measures. Two things are important 
 note here: first, the output of the algorithm is the same as the output of multi-dimensional scaling using pairwise squared LOT 
stances (or Sinkhorn distances in the approximate case), but we use the same trick as the reduction of PCA to the SVD to avoid 
tually computing the distance matrix; second, in contrast to the Wassmap embedding of [21] which requires 𝑂(𝑁2) Wasserstein 
stance computations, Algorithm 2 requires computation of only 𝑂(𝑁) optimal transport maps. Given the high cost of computing a 
gle optimal transport map for densely sampled measures, this represents significant savings.
Note that the factor of 1√

𝑚
appearing in the computation of the final embedding is due to (12) where the 1

𝑚
appears in the definition 

 the empirical LOT distance. Lemma A.1 shows that 𝑇⊤𝑇 where 𝑇 is as in Algorithm 2 is actually the MDS matrix −1
2𝐽Λ𝐽 where 

consists of the empirical LOT distances between the data, hence we absorb the 1
𝑚
into the norm in (12) to get the matrix 𝑇 in 

gorithm 2. If we have a 𝓁 × 𝑘 matrix 𝐴, colstack(𝐴) is a 𝓁 ⋅ 𝑘 vector constructed by stacking the columns on top of each other.

2. MDS perturbation bounds

As stated above, the output of Algorithm 2 is equivalent to the output of MDS on the transport map matrix 𝑇 therein. Consequently, 
e analysis of the algorithm will require some results regarding MDS. On the road to stating our main result, we summarize some 
ce MDS perturbation results of [5].

eorem 3.1 ([5, Theorem 1]). Let 𝑌 , 𝑍 ∈ℝ𝑑×𝑁 with 𝑑 <𝑁 such that rank(𝑌 ) = 𝑑, and let 𝜀2 ∶= ‖𝑍⊤𝑍 −𝑌 ⊤𝑌 ‖S𝑝 for some 𝑝 ∈ [1, ∞]. 
8
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lgorithm 2: LOT WassMap embedding.
Input: Reference point cloud {𝑤𝑖}𝑚𝑖=1 ∼ 𝜎 ∈𝑊2(ℝ𝑛)
Sample point clouds {𝑥𝑘𝑗 }

𝑛𝑘
𝑗=1 ∼ 𝜇𝑘 ∈𝑊2(ℝ𝑛) (𝑘 = 1, … , 𝑁)

OT solver (with regularizer if Sinkhorn)
Embedding dimension 𝑑
Output: Low-dimensional embedding points {𝑧𝑖}𝑁𝑖=1 ⊆ℝ𝑑

for 𝑘 = 1, … , 𝑁 do

Calculate cost matrix 𝐶𝑖𝑗 = ‖𝑤𝑖 − 𝑥𝑘𝑗 ‖2
Compute OT plan 𝛾𝑘 ∈ℝ𝑚×𝑛𝑘 between {𝑤𝑖}𝑚𝑖=1 and {𝑥𝑘𝑗 }

𝑛𝑘
𝑗=1 using 𝐶 and OT solver

Calculate barycentric projection 𝑇𝑘(𝑤𝑖) =
(∑𝑛𝑘

𝑗=1 𝑥
𝑘
𝑗 (𝛾𝑘)𝑖𝑗

)
∕
(∑𝑛𝑘

𝑗=1(𝛾𝑘)𝑖𝑗
)

𝑇 =
[
colstack{𝑇𝑗 (𝑤𝑖)}𝑚𝑖=1

]𝑁
𝑗=1

for 𝑘 = 1, … , 𝑁 do

𝑇∶𝑘 =
1√
𝑚
(𝑇∶𝑘 −

1
𝑁

∑𝑁
𝑘=1 𝑇∶𝑘)

Compute the truncated SVD of 𝑇 as 𝑇𝑑 =𝑈𝑑Σ𝑑𝑉 ⊤𝑑
Return 𝑧𝑖 = 𝑉𝑑Σ𝑑 (𝑖, ∶)

min
𝑄∈O(𝑑)

‖𝑍 −𝑄𝑌 ‖S𝑝 ≤
⎧⎪⎨⎪⎩
‖𝑌 †‖𝜀2 + (

(1 − ‖𝑌 †‖2𝜀2)− 1
2 ‖𝑌 †‖𝜀2) ∧ 𝑑

1
2𝑝 𝜀, ‖𝑌 †‖𝜀 < 1,

‖𝑌 †‖𝜀2 + 𝑑 1
2𝑝 𝜀, o.w.

nsequently, if ‖𝑌 †‖𝜀 ≤ 1√
2
, then

min
𝑄∈O(𝑑)

‖𝑍 −𝑄𝑌 ‖S𝑝 ≤ (1 +
√
2)‖𝑌 †‖𝜀2.

rollary 3.2. Let 𝑦1, … , 𝑦𝑁 ∈ℝ𝑑 be centered, span ℝ𝑑 , and have pairwise dissimilarities Δ𝑖𝑗 = ‖𝑦𝑖−𝑦𝑗‖2. Let {Λ𝑖𝑗}𝑁𝑖,𝑗=1 be arbitrary real 
mbers and 𝑝 ∈ [1, ∞]. If ‖𝑌 †‖‖Λ −Δ‖ 1

2
S𝑝

≤ 1√
2
, then MDS (Algorithm 1) with input dissimilarities {Λ𝑖𝑗}𝑁𝑖,𝑗=1 and embedding dimension d 

turns a point set 𝑧1, … , 𝑧𝑁 ∈ℝ𝑑 satisfying

min
𝑄∈O(𝑑)

‖𝑍 −𝑄𝑌 ‖S𝑝 ≤ (1 +
√
2)‖𝑌 †‖‖Λ−Δ‖S𝑝 .

oof of Corollary 3.2. The proof follows along similar lines to that of [5, Corollary 2] with some modifications. First, note that the 
ntering matrix 𝐽 in MDS satisfies ‖𝐽‖ = 1 as it is an orthogonal projection. Then, by using the fact that ‖𝐴𝐵‖S𝑝 ≤ ‖𝐴‖‖𝐵‖S𝑝 , we 
n estimate

1
2
‖𝐽 (Λ −Δ)𝐽‖S𝑝 ≤ 1

2
‖𝐽‖2‖Λ−Δ‖S𝑝 ≤ 1

2
‖Λ−Δ‖S𝑝 < 𝜎2𝑑 (𝑌 ), (14)

here the final inequality follows by assumption.
Since 𝑌 is a centered point set, we have 𝑌 ⊤𝑌 = 𝐽𝑌 ⊤𝑌 𝐽 = −1

2𝐽Δ𝐽 (Lemma A.1). Thus by Weyl’s inequality, the fact that ‖ ⋅ ‖ ≤
⋅ ‖S𝑝 for all 𝑝, and (14),

𝜎𝑑

(
−1
2
𝐽Λ𝐽

) ≥ 𝜎𝑑
(
−1
2
𝐽Δ𝐽

)
− 1

2
‖𝐽 (Λ −Δ)𝐽‖S𝑝

= 𝜎2𝑑 (𝑌 ) −
1
2
‖𝐽 (Λ −Δ)𝐽‖S𝑝

> 0.

nsequently, −1
2𝐽Λ𝐽 has rank at least 𝑑, so if 𝑍 contains the columns of the MDS embedding corresponding to Λ, then 𝑍⊤𝑍 is the 

st rank-𝑑 approximation of −1
2𝐽Λ𝐽 (by construction). It follows from Mirsky’s inequality and the facts that −1

2𝐽Δ𝐽 = 𝑌 ⊤𝑌 and 
nk(𝑌 ) = 𝑑 that‖‖‖‖𝑍⊤𝑍 + 1

2
𝐽Λ𝐽

‖‖‖‖S𝑝 ≤ ‖‖‖‖12𝐽 (Λ −Δ)𝐽
‖‖‖‖S𝑝 . (15)

Combining (14) and (15), we have

𝜀2 ∶= ‖𝑍⊤𝑍 − 𝑌 ⊤𝑌 ‖S𝑝 ≤ ‖‖‖‖𝑍⊤𝑍 + 1
2
𝐽Λ𝐽

‖‖‖‖S𝑝 + ‖‖‖‖12𝐽 (Λ −Δ)𝐽
‖‖‖‖S𝑝 ≤ ‖𝐽 (Λ −Δ)𝐽‖S𝑝
9

≤ ‖Λ−Δ‖S𝑝 .
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us, ‖𝑌 †‖𝜀 ≤ ‖𝑌 †‖‖Λ −Δ‖ 1
2
S𝑝

≤ 1√
2
, so we may apply the final bound of Theorem 3.1 to yield the conclusion. □

3. Main theorem

The following theorem shows the quality of an MDS embedding of a discrete subset of 𝑊2(ℝ𝑛)when approximations of the pairwise 
2(ℝ𝑛) distances are used (via, for example, LOT approximations, Sinkhorn regularization, or other approximation techniques). The 
bedding quality is understood in two parts: first, how far away the set is from a subset of 𝑊2(ℝ𝑛) that is isometric to ℝ𝑑 , and 
cond, how good an approximation to the Wasserstein distances one utilizes in MDS. The second source of error can always be made 
bitrarily small given sufficient computation time or judicious choice of parameters (as in Sinkhorn, for example). However, the first 
urce of error arises from the geometry of the set of points, and may or may not be small.
Note that using Corollary 3.2 outright would require computing a proxy distance matrix and applying MDS; however, to make 
gorithm 2 computationally efficient, we instead compute the truncated SVD of the centered transport maps rather than on the 
stance matrix between the transport maps. These are the same in theory, but allow for significantly less computation in practice. 
low, we state our main theorem, which is stated in terms of the output of MDS on an estimation of Wasserstein distances between 
easures; but we stress that we are able to easily transfer the bounds to the output of Algorithm 2, which does not require any 
stance matrix computation.

eorem 3.3. Let {𝜇𝑖}𝑁𝑖=1 ⊂𝑊2(ℝ𝑛). Suppose W ⊂𝑊2(ℝ𝑛) is a subset of Wasserstein space that is isometric to a subset of Euclidean space 
⊂ℝ𝑑 , and {𝜈𝑖}𝑁𝑖=1 ⊂W and {𝑦𝑖} ⊂ Ξ are such that |𝑦𝑖 − 𝑦𝑗 | =𝑊2(𝜈𝑖, 𝜈𝑗 ). Let Δ𝑖𝑗 ∶=𝑊2(𝜈𝑖, 𝜈𝑗 )2, Γ𝑖𝑗 ∶=𝑊2(𝜇𝑖, 𝜇𝑗 )2, and Λ𝑖𝑗 ∶= 𝜆2𝑖𝑗 for 
me 𝜆𝑖𝑗 ∈ℝ. Let {𝑧𝑖}𝑁𝑖=1 be the output of MDS (Algorithm 1) with input Λ.
If |𝑊2(𝜇𝑖, 𝜇𝑗 )2 −𝑊2(𝜈𝑖, 𝜈𝑗 )2| ≤ 𝜏1 and |𝑊2(𝜇𝑖, 𝜇𝑗 )2 − 𝜆2𝑖𝑗 | ≤ 𝜏2 for some 𝜏1 and 𝜏2, and

‖𝑌 †‖√𝑁 (
𝜏1 + 𝜏2

) 1
2 ≤ 1√

2
, (16)

en {𝑧𝑖}𝑁𝑖=1 ⊂ℝ𝑑 satisfies

min
𝑄∈O(𝑑)

‖𝑍 −𝑄𝑌 ‖F ≤ (1 +
√
2)‖𝑌 †‖𝑁 (

𝜏1 + 𝜏2
)
.

oof. Note that

‖Λ−Δ‖F ≤ ‖Γ −Δ‖F + ‖Λ− Γ‖F ≤𝑁(𝜏1 + 𝜏2).

nsequently, (16) allows us to apply Corollary 3.2 to yield the conclusion. □

Specializing Theorem 3.3 to the case of Algorithm 2 yields the following corollary, which shows that the truncated SVD of the 
ntered LOT transport matrix 𝑇 is equivalent to the output 𝑧𝑖 of MDS in Theorem 3.3.

rollary 3.4. Invoke the notations and assumptions of Theorem 3.3. Choose a reference measure 𝜎 ∈𝑊2(ℝ𝑛) and compute all transport 
aps 𝑇 𝜇𝑖𝜎 . Let 𝑇 be the transport map matrix created by centering and column-stacking the transport maps 𝑇

𝜇𝑖
𝜎 as in Algorithm 2. Let 𝑈𝑑Σ𝑑𝑉 ⊤𝑑

 the truncated SVD of 𝑇 , and let 𝑧𝑖 = 𝑉𝑑Σ𝑑 (𝑖, ∶) for 1 ≤ 𝑖 ≤𝑁 (i.e., 𝑧𝑖 is the output of Algorithm 2). Then 𝑧𝑖 is the output of MDS with Λ
ing the empirical linearized Wasserstein-2 distance (12), and if (16) holds, then

min
𝑄∈O(𝑑)

‖𝑍 −𝑄𝑌 ‖F ≤ (1 +
√
2)‖𝑌 †‖𝑁 (

𝜏1 + 𝜏2
)
.

oof. Since 𝑇 is centered, Lemma A.1 implies that 𝑇⊤𝑇 = 𝐽𝑇 ⊤𝑇𝐽 = −1
2𝐽Λ𝐽 . Consequently, if −

1
2𝐽Λ𝐽 = 𝑉 Σ2𝑉 ⊤ = 𝑇 ⊤𝑇 , then 𝑇

s truncated SVD 𝑇𝑑 = 𝑈𝑑Σ𝑑𝑉 ⊤𝑑 , and therefore 𝑧𝑖 = 𝑉𝑑Σ𝑑 (𝑖, ∶) arises from the truncated SVD of 𝑇 and is also the output of MDS 
ith input Λ. The conclusion follows by direct application of Theorem 3.3. □

In the rest of the paper, we will discuss how various LOT approximations to Wasserstein distances affect the value of the bound 
appearing in Theorem 3.3 and Corollary 3.4. In particular, we get different values of 𝜏2 when we have compactly supported 
rget measures (as in Theorem 4.2 for linear programming estimators and Theorem 4.8 for Sinkhorn estimators) and non-compactly 
pported target measures (as in Theorem 5.4 for linear programming estimators and Theorem 5.5 for Sinkhorn estimators).

 Bounds for compactly supported target measures

To capture the bound 𝜏2 of Theorem 3.3, we turn our attention to approximating the pairwise square-distance matrix ]

10

2
2 (𝜇𝑖, 𝜇𝑗 )

𝑁

𝑖,𝑗=1 appearing in the theorem statement with the finite sample, discretized LOT distance matrix that comes from 
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fferences between transport maps to a fixed reference, a finite sampling of 𝜇𝑖 , and a discretization of the reference distribution 𝜎. 
 particular, the main approximation argument consists of the following triangle inequality:|||𝑊2(𝜇1, 𝜇2)2 −𝑊 LOT

2,𝜎 (𝜇1, 𝜇2; 𝛾)2
||| ≤ |||𝑊2(𝜇1, 𝜇2)2 −𝑊 LOT

2,𝜎 (𝜇1, 𝜇2)2
|||

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
LOT error

+ |||𝑊 LOT
2,𝜎 (𝜇1, 𝜇2)2 −𝑊 LOT

2,𝜎 (𝜇1, 𝜇2; 𝛾)2
|||

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
finite sample and optimization error

+ |||𝑊 LOT
2,𝜎 (𝜇1, 𝜇2; 𝛾)2 −𝑊 LOT

2,𝜎 (𝜇1, 𝜇2; 𝛾)2
|||

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
discretized 𝜎 sampling error

.

ere are four sources of error between these two distance matrices:

) approximating the Wasserstein distance with LOT distance,
) approximating LOT embeddings between 𝜇𝑖 and 𝜇𝑗 with the barycentric approximations computed using finite samples 𝜇𝑖 and 
𝜇𝑗 ,

) approximating the integral with respect to the reference measure 𝜎 by the discretized sampling 𝜎, and
) optimization error in approximating the optimal transport map.

e errors from (1) and (3) are handled in Appendix B whilst the error from (2) gives us the main theorems of this section. Error from 
) is also implicitly considered by handling error from (2) since the optimization error for using a linear programming optimizer 
rsus a Sinkhorn optimizer is seen in the error bounds of Theorem 4.2 and Theorem 4.8. We deal with each error separately and 
ain the bounds together at the end.
Before dealing with any of the details of the proofs, we need the following assumptions on 𝜎, 𝜇, and H :

sumption 4.1. Consider the following conditions on 𝜎, 𝜇, and H

(i) 𝜎 ∈ P𝑎𝑐(Ω) for a compact convex set Ω ⊆ 𝐵(0, 𝑅) ⊂ ℝ𝑛 with probability density 𝑓𝜎 bounded above and below by positive 
constants.

ii) 𝜇 has finite 𝑝-th moment with bound 𝑀𝑝 with 𝑝 > 𝑛 and 𝑝 ≥ 4.
ii) There exist 𝑎, 𝐴 > 0 such that every ℎ ∈ H satisfies 𝑎‖𝑥‖ ≤ ‖ℎ(𝑥)‖ ≤𝐴‖𝑥‖ for every 𝑥 ∈ supp(𝜇).
v) H is compact with respect to the 𝐿2(𝜇)-norm and 𝜀-compatible with respect to 𝜎, 𝜇 ∈𝑊2(ℝ𝑛). Moreover, supℎ,ℎ′∈H ‖ℎ −ℎ′‖𝜇 ≤
𝑀 .

v) 𝜇𝑖 ∼ H♯𝜇 i.i.d.

These assumptions ensure that 𝜀-compatible transformations are also “𝜀-isometric” as shown in Theorem A.4. Moreover, note that 
≠𝑀𝑝 as 𝑀𝑝 is important for extending theory to non-compactly supported measures while 𝑀 handles bounds associated with 
e complexity of the function class H of pushforwards.

1. Using the linear program to compute transport maps

In this subsection, we assume that the classical linear program is used to compute the optimal transport maps from 𝜇𝑖 to the 
ference (and its discretization).

eorem 4.2. Let 𝛿 > 0. Along with Assumption 4.1 and that 𝜇 ∈ P𝑎𝑐(Ω) for the Ω in Assumption 4.1 with simply connected support, 
sume that

i) 𝑇
𝜇𝑖
𝜎 is Lipschitz.

ii) We estimate 𝜇𝑖 with an empirical measure 𝜇𝑖 using 𝑘 samples and discretize 𝜎 with 𝑚 samples. Let our estimator be given by (10) with 
𝛾 solved using linear programming.

en with probability at least 1 − 𝛿,

|||𝑊2(𝜇1, 𝜇2)2 −𝑊 LOT
2,𝜎 (𝜇1, 𝜇2; 𝛾𝐿𝑃 )2

||| ≤ (𝑀 + 2𝐴𝑅)

(
𝐶𝜀

𝑝
6𝑝+16𝑛 + 2𝑂𝑝(𝑟(𝑘)𝑛 log(1 + 𝑘)𝑡𝑛 ) +𝑅

√
2 log(2∕𝛿)

𝑚

)
. (17)
11

re 𝐶 is the constant from Theorem A.4 depending on 𝑛, 𝑝, Ω, 𝑀𝑝, the constants 𝑎 and 𝐴 come from Assumption 4.1 (iii), and



A.

so

sid

Pr

𝑊

(a

(b

W

2.

M

𝜇𝑖

Pu

W

a)

b)
Applied and Computational Harmonic Analysis 74 (2025) 101718Cloninger, K. Hamm, V. Khurana et al.

𝑟(𝑘)𝑛 =
⎧⎪⎨⎪⎩
2𝑘−1∕2 𝑛 = 2,3
2𝑘−1∕2 log(1 + 𝑘) 𝑛 = 4
2𝑘−2∕𝑛 𝑛 ≥ 5

, 𝑡𝑛 =

{
5
2 𝑛 ≤ 4
2(1 + 𝑛−1) 𝑛 > 4

,

 that 𝑟(𝑘)𝑛 is on the order of 𝑘−1∕𝑛 and 𝑡𝑛 is on the order of 2(1 + 𝑛−1). In this case, 𝜏2 of Corollary 3.4 is bounded above by the right-hand 
e of (17).

oof. Note that the transport plan that we are using for the following proof is 𝛾𝐿𝑃 . Henceforth, we will suppress 𝛾𝐿𝑃 from the terms 
LOT
2,𝜎 (𝜇1, ̂𝜇2; 𝛾𝐿𝑃 ) and 𝑇

𝜇𝑗
𝜎 (⋅; 𝛾𝐿𝑃 ) for simplicity.

Since |𝑥2 − 𝑦2| = |𝑥 + 𝑦||𝑥 − 𝑦|, we need to bound both
)

|||𝑊2(𝜇1, 𝜇2) +𝑊 LOT
2,𝜎 (𝜇1, 𝜇2)

|||,
)

|||𝑊2(𝜇1, 𝜇2) −𝑊 LOT
2,𝜎 (𝜇1, 𝜇2)

|||.
e start with (a): Since both 𝜇1 and 𝜇2 are pushforwards of a fixed template distribution 𝜇, we know that 𝜇𝑖 = ℎ𝑖♯𝜇, where by [3, Eq. 
1] and our assumptions, it follows that

𝑊2(𝜇1, 𝜇2) =𝑊2(ℎ1♯𝜇,ℎ2♯𝜇) ≤ ‖ℎ1 − ℎ2‖𝜇 ≤𝑀.
oreover, since 𝜇 is compactly supported for Ω ⊆ 𝐵(0, 𝑅) and 𝜇𝑖 = (ℎ𝑖)♯𝜇 with ℎ𝑖 ∈ H and 𝑎‖𝑥‖ ≤ ‖ℎ𝑖(𝑥)‖ ≤ 𝐴‖𝑥‖, we know that 
is compactly supported with supp(𝜇𝑖) ⊆ 𝐵(0, 𝐴𝑅) for all 𝑖. This implies that

𝑊 LOT
2,𝜎 (𝜇1, 𝜇2) =

⎛⎜⎜⎜⎜⎝
1
𝑚

𝑚∑
𝑗=1

|𝑇 𝜇1𝜎 (𝑋𝑗 ) − 𝑇
𝜇2
𝜎 (𝑋𝑗 )|2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≤(2𝐴𝑅)2

⎞⎟⎟⎟⎟⎠

1∕2

≤ 2𝐴𝑅.

tting these estimates together, we have|||𝑊2(𝜇1, 𝜇2) +𝑊 LOT
2,𝜎 (𝜇1, 𝜇2)

||| ≤𝑀 + 2𝐴𝑅.

e continue with (b): From the triangle inequality we get|||𝑊2(𝜇1, 𝜇2) −𝑊 LOT
2,𝜎 (𝜇1, 𝜇2)

||| ≤ |||𝑊2(𝜇1, 𝜇2) −𝑊 LOT
2,𝜎 (𝜇1, 𝜇2)

|||+ |||𝑊 LOT
2,𝜎 (𝜇1, 𝜇2) −𝑊 LOT

2,𝜎 (𝜇1, 𝜇2)
|||

+ |||𝑊 LOT
2,𝜎 (𝜇1, 𝜇2) −𝑊 LOT

2,𝜎 (𝜇1, 𝜇2)
||| .

We now bound these three parts individually:

By Assumption 4.1, we can use 𝜀-compatibility of H in Theorem A.4 to get that|||𝑊2(𝜇1, 𝜇2) −𝑊 LOT
2,𝜎 (𝜇1, 𝜇2)

||| ≤ 𝐶𝜀 𝑝
6𝑝+16𝑛 ,

where 𝐶 is from Theorem A.4.

For the second term, we again assume that any transport maps involving discrete measures are obtained from the linear program. 
In particular, we see that

𝑊 LOT
2,𝜎 (𝜇1, 𝜇2) = ‖𝑇 𝜇1𝜎 − 𝑇 𝜇2𝜎 ‖𝜎

≤ ‖𝑇 𝜇1𝜎 − 𝑇 𝜇1𝜎 ‖𝜎 + ‖𝑇 𝜇1𝜎 − 𝑇 𝜇2𝜎 ‖𝜎 + ‖𝑇 𝜇2𝜎 − 𝑇 𝜇2𝜎 ‖𝜎
= ‖𝑇 𝜇1𝜎 − 𝑇 𝜇1𝜎 ‖𝜎 + ‖𝑇 𝜇2𝜎 − 𝑇 𝜇2𝜎 ‖𝜎 +𝑊 LOT

2,𝜎 (𝜇1, 𝜇2).

Notice that we can equivalently apply the triangle inequalities starting from 𝑊 LOT
2,𝜎 (𝜇1, ̂𝜇2) to get

𝑊 LOT
2,𝜎 (𝜇1, 𝜇2) = ‖𝑇 𝜇1𝜎 − 𝑇 𝜇2𝜎 ‖𝜎

≤ ‖𝑇 𝜇1𝜎 − 𝑇 𝜇2𝜎 ‖𝜎 + ‖𝑇 𝜇1𝜎 − 𝑇 𝜇1𝜎 ‖𝜎 + ‖𝑇 𝜇2𝜎 − 𝑇 𝜇2𝜎 ‖𝜎
= ‖𝑇 𝜇1𝜎 − 𝑇 𝜇1𝜎 ‖𝜎 + ‖𝑇 𝜇2𝜎 − 𝑇 𝜇2𝜎 ‖𝜎 +𝑊 LOT

2,𝜎 (𝜇1, 𝜇2).

Note that Assumption 4.1(i) implies that for every 𝑡 > 0 and 𝛼 > 0, 𝔼𝜎[exp(𝑡‖𝑥‖𝛼)] <∞ as 𝜎 is compactly supported. Because 𝑇 𝜇𝑖𝜎
is 𝐿-Lipschitz, this allows us to use Theorem B.1 and optimize the exponents 𝑡𝑛,𝛼 over 𝛼 > 0 to conclude that
12

|𝑊 LOT
2,𝜎 (𝜇1, 𝜇2) −𝑊 LOT

2,𝜎 (𝜇1, 𝜇2)| ≤ ‖𝑇 𝜇1𝜎 − 𝑇 𝜇1𝜎 ‖𝜎 + ‖𝑇 𝜇2𝜎 − 𝑇 𝜇2𝜎 ‖𝜎 ≤ 2𝑂𝑝(𝑟(𝑘)𝑛 log(1 + 𝑘)𝑡𝑛 ).
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From Theorem B.3 we know that with probability at least 1 − 𝛿,

|||𝑊 LOT
2,𝜎 (𝜇1, 𝜇2) −𝑊 LOT

2,𝜎 (𝜇1, 𝜇2)
||| ≤𝑅

√
2 log(2∕𝛿)

𝑚
.

tting these bounds together yields the result. □

mark 4.3. There exist conditions on H that ensure 𝑇 𝜇𝑖𝜎 is Lipschitz, which is the setting needed to apply Theorem B.1. We cover 
ese conditions in Section 6. When H is not exactly compatible, we have Theorem 6.1 which requires more technical assumptions. 
r the case when H is exactly compatible, we have Theorem 6.2 which only requires that H is comprised of Lipschitz functions. 
milar results in Section 6 hold for using Sinkhorn transport plans.

2. Using entropic regularization (Sinkhorn) to compute transport maps

Although [18] gives estimation rates in terms of a transport map constructed from solving the linear program associated to the 
timal transport problem, solving the regularized optimal transport problem (9) and using the barycentric projection map (13)
much faster. For this section, we will assume that the target and reference measures are discretized with the same number of 
mples 𝑘.

mark 4.4. Since we can choose 𝜎 as well as the sample size for 𝜎, we can allow 𝑘 = 𝑚 in this case. We believe, however, that 
oosing a larger sample size for 𝜎 than 𝜇𝑖 (i.e. 𝑚 > 𝑘) will result in better approximation.

For the following results, we make use of the following quantity:

finition 4.5. Consider the Wasserstein geodesic between 𝜎 = 𝜇0 and 𝜇 = 𝜇1 with 𝜇𝑡 being the measure on the geodesic for 𝑡 ∈ (0, 1). 
t 𝑓 (𝑡, 𝑥) be the density corresponding to 𝜇𝑡. Then the integrated Fisher information along the Wasserstein geodesic between 𝜎 and 
is given by

𝐼0(𝜎,𝜇) =

1

∫
0

∫
ℝ𝑛

‖‖‖∇𝑥 log𝑓 (𝑡, 𝑥)‖‖‖22𝑓 (𝑡, 𝑥)𝑑𝑥𝑑𝑡.
Moreover, recall that the convex conjugate of a function 𝜙 ∶ℝ𝑛→ℝ is given by

𝜙∗(𝑥∗) = sup
𝑥∈ℝ𝑛

𝑥∗⊤𝑥− 𝜙(𝑥),

e, e.g., [4, p. 45]. Now by using Theorem 3 from [35], we will show that under suitable conditions the entropic map 𝑇 𝜇𝑖
𝜎
( ⋅ ; 𝛾𝛽 ) is 

ose to 𝑇 𝜇𝑖𝜎 .

eorem 4.6 ([35, Theorem 3]). Assume that

1) 𝜎, 𝜇𝑖 ∈ P𝑎𝑐(Ω) for a compact set Ω ⊂ℝ𝑛 with densities satisfying 𝑓𝜎, 𝑓𝜇𝑖 ≤𝐵 and 𝑓𝜇𝑖 ≥ 𝑏 > 0 for all 𝑥 ∈Ω.
2) 𝜙 ∈ 𝐶2(Ω) and 𝜙∗ ∈ 𝐶𝛼+1(Ω) for 𝛼 > 1, where 𝜙∗ denotes the convex conjugate of 𝜙.
3) 𝑇

𝜇𝑖
𝜎 =∇𝜙 with 𝑚𝐼 ⪯∇2𝜙(𝑥) ⪯𝐿𝐼 for 𝑚, 𝐿 > 0 for all 𝑥 ∈Ω.

en the entropic map 𝑇 𝜇𝑖
𝜎
( ⋅ ; 𝛾𝛽 ) from 𝜎 to 𝜇𝑖 with regularization parameter 𝛽 ≍ 𝑘

− 1
𝑛′+𝛼+1 satisfies

𝔼‖‖‖𝑇 𝜇𝑖𝜎 ( ⋅ ; 𝛾𝛽 ) − 𝑇
𝜇𝑖
𝜎
‖‖‖2𝜎 ≤ (

1 + 𝐼0(𝜎,𝜇𝑖)
)
𝑘
− 𝛼+1

2𝑛′+𝛼+1 log𝑘,

ere 𝑛′ = 2⌈𝑛∕2⌉, ̃𝛼 = 𝛼 ∧ 3, 𝑘 is the sample size for both 𝜎 and 𝜇𝑖, and 𝐼0(𝜎, 𝜇𝑖) is the integrated Fisher information along the Wasserstein 
odesic between 𝜎 and 𝜇𝑖.

Given the sample size 𝑘 for both 𝜎 and 𝜇𝑖, if we let

𝑍𝑘 =
‖‖‖𝑇 𝜇𝑖𝜎 ( ⋅ ; 𝛾𝛽 ) − 𝑇

𝜇𝑖
𝜎
‖‖‖𝜎 ,

en by Jensen’s inequality (for concave functions) and Theorem 4.6 we have that

[ ] √( ) 𝛼+1
13

𝔼[𝑍𝑘] ≤ 𝔼 𝑍2
𝑘

1∕2 ≤ 1 + 𝐼0(𝜎,𝜇𝑖) 𝑘
− 2𝑛′+𝛼+1 log𝑘
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=
√
log(𝑘)(1 + 𝐼0(𝜎,𝜇𝑖))𝑘

− 𝛼+1
2(2𝑛′+𝛼+1) .

w using Markov’s inequality, we easily have the following corollary.

rollary 4.7. Assume that 𝜎 and 𝜇𝑖 satisfy (A1)–(A3) of Theorem 4.6 and let 𝛿 > 0. Then with probability at least 1 − 𝛿, we have that

‖‖‖𝑇 𝜇𝑖𝜎 ( ⋅ ; 𝛾𝛽 ) − 𝑇
𝜇𝑖
𝜎
‖‖‖𝜎 ≤ 1

𝛿

√
log(𝑘)

(
1 + 𝐼0(𝜎,𝜇𝑖)

)
𝑘
− 𝛼+1

2(2𝑛′+𝛼+1) .

Now we can approximate 𝑇 𝜇𝑖𝜎 with the entropic map that is derived from using Sinkhorn’s algorithm. Although the barycentric 
ojection map and entropic map approximations have similar rates of convergence, the entropic map is computationally faster at 
e cost of more stringent assumptions in the theorem. The main difference in assumptions below is the addition of (A1)–(A3) from 
eorem 4.6 and the asymptotic bound on the regularization parameter 𝛽 used in the entropic regularization.

eorem 4.8. Let 𝛿 > 0. Along with Assumption 4.1 and 𝜇 ∈ P𝑎𝑐(Ω) for the Ω in Assumption 4.1, assume that

i) 𝜎 and 𝜇𝑖 satisfy assumptions (A1)–(A3) from Theorem 4.6 for all 𝑖. Note that (A1), regularity of 𝜙 in (A2), and the upper bound of 
(A3) are satisfied under the conditions of Caffarelli’s regularity theorem.

ii) Given empirical distributions 𝜎 and 𝜇𝑖 both with 𝑘 sample size, assume that we have associated entropic potentials (𝑓𝛽,𝑘, 𝑔𝛽,𝑘), where 

𝛽 ≍ 𝑘−
1

𝑛′+𝛼+1 and 𝑛′ and 𝛼 are defined in Theorem 3 from [35]. Assume our estimator is 𝑇 𝜇𝑖
𝜎
( ⋅ ; 𝛾𝛽 ) given by (13).

en with probability at least 1 − 𝛿,|||𝑊2(𝜇𝑖, 𝜇𝑗 )2 −𝑊 LOT
2,𝜎 (𝜇𝑖, 𝜇𝑗 ; 𝛾𝛽 )2

||| ≤ (𝑀 + 2𝐴𝑅)
(
𝐶𝜀

𝑝
6𝑝+16𝑛+

2
𝛿

√
log(𝑘)(1 + 𝐼0(𝜎,𝜇𝑖))𝑘

− 𝛼+1
2(2𝑛′+𝛼+1) +𝑅

√
2 log(2∕𝛿)

𝑘

)
,

ere 𝐶 is from Theorem A.4 and 𝐼0(𝜎, 𝜇𝑖) is defined in Theorem 4.6. In this case, 𝜏2 in Corollary 3.4 is bounded above by the right-hand 
e of the inequality above.

oof. Note that the transport plan that we are using for the following proof is 𝛾𝛽 . Henceforth, we will suppress 𝛾𝛽 from the notation 
LOT
2,𝜎 (𝜇1, ̂𝜇2; 𝛾𝛽 ) for simplicity.
Using the same reasoning as in Theorem 4.2, we find that(

𝑊2(𝜇𝑖, 𝜇𝑗 ) +𝑊 LOT
2,𝜎 (𝜇𝑖, 𝜇𝑗 )

) ≤𝑀 + 2𝐴𝑅.

milar to the proof of Theorem 4.2, we bound|||𝑊2(𝜇𝑖, 𝜇𝑗 ) −𝑊 LOT
2,𝜎 (𝜇𝑖, 𝜇𝑗 )

||| ≤ |||𝑊2(𝜇𝑖, 𝜇𝑗 ) −
‖‖‖𝑇 𝜇𝑖𝜎 − 𝑇 𝜇𝑗𝜎

‖‖‖𝜎|||
+ ‖‖‖𝑇 𝜇𝑖𝜎 − 𝑇 𝜇𝑖

𝜎
( ⋅ ; 𝛾𝛽 )

‖‖‖𝜎 + ‖‖‖𝑇 𝜇𝑗𝜎 − 𝑇 𝜇𝑗
𝜎
( ⋅ ; 𝛾𝛽 )

‖‖‖𝜎
+
||||‖‖‖𝑇 𝜇𝑖𝜎 ( ⋅ ; 𝛾𝛽 ) − 𝑇

𝜇𝑗
𝜎
( ⋅ ; 𝛾𝛽 )

‖‖‖𝜎 −𝑊 LOT
2,𝜎 (𝜇𝑖, 𝜇𝑗 )

|||| .
e first and is bounded the same way as in the proof of Theorem 4.2 above. For the last term, we apply Corollary B.4. Since 
sumption (i) of Assumption 4.1, implies assumption (A1) of Theorem 4.6, we get that with probability at least 1 − 𝛿

‖‖‖𝑇 𝜇𝓁𝜎 − 𝑇 𝜇𝓁
𝜎

( ⋅ ; 𝛾𝛽 )
‖‖‖𝜎 ≤ 1

𝛿

√
log(𝑘)(1 + 𝐼0(𝜎,𝜇𝓁))𝑘

− 𝛼+1
2(2𝑛′+𝛼+1)

r 𝓁 = 𝑖 and 𝓁 = 𝑗. Putting the bounds together, we get the result. □

Using Theorem 4.2 and Theorem 4.8, we see that as long as 𝜇𝑖 are 𝜀-compatible push-forwards of 𝜇 and the number of samples 
ed in the empirical distribution is large enough, then our LOT distance is a computationally efficient and a tractable approximation 
r the Wasserstein distance and the distortion of the LOT Wassmap embedding of {𝜇𝑖} is small with high probability.

 Bounds for non-compactly supported target measures

In the last section, we saw that for compactly supported 𝜇𝑖 ∼ H♯𝜇 (as well as a few other conditions), either the barycentric 
timator 𝑇 𝜇𝑖𝜎 ( ⋅ ; 𝛾𝐿𝑃 ) or the entropic estimator 𝑇

𝜇𝑖
𝜎 ( ⋅ ; 𝛾𝛽 ) will allow for fast yet accurate approximation of the pairwise Wasserstein 

stances 𝑊2(𝜇𝑖, 𝜇𝑗 ), which in turn allows for fast, accurate LOT approximation to the Wassmap embedding [21] via Algorithm 2. 
14

 this section, we show that we can adapt Theorem 4.2 and Theorem 4.8 to non-compactly supported measures as long as we can 
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proximate the non-compactly supported measure with a compactly supported and absolutely continuous measure. To this end, we 
e the main theorem of [19].

eorem 5.1 ([19]). Let Ω be a compact convex set and let 𝜎 be a probability density on Ω, bounded from above and below by positive 
nstants. Let 𝑝 > 𝑛 and 𝑝 ≥ 4. Assume that 𝜇, 𝜈 ∈𝑊2(ℝ𝑛) have bounded 𝑝-th moment, and max(𝑀𝑝(𝜇), 𝑀𝑝(𝜈)) ≤𝑀𝑝 <∞. Then

‖𝑇 𝜇𝜎 − 𝑇 𝜈𝜎 ‖𝜎 ≤ 𝐶𝑛,𝑝,Ω,𝑀𝑝𝑊1(𝜇, 𝜈)
𝑝

6𝑝+16𝑛 .

To achieve our purposes, we will assume that 𝜇 is a non-compactly supported measure that has a suitable tail decay rate, and then 
ow that there exists a compactly supported absolutely continuous 𝜇 that approximates 𝜇 well (i.e., 𝑊1(𝜇, ̃𝜇) < 𝜂.). The particular 
mpactly supported 𝜇 will be formed by a pushforward that is the identity on 𝐵(0, 𝑅) and applies a modified version of the 𝑥

1+‖𝑥‖
ap near the boundary of 𝐵(0, 𝑅). We achieve this in the following lemma.

mma 5.2. Fix 𝜂 > 0, and let 𝜎 satisfy the assumptions of Theorem 5.1. Moreover, let 𝜇 ∈𝑊2(ℝ𝑛) with density 𝑓𝜇 have a bounded 𝑝-th 
oment for some 𝑝 > 𝑛 and 𝑝 ≥ 4. Finally, assume that there exists some 𝑅 > 0 such that for every 𝑥 ∉𝐵(0, 𝑅), we have

𝑓𝜇(𝑥) <
(

𝜂

𝐶𝑛,𝑝,Ω,𝑀𝑝

) 6𝑝+16𝑛
𝑝 1‖𝑥‖𝑛+2 ,

ere 𝐶𝑛,𝑝,Ω,𝑀𝑝 denotes a combination of the constant from Theorem 5.1 and a constant from integrating over concentric 𝑛-spheres. Then 
ere exists a compactly supported absolutely continuous measure 𝜇 such that

‖𝑇 𝜇𝜎 − 𝑇 𝜇𝜎 ‖𝜎 < 𝜂.
For many of the results before, we require that our compactly supported measures have a density bounded away from 0 and ∞. 
e next lemma will be useful in establishing conditions on H and 𝜇 so that our truncated measure 𝜇 has a density that is bounded 
ay from 0. In particular, we construct 𝜇 by constructing a density that is compactly supported and remains bounded away from 0 
d ∞ rather than using a pushforward. The proof uses that a pushforward must exist between 𝜇 and 𝜇.

mma 5.3. Let 𝜎 satisfy the assumptions of Theorem 5.1 and let 𝜇 ∈𝑊2(ℝ𝑛) with density 𝑓𝜇 ≤ 𝐶 <∞ have a bounded 𝑝-th moment for 
me 𝑝 > 𝑛 and 𝑝 ≥ 4. Moreover, assume that there exists some 𝑅 > 0 and 𝜂 > 0 such that for 𝑥 ∈ 𝐵(0, 𝑅), we have 𝑓𝜇(𝑥) ≥ 𝑐 > 0; and for 
ery 𝑥 ∉𝐵(0, 𝑅), we have

𝑓𝜇(𝑥) ≤
(

𝜂

𝐶 ′
𝑛,𝑝,Ω,𝑀𝑝

) 6𝑝+16𝑛
𝑝 1‖𝑥‖𝑛+2 ,

ere 𝐶 ′
𝑛,𝑝,Ω,𝑀𝑝

comes from combining the constant from Theorem 5.1, a constant from integrating over concentric 𝑛-spheres, and another 
nstant from our approximation method. Then there exists a compactly supported, absolutely continuous measure 𝜇 with density 0 < 𝑐 ≤ 𝑏 ≤
≤ 𝐵 <∞ such that

‖𝑇 𝜇𝜎 − 𝑇 𝜇𝜎 ‖𝜎 < 𝜂.
The proofs of both Lemma 5.2 and Lemma 5.3 are located in Appendix C. Notice that the condition on the density 𝑓𝜇 ensures that 

1(𝜇, ̃𝜇) < 𝜂 for the two different truncated measures 𝜇. With these two lemmas above, we obtain the following theorems. Note that 
eorem 5.4 replaces the assumption that 𝜇 is compactly supported with one of polynomial (in the ambient dimension) tail decay; 
hile the second assumption below is the same as Theorem 4.2, the final assumption differs from that of Theorem 4.2 by requiring 
e discretizations of 𝜎 and 𝜇𝑖 to have the same sample size to apply the lemmas above.

eorem 5.4. Let 𝛿 > 0. Along with Assumption 4.1, assume that

i) Every 𝜇𝑖 has bounded 𝑝-th moment for some 𝑝 > 𝑛 and 𝑝 ≥ 4. Moreover, assume that for all 𝑖, there exists some 𝑅 > 0 such that for 
every 𝑥 ∉𝐵(0, 𝐴𝑅), we have

𝑓𝜇𝑖 <

(
𝜂

𝐶

) 6𝑝+16𝑛
𝑝 1‖𝑥‖𝑛+2 ,

where 𝐶 = 𝐶𝑛,𝑝,Ω,𝑀𝑝 or 𝐶 = 𝐶 ′
𝑛,𝑝,Ω,𝑀𝑝

depending on if we use the truncated measure 𝜇𝑖 to be from Lemma 5.2 or Lemma 5.3 so that 
𝑊1(𝜇𝑖, ̃𝜇𝑖) < 𝜂.
15

ii) 𝑇
𝜇𝑖
𝜎 is 𝐿-Lipschitz (this happens, e.g., if 𝜎 and 𝜇𝑖 are both compactly supported).
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ii) Given empirical distributions 𝜎 and 𝜇𝑖 with supp(𝜇𝑖) ⊆ 𝐵(0, 𝐴𝑅) and sample sizes 𝑚 and 𝑘, respectively, let our estimator be the 
barycentric estimator (10), with 𝛾𝐿𝑃 .

en with probability at least 1 − 𝛿,

|||𝑊2(𝜇𝑖, 𝜇𝑗 )2 −𝑊 LOT
2,𝜎 (𝜇𝑖, 𝜇𝑗 ; 𝛾𝐿𝑃 )2

||| ≤ (𝑀 + 2𝐴𝑅)

(
𝐶𝜀

𝑝
6𝑝+16𝑛 + 2𝜂 + 2𝑂𝑝(𝑟(𝑘)𝑛 log(1 + 𝑘)𝑡𝑛,𝛼 ) +𝑅

√
2 log(2∕𝛿)

𝑚

)
,

ere 𝑟(𝑘)𝑛 and 𝑡𝑛,𝛼 are defined in Theorem 4.2 and 𝐶 is a constant coming from Theorem A.4. In this case, 𝜏2 of Corollary 3.4 is bounded 
ove by the right-hand side of the inequality above.

Similarly for the entropic map case we have the following. Note that the primary difference in assumption between Theorem 5.5

d Theorem 5.4 is the addition of (A1)–(A3) from Theorem 4.6 and the asymptotic assumption on the regularization parameter for 
e entropic map. The assumptions (i) and (ii) below are essentially the same as those of Theorem 4.8, but with 𝜇𝑖 replaced with 𝜇𝑖
ising from Theorem 5.4, whereas the additional assumptions below are that 𝜇𝑖 have decaying tails as opposed to being compactly 
pported.

eorem 5.5. Let 𝛿 > 0. Along with Assumption 4.1 and (i) of Theorem 5.4, assume that

i) 𝜎 and 𝜇𝑖 satisfy assumptions (A1)–(A3) in 4.6 for all 𝑖, where 𝜇𝑖 is the truncated measure from Theorem 5.4.

ii) Given empirical distributions 𝜎 and 𝜇𝑖 with supp(𝜇𝑖) ⊆ 𝐵(0, 𝐴𝑅) and sample size 𝑘 for both, assume that we have associated entropic 

potentials (𝑓𝛽,𝑘, 𝑔𝛽,𝑘), where 𝛽 ≍ 𝑘
− 1
𝑛′+𝛼+1 and 𝑛′ and 𝛼 are defined in Theorem 4.6. Moreover, assume our estimator is given by (13).

en with probability at least 1 − 𝛿,

|||𝑊2(𝜇𝑖, 𝜇𝑗 )2 −𝑊 LOT
2,𝜎 (𝜇𝑖, 𝜇𝑗 )2

||| ≤ (𝑀 + 2𝐴𝑅)

(
𝐶𝜀

𝑝
6𝑝+16𝑛 + 2𝜂 + 2

𝛿

√
log(𝑘)(1 + 𝐼0(𝜎,𝜇𝑖))𝑘

− 𝛼+1
2(2𝑛′+𝛼+1) +𝑅

√
2 log(2∕𝛿)

𝑘

)
,

ere 𝐼0(𝜎, 𝜇𝑖) is defined in Theorem 4.6 and 𝐶 is a constant from Theorem A.4. In this case, 𝜏2 of Corollary 3.4 is bounded above by the 
ht-hand side of the inequality above.

The following is a proof for both theorems above.

oof of Theorems 5.4 and 5.5. In the following, we let 𝑇 𝜇𝑖𝜎 denote the optimal transport map estimator that we are considering 
ither the barycentric estimator with 𝛾𝐿𝑃 or the entropic estimator with 𝛾𝛽 ) since the same proof works for both cases. The only 
fference in the compactly supported case and these theorems is that our approximation now becomes|||𝑊2(𝜇𝑖, 𝜇𝑗 ) −𝑊 LOT

2,𝜎 (𝜇𝑖, 𝜇𝑗 )
||| ≤ |||𝑊2(𝜇𝑖, 𝜇𝑗 ) − ‖𝑇 𝜇𝑖𝜎 − 𝑇 𝜇𝑗𝜎 ‖𝜎 |||
+
||||‖𝑇 𝜇𝑖𝜎 − 𝑇 𝜇𝑗𝜎 ‖𝜎 − ‖𝑇 𝜇𝑖𝜎 − 𝑇 𝜇𝑗𝜎 ‖𝜎 ||||

+
||||‖𝑇 𝜇𝑖𝜎 − 𝑇 𝜇𝑗𝜎 ‖𝜎 − ‖𝑇 𝜇𝑖𝜎 − 𝑇 𝜇𝑗𝜎 ‖𝜎 ||||

+
||||‖𝑇 𝜇𝑖𝜎 − 𝑇 𝜇𝑗𝜎 ‖𝜎 −𝑊 LOT

2,𝜎 (𝜇𝑖, 𝜇𝑗 )
|||| ,

here 𝜇𝑖 is defined as in the theorem statement and 𝜇𝑖 denotes the empirical measure of 𝜇𝑖. For the following consider the truncation 
dius of 𝜇 to be 𝐴𝑅 rather than 𝑅 as was the case in Lemma 5.2 and Lemma 5.3. We assume that supp(𝜇𝑖) ⊆ 𝐵(0, 𝐴𝑅); thus, let us 
sume that we sample from 𝜇𝑖 conditioned that we restrict to 𝐵(0, 𝐴𝑅). Since 𝜇𝑖|𝐵(0,𝐴𝑅) = 𝜇𝑖|𝐵(0,𝐴𝑅), we see that 𝜇𝑖 can equivalently 
 thought of as being sampled from 𝜇𝑖 rather than 𝜇𝑖 conditioned that 𝜇𝑖 ⊆ 𝐵(0, 𝐴𝑅). This means that the same bounds as before 
ld for most of the terms, while additionally,||||‖𝑇 𝜇𝑖𝜎 − 𝑇 𝜇𝑗𝜎 ‖𝜎 − ‖𝑇 𝜇𝑖𝜎 − 𝑇 𝜇𝑗𝜎 ‖𝜎 |||| ≤ ‖𝑇 𝜇𝑖𝜎 − 𝑇 𝜇𝑖𝜎 ‖𝜎

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
≤𝜂

+‖𝑇 𝜇𝑗𝜎 − 𝑇 𝜇𝑖𝜎 ‖𝜎
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

≤𝜂
≤ 2𝜂.

e rest of the terms are bounded the same exact way as before, and the result follows. □

In this section, we have shown that results for the case when the 𝜇𝑖 are compactly supported can be extended to non-compactly 
16

pported 𝜇𝑖 as long as their densities decay fast enough and the reference distribution 𝜎 has a compact and convex support.
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 Conditions on H and 𝝁 (compact case)

In this section, we derive conditions on H and 𝜇 so that the assumptions of the theorems above are satisfied for 𝜇𝑖 ∼ H♯𝜇. In 
rticular, we can break down our requirements on H and 𝜇 by noting the necessary conditions on 𝜇𝑖 for the barycentric map 
timator and entropic map estimator separately. For simplicity, we will assume that H is exactly compatible with respect to 𝜎
d 𝜇.
In Theorem 6.1, we first describe the conditions to have Theorem 4.2 hold when H is not made of exactly-compatible transfor-
ations. Next, we consider the easier case of exactly-compatible transformations in Theorem 6.2 and Theorem 6.3 to ensure that 
eorem 4.2 and Theorem 4.8 works.

eorem 6.1 (Barycentric Map Case (compact, non-compatible)). Let Assumption 4.1 hold true. If 𝜇 has simply connected compact support 
th density such that 0 < 𝑐 ≤ 𝑓𝜇 ≤ 𝐶 <∞, ℎ𝑖 ∈ H is continuously differentiable with 𝐿1𝐼 ⪯ 𝐽ℎ𝑖 (𝑥) for some 𝐿1 > 0, and (ℎ𝑖)♯𝜇 has convex 

pport, then 𝑇
(ℎ𝑖)♯𝜇
𝜎 is Lipschitz. Hence condition (i) of Theorem 4.2 holds.

eorem 6.2 (Barycentric Map Case (compact, compatible)). Along with Assumption 4.1 (with 𝜀 = 0 so that every ℎ ∈ H is exactly 
mpatible with 𝜎 and 𝜇), assume that ℎ ∈H is continuous, 𝜇𝑖 ∼ H♯𝜇 i.i.d., and that

i) 𝜇 has and has simply connected compact supported;
ii) 𝜎 is chosen such that 𝑇 𝜇𝜎 is Lipschitz.

en 𝜇𝑖 satisfies the condition (i) of Theorem 4.2 i.e., 𝑇 𝜇𝑖𝜎 is Lipschitz.

For the entropic case, the assumptions on 𝜇 and 𝜎 are the same, but we require an additional assumption regarding the Jacobian 
 elements of H .

eorem 6.3 (Entropic Map Case (compact)). Along with Assumption 4.1, assume that

ii) Conditions for 𝜎 and 𝜇: 𝜎 and 𝜇 satisfy (A1)-(A3), and 𝜇 has simply connected compact support;
v) Conditions for H : for each ℎ ∈ H , we have ℎ is continuous and 𝐿1𝐼 ⪯ 𝐽ℎ(𝑥)𝐼 for some 𝐿1 > 0; moreover, each ℎ ∈ H is exactly 

compatible (i.e., 𝜀 = 0).

en 𝜇𝑖 satisfies the condition (i) of Theorem 4.8.

The proofs of Theorem 6.1, Theorem 6.2, and Theorem 6.3 are given in Appendix D.1.

 Conditions on H and 𝝁 (non-compact case)

For the non-compactly supported cases, we need to add assumptions that H is closed under inversion as well as lower and upper 
undedness of the density 𝑓𝜇 . This gives us the following theorems.

eorem 7.1 (Barycentric Map Case (non-compact)). Along with Assumption 4.1 (with 𝜀 = 0 so that every ℎ ∈ H is exactly compatible 
th 𝜎 and 𝜇), assume that 𝜇𝑖 ∼ H♯𝜇 i.i.d. Assume further that

i) for every ℎ ∈ H , there exists an inverse ℎ−1 ∈ H .

ii) The density of 𝜇 is supported on all of ℝ𝑛 with 𝑓𝜇(𝑥) ≤ 𝐶 <∞ for all 𝑥, and 𝑓𝜇(𝑥) ≥ 𝑐 > 0 for all 𝑥 ∈ 𝐵(0, 𝐴𝑅). Moreover, 𝑓𝜇 has a 
decay rate as in Lemma 5.3 for 𝑥 ∉𝐵(0, 𝑅).

ii) every ℎ ∈ H , is bi-Lipschitz with 𝐿1|𝑥 − 𝑦| ≤ |ℎ(𝑥) − ℎ(𝑦)| ≤𝐿2|𝑥 − 𝑦|, where 𝑎, 𝐴 > 0 is from Assumption 4.1.

en 𝜇𝑖 satisfies the conditions of Theorem 5.4.

eorem 7.2 (Entropic Map Case (non-compact)). Assume that 𝜇𝑖 ∼ H♯𝜇 i.i.d. and that 𝜇, H , and 𝜎 satisfy the conditions of Theorem 7.1. 
en 𝜇𝑖 satisfies the conditions of Theorem 5.5.

The proofs of both Theorems 7.1 and 7.2 are found in Appendix D.2.

 Experiments

We demonstrate that Algorithm 2 does in fact attain correct embeddings given finite sampling and without explicitly computing 
17

e pairwise Wasserstein distances. We test both variants of our algorithm above using the linear program or entropic regularization 
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. 1. 1-D Manifold of translations: (Left) reference measure 𝜎 ∼ N (0, 𝐼) in blue and data measures 𝜇𝑖 which are Gaussians with the same covariance matrix and 
ans 𝑥𝑖 uniformly sampled from the circle of radius 8. (Left Middle) Means 𝑥𝑖 of 𝜇𝑖 which are the true embedding points. (Right Middle) Embedding attained with 
gorithm 2 using the linear program. (Right) Embedding attained with Algorithm 2 using the Sinkhorn distance with 𝜆 = 1. (For interpretation of the colors in the 
ure(s), the reader is referred to the web version of this article.)

. 2. Embedding error vs. 𝑚 (number of sample points from data and reference distributions for the 1-D translation manifold. Optimal transport maps are computed 
 the Linear Program (Left) and Sinkhorn with 𝜆 = 1 (Right).

 compute the transport maps from the data to the reference measure, and illustrate the quality of embeddings as well as the relative 
bedding error

min
𝑄

‖𝑌 −𝑄𝑋‖F‖𝑌 ‖F
 a function of the sample size 𝑚 of the data and reference measures.
In all experiments, we generate 𝑁 data measures, 𝜇𝑖, which are Gaussians of various means and covariance, and a fixed reference 
easure 𝜎 drawn from the standard normal distribution N (0, 𝐼). We randomly sample 𝑚 points from each measure to form the 
pirical measure, and random noise from a Wishart distribution is added to the covariance matrices of the data measures 𝜇𝑖 . 
ditionally, in each experiment we compute the optimal rotation of the embeddings to properly align them with the true embedding 
d thus give an accurate error estimate for each trial.
For each experiment, we provide a figure for qualitative assessment of the embedding as well as a quantitative figure in which we 
mpute the relative error as above for the embeddings as a function of 𝑚, the sample size used to generate the empirical data and 
ference measures. For the latter figures, we run 10 trials of the embedding and average the relative error; error bands showing one 
ndard deviation are shown on each figure. A Jupyter notebook containing all of the experiments that generate the figures below 
n be found at https://github .com /varunkhuran /LOTWassMap.

1. Experiment 1: circle translation manifold

First, we consider a 1-dimensional manifold of translations as follows. We uniformly choose 𝑁 = 10 points on the circle of radius 

 which we denote 𝑥𝑖, and each data measure 𝜇𝑖 is a Gaussian with mean 𝑥𝑖 and covariance matrix 
[

1 −.5
−.5 1

]
. Thus, our data set 

a set of Gaussians translated around the circle. The Wishart noise added to the covariance matrix prior to sampling the 𝜇𝑖 is of 
e form 𝐺𝐺⊤ where 𝐺 has i.i.d. N (0, 0.5) entries. We choose the standard normal distribution N (0, 𝐼) as our reference measure 𝜎. 
e randomly sample 𝑚 = 1000 points from each data measure and the reference measure independently. Fig. 1 shows the original 
mpled data and the reference measure (in blue), the true embedding points 𝑥𝑖 , and the embeddings of Algorithm 2 when using the 
ear program and Sinkhorn with regularization parameter 𝜆 = 1.
One can easily see that the embeddings are qualitatively good as expected given the theory above and the results of [21] in similar 
periments. Fig. 2 shows the relative error vs. sampling size 𝑚 of the measures, and one can see the good performance for modest 
mple sizes.

2. Experiment 2: rotation manifold

Next, we consider a 1-dimensional rotation manifold in which we generate 𝑁 = 10 data measures of Gaussians whose means lie at [
2 0

]

18

iform samples of the circle of radius 8, which we denote (8 cos 𝜃𝑖, 8 sin𝜃𝑖), and whose covariance matrices are rotations of 0 .5

https://github.com/varunkhuran/LOTWassMap
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. 3. 1-D Manifold of rotations: (Left) reference measure 𝜎 ∼ N (0, 𝐼) in blue and data measures 𝜇𝑖 which are Gaussians with means lying on the circle of radius 
nd covariance matrices that are rotations of each other. (Left Middle) Means 𝑥𝑖 of 𝜇𝑖 which are the true embedding points. (Right Middle) Embedding attained 
th Algorithm 2 using the linear program. (Right) Embedding attained with Algorithm 2 using the Sinkhorn distance with 𝜆 = 1.

. 4. Embedding error vs. 𝑚 (number of sample points from data and reference distributions for the 1-D rotation manifold. Optimal transport maps are computed 
 the Linear Program (Left) and Sinkhorn with 𝜆 = 1 (Right).

. 5. 2-D Manifold of translations: (Left) data measures 𝜇𝑖 which are Gaussians with the same covariance matrix and means 𝑥𝑖 taken from a 5 × 5 uniform grid 
 [−10, 10]2 . (Left Middle) Means 𝑥𝑖 of 𝜇𝑖 which are the true embedding points. (Right Middle) Embedding attained with Algorithm 2 using the linear program.
ight) Embedding attained with Algorithm 2 using the Sinkhorn distance with 𝜆 = 10.

. 6. Embedding error vs. 𝑚 (number of sample points from data and reference distributions for the 2-D translation manifold. Optimal transport maps are computed 
 the Linear Program (Left) and Sinkhorn with 𝜆 = 10 (Right).

 the angles 𝜃𝑖. As in experiment 1, the noise level added is 0.5 and we sample 𝑚 = 1000 points from each measure. Fig. 3 shows 
e data measures, true embedding, and embeddings from Algorithm 2 using both the linear program and Sinkhorn (with 𝜆 = 1) to 
mpute the optimal transport maps. Fig. 4 shows the relative error vs. sample size.

3. Experiment 3: grid translation manifold

Here, we consider a 2-dimensional translation manifold in which we generate 𝑁 = 25 data measures of Gaussians whose means 

 on a 5 × 5 uniform grid on the cube [−10, 10]2 and which have constant covariance matrix 
[

1 −.5
−.5 1

]
. We sample 𝑚 = 1000

ints from each measure and the noise level is again 0.5. In the Sinkhorn embedding, we use regularization 𝜆 = 10. Figs. 5 and 6
19

ow the data, embeddings, and relative error vs. sample size.
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. 7. 2-D Manifold of Anisotropic Dilations: (Left) data measures 𝜇𝑖 which are Gaussians with mean 0 and anisotropically dilated covariance matrices where dilations 
 taken from a 3 × 3 uniform grid on [1, 4]2 . (Left Middle) Dilation factors (𝑥𝑖, 𝑦𝑖) of 𝜇𝑖 which are the true embedding points. (Right Middle) Embedding attained 
th Algorithm 2 using the linear program. (Right) Embedding attained with Algorithm 2 using the Sinkhorn distance with 𝜆 = 100.

. 8. Embedding error vs. 𝑚 (number of sample points from data and reference distributions for the 2-D translation manifold. Optimal transport maps are computed 
 the Linear Program (Left) and Sinkhorn with 𝜆 = 10 (Right).

4. Experiment 4: dilation manifold

Here, we consider a 2-dimensional anisotropic dilation manifold in which we generate 𝑁 = 9 data measures of Gaussians with 
ean 0 and anisotropically scaled covariance matrices of the form diag(𝛼2𝑖 , 𝛽

2
𝑖 ) for (𝛼𝑖, 𝛽𝑖) taken from a uniform 3 × 3 grid on [1, 4]2. 

e sample 𝑚 = 1000 points from the reference measure and 𝑛 = 2500 points from the data measures and the noise level added to the 
variance matrices is 0.5 as before. In the Sinkhorn embedding, we use regularization 𝜆 = 100. Fig. 7 show the data measures, true 
bedding parameters, and embeddings from Algorithm 2. Note that the true embedding parameters are centered to allow them to 
 comparable to the output of Algorithm 2 which are naturally centered.
Fig. 8 shows the relative error vs. 𝑚, and for this experiment we choose 𝑛 =𝑚 so that the sampling order of the data and reference 
easure are the same. For this case, we see that the relative error of the embedding decays much more slowly than the previous 
periments. One possible reason for this is that there is significant overlap in the distributions for the dilated measures, and to 
ercome this issue one may have to sample many more points in forming the empirical distribution so that the tails of the data 
easures are sampled more frequently.

5. Experiment 5: time comparison

Here, we repeat Experiment 3 in which data measures are centered on a uniform grid and are translations of a fixed Gaussian 
easure. We plot the time it takes to compute the embedding via Algorithm 2 using the Linear Program or Sinkhorn with 𝜆 = 1 and 
e Wassmap algorithm of [21] which requires computing the entire square Wasserstein distance matrix [𝑊2(𝜇𝑖, 𝜇𝑗 )]𝑁𝑖,𝑗=1 and the SVD 
 its centered version as in Algorithm 1 (Fig. 9). For this experiment, we always choose 𝑛 = 𝑚 so that the reference measure and 
ta measure sampling rates are the same. One can easily see that a substantial gain in timing is achieved by LOT Wassmap, while 
evious experiments show that the quality of the embedding does not degrade significantly when LOT is used.
Finally, we plot the timing for the same experiment for the Linear Program and Sinkhorn with 𝜆 = 1 and 𝜆 = 10 for larger sample 
es to illustrate the character of these choices (Fig. 10). As expected, larger regularization parameter yields faster computation time, 
ough the difference is relatively small even for modestly large sample size.
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. 9. Timing vs. sample size 𝑚 of the reference distribution and data measures. The data set consists of 𝑁 = 25 measures translated on a 5 × 5 uniform grid on 
10, 10]2 as in Experiment 3. Shown are the computation times to compute the Wassmap embedding and the embeddings of Algorithm 2 using the Linear Program 
) and Sinkhorn with regularization parameter 𝜆 = 1.

. 10. Timing vs. sample size 𝑚 of the reference distribution and data measures. The data set consists of 𝑁 = 25 measures translated on a 5 × 5 uniform grid 
 [−10, 10]2 as in Experiment 3. Shown are the computation times to compute the embeddings of Algorithm 2 using the Linear Program (LP) and Sinkhorn with 
ularization parameters 𝜆 = 1 and 𝜆 = 10.
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pendix A. Helper theorems and lemmas

We use the following lemma to extend Corollary 3.2 to get our main theorem (Theorem 3.3). The proof follows standard arguments, 
g., as in [27]; the proof is included for completeness.

mma A.1 ([27, Theorem 14.2.1], for example). Consider a matrix 𝑉 whose columns are centered vectors 𝑣1, … , 𝑣𝑛 such that 
∑𝑛
𝑗=1 𝑣𝑗 = 0. 

t 𝐽 = 𝐼 − 1
𝑛
𝟏𝟏⊤ be the centering matrix from MDS (Algorithm 1), 𝐺 = 𝑉 ⊤𝑉 be the Gram matrix for 𝑉 , and 𝐷 be the squared distance 

atrix 𝐷𝑖𝑗 = ‖𝑣𝑖 − 𝑣𝑗‖2. Then 𝐺 = −1
2𝐽𝐷𝐽 .

oof. Note first that

(𝐽𝐷𝐽 )𝑖𝑗 =𝐷𝑖𝑗 +
1
𝑛2

𝑛∑
𝑘,𝓁=1

𝐷𝑘𝓁 −
1
𝑛

𝑛∑
𝑘=1

(𝐷𝑖𝑘 +𝐷𝑘𝑗 ).

oreover, because 𝐷𝑖𝑗 = 𝑣⊤𝑖 𝑣𝑖 + 𝑣
⊤
𝑗 𝑣𝑗 − 2𝑣⊤𝑖 𝑣𝑗 , we get that

(𝐽𝐷𝐽 )𝑖𝑗 = 𝑣⊤𝑖 𝑣𝑖 + 𝑣
⊤
𝑗 𝑣𝑗 − 2𝑣⊤𝑖 𝑣𝑗 +

1
𝑛2

(
2𝑛

𝑛∑
𝑘=1
𝑣⊤𝑘 𝑣𝑘 − 2𝟏⊤𝑉 ⊤𝑉 𝟏

)
− 1
𝑛

(
𝑛𝑣⊤𝑖 𝑣𝑖 + 𝑛𝑣

⊤
𝑗 𝑣𝑗 + 2

𝑛∑
𝑘=1
𝑣⊤𝑘 𝑣𝑘 − 2𝟏⊤𝑉 ⊤𝑣𝑗 − 2𝑣⊤𝑖 𝑉 𝟏

)
.
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te here that 𝑉 𝟏 = 0 since 
∑𝑛
𝑗=1 𝑣𝑗 = 0. After canceling terms, we get
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(𝐽𝐷𝐽 )𝑖𝑗 = −2𝑣⊤𝑖 𝑣𝑗 = −2𝐺𝑖𝑗 .

 our result is immediate. □

The next results are used to recount the 𝜀-compatibility as well as its effects on LOT. First, we show that every 𝜀-compatible map 
s a compatible map (with 𝜀 = 0) nearby whose LOT distance from the 𝜀-compatible map is small.

mma A.2. Assume that

i) 𝜎 is supported on a compact convex set Ω ⊂ℝ𝑛 with probability density 𝑓𝜎 bounded above and below by positive constants.
ii) 𝜇 has finite 𝑝-th moment with bound 𝑀𝑝 with 𝑝 > 𝑑 and 𝑝 ≥ 4.
ii) There exist 𝐴 > 0 such that every ℎ ∈H satisfies ‖ℎ(𝑥)‖ ≤𝐴‖𝑥‖ for every 𝑥 ∈Ω.

t H be 𝜀-compatible with respect to 𝜎 and 𝜇. Then for every ℎ ∈H there exists a compatible 𝑔 such that‖‖‖𝑇 𝑔♯𝜇𝜎 − 𝑇
ℎ♯𝜇
𝜎

‖‖‖𝜎 ≤ 𝐶𝑛,𝑝,Ω,𝐴𝑝𝑀𝑝 ⋅ 𝜀 𝑝
6𝑝+16𝑛

‖ℎ◦𝑇 𝜇𝜎 − 𝑇
ℎ♯𝜇
𝜎 ‖𝜎 < 𝜀+𝐶𝑛,𝑝,Ω,𝐴𝑝𝑀𝑝 ⋅ 𝜀 𝑝

6𝑝+16𝑛 .

oof. Let ℎ ∈ H , then there exists an exactly compatible transformation 𝑔 such that 𝑔◦𝑇 𝜇𝜎 = 𝑇
𝑔♯𝜇
𝜎 with ‖ℎ − 𝑔‖𝜇 < 𝜀 by definition 

 𝜀-compatibility. Then notice that‖‖‖ℎ◦𝑇 𝜇𝜎 − 𝑇
ℎ♯𝜇
𝜎

‖‖‖𝜎 = ‖‖‖ℎ◦𝑇 𝜇𝜎 − 𝑔◦𝑇 𝜇𝜎 + 𝑇
𝑔♯𝜇
𝜎 − 𝑇

ℎ♯𝜇
𝜎

‖‖‖𝜎
≤ ‖ℎ− 𝑔‖𝜇 + ‖‖‖𝑇 𝑔♯𝜇𝜎 − 𝑇

ℎ♯𝜇
𝜎

‖‖‖𝜎.
 assumption, we know that ‖ℎ − 𝑔‖𝜇 < 𝜀. Since ℎ ∈ H satisfies (iii), we have

∫
Ω

‖𝑥‖𝑝𝑓ℎ♯𝜇(𝑥)𝑑𝑥 = ∫
Ω

‖𝑥‖𝑝𝑑(ℎ♯𝜇)(𝑥) = ∫
Ω

‖ℎ(𝑥)‖𝑝
⏟⏟⏟
≤𝐴𝑝‖𝑥‖𝑝

𝑑𝜇(𝑥) ≤𝐴𝑝𝑀𝑝

milarly, note that 𝑔 ∈ H because H consists of all 𝜀-compatible pushforwards with respect to 𝜎 and 𝜇 (i.e. there exists compatible 
such that ‖𝑔 − 𝑔′‖𝜇 < 𝜀 and 𝑔′◦𝑇 𝜇𝜎 = 𝑇

(𝑔′)♯𝜇
𝜎 ), and we can see that 𝑔 is itself the compatible transformation. This implies that we 

ve the same moment bound for 𝑔. Now using Theorem 5.1 and equation 9 of [3], we get that‖‖‖𝑇 𝑔♯𝜇𝜎 − 𝑇
ℎ♯𝜇
𝜎

‖‖‖𝜎 ≤ 𝐶𝑛,𝑝,Ω,𝐴𝑝𝑀𝑝𝑊1(𝑔♯𝜇,ℎ♯𝜇)
𝑝

6𝑝+16𝑛

≤ 𝐶𝑛,𝑝,Ω,𝐴𝑝𝑀𝑝𝑊2(𝑔♯𝜇,ℎ♯𝜇)
𝑝

6𝑝+16𝑛

≤ 𝐶𝑛,𝑝,Ω,𝐴𝑝𝑀𝑝‖ℎ− 𝑔‖ 𝑝
6𝑝+16𝑛
𝜇

≤ 𝐶𝑛,𝑝,Ω,𝐴𝑝𝑀𝑝 ⋅ 𝜀
𝑝

6𝑝+16𝑛 .

is implies that

‖ℎ◦𝑇 𝜇𝜎 − 𝑇
ℎ♯𝜇
𝜎 ‖𝜎 < 𝜀+𝐶𝑛,𝑝,Ω,𝐴𝑝𝑀𝑝 ⋅ 𝜀 𝑝

6𝑝+16𝑛 . □

Now we can show that the LOT embedding between exactly compatible transformations is isometric with the Wasserstein manifold.

mma A.3. Let 𝑔1 and 𝑔2 be exactly compatible transformations, i.e. 𝑔1◦𝑇
𝜇
𝜎 = 𝑇

(𝑔1)♯𝜇
𝜎 and 𝑔2◦𝑇

𝜇
𝜎 = 𝑇

(𝑔2)♯𝜇
𝜎 , then‖‖‖𝑇 (𝑔1)♯𝜇

𝜎 − 𝑇
(𝑔2)♯𝜇
𝜎

‖‖‖𝜎 =𝑊2

(
(𝑔1)♯𝜇, (𝑔2)♯𝜇

)
.

oof. First notice that since everything is absolutely continuous, we can use a change of variables formula to get‖‖‖‖𝑇 (𝑔1)♯𝜇
𝜎 − 𝑇

(𝑔2)♯𝜇
𝜎

‖‖‖‖𝜎 = ‖‖‖‖𝐼 − 𝑇 (𝑔2)♯𝜇
𝜎 ◦𝑇 𝜎(𝑔1)♯𝜇

‖‖‖‖(𝑔1)♯𝜇.
cause 𝑇

(𝑔2)♯𝜇
(𝑔1)♯𝜇

is the minimizer of the optimal transport problem and the triangle inequality, we get( ) ‖‖ (𝑔2)♯𝜇‖‖ ‖‖ (𝑔2)♯𝜇 𝜎
‖‖
22

𝑊2 (𝑔1)♯𝜇, (𝑔2)♯𝜇 = ‖‖𝐼 − 𝑇(𝑔1)♯𝜇 ‖‖(𝑔1)♯𝜇 ≤ ‖‖𝐼 − 𝑇𝜎 ◦𝑇(𝑔1)♯𝜇‖‖(𝑔1)♯𝜇
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≤ ‖‖‖‖𝐼 − 𝑇 (𝑔2)♯𝜇
(𝑔1)♯𝜇

‖‖‖‖(𝑔1)♯𝜇 + ‖‖‖‖𝑇 (𝑔2)♯𝜇
(𝑔1)♯𝜇

− 𝑇
(𝑔2)♯𝜇
𝜎 ◦𝑇 𝜎(𝑔1)♯𝜇

‖‖‖‖(𝑔1)♯𝜇.
te that Theorem 24 of [25] implies that given an exactly compatible transformation 𝑔, 𝐽𝑔 (𝑇

𝜇
𝜎 (𝑥))must share the same eigenspaces as 

𝜇
𝜎
(𝑥). By Corollary 4 of [25], we know that exactly compatible transformations are optimal transport maps themselves. This means 

at 𝑇
𝑔♯𝜇
𝜇 = 𝑔 for exactly compatible transport maps. Moreover, for an exactly compatible ℎ′ ∈ H , this means that 𝑇

(𝑔′)♯𝜇
𝑔♯𝜇

= 𝑔′◦𝑔−1

cause 𝑔′◦𝑔−1 is a gradient of a convex function (since the Jacobian of 𝑔 and 𝑔′ share the same eigenspaces) that pushes 𝑔♯𝜇 to 
′)♯𝜇. In the context of 𝑔1 and 𝑔2, this gives us that

𝑇
(𝑔2)♯𝜇
(𝑔1)♯𝜇

= 𝑔2◦𝑔−11 = 𝑔2◦𝑇 𝜇𝜎 ◦𝑇
𝜎
𝜇 ◦𝑔

−1
1 = 𝑇

(𝑔2)♯𝜇
𝜎 ◦𝑇 𝜎(𝑔1)♯𝜇

.

 particular, we get that‖‖‖𝑇 (𝑔1)♯𝜇
𝜎 − 𝑇

(𝑔2)♯𝜇
𝜎

‖‖‖𝜎 =𝑊2

(
(𝑔1)♯𝜇, (𝑔2)♯𝜇

)
. □

Finally, we show that 𝜀-compatible transformations have LOT embeddings that are “𝜀
𝑝

6𝑝+16𝑛 -isometric” in the sense of the following 
eorem.

eorem A.4. Assume that

i) 𝜎 is supported on a compact convex set Ω ⊂ℝ𝑛 with probability density 𝑓𝜎 bounded above and below by positive constants.
ii) 𝜇 has finite 𝑝-th moment with bound 𝑀𝑝 with 𝑝 > 𝑛 and 𝑝 ≥ 4.
ii) There exist constants 𝑎, 𝐴 > 0 such that every ℎ ∈H satisfies 𝑎‖𝑥‖ ≤ ‖ℎ(𝑥)‖ ≤𝐴‖𝑥‖.
t H be 𝜀-compatible with respect to absolutely continuous measures 𝜎 and 𝜇 and assume that ℎ♯𝜇 is absolutely continuous. Then for 
, ℎ2 ∈ H ,|||||𝑊2

(
(ℎ1)♯𝜇, (ℎ2)♯𝜇

)
−
‖‖‖‖𝑇 (ℎ1)♯𝜇
𝜎 − 𝑇

(ℎ2)♯𝜇
𝜎

‖‖‖‖𝜎||||| < 2
(
𝜀+𝐶𝑛,𝑝,Ω,𝑎−1𝐴𝑝𝑀𝑝 ⋅ 𝜀

𝑝
6𝑝+16𝑛

)
< 𝐶𝜀

𝑝
6𝑝+16𝑛

oof. By definition, we know that there exist 𝑔1 and 𝑔2 such that ‖𝑔1 − ℎ1‖𝜇 < 𝜀 and ‖𝑔2 − ℎ2‖𝜇 < 𝜀. First, note that‖‖‖𝑇 (ℎ1)♯𝜇
𝜎 − 𝑇

(ℎ2)♯𝜇
𝜎

‖‖‖𝜎 ≤ ‖‖‖𝑇 (ℎ1)♯𝜇
𝜎 − 𝑇

(𝑔1)♯𝜇
𝜎

‖‖‖𝜎 + ‖‖‖𝑇 (𝑔1)♯𝜇
𝜎 − 𝑇

(𝑔2)♯𝜇
𝜎

‖‖‖𝜎 + ‖‖‖𝑇 (𝑔2)♯𝜇
𝜎 − 𝑇

(ℎ2)♯𝜇
𝜎

‖‖‖𝜎 .
 Lemma A.3, we know that‖‖‖𝑇 (𝑔1)♯𝜇

𝜎 − 𝑇
(𝑔2)♯𝜇
𝜎

‖‖‖𝜎 =𝑊2

(
(𝑔1)♯𝜇, (𝑔2)♯𝜇

)
.

wever, by equation 2.1 of [3] and the triangle inequality, we have

𝑊2

(
(𝑔1)♯𝜇, (𝑔2)♯𝜇

) ≤𝑊2

(
(𝑔1)♯𝜇, (ℎ1)♯𝜇

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤‖𝑔1−ℎ1‖𝜇<𝜀
+𝑊2

(
(ℎ1)♯𝜇, (ℎ2)♯𝜇

)
+𝑊2

(
(ℎ2)♯𝜇, (𝑔2)♯𝜇

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤‖ℎ2−𝑔2‖𝜇<𝜀
≤𝑊2

(
(ℎ1)♯𝜇, (ℎ2)♯𝜇

)
+ 2𝜀.

oreover, by Lemma A.2, for 𝑖 = 1, 2, we know that‖‖‖𝑇 (𝑔𝑖)♯𝜇
𝜎 − 𝑇

(ℎ𝑖)♯𝜇
𝜎

‖‖‖𝜎 ≤ 𝐶𝑛,𝑝,Ω,𝑎−1𝐴𝑝𝑀𝑝 ⋅ 𝜀 𝑝
6𝑝+16𝑛 .

is implies that

𝑊2

(
(ℎ1)♯𝜇, (ℎ2)♯𝜇

) ≤ ‖‖‖𝑇 (ℎ1)♯𝜇
𝜎 − 𝑇

(ℎ2)♯𝜇
𝜎

‖‖‖𝜎
≤𝑊2

(
(ℎ1)♯𝜇, (ℎ2)♯𝜇

)
+ 2

(
𝜀+𝐶𝑛,𝑝,Ω,𝑎−1𝐴𝑝𝑀𝑝𝜀

𝑝
6𝑝+16𝑛

)
,

d the proof is complete. □

pendix B. Plug-in estimator approximation results
23

In this section, we provide some auxiliary results that are used along the way to prove the theorems of Section 4.
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1. Using the linear program to compute transport maps

Recall that for a random variable 𝑋𝑚 , we say that 𝑋𝑚 =𝑂𝑝(𝑎𝑚) if for every 𝜀 > 0 there exists 𝑀 > 0 and 𝑁 > 0 such that

ℙ
(|𝑋𝑚∕𝑎𝑚| >𝑀)

< 𝜀 ∀𝑚 ≥𝑁.
The following theorem from [18] is used in the proofs of our main results, including Theorem 4.2.

eorem B.1 ([18, Theorem 2.2]). Suppose that 𝑇 𝜇𝜎 is 𝐿-Lipschitz, and 𝜇 is compactly supported and 𝔼𝜎[exp(𝑡‖𝑥‖𝛼)] < ∞ for some 
0, 𝛼 > 0. Assume we draw 𝑘 i.i.d. samples from 𝜇 and consider the estimator 𝜇. Then

sup
𝛾∈Γmin

∫ ‖𝑇 𝜇𝜎 (𝑥; 𝛾𝐿𝑃 ) − 𝑇 𝜇𝜎 (𝑥)‖2𝑑𝜎(𝑥) ≤𝑂𝑝(𝑟(𝑘)𝑛 log(1 + 𝑘)𝑡𝑛,𝛼 ),

ere

𝑟(𝑘)𝑛 =
⎧⎪⎨⎪⎩
2𝑘−1∕2 𝑛 = 2,3
2𝑘−1∕2 log(1 + 𝑘) 𝑛 = 4
2𝑘−2∕𝑛 𝑛 ≥ 5

, 𝑡𝑛,𝛼 =
⎧⎪⎨⎪⎩
(4𝛼)−1(4 + ((2𝛼 + 2𝑛𝛼 − 𝑛) ∨ 0)) 𝑛 < 4
(𝛼−1 ∨ 7∕2) − 1 𝑛 = 4
2(1 + 𝑛−1) 𝑛 > 4

,

 that 𝑟(𝑘)𝑛 and 𝑡𝑛,𝛼 are on the order of 𝑘−1∕𝑛 and 2(1 + 𝑛−1), respectively.

We utilize the above theorem for the case that 𝜎 is compactly supported in the proof of Theorem 4.2. Consequently, the expectation 
und holds for all 𝑡, 𝛼 > 0. We see that for 𝑛 < 4, one can choose 𝛼 large enough so that 𝑡𝑛,𝛼 is arbitrarily close to 1 if 𝑛 = 1, 32 if 
2, and 2 if 𝑛 = 3. Similarly, for 𝑛 = 4 we may choose 𝛼 large enough so that 𝑡𝑛,𝛼 =

5
2 . This simplifies the statement in Theorem 4.2.

mark B.2. We note that Theorem B.1 is the “semi-discrete” version described in [18]. The paper also provides equivalent bounds 
 the instance that 𝜎 is similarly estimated. However, the bounds only guarantee that the transport maps agree when integrated 
ainst 𝜎, whereas we need the bound for 𝜎 itself.

2. Approximating with finite samples from the reference distribution

Some of the norms from Theorem 4.2 and Theorem 4.8 are assumed to be integrated against the true 𝜎. However, we need to 
nsider the discretized 𝜎 for each norm, and establish that we can estimate these norms with high probability. For these bounds, we 
e McDiarmid’s inequality on the function

𝑓 (𝑋1, ...,𝑋𝑚) =
1
𝑚

𝑚∑
𝑗=1

|||𝑇 𝜇1𝜎 (𝑋𝑗 ; 𝛾𝜇1 ) − 𝑇
𝜇2
𝜎 (𝑋𝑗 ; 𝛾𝜇2 )

|||2 =𝑊 LOT
2,𝜎 (𝜇1, 𝜇2; 𝛾)2,

here 𝑋𝑗 ∼ 𝜎, 𝛾𝜇𝑗 is a transport plan between 𝜎 and 𝜇𝑗 for 𝑗 = 1, 2, and 𝛾 ∈ {𝛾𝐿𝑃 , 𝛾𝛽} denotes the optimization method used to get 

𝑗
. If 𝜇𝑖 are supported in a ball of radius 𝑅, then McDiarmid’s inequality implies

ℙ

(|||||| 1𝑚
𝑚∑
𝑗=1

|𝑇 𝜇1𝜎 (𝑋𝑗 ; 𝛾𝜇1 ) − 𝑇
𝜇2
𝜎 (𝑋𝑗 ; 𝛾𝜇2 )|2 − ‖𝑇 𝜇1𝜎 (⋅; 𝛾𝜇1 ) − 𝑇

𝜇2
𝜎 (⋅; 𝛾𝜇2 )‖2𝜎 |||||| > 𝑡

)
≤ 2𝑒−𝑚

𝑡2

32𝑅4 .

te that since 𝑓 =𝑊 LOT
2,𝜎 (𝜇1, ̂𝜇2; 𝛾)2, we get

ℙ
(|||𝑊 LOT

2,𝜎 (𝜇1, 𝜇2; 𝛾)2 −𝑊 LOT
2,𝜎 (𝜇1, 𝜇2; 𝛾)2

||| > 𝑡) ≤ 2𝑒−𝑚
𝑡2

32𝑅4 . (18)

eorem B.3. Consider 𝜇𝑖, 𝜎 ∈𝑊2(ℝ𝑛). Assume supp(𝜇𝑖) ⊂ 𝐵(0, 𝑅) for 𝑖 = 1, 2. Let 𝛿 > 0. Then with probability at least 1 − 𝛿,

|||𝑊 LOT
2,𝜎 (𝜇1, 𝜇2; 𝛾) −𝑊 LOT

2,𝜎 (𝜇1, 𝜇2; 𝛾)
||| ≤𝑅

√
2 log(2∕𝛿)

𝑚
,

ere 𝑚 is the number of samples used to estimate 𝜎. Here, if 𝜎 is not absolutely continuous, then the transport maps are constructed from 
rycentric projections of transport plans.

oof. Define

𝑎 =𝑊 LOT
2,𝜎 (𝜇1, 𝜇2; 𝛾), 𝑏 =𝑊 LOT

2,𝜎 (𝜇1, 𝜇2; 𝛾).
24

en both 𝑎 ≤ 2𝑅 and 𝑏 ≤ 2𝑅. Now, since 𝑎2 − 𝑏2 = (𝑎 + 𝑏)(𝑎 − 𝑏), we get that
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|𝑎− 𝑏| ≥ 1
4𝑅

|𝑎2 − 𝑏2|.
is, together with (18), implies that

ℙ
(|||𝑊 LOT

2,𝜎 (𝜇1, 𝜇2; 𝛾) −𝑊 LOT
2,𝜎 (𝜇1, 𝜇2; 𝛾)

||| > 𝑡) ≤ 2𝑒−𝑚
𝑡2

2𝑅2 .

lving 𝛿 = 2𝑒−𝑚
𝑡2

2𝑅2 for 𝑡 yields the conclusion. □

The following corollary is geared towards showing Theorem 4.8 as we use the estimated optimal transport map generated from 
ing the Sinkhorn transport plan solution.

rollary B.4. Under the assumptions of Theorem B.3, suppose 𝑋𝑗 ∼ 𝜎 i.i.d. for (𝑗 = 1, … , 𝑚) and let ̂𝜎 = 1
𝑚

∑𝑚
𝑗=1 𝛿𝑋𝑗 . Then with probability 

 least 1 − 𝛿,

|||‖𝑇 𝜇1𝜎 ( ⋅ ; 𝛾𝜇1 ,𝛽 ) − 𝑇
𝜇2
𝜎

( ⋅ ; 𝛾𝜇2 ,𝛽 )‖2𝜎 −𝑊 𝐿𝑂𝑇
2,𝜎 (𝜇𝑖, 𝜇𝑗 )

||| ≤𝑅
√

2 log(2∕𝛿)
𝑚

.

oof. Use the sampling 𝑋𝑗 ∼ 𝜎 that generates 𝜎, we can use McDiarmid’s inequality to get

ℙ

(|||||| 1𝑚
𝑚∑
𝑗=1

|𝑇 𝜇1
𝜎

(𝑋𝑗 ; 𝛾𝜇1 ,𝛽 ) − 𝑇
𝜇2
𝜎

(𝑋𝑗 ; 𝛾𝜇2 ,𝛽 )|2 − ‖𝑇 𝜇1
𝜎

( ⋅ ; 𝛾𝜇1 ,𝛽 ) − 𝑇
𝜇2
𝜎

( ⋅ ; 𝛾𝜇2 ,𝛽 )‖2𝜎 |||||| > 𝑡
)

≤ 2𝑒−𝑚
𝑡2

32𝑅4 .

e use the same sampling for 𝜎 as we do for the concentration for McDiarmid’s inequality. Notice, however, that

1
𝑚

𝑚∑
𝑗=1

|𝑇 𝜇1
𝜎

(𝑋𝑗 ; 𝛾𝜇1 ,𝛽 ) − 𝑇
𝜇2
𝜎

(𝑋𝑗 ; 𝛾𝜇2 ,𝛽 )|2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑊 𝐿𝑂𝑇
2,𝜎 (𝜇𝑖,𝜇𝑗 )

= ‖𝑇 𝜇1
𝜎

( ⋅ ; 𝛾𝜇1 ,𝛽 ) − 𝑇
𝜇2
𝜎

( ⋅ ; 𝛾𝜇2 ,𝛽 )‖2𝜎
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑊 𝐿𝑂𝑇
2,𝜎 (𝜇𝑖,𝜇𝑗 )

.

is yields the result. □

pendix C. Non-compactly supported measures proofs and results

Here, we give the proofs of the lemmas preceding Theorems 5.4 and 5.5.

oof of Lemma 5.2. We will construct the measure 𝜇 by constructing a transport map that sends 𝜇 to a compactly supported 
solutely continuous measure. In particular, for some 0 < 𝜌 ≪ 1, consider the map

𝑆𝑅,𝜌(𝑥) =

{
𝑥 𝑥 ∈𝐵(0,𝑅)
𝑅 𝑥‖𝑥‖ +min{‖𝑥‖−𝑅,𝜌} 𝑥

1+‖𝑥‖ 𝑥 ∉𝐵(0,𝑅)
.

t 𝜇 = (𝑆𝑅,𝜌)♯𝜇, then the compact set that 𝜇 will be supported on is 𝐵(0,𝑅+ 𝜌) since for 𝑥 ∈ℝ𝑛 with ‖𝑥‖ ≫𝑅 we have ‖𝑆𝑅,𝜌(𝑥)‖ <
 + 𝜌. Now note that

𝑊1(𝜇,𝜇) = min
𝑆∶𝑆♯𝜇=𝜇∫

ℝ𝑛

‖𝑆(𝑥) − 𝑥‖𝑑𝜇(𝑥) ≤ ∫
ℝ𝑛

‖𝑆𝑅,𝜌(𝑥) − 𝑥‖𝑑𝜇(𝑥)
= ∫
𝐵(0,𝑅)

‖𝑥− 𝑥‖
⏟⏟⏟

=0

𝑑𝜇(𝑥) + ∫
ℝ𝑛⧵𝐵(0,𝑅)

‖‖‖‖
(
1 − 𝑅‖𝑥‖ − min{‖𝑥‖−𝑅,𝜌}

1 + ‖𝑥‖
)
𝑥
‖‖‖‖𝑑𝜇(𝑥)

≤ ∫
ℝ𝑛⧵𝐵(0,𝑅)

‖𝑥‖+ 𝑅
⏟⏟⏟
≤‖𝑥‖

+ ‖𝑥‖min{‖𝑥‖−𝑅,𝜌}
1 + ‖𝑥‖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≤𝜌≤1≤‖𝑥‖

𝑑𝜇(𝑥) ≤ ∫
ℝ𝑛⧵𝐵(0,𝑅)

3‖𝑥‖𝑑𝜇(𝑥).
 bound this integral, recall that

𝑓𝜇(𝑥) <
(

𝜂

𝐶𝑛,𝑝,Ω,𝑀𝑝

) 6𝑝+16𝑛
𝑝 1‖𝑥‖𝑛+2
25
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𝐶𝑛,𝑝,Ω,𝑀𝑝 = 𝐶𝑛,𝑝,Ω,𝑀𝑝 (3𝐶)
𝑝

6𝑝+16𝑛

here 𝐶 denotes a constant of integration over concentric 𝑛-spheres. Recall that 𝑑𝜇(𝑥) = 𝑓𝜇(𝑥)𝑑𝑥; thus,

∫
ℝ𝑛⧵𝐵(0,𝑅)

3‖𝑥‖𝑑𝜇(𝑥) = ∫
ℝ𝑛⧵𝐵(0,𝑅)

3‖𝑥‖𝑓𝜇(𝑥)𝑑𝑥
≤ ∫
ℝ𝑛⧵𝐵(0,𝑅)

(
𝜂

𝐶𝑛,𝑝,Ω,𝑀𝑝

) 6𝑝+16𝑛
𝑝 1
𝐶‖𝑥‖𝑛+1 𝑑𝑥

≤
(

𝜂

𝐶𝑛,𝑝,Ω,𝑀𝑝

) 6𝑝+16𝑛
𝑝

∫
𝑟≥𝑅

𝑟𝑛−1

𝑟𝑛+1
𝑑𝑟

⏟⏞⏞⏞⏟⏞⏞⏞⏟
≤1

=
(

𝜂

𝐶𝑛,𝑝,Ω,𝑀𝑝

) 6𝑝+16𝑛
𝑝

,

here 𝐶 is a constant from integrating over concentric 𝑛-spheres. Invoking Theorem 5.1, this means that

‖𝑇 𝜇𝜎 − 𝑇 𝜇𝜎 ‖𝜎 ≤ 𝐶𝑛,𝑝,Ω,𝑀𝑝𝑊1(𝜇,𝜇)
𝑝

6𝑝+16𝑛 ≤ 𝐶𝑛,𝑝,Ω,𝑀𝑝 𝜂

𝐶𝑛,𝑝,Ω,𝑀𝑝
= 𝜂.

 see that 𝜇 is compactly supported, notice that for 𝑥 ∈ℝ𝑛 ⧵𝐵(0, 𝑅), we have

‖𝑆𝑅,𝜌(𝑥)‖ = ‖‖‖‖𝑅 𝑥‖𝑥‖ +min{‖𝑥‖−𝑅,𝜌} 𝑥
1 + ‖𝑥‖‖‖‖‖ ≤𝑅+ 𝜌 ‖𝑥‖

1 + ‖𝑥‖
⏟⏞⏟⏞⏟

≤1

≤𝑅+ 𝜌.

e case for when 𝑥 ∈ 𝐵(0, 𝑅) is trivial since 𝑆𝑅,𝜌 is the identity map on 𝐵(0, 𝑅). Moreover, to see that 𝜇 is absolutely continuous 
ith respect to the Lebesgue measure, we will take a generic set 𝐴 and break it up into components and analyze each component. 
e first notice that 𝑆𝑅,𝜌 is continuous. Indeed, for 𝑥 such that ‖𝑥‖ =𝑅, we see that

𝑅
𝑥‖𝑥‖

⏟⏟⏟
𝑥

+min{‖𝑥‖−𝑅,𝜌}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

=‖𝑥‖−𝑅=0
𝑥

1 + ‖𝑥‖ = 𝑥.

w, let 𝐴 ∈ℝ𝑛 such that 𝜆(𝐴) = 0 for the Lebesgue measure 𝜆, then

𝐴 = (𝐴 ∩𝐵(0,𝑅))⊕ (𝐴 ⧵𝐵(0,𝑅))⊕ (𝐴 ∩ 𝜕𝐵(0,𝑅))

⟹ (𝑆𝑅,𝜌)♯𝜇(𝐴) = (𝑆𝑅,𝜌)♯𝜇(𝐴 ∩𝐵(0,𝑅)) + (𝑆𝑅,𝜌)♯𝜇(𝐴 ⧵𝐵(0,𝑅)) + (𝑆𝑅,𝜌)♯𝜇(𝐴 ∩ 𝜕𝐵(0,𝑅))

= 𝜇(𝑆𝑅,𝜌−1(𝐴 ∩𝐵(0,𝑅))) + 𝜇(𝑆𝑅,𝜌−1(𝐴 ⧵𝐵(0,𝑅))) + 𝜇(𝑆𝑅,𝜌−1(𝐴 ∩ 𝜕𝐵(0,𝑅)))

= 𝜇(𝐴 ∩𝐵(0,𝑅)) + 𝜇(𝐴 ∩ 𝜕𝐵(0,𝑅))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤𝜇(𝜕𝐵(0,𝑅))=0
+𝜇(𝑆𝑅,𝜌−1(𝐴 ⧵𝐵(0,𝑅))),

here we use the additivity of measures over disjoint sets, the form of 𝑆𝑅,𝜌 on 𝐵(0, 𝑅), and the absolutely continuity of 𝜇 so that 
𝜕𝐵(0, 𝑅)) ≤ 𝜆(𝜕𝐵(0, 𝑅)) = 0. Moreover, note that 𝜇(𝐴 ∩𝐵(0, 𝑅)) ≤ 𝜇(𝐴) ≤ 𝜆(𝐴) = 0. The only term left is 𝐴 ⧵𝐵(0,𝑅). Since 𝑆𝑅,𝜌 is 
ooth on ℝ𝑛 ⧵𝐵(0, 𝑅), there exists a density 𝑔 for (𝑆𝑅,𝜌)♯𝜇 with respect to 𝜇 for sets in ℝ𝑛 ⧵𝐵(0, 𝑅). This means (𝑆𝑅,𝜌)♯𝜇 ≪ 𝜇 on 
𝑛 ⧵𝐵(0,𝑅). Since 𝜇 ≪ 𝜆, we have

𝜆(𝐴) = 0 ⟹ 𝜇(𝐴) = 0 ⟹ 𝜇(𝐴 ⧵𝐵(0,𝑅)) = 0 ⟹ (𝑆𝑅,𝜌)♯𝜇(𝐴 ⧵𝐵(0,𝑅)) = 0.

is shows that (𝑆𝑅,𝜌)♯𝜇 is absolutely continuous with respect to 𝜆, so the proof is complete. □

oof of Lemma 5.3. Rather than constructing a transport map, we will construct a density 𝑓𝜇 and will argue that the transport 
ap from 𝜇 to 𝜇 (the measure with density 𝑓𝜇) behaves nicely. To do this, consider the following density

𝑓𝜇,𝑎,𝑅(𝑥) =
⎧⎪⎨⎪
𝑓𝜇(𝑥) 𝑥 ∈ 𝐵(0,𝑅)
𝑓𝜇

(
𝑅 𝑥‖𝑥‖

)
+ 𝛼

(‖𝑥‖
𝑅

− 1
)
𝑥 ∈ 𝐵(0, 𝑎) ⧵𝐵(0,𝑅) ,
26
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r some 𝛼 > 0. Notice that 𝑎 is not specified at the moment, but it depends on 𝑅 and 𝛼. Since we want 𝜇 to be a probability measure, 
e note that

𝜇(ℝ𝑑 ) = ∫
𝐵(0,𝑅)

𝑓𝜇(𝑥)𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝜇(𝐵(0,𝑅))

+

𝑎

∫
𝑅

𝑟𝑑−1𝐶(𝑟)
(
𝑓𝜇

(
𝑅
𝑥‖𝑥‖)+ 𝛼

(‖𝑥‖
𝑅

− 1
))
𝑑𝑟

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼(𝑎)

,

here 𝐶(𝑟) is the integral over the sphere at radius 𝑟. Notice that 𝐼(𝑎) has an integrand that is increasing as a function of 𝑟 so that 
𝑎) itself is increasing as a function of 𝑎 (i.e. lim𝑎→∞ 𝐼(𝑎) =∞). Moreover, because 𝐼(𝑅) = 0, we know from the intermediate value 
eorem that there exists some 𝑎∗ such that 𝐼(𝑎∗) = 𝜇(ℝ𝑑 ⧵ 𝐵(0, 𝑅)). Note that from this construction, 𝜇 is compactly supported, 
solutely continuous with respect to the Lebesgue measure, and 0 < 𝑐 ≤ 𝑏 ≤ 𝑓𝜇 ≤𝐵 <∞ for some constants 𝑏 and 𝐵.
Now, we would like to bound 𝑊1(𝜇, ̃𝜇). Because we assume that 𝜇 has a density, there exists pushforwards that push 𝜇 to 𝜇, but 

e will consider 𝑆 such that 𝑆♯𝜇 = 𝜇 and 𝑆(𝑥) = 𝑥 if 𝑥 ∈ 𝐵(0, 𝑅). The set of such maps 𝑆 is non-empty, because we can consider the 
timal transport problem between the restricted measures 𝜇|ℝ𝑑⧵𝐵(0,𝑅) to 𝜇|ℝ𝑑⧵𝐵(0,𝑅) with the same total mass. There certainly exist 
shforwards, say 𝑆| between the restricted measures because the measures have densities. To form a map 𝑆 , let 𝑆 be the identity 
 𝐵(0, 𝑅) and 𝑆| on ℝ𝑑 ⧵𝐵(0, 𝑅). Note that 𝑆(𝑥) ∈ 𝐵(0, 𝑎) for 𝑥 ∈𝐵(0, 𝑎) ⧵𝐵(0, 𝑅); thus, there exists 𝐶 such that ‖𝑆(𝑥)‖ ≤ 𝐶‖𝑥‖ (if 
< 2𝑅, then 𝐶 ≤ 2). For the following calculation, we assume that

𝑓𝜇(𝑥) ≤
(

𝜂

𝐶 ′
𝑛,𝑝,Ω,𝑀𝑝

) 6𝑝+16𝑛
𝑝 1‖𝑥‖𝑛+2

∶=

(
𝜂

𝐶𝑛,𝑝,Ω,𝑀𝑝
(
(𝐶̃ + 1)𝐶sphere

) 𝑝
6𝑝+16𝑛

) 6𝑝+16𝑛
𝑝 1‖𝑥‖𝑛+2

=
(

𝜂

𝐶𝑛,𝑝,Ω,𝑀𝑝

) 6𝑝+16𝑛
𝑝 1

(𝐶 + 1)𝐶sphere‖𝑥‖𝑛+2 ,
here 𝐶sphere denotes a constant from integrating over concentric 𝑛-spheres and 𝐶𝑛,𝑝,Ω,𝑀𝑝 denotes the constant from Theorem 5.1. 
w note that

𝑊1(𝜇,𝜇) ≤ ∫
ℝ𝑑

‖𝑆(𝑥) − 𝑥‖𝑑𝜇(𝑥) = ∫
𝐵(0,𝑅)

‖𝑥− 𝑥‖
⏟⏟⏟

=0

𝑑𝜇(𝑥) + ∫
ℝ𝑑⧵𝐵(0,𝑅)

‖𝑆(𝑥) − 𝑥‖𝑑𝜇(𝑥)
≤ ∫
ℝ𝑑⧵𝐵(0,𝑅)

‖𝑆(𝑥)‖+ ‖𝑥‖𝑑𝜇(𝑥) ≤ ∫
ℝ𝑑⧵𝐵(0,𝑅)

(𝐶 + 1)‖𝑥‖𝑓𝜇(𝑥)𝑑𝑥
≤ ∫
ℝ𝑑⧵𝐵(0,𝑅)

(𝐶 + 1)
(

𝜂

𝐶𝑛,𝑝,Ω,𝑀𝑝

) 6𝑝+16𝑛
𝑝 1

(𝐶 + 1)𝐶sphere‖𝑥‖𝑛+1 𝑑𝑥
≤
(

𝜂

𝐶𝑛,𝑝,Ω,𝑀𝑝

) 6𝑝+16𝑛
𝑝

∫
𝑟≥𝑅

𝑟𝑛−1

𝑟𝑛+1
𝑑𝑟

⏟⏞⏞⏞⏟⏞⏞⏞⏟
≤1

≤
(

𝜂

𝐶𝑛,𝑝,Ω,𝑀𝑝

) 6𝑝+16𝑛
𝑝

.

voking Theorem 5.1, this means that

‖𝑇 𝜇𝜎 − 𝑇 𝜇𝜎 ‖𝜎 ≤ 𝐶𝑛,𝑝,Ω,𝑀𝑝𝑊1(𝜇,𝜇)
𝑝

6𝑝+16𝑛 ≤ 𝐶𝑛,𝑝,Ω,𝑀𝑝 𝜂

𝐶𝑛,𝑝,Ω,𝑀𝑝
= 𝜂.

us, we have the desired result. □

pendix D. Proofs and results for conditions on H and 𝝁

This section provides the proofs of the results in Sections 6 and 7.

1. Compact case proofs and results

Here we prove the results of Section 6 which provide conditions on 𝜎, 𝜇, and H which guarantee that 𝜇𝑖 ∼ H♯𝜇 satisfy the 
27

nditions of the theorems from Section 4.



A.

Pr

To

of

If 
th

w

Si

of

im

Li

Pr

ra

th

M

by

Pr

an

su

Th

ℎ
sim

Si

al
Applied and Computational Harmonic Analysis 74 (2025) 101718Cloninger, K. Hamm, V. Khurana et al.

oof of Theorem 6.1. Caffarelli’s regularity theorem implies that 𝑇
(ℎ𝑖 )♯𝜇
𝜎 is continuous, hence Lipschitz (since supp(𝜇) is compact). 

 show that Caffarelli’s theorem applies, (ℎ𝑖)♯𝜇 needs convex support and its density needs to be bounded away from 0 and ∞. One 
 the assumptions in this theorem is that (ℎ𝑖)♯𝜇 has convex support; thus we must show the density is bounded away from 0 and ∞. 
ℎ𝑖 is continuously differentiable with 0𝐼 ≺ 𝐿1𝐼 ⪯ 𝐽ℎ𝑖 (𝑥), then the minimum eigenvalue of 𝐽ℎ𝑖 is bounded away from 0. Noticing 
at ℎ𝑖 is a proper map, we can use Hadamard’s global inverse function theorem to see that ℎ−1𝑖 exists. Recalling 𝜇 has density 𝑓𝜇 , 
e can use the change of variables density formula

𝑓(ℎ𝑖)♯𝜇(𝑥) = 𝑓𝜇(ℎ
−1
𝑖 (𝑥))|𝐽ℎ−1𝑖 (𝑥)|.

nce 𝜇 has a density such that 0 < 𝑐 ≤ 𝑓𝜇 ≤ 𝐶 <∞, we can see that 𝑓(ℎ𝑖)♯𝜇 is bounded away from 0 and ∞ by using the change 
 variables density formula. In particular, note that 𝑓(ℎ𝑖 )♯𝜇 ≥ 𝑐𝐿1 > 0. For the upper-bound, we need that ℎ𝑖 is Lipschitz. This is 
mediate since ℎ𝑖 is a continuously differentiable (hence continuous) map over a compact set; thus, ℎ𝑖 is Lipschitz with some 
pschitz constant 𝐿2. This means that 𝑓(ℎ𝑖)♯𝜇(𝑥) ≤ 𝐶𝐿2 <∞. □

oof of Theorem 6.2. For the barycentric map estimator, we already showed that the 𝜇𝑖 ’s are compactly supported in a ball of 
dius 𝐴𝑅 in the proof of Theorem 4.2. We now show that 𝑇 𝜇𝑖𝜎 is Lipschitz. To make sure that each 𝑇 𝜇𝑖𝜎 is Lipschitz, we will only need 
at ℎ𝑖 is continuous because continuous maps over compact sets are Lipschitz. In particular, note that 𝜇𝑖 = (ℎ𝑖)♯𝜇 for some ℎ𝑖 ∈ H . 
oreover, notice that we only care about how ℎ𝑖 acts on supp(𝜇), which is compact; thus, ℎ𝑖 is Lipschitz on the set of interest. Now, 
 compatibility, we know that 𝑇 𝜇𝑖𝜎 = ℎ𝑖◦𝑇

𝜇
𝜎 , which implies that if ℎ𝑖 is Lipschitz and 𝑇

𝜇
𝜎 is Lipschitz, then 𝑇 𝜇𝑖𝜎 is Lipschitz. □

oof of Theorem 6.3. For the entropic map estimator, the 𝜇𝑖 ’s need to again be compactly supported, 𝑇
𝜇𝑖
𝜎 needs to be Lipschitz, 

d 𝜎 and 𝜇𝑖 together satisfy assumptions (𝐴1) − (𝐴3). It will turn out, that we will only need that there exist constants 𝐿1, 𝐿2 > 0
ch that

𝐿1𝐼 ⪯ 𝐽ℎ(𝑥) ⪯𝐿2𝐼.

is occurs if ℎ is continuous, compatible, and has lower bound on Jacobian as 𝐿1𝐼 ⪯ 𝐽ℎ(𝑥). To see the upper bound, we just see that 
being a continuous map on a compact set (support of 𝜇) gives that on the support of 𝜇, we have 𝐽ℎ(𝑥) ⪯ 𝐿2𝐼 for some 𝐿2. Now 
ilar to Remark 4.3, we can use Hadamard’s global inverse function theorem to see that ℎ−1 exists with 𝐿−1

2 𝐼 ⪯ 𝐽ℎ−1 (𝑥) ⪯ 𝐿
−1
1 𝐼 . 

nce we only sample a finite number of measure-valued data points 𝜇𝑖 , we know that there must be a maximum 𝐿2 that applies for 
l 𝜇𝑖.
That 𝜇𝑖 is compactly supported and each 𝑇

𝜇𝑖
𝜎 are Lipschitz follow from the same analysis as in the proof of Theorem 6.2.

• Ensuring that 𝜇𝑖 satisfy (𝐴1): Recall that the change of variables formula for the density of a pushforward measure 𝜇 = ℎ♯𝜇 is 
given by

𝑓𝜇(𝑥) = 𝑓𝜇(ℎ−1(𝑥))|𝐽ℎ−1 (𝑥)|,
where |𝐽ℎ−1 (𝑥)| denotes the determinant of the Jacobian of ℎ−1.
From the discussion above, we get that |𝐽ℎ−1 | > 0 for all 𝑥. In particular, since the determinant of a matrix is the product of its 
eigenvalues, we have that

𝐿−𝑛
2 ≤ |𝐽ℎ−1 (𝑥)| = 𝑛∏

𝑗=1
𝜆𝑗 (𝐽ℎ−1 (𝑥)) ≤𝐿−𝑛

1 .

Finally, since 𝜇 itself adheres to (A1), this implies that

𝑏
𝐿𝑛2

≤ 𝑓𝜇(𝑥)|𝐽ℎ−1 (𝑥)| ≤ 𝐵
𝐿𝑛1
.

So (𝐴1) holds for 𝜇 if there are constants 𝐿1, 𝐿2 > 0 such that

𝐿1𝐼 ⪯ 𝐽ℎ(𝑥) ⪯𝐿2𝐼.

• Ensuring that 𝜇𝑖 satisfy (𝐴2): From [22, Corollary 4.2.10], we can ensure that (𝐴2) is satisfied if (𝐴3) is satisfied, which is 
proved below.

• Ensuring that 𝜇𝑖 satisfy (𝐴3): First, notice that by compatibility of ℎ, we have that 𝑇
ℎ♯𝜇
𝜎 = ℎ◦𝑇 𝜇𝜎 ; thus, a direct corollary of [25, 

Theorem 24] gives that

(𝑚𝐿1)𝐼 ⪯ 𝐽
𝑇
ℎ♯𝜇

𝜎

(𝑥) ⪯ (𝐿2𝐿)𝐼

for all 𝑥, where 𝑚 and 𝐿 come from assuming 𝜎 and 𝜇 satisfy (A3) whilst 𝐿1 and 𝐿2 come from above. So (𝐴3) holds for 𝜎 and 
28

𝜇. □
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The result above essentially states that the entropic estimator works if every ℎ ∈ H is (exactly) compatible and is uniformly 
sitive definite.

2. Non-compact case proofs and results

Here we prove the results of Section 7 which provide conditions on 𝜎, 𝜇, and H which guarantee that 𝜇𝑖 ∼ H♯𝜇 satisfy the 
nditions of the theorems from Section 5.

oof of Theorem 7.1. Assume that 𝜇 is the truncated measure approximating ℎ♯𝜇 for ℎ ∈ H . Given the assumptions of Lemma 5.3, 
e truncated measure 𝜇 is compactly supported, upper and lower bounded, and absolutely continuous. If we can ensure that the trun-
ted measure 𝜇 also has uniformly convex support, we will fulfill the conditions of Caffarelli’s regularity theorem, which guarantees 
at the optimal transport map is Lipschitz continuous.

• Decay rate condition: Assuming that 𝜇 has the necessary decay rate 𝑓𝜇(𝑥) ≤ 𝐶 <∞ and 0 < 𝑐 ≤ 𝑓𝜇(𝑥) on a large enough ball 
where the decay rate is active, we need that ℎ♯𝜇 = 𝜇 also has the same decay rate up to a constant. For what follows, we must 
show that ℎ ∈ H has an inverse ℎ−1. Indeed, because of the bi-Lipschitz assumption (iii) of Theorem 7.1, we know that

𝐿1𝐼 ⪯ 𝐽ℎ(𝑥) ⪯𝐿2𝐼.

Because 𝐽ℎ(𝑥) is invertible for all 𝑥, we can Hadamard’s inverse function theorem to conclude that ℎ−1 exists. Moreover, this 
implies that

𝐿−1
2 𝐼 ⪯ 𝐽ℎ−1 (𝑥) ⪯𝐿

−1
1 𝐼.

Since H satisfies Assumption 4.1 (iii) (i.e.

𝑎‖𝑥‖ ≤ ‖ℎ(𝑥)‖ ≤𝐴‖𝑥‖
for some 𝑎, 𝐴 > 0), then we know that

𝐴−1‖𝑥‖ ≤ ‖ℎ−1(𝑥)‖ ≤ 𝑎−1‖𝑥‖,
or equivalently,

𝐴−1‖ℎ−1(𝑥)‖ ≤ 1‖𝑥‖ ≤ 𝑎−1‖ℎ−1(𝑥)‖ .
Thus, for ‖𝑥‖ ≥𝐴𝑅 (so that ‖ℎ−1(𝑥)‖ ≥𝑅) and the bounds above, we find that

𝑓𝜇(𝑥) = 𝑓𝜇(ℎ−1(𝑥)) |𝐽ℎ−1 (𝑥)|
⏟⏞⏟⏞⏟

≤𝐿−𝑛1

≤
(

𝜂

𝐶𝑛,𝑝,Ω,𝑀𝑝

) 6𝑝+16𝑛
𝑝 1
𝐶 ′‖ℎ−1(𝑥)‖𝑛+2𝐿−𝑛

1

≤
(

𝜂

𝐶𝑛,𝑝,Ω,𝑀𝑝

) 6𝑝+16𝑛
𝑝 1
𝐶 ′‖𝑥‖𝑛+2𝐿−𝑛

1 𝐴
𝑛+2.

The constants 𝐿1 and 𝐴 can be absorbed into the other decay rate constants; thus, Assumption 4.1 (iii) and our bi-Lipschitz 
assumption (iii) gives us the decay rate we want. Noting that the form of the density 𝑓𝜇 also implies that 𝑐𝐿−𝑛

1 ≤ 𝑓𝜇(𝑥) on some 
large enough ball. In particular, we get that the truncated measure 𝜇 has a density 0 < 𝑏 ≤ 𝑓𝜇(𝑥) ≤ 𝐵 <∞ from Lemma 5.3.

• Uniformly convex support: If 𝜇 is supported on all of ℝ𝑛, we would want ℎ ∈H such that 𝜇 = ℎ♯𝜇 is also supported on all of 
ℝ𝑛. Recall that the resulting density of 𝜇 is given by

𝑓𝜇(𝑥) = 𝑓𝜇(ℎ−1(𝑥)) |𝐽ℎ−1 (𝑥)|
⏟⏞⏟⏞⏟

≤𝐿−𝑛1
Note that 𝜇 is supported on all of ℝ𝑛 if ‖ℎ−1(𝑥)‖ →∞ as ‖𝑥‖ →∞. Indeed, if we assume Assumption 4.1 (iv), then 𝐴−1‖𝑥‖ ≤‖ℎ−1(𝑥)‖, which implies that 𝜇 is supported on all of ℝ𝑛. This would imply that the truncated measure 𝜇 will be supported on a 
ball of some radius. This implies that the support of 𝜇 is uniformly convex and compact.

From the decay rate condition and the uniformly convex support condition, we get that the truncated measure 𝜇 will satisfy the 
sumptions of Caffarelli’s regularity theorem. This implies that 𝑇 𝜇𝜎 will be a 𝐶2 and Lipschitz function (since 𝑇 𝜇𝜎 pushes forward a 
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mpact support to a compact support). The other assumptions of the theorem are trivially satisfied. □
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oof of Theorem 7.2. From the proof of Theorem 7.1 above, we easily see that if Assumption 4.1 is fulfilled and 𝜇 fulfills the 
nditions of Lemma 5.3 and is supported on all of ℝ𝑛, then 𝑇 𝜇𝜎 will be Lipschitz. We need, however, that 𝜇 also satisfies (𝐴1)-(𝐴3)
m 4.6. We get (𝐴1) for free since the density 𝑓𝜇 is lower bounded from the proof of Lemma 5.3. We also get (𝐴2) since 𝑇 𝜇𝜎 is 
fferentiable from Caffarelli’s regularity theorem [11–13] and if (A3) is satisfied, which comes from [22, Corollary 4.2.10].
Now we only need to ensure that (𝐴3) holds. Indeed, since Caffarelli’s regularity theorem holds, we know that the potential 𝜙
ch that 𝑇 𝜇𝜎 =∇𝜙 is strictly convex, which implies that ∇2𝜙(𝑥) is positive definite. Moreover, the minimum eigenvalue of ∇2𝜙(𝑥) is 
continuous function of 𝑥. Since 𝑥 ∈ supp(𝜎), which is compact, we know that 0 < 𝜆min(𝜎) =min𝑥∈supp(𝜎) 𝜆min(∇2𝜙(𝑥)), which implies 
at 𝐽

𝑇𝜇𝜎
(𝑥) ⪰ 𝜆min(𝜎)𝐼 . This guarantees that (𝐴3) is satisfied for 𝜎 and 𝜇. □
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