


when the robot experiences a visually novel terrain such

as pebble pavement which feels inertially similar to

traversing over concrete pavement, it is more likely

that the operator might also prefer pebble pavement

over marble rocks. While it is not possible to know

the operator’s true preferences without querying them, we

submit that in cases where the operator is unavailable,

hypothesizing preferences through extrapolation from the

inertial-proprioceptive-tactile space is a plausible way to

estimate traversability preferences for novel terrains.

Leveraging the intuition of extrapolating operator pref-

erences for visually distinct terrains that are familiar in

the inertial-proprioceptive-tactile space (collectively known

as proprioceptive for brevity), we introduce Preference ex-

trApolation for Terrain-awarE Robot Navigation (PATERN)
2, a novel framework for extrapolating operator terrain

preferences for visual navigation. PATERN learns a propri-

oceptive latent representation space from the robot’s prior

experience and uses nearest-neighbor search in this space to

estimate operator preferences for visually novel terrains. Fig.

1 provides an illustration of the intuition behind preference

extrapolation in PATERN. We conduct extensive physical

robot experiments on the task of preference-aligned off-

road navigation, evaluating PATERN against state-of-the-art

approaches, and find that PATERN is empirically successful

with respect to preference alignment and in adapting to novel

terrains and lighting conditions seen in the real world.

II. RELATED WORK

In this section, we review related work in visual off-road

navigation, with a focus on preference-aligned path planning.

A. Supervised Methods

To learn terrain-aware navigation behaviors, several prior

methods have been proposed that use supervised learning on

large curated datasets [8], [9], [14] to pixel-wise segment

terrains [7]. Guan et al. [7] propose a transformer-based

architecture (GANav) to segment terrains, and manually

assign traversability costs for planning. While successful

at preference-aligned navigation, fully-supervised methods

suffer from domain shift on novel terrains and may require

additional labeling.

B. Self-Supervised Methods

To alleviate the need for large-scale datasets for visual nav-

igation, several self-supervised learning methods have been

proposed that learn from data collected on the robot [15].

Specifically, prior methods in this category have explored

using inertial Fourier features [10], reinforcement learning

[16], contact vibrations [17], [18], proprioceptive feedback

[19], odometry errors [12], future predictive models [11],

acoustic features [20], and trajectory features [21] to learn

traversability costs for visual navigation. While successful

in several visual navigation tasks such as comfort-aware

navigation [10], such methods use a hand-coded reward/cost

2A preliminary version of this work was presented at the PT4R workshop
at ICRA 2023 [13]

model to solve a specific task and do not reason about

operator preferences over terrains. In contrast with prior

methods, PATERN utilizes the prior experience of the robot

and extrapolates operator preferences to novel terrains.

Sikand et al. propose VRL-PAP [6] in which both a

visual representation and a visual preference cost are learned

for preference-aligned navigation. Similarly, STERLING[22]

introduces a self-supervised representation learning approach

for visual representation learning. However, a limitation

for both VRL-PAP and STERLING is their dependence on

additional human feedback when dealing with novel ter-

rains, which might not be immediately available during

deployment. Distinct from VRL-PAP and STERLING, PATERN

focuses on extrapolating operator preferences from known

terrains to visually novel terrains.

III. PRELIMINARIES

We formulate preference-aligned planning as a local path-

planning problem in a state space S , with an associated ac-

tion space A. The forward kino-dynamic transition function

is denoted as T : S ×A → S and we assume that the robot

has a reasonable model of T (e.g., using parametric system

identification [23] or a learned kino-dynamic model [24],

[1], [25]), and that the robot can execute actions in A with

reasonable precision. For ground vehicles, a common choice

for S is SE(2), which represents the robot’s x and y position

on the ground plane, as well as its orientation θ.

The objective of the path-planning problem can be

expressed as finding the optimal trajectory Γ∗ =
argmin

Γ
J(Γ, G) to the goal G, using any planner (e.g.

a sampling-based motion planner like DWA [26]) while

minimizing an objective function J(Γ, G), J : (SN ,S) →
R

+. Here, Γ = {s1, s2, . . . , sN} denotes a sequence of

states. The sequence of states in the optimal trajectory Γ∗

is then translated into a sequence of actions, using a 1-

D time-optimal controller, to be played on the robot. For

operator preference-aligned planning, the objective function

J is articulated as,

J(Γ, G) = JG(Γ(N), G) + JP (Γ), (1)

Here, JG denotes geometric costs based on the proximity

of the robot’s state to the goal G and obstacle avoidance,

while JP imparts a cost based on terrain preference. Cru-

cially, JP is designed to capture operator preferences over

different terrains; less preferred terrains incur a higher cost.

Though earlier studies leverage human feedback to ascertain

JP for unfamiliar terrains [6], [22], in this work, we hypoth-

esize that in certain situations, operator preferences for novel

terrains can be extrapolated from known terrains, obviating

operator dependency during real-world deployment. Thus,

our novel contribution is a self-supervised framework for ex-

trapolating JP from known terrains to visually novel terrains

by leveraging inertial-proprioceptive-tactile observations of a

robot, without inquiring additional human feedback.
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IV. APPROACH

In this section, we present Preference extrApolation for

Terrain-awarE Robot Navigation (PATERN), a novel frame-

work for extrapolating operator preferences for preference-

aligned navigation. We first detail an existing framework for

terrain-preference-aligned visual navigation. We then intro-

duce PATERN for self-supervised extrapolation of operator

preferences from known terrains to visually novel terrains

by leveraging proprioceptive feedback.

A. A Two-Step Framework for Preference-Aligned Planning

For real-time preference-aligned planning, inspired from

earlier studies [6], [22], we postulate that JP (Γ) can be

estimated in a two-step approach from visual observations

of patches of terrain at s ∈ S along Γ. Let O ∈ O
represent these observations. We denote Π as a projection

operator that extracts visual observation O of terrain at s

by yielding image patches from homography-transformed

bird’s eye view images [6], [22]. First, a visual encoder,

denoted as fvis, maps O from the RGB space to a latent

vector φvis ∈ Φvis such that observations from identical

terrains cluster closely in Φvis and are distinct from those

of differing terrains. Next, a real-valued preference utility

is estimated from φvis using a learned preference utility

function uvis : Φvis → R
+ trained with ranked preferences

of terrains, derived either from demonstrations [6], or by

active querying [22]. Adopting the popular formulation of

Zucker et al. [27], we train the utility function with the

margin-based ranking loss [28]. To estimate JP (Γ) during

planning, we employ an exponential cost formulation given

by, JP (Γ) =
∑

s∈Γ e
−uvis[fvis(Π(s))], constraining the costs

to be non-negative, which we find works well in practice

[27]. This two-step framework for estimating JP (Γ) has been

utilized successfully in recent works [6], [22] for operator

preference-aligned navigation. Training details of the visual

encoder and the utility function are provided in Section V.

While the above two-step framework effectively handles

known terrains with pre-defined preferences, it faces chal-

lenges when the robot encounters visually novel terrains

that lie beyond the training distribution of fvis and uvis.

Towards addressing this problem, the primary contribution

of our work is a self-supervised framework to extrapolate

operator preferences to novel terrains and adapting fvis and

uvis to ensure successful preference alignment.

B. Extrapolating Preferences for Visually Novel Terrains

Leveraging the intuition that in addition to visual appear-

ance, operator preferences over terrains are likely also based

on the “feel” of the underlying terrain such as bumpiness,

stability, or traction, we posit that in many situations, opera-

tor preferences for novel terrains can be deduced by relating

the proprioceptive modality to known terrains. Utilizing these

rich, alternate data sources offers deeper insight into terrain

properties, enabling us to extrapolate terrain preferences

when direct operator feedback is unavailable. Upon initially

encountering a novel terrain, before undergoing any adap-

tation, we designate this stage as the pre-adaptation phase.

During this phase, the visual encoder and utility function

operate based on previously known operator preferences.

However, once preferences are extrapolated and the visual

encoder and utility functions are subsequently retrained to

adapt, the system progresses to the post-adaptation phase,

as shown in Fig. 1.

Inertial-Proprioceptive-Tactile Encoder and Utility

Function: In PATERN, in addition to the visual encoder, we

introduce a non-visual encoder that independently processes

the inertial, proprioceptive (joint angles and velocities), and

tactile feet data—collectively referred to as proprioception

for brevity—observed by the robot as it traverses a terrain.

This encoder maps proprioception observations into a propri-

oceptive representation space Φpro, such that representations

φpro ∈ Φpro of the same terrain are closely clustered whereas

those of distinct terrains are farther apart. Additionally, a

utility function upro : Φpro → R
+ maps the proprioceptive

representation vector φpro ∈ Φpro to a real-valued preference

utility, similar to the visual utility function. Note that, to

estimate JP (Γ) during deployment, we only use uvis and not

upro since we cannot observe the proprioceptive components

of a future state without traversing the terrain first.

Pre-Adaptation Phase: While traversing known terrains

that are in-distribution, the visual and proprioceptive utility

values tend to align closely. However, for visually novel

terrains, discrepancies often emerge between the utility val-

ues predicted from the visual and proprioceptive modalities.

In PATERN, we utilize the mean-squared error between

the predicted utilities as a signal to detect visually novel,

out-of-distribution terrains. Although any novelty detection

mechanism can be integrated within PATERN, such as the uni-

modal approach by Burda et al. [29], our primary focus is on

a framework that extrapolates operator preferences for novel

terrains. Moreover, any foundational approach employing the

two-step framework for preference cost estimation [6], [22],

[30], as elaborated in Subsection IV-A, can be utilized in

the pre-adaptation phase. For clarity, we use the notation

PATERN
− to represent the baseline algorithm in its unadapted

state and PATERN
+ to indicate the updated model in the post-

adaptation phase.

Extrapolating Operator Preferences: Given a novel

terrain segment for which operator preferences are unknown,

we propose to self-supervise preference assignment by first

clustering its proprioceptive representations φpro and then

associating it with the closest known existing cluster in

Φpro, assigning the same operator preference as the known-

cluster, as illustrated in Fig. 1. Following this self-supervised

preference assignment, the visual encoder and visual utility

function for novel terrain segments are finetuned by aggre-

gating newly gathered experience with existing data.

V. IMPLEMENTATION DETAILS

In this section, we describe the implementation details

of PATERN. We first describe data pre-processing, followed

by training details in the pre-adaptation phase. Finally, we

describe adapting the visual encoder and utility function

using the extrapolated preference in PATERN.
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Fig. 2. An illustration of the training setup for preference extrapolation
proposed in PATERN. We utilize two encoders to map visual and inertial-
proprioceptive-tactile samples to Φvis and Φpro respectively. For a visually
novel terrain, a preference is hypothesized and extrapolated from Φpro,
following which the visual encoder and utility function are retrained.

A. Data Pre-Processing

In tandem with the visual patch extraction process used in

the projection operator Π as in prior methods [6], [22], for

every state st, we also extract a 2-second history of time-

series inertial (angular velocities along the x and y-axes and

linear acceleration in the z-axis), proprioceptive (joint angles

and velocities), and tactile (feet depth penetration estimates)

data. To ensure the resulting input data representation for

training is independent of the length and phase of the signals,

we compute statistical measures of center and spread as

well as the power spectral density, and maintain that as the

input. All the visual patches extracted with the projection

operator Π and the non-visual data for each state s are

then tagged with their corresponding terrain name, given that

each trajectory uniquely contains a particular terrain type. In

addition to processing the recorded data in the pre-adaptation

phase, a human operator is queried for a full-order ranking

of terrain preference labels.

B. Pre-Adaptation Training

We use a supervised contrastive learning formulation in-

spired by Sikand et al. [6] to train the baseline functions fvis
and uvis, represented as neural networks.

Training the Encoders: Given labeled visual patches and

proprioception data, we generate triplets for contrastive

learning such that for any anchor, the positive pair is chosen

from the same label and the negative pair is sourced from

another label. Given such triplets, we use triplet loss [31]

with a margin of 1.0 to independently train the visual and

proprioception encoders through mini-batch gradient descent

using the AdamW optimizer. For the visual encoder, we

use a 3-layer CNN of 5 × 5 kernels, each followed by

ReLU activations. This model, containing approximately

250k parameters, transforms 64×64 size RGB image patches

into an 8-dimensional vector representation φvis. Similarly,

our inertial encoder consists of a 3-layer MLP with ReLU

activations, encompassing around 4k parameters, and maps

proprioceptive inputs to an 8-dimensional vector φpro. To

mitigate the risk of overfitting, data is partitioned in a 75-25

split for training and validation, respectively.

Training the Utility Functions: In our setup, the utility

function is represented as a two-layer MLP with ReLU non-

linearity and output activation that maps an 8-dimensional

vector into a singular non-negative real value. Given ranked

operator preferences of the terrains, we follow Zucker et

al. [27] and train the visual utility function uvis using

a margin-based ranking loss [28]. Furthermore, to ensure

consistent predictions from uvis and upro for both vi-

sual and non-visual observations at identical locations, we

update parameters of upro using the loss LMSE(upro) =
1
N

∑N

i=1 (sg(uvis(φvis))− upro(φpro))
2
. Here, sg(·) denotes

the stop-gradient operation, and φvis and φpro are the ter-

rain representations from paired visual and non-visual data,

respectively, at the same location.

The functions fvis and uvis prior to adaptation are collec-

tively termed as PATERN
−, signifying their non-adapted state

with respect to visually novel terrains. In our implementation,

although we use supervised contrastive learning, in instances

where explicit terrain labels might be absent, one can resort

to self-supervised representation learning techniques, such

as STERLING [22], to derive fvis and uvis. PATERN can

be applied regardless of the specific representation learning

approach used.

C. Preference Extrapolation Training

During deployment, if the robot encounters a visually

novel terrain, both visual and inertial-proprioceptive-tactile

data is recorded to be used in the adaptation phase in

PATERN, aiding in preference extrapolation and subsequent

model adaptation. We refer to this collected data as the

adaptation-set. We extract paired visual and non-visual

observations at identical locations from the adaptation-

set and use fpro to extract proprioceptive representations

φpro. We cluster samples of φpro and perform a nearest-

neighbor search against existing terrain clusters from the pre-

adaptation dataset that is within a threshold µ. We set this

threshold to be the same as the triplet margin value of 1.0

which we find to work well in practice. This procedure seeks

a known terrain that “feels” similar to the novel terrain which

then inherits the preference of its closest match. Following

this self-supervised preference extrapolation framework, the

adaptation-set is aggregated with the pre-adaptation training

set, and the visual encoder fvis is retrained using the

procedure described in V-B. Additionally, the visual utility

function uvis is retrained with the extrapolated preference

for the novel terrain. The updated functions fvis and uvis

are collectively referred to as PATERN
+. Figure 2 illustrates

retraining and preference extrapolation as described above.

VI. EXPERIMENTS

In this section, we describe the physical robot experiments

conducted to evaluate PATERN against other state-of-the-

art visual off-road navigation algorithms. Specifically, our

experiments are designed to explore the following questions:

(Q1) Is PATERN capable of extrapolating operator preferences

accurately to novel terrains?

(Q2) How effectively does PATERN navigate under challeng-

ing lighting scenarios such as nighttime conditions?
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using the mean Hausdorff distance between a human ref-

erence trajectory and evaluation trajectories of each method.

Table II shows quantitative results for the mean percentage of

preference-aligned distance traversed in each trajectory. Note

that both the reported metrics may be high if a method does

not reach the goal but stays on operator-preferred terrain.

From the quantitative results, we see that, as expected,

the PATERN
− approach is able to successfully navigate in

an operator-preference-aligned manner in Env. 1, which did

not contain any novel terrain types. However, PATERN
− fails

to consistently reach the goal and/or navigate in alignment

with operator preferences in the remaining environments.

In the daytime experiments, Env. 2 contains a novel ter-

rain (pebble pavement) absent from training data for

PATERN
−, while Env. 3 contains both a novel terrain type

(bush) and novel visual terrain appearances caused by

tree shadows. In the nighttime experiments, all terrains

contain novel visual appearances. Following deployments

in Envs. 2 and 3, PATERN extrapolates terrain preferences

for new visual data using the corresponding proprioceptive

data to retrain environment-specific PATERN
+ instances. In

each environment that the PATERN
− model fails, the self-

supervised PATERN
+ model is able to successfully navigate

to the respective goal in a preference-aligned manner, without

requiring any additional operator feedback during deploy-

ment, addressing Q1 and Q2. While the fully-supervised

baseline more closely resembles the human reference tra-

jectory compared to PATERN
+ during the day in Envs. 2 and

3, unlike the fully-supervised approach, PATERN
+ does not

require operator preferences over all terrains and is capable

of extrapolating to visually novel terrains.

C. Qualitative Large-Scale Experiment

Fig. 4. Trajectory trace of a large-scale qualitative deployment of
PATERN+ along the 3-mile trail. With only five minutes of supplementary
data, PATERN required only one manual intervention to stay on the trail and
successfully completes the hike, demonstrating robustness and adaptability
to real-world off-road conditions.

To investigate Q3, we execute a large-scale autonomous

deployment of PATERN along a challenging 3-mile off-road

trail 4. The robot’s objective is to navigate in a terrain-

aware manner on the trail by preferring dirt, gravel

and concrete over bush, mulch, and rocks. Failure

to navigate in a preference-aligned manner may cause catas-

trophic effects such as falling into the river next to the trail.

An operator is allowed to temporarily take manual control of

4Ann and Roy Butler trail, Austin, TX, USA

the robot only to prevent such catastrophic effects, adjust the

robot’s heading for forks in the trail, or yield to pedestrians

and cyclists. The PATERN
− model used for small-scale

experiments is augmented with approximately five minutes

of combined additional data for dirt, bush, and mulch

terrains commonly seen in the trail. Following this preference

extrapolation, the PATERN
+ model is able to successfully

navigate the 3-mile trail, while only requiring one human

intervention. Fig. 4 shows the trajectory of the robot and

a number of settings along the trail, including the single

unexpected terrain-related intervention in the lower right

corner, for the hour-long deployment. Additionally, we attach

a video recording of the robot deployment5. This large-

scale study addresses Q3 by qualitatively demonstrating the

effectiveness of PATERN in scaling to real-world off-road

conditions.

VII. LIMITATIONS AND FUTURE WORK

PATERN uses similarities between novel and known ter-

rains in its learned proprioception representation space to

extrapolate preferences. Thus, PATERN needs to have had ex-

periences with terrains bearing close inertial-proprioceptive-

tactile resemblances for successful extrapolation. A notice-

able limitation is that if a terrain with similar proprioceptive

features has not been observed, PATERN might be unable

to extrapolate operator preferences. Additionally, PATERN

utilizes non-visual observations that require a robot to phys-

ically drive over terrains, which may be unsafe or infeasible.

Extending PATERN with depth sensors to handle non-flat

terrains is a promising direction for future work.

VIII. CONCLUSION

In this work, we present Preference extrApolation for

Terrain-awarE Robot Navigation (PATERN), a novel ap-

proach to extrapolate human preferences for novel ter-

rains in visual off-road navigation. PATERN learns inertial-

proprioceptive-tactile representations to detect similarities

between visually novel terrains and the set of known terrains.

Through this self-supervision, PATERN successfully extrapo-

lates operator preferences for visually novel terrain segments,

without requiring additional human feedback. Through ex-

tensive physical robot experiments in challenging outdoor

environments in varied lighting conditions, we find that PA-

TERN successfully extrapolates preferences for visually novel

terrains and is scalable to real-world off-road conditions.
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