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Abstract

Fish photolocomotor behavioral response (PBR) studies have become increasingly preva-
lent in pharmacological and toxicological research to assess the environmental impact of
various chemicals. There is a need for a standard, reliable statistical method to analyze
PBR data. The most common method currently used, univariate analysis of variance
(ANOVA), does not account for temporal dependence in observations and leads to incom-
plete or unreliable conclusions. Repeated measures ANOVA, another commonly used
method, has drawbacks in its interpretability for PBR study data. Because each observation
is collected continuously over time, we instead consider each observation to be a function
and apply functional ANOVA (FANOVA) to PBR data. Using the functional approach not
only accounts for temporal dependency but also retains the full structure of the data and
allows for straightforward interpretation in any subregion of the domain. Unlike the traditional
univariate and repeated measures ANOVA, the FANOVA that we propose is nonparametric,
requiring minimal assumptions. We demonstrate the disadvantages of univariate and
repeated measures ANOVA using simulated data and show how they are overcome by
applying FANOVA. We then apply one-way FANOVA to zebrafish data from a PBR study
and discuss how those results can be reproduced for future PBR studies.

1 Introduction

In photolocomotor behavioral response (PBR) studies, researchers utilize known brightness
preference/avoidance in fish in order to compare the behavior of treatment groups in alternat-
ing light/dark conditions over time. This is also often called the “light/dark transition test.”
PBR studies have become increasingly prevalent over the past two decades in pharmacological
and toxicological research due to their useful indication of the behavioral effect of chemical
compounds and potential underlying mode of action. In Google Scholar, when the keywords
“fish AND locomotor AND behavioral response” are searched, over 90,000 works are
returned. When the same keywords are searched in both PubMed and Scopus, over 15,000
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works are represented. When the keywords “fish AND light/dark AND transition” are
searched across all three search engines, over 39,000 works are listed. The widespread presence
of these studies reflects the fundamental importance of behavioral effects when examining bio-
logical activities of chemicals. In fact, the zebrafish model is increasingly used in basic biomed-
ical and environmental research and translational applications because of societal animal
welfare concerns and due to governmental mandates that are moving away from use of rodent
models. Behavioral changes reflect physiological changes and can impact population-level
development, thus acting as an effective tool for assessing the environmental impact of chemi-
cal contaminants [1] and behavioral phenotypes during drug discovery [2].

1.1 Standard statistical methods used in PBR studies

The standard model used to analyze the behavioral effects of chemical concentrations in the
PBR literature is univariate analysis of variance (ANOVA). Responses, such as swim speed, are
averaged for each observation either over the entire domain or a section of the domain, and
the averages are then used in subsequent analysis. The most common strategy is to calculate
the average of the response variable across the entire domain, regardless of light/dark period
[3-5]. It is also common for univariate ANOVA to be repeated twice, once for the measure-
ments in the light periods and once for those in the dark periods [6-8]. Alternatively, it may be
repeated several times for each individual light/dark period itself [9-11]. When assumptions
for univariate one-way ANOVA are not met, Fisher’s Exact test [12] or the nonparametric
Kruskal-Wallis test [4, 13, 14] are often used. Other approaches include repeated measures
ANOVA [15, 16]; multiple t-tests for each level of the factor against the control group [17]; ¢-
tests for every time point [18]; and a Kolmogorov-Smirnov test comparing the area under the
curve (AUC) of differential entropy between treatment and control groups [14, 19].

We surveyed over fifty papers in the PBR literature, and while these are not necessarily rep-
resentative of the entire population of PBR studies, even in this small sample, many different
statistical methods to analyze PBR data are represented. These papers were selected based on
the expertise of our colleagues who use them for reference in their work. Fig 1 shows ten differ-
ent categories of methods being used to analyze PBR data in these papers with the majority
being a type of one-way ANOVA in which measurements are averaged for each fish. This
inconsistency makes comparing study results challenging, if not impossible. Furthermore, [20]
mention that there are no available publications comparing the different statistical methods
for behavioral studies of zebrafish and recognizes that handling time series data requires mod-
els with greater complexity. Over 80% of the papers that we surveyed did not account for the
temporal dependency of PBR data, losing useful information about the observations.

Because the data in PBR studies are recorded over time, each individual fish’s observations
are dependent. By averaging across the domain and applying univariate ANOVA, the variabil-
ity within each individual is not accounted for, thereby underestimating the error in the
model. This could result in misleading conclusions, as we demonstrate in this paper. Because
repeated measures ANOVA models time as a factor, it accounts for individual variability
across the domain and is a more favorable way to handle PBR data. However, it is difficult to
interpret the interaction between treatment groups and time. When the interaction is signifi-
cant, post hoc tests must be performed at every time point to determine where in time the dif-
ferences in treatment levels occur. Most studies that use repeated measures ANOVA test the
average differences of the treatment levels in each light/dark period rather than the differences
at each time point [21, 22]. Because the raw data are not consistently made publicly available
for each PBR study, it is difficult to assess the effects of the statistical methods used on the con-
clusions drawn. In spite of the fact that many statistical methods are being used in PBR
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Fig 1. Pie chart representing survey of methods used to analyze PBR study data. Methods represented in shades of
blue are variations of traditional ANOVA.

https://doi.org/10.1371/journal.pone.0300636.9001

literature, none of the standard methods involve treating the observations as continuous func-
tions, as we propose in this paper. This may occur because once a methodology has been estab-
lished, it gains momentum, and many researchers continue to use similar methods.
Furthermore, functional data analysis (FDA) itself is still a developing branch of statistics, so
we hope to encourage researchers to adopt this new paradigm.

1.2 The functional approach

FDA is a branch of statistical science that deals with data observed over a continuous domain,
such as time, and can be respresented as smooth functions [23, 24]. FDA assumes that the data
are smooth, naturally accounting for the dependence across the domain. Data in PBR studies
are functional in their structure, making FDA the proper approach to use in these studies.
Because there are an infinite number of ways that functions can differ and yet still share the
same mean, information is lost by averaging across the domain and applying univariate
ANOVA. For example, Fig 2 shows eight different functions that share the same mean over
their domain, and their shapes clearly differ. If univariate ANOVA were to be performed on
the means of these functions, no difference would be found. Similarly, the AUC used in [14,
19] is a summary value and suffers from the same problem in that equal values of AUC can
arise from two functions with very different patterns. However, functional ANOVA
(FANOVA) would detect a difference in the functions. Results obtained using the functional
approach, unlike the univariate approach, are both valid and straightforward to interpret.

In this paper, we present a framework for implementing one-way FANOV A that has mini-
mal assumptions and demonstrate how it can be implemented in PBR study datasets. In Sec-
tion 2, we review the methodology for univariate ANOVA and repeated measures ANOVA
and present functional ANOVA. For each method, we define its models, hypotheses, tests, and
assumptions. The FANOVA that we recommend uses a nonparametric permutation test for
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Fig 2. Eight functions that share an overall mean of 70 across their domain.
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an F-based test statistic and bootstrapped pointwise confidence intervals for the estimated
functional effects and contrasts. In Section 3, we illustrate the most extreme possible conse-
quences of applying univariate or repeated measures ANOVA to PBR study data in a simulated
example, and we compare these results with one-way FANOVA. Section 4 details a real exam-
ple using PBR study data and shows how the functional representation of the data provides a
seamless analysis of the startle response when brightness conditions change by constructing
acceleration functions. Section 5 presents concluding remarks.

2 Methodology

In this section, we describe the methodology for traditional univariate ANOVA, repeated mea-
sures ANOVA, and FANOVA. To streamline the presentation, we present the balanced one-
way case with equal sample sizes in each treatment group.

2.1 Univariate ANOVA

In this section, we review the univariate ANOVA model, hypotheses, F-statistic, and assump-
tions. Traditional analysis of variance became widely known after being presented in the clas-
sic text by Fisher [25].

2.1.1 Univariate ANOVA model. The response, y;, is the observed value of subject j at
level i of factor A. The one-way univariate ANOVA model is

Vi = pmto ey (1)
where p is the overall mean response across the domain; ¢; is the treatment effect of factor A
with levels i =1, .. ., a; and ¢;; is the subject effect for j = 1, . . ., n; replicates. In the balanced
case, 1; = 1.

2.1.2 Univariate ANOVA hypotheses. The following set of hypotheses is used to test the
equality of the treatment effect of factor A:
Hy :o=---=ua,=0,

(2)

vs. H :a;#0, for some i.
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If Hy is rejected, then we conclude that there is evidence to support the presence of at least one
treatment effect, and post hoc tests are performed on the following hypotheses to determine
which pairs of treatment effects differ:

ro,—oy, =0, for i # 7,

to, — o, #0, for i #id.

0,01 =0ty

vs. H (3)

Lo—ory

2.1.3 Univariate F-Test. The parameters in the model are estimated as follows:

and

=
Il
U

~Q>
Il
=

)
i )_/._,
where

B 1 a n
y. == D yy and

i=1 j=1
_ 1
Y. == Zyij .
nis
Then, the sums of squares due to the hypothesis (SSA) and error (SSE) are calculated as

SSA = ”Zb_’, -5 = nz&?, and (4)
P =1

SSE = ZZ[@ -7) (5)

i=1 j=1
The univariate F-statistic is

SSA
Fobs _ /qA (6)

SSE/q,’

and the degrees of freedom (df) associated with SSA and SSE are g4 = a — 1 and qg = a(n — 1),
respectively.

To obtain the critical value for the rejection region, F the (1 - 7)™ percentile of the F 4 5
distribution for significance level 7 is calculated. If F*** > F"", then reject Hy, and post hoc
analyses are performed. Otherwise, we fail to reject H,,.

2.1.4 Univariate ANOVA assumptions. The following assumptions are required to per-
form univariate ANOVA:

1. The response variable for each factor level is normally distributed.
2. The distributions of the response variable for each level have the same variance.
3. Each observation is independent of the others.

Averaging the PBR values of an individual across the domain and then applying univariate
ANOVA to them ignores the fact that values of each individual are dependent as well as the
variability of an individual over the course of the experiment. Therefore, the results may be
misleading and should consider biological relevance about the differences in the individuals as
a whole. Violation of the independence assumption is considered to have the highest impact of
all of these assumptions [26].
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2.2 Repeated measures ANOVA

In this section, a review of repeated measures ANOVA model, hypotheses, and F-statistics is
given. This exposition follows largely from [27].

2.2.1 Repeated measures ANOVA model. The response, y;i, represents the response at
time k from the jth subject in level i of factor A. The repeated measures ANOVA model is

Yig = H + o+ B+ (aﬁ)ik + i) + Eijte> (7)

where  is the overall mean response across the domain, and ¢; is the fixed effect of factor A
with levelsi =1, ..., a. Additionally, f is the fixed effect of the time point with levelsk=1, ...,
t with Z,i:] B, = 0, and finally, (o) is the fixed effect of the interaction between the ith level
and the kth time point, with constraints

a t

Z (oB)y = Z (@f)y = 0.

i=1 k=1

The parameters 77;(;) are random effects for the jth subject at the ith level with j=1, ..., n. The
7j(;) are assumed to be independent and normally distributed with mean zero and variance o?.
Finally, the €;; are independent random error terms with €, ~ N(0,0?).

2.2.2 Repeated measures ANOVA hypotheses. The following series of hypotheses is used
to test the equality of the treatment effect of factor A for all of the time points. The first hypoth-
esis tests the significance of the interaction between the factor and time,

Hy,p (@B),, == (ap),, =0, (8)
vs. H,;:  (af), # 0, for some ik.
If Hya7 is rejected, then there is evidence to support the presence of at least one interaction
effect between factor A and time, and the cell means, 1y = p + @; + Bi + (0f) i1, are then tested
for equality based on the following post hoc hypothesis:

HO-mrw(,-ky D Mg — Ny =0, for ik # (ik)',

o (9)
Hl»’iik*’l(,ﬂk)/ : nik - ’/’(ik)' # 07 fOr lk # (lk) .

VS.

Otherwise, failure to reject Hy,rindicates that there is no significant evidence that the interac-
tion terms differ from zero, leading to tests of the main effects based on the following two
hypotheses:

H, :o0=-—-=0,=0,
0A 1 (10)
vs. H, : o,#0, for some i,
and
Hy : py=--=B=0,

vs. H, : B, #0, for some k.

If Hys or Hyp are rejected, then the following hypotheses are tested:

) - oy
oy —o, =0, for i £,
) C

oo, —oa, #0, for i # i

0,06—0ry

vs. H (12)

Lo—ory
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and
HU-ﬁj*Ifk/ : ﬁk - .Bk’ = 0, for k ;ﬁ k’7

, (13)
vs. Hyy p, B — Py #0, for k #K.

When there are a large number of repeated measurements, performing post hoc tests for each
individual time point or interaction between factor A and time becomes impractical and
unwieldy.

2.2.3 Repeated measures F-Test. First, the effects are estimated as,

By

& =Y. =Y.

By =3i—7.
(B)y =Fu—7, 74+, and
Ty =Yy~ Vio

where

~ 1 I
Y. = %Zzzyijln

i=1 j=1 k=1

B 1 n t
Yio = it Zzyijk’

=1 k=1

B 1 a n
Yo = Ezzyijk’

i=1 j=1

I
Ve == Yy and
=1

1

t
Vi = ?Z)’ijk'
k=1

Table 1 displays the sum of squares and degrees of freedom for each source of variation.
The sums of squares are calculated as

SSA=ty nly, —y.) =ty ni, (14)
i=1 i=1

SSS(A) = tiim . tiiﬁii), (15)

i=1 j=1 i=1 j=1

Table 1. Sums of squares and degrees of freedom for repeated measures ANOVA.

Source DF Sum Sq
Factor A a-1 SSA
Subjects(Factor A) ain-1) SSS(A)
Time t-1 SST
Factor AxTime (a-1D(t-1) SSAT
Residual an-1)(t-1) SSE

https://doi.org/10.1371/journal.pone.0300636.t001
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SST=any [j,—7.]" =and B, (16)
=1 =1

t

SSAT = iiZm S T iiZ@)fw and (17)

i=1 j=1 k=1 i=1 j=1 k=1

a n t
SSE=> > iy —Vu— vyt (18)

i=1 j=1 k=1

Eqs 14, 16 and 17 are the sums of squares needed to test the hypotheses in Eqs 8, 10 and 11,
respectively, while Eq 18 is the SSE. The F-statistic for testing for differences among groups is
given by

MSA SSA/(a—1)

F = = 19
4 MSSA  SSSA/a(n—1) (19)

with a — 1 and a(n — 1) numerator and denominator df, respectively. This test requires the
assumption that the within-group covariance matrices are equal. The F-statistic for testing dif-
ferences among time points is given by

g MST _ SST/(t —1)
" MSE  SSE/[a(n—1)(t —1)]

(20)

with £ — 1 and a(n — 1)(f — 1) numerator and denominator df, respectively. Similarly, the F-sta-
tistic for testing the significance of the factor A x time interaction is given by
_ MSAT _ SSAT/[(a — 1)(t — 1)]
AT MSE  SSE/[a(n — 1)(t —1)]

(21)

with (a — 1)(t — 1) numerator and a(n — 1)(t — 1) denominator df. Both of the prior tests
require the assumption that the within-group covariance matrices are equal and that the vari-
ances of the differences between variables are equal.

2.2.4 Repeated measures ANOVA assumptions. The following assumptions are required
to perform repeated measures ANOVA:

1. The response variable for each factor level is normally distributed.
2. All ant observations are independent.
3. The within-group covariance matrices are equal.

4. The variances of the pairwise differences between all combinations of groups are equal; i.e.,
Var(yij — yijx) is constant for all i # ', and Var(y;y — yi) is constant for all k # k. This is
usually referred to as the sphericity assumption.

Because time is treated as a factor in repeated measures ANOVA, it is a valid way to analyze
PBR study data, but there are several disadvantages to using this approach. It is difficult to
interpret the interaction between groups and time. The assumptions of normality, within-
group homogeneity of variance, and sphericity are often violated and can bias results. For
example, [28] showed that if the sphericity assumption is violated, then the true type I error
rate is positively biased, causing excessive false rejection of the null hypotheses for the
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hypotheses in Eqs 8 and 11. Additionally, [29] notes that even repeated measures ANOVA
does not account for temporal autocorrelation between measurements, which is likely present
in PBR data, leading to lower power. This limitation is greatest when adjacent time points have
very similar responses, which is the case for most of the adjacent time points in PBR study
data. Finally, due to the number of repeated measurements over time in PBR data, post hoc
analyses require many tests. Functional ANOVA, however, does not have these disadvantages.
The functional ANOVA that we present makes minimal assumptions and provides simple
interpretations and post hoc analyses.

2.3 FANOVA

In this section, we present the one-way FANOVA model, hypotheses, and F-based statistics.
One-way FANOVA is described in [24, 30]. We also present a nonparametric approach to test-
ing these hypotheses that relies on very few assumptions.

2.3.1 FANOVA model. The functional response, y;i(t), is defined over a domain 7, with i
corresponding to the levels of factor A and j corresponding to the subject. In this case, t € 7,
where 7 represents an interval of time, and ¢ represents a specific point in time. The one-way
FANOVA model is

yij(t) = u(t) +o(t) + 6ij(t)7 teT, (22)

where y(t) is the overall functional mean; () is the functional effect of factor A with levels
i=1,...,a;and €i(t) is the functional subject effect for j = 1, .. ., n replicates.

2.3.2 FANOVA hypotheses. The following hypotheses test the equality of the functional
effects.

H, :o(t)=---=0o,t)=0, forall te T,

23
vs. H, :o,(t) #0, for some t € 7 and level i. (23)

If H, is rejected, then we can conclude that there is evidence of at least one functional effect,
and post hoc tests are performed for the following hypotheses to determine which pairs of
functional effects differ:

0o, 1 0(t) — o (t) =0, for all t € T with i # 7,
vs. H coy(t) — o, (¢) # 0, for some t € T with i £ 17

Lo—ory

(24)

2.3.3 Smoothing the functions. Before applying FANOVA to the data, the first step is to
create functions of the discretized values by taking a weighted sum of basis functions. The £da
package in R [31] has many helpful functions for smoothing, and we present a summary of
this process [24]. Basis functions are sets of mathematically independent functions, and by tak-
ing linear combinations of them, they can be used to approximate any function. The degree to
which the data are smoothed rather than interpolated is determined by the number of basis
functions. As the number of basis functions increases, the function can be more closely
approximated, but this introduces a possibility of overfitting to noise. Interpolation is achieved
when the number of basis functions is equal to the number of discrete values recorded in the
domain, but this is only desirable when the measurements are errorless. Once the functions
have been fit, they can be evaluated across a fine grid of values over the domain.

The first choice to be made in smoothing is which basis set to use. Many basis systems are
described in [24]. If possible, the set of basis functions chosen should have features that match
those of the functions being approximated. For example, if the data have periodic features, a
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Fourier basis can achieve a good approximation using fewer basis functions. Fourier bases are
most useful when the data have no strong local features, and there is no need to reflect discon-
tinuities in their derivatives. For data with no clear structure, cubic b-splines are the most com-
mon choice of approximation system, and they can be engineered to have discontinuity in the
functions.

Less important than the choice of basis set is how many basis functions should be used in
the approximation. However, the modern way to smooth functions is to use the maximum
number of basis functions, or to “saturate” the model, allowing the number of basis functions
to match the number of measured values for each observation. This would produce functions
that are interpolated and thereby very rough, so a penalty is imposed that controls the trade-
off between fit to the data and smoothness. The smoothness of the function is controlled by a
smoothing parameter that penalizes its roughness using the square of the second derivative of
the estimated functions. The smoothing parameter is chosen by minimizing generalized cross
validation of the squared error between the smooth and discretized values. By minimizing the
squared error, unusually high values are allowed to be influential, but their impact on the over-
all analysis is dampened.

The frequency of measurements necessary to construct a continuous function may vary
based on the variability of the data. The data should be collected frequently enough to capture
important changes in the process at the rate at which they occur. For example, if rapid changes
are expected to occur at a temporal scale of less than a minute, data should be collected more
frequently than a minute. In order to create a smooth function that represents the true data,
features of interest must be captured through the discretized measurements.

2.3.4 Functional F-Statistic. Given the smoothed functions, we then estimate the func-
tional effects as

a() =y (1), and
&i(t) :)_/i.(t)_y..(t)7

where

y.(t) = %ii}/ij(t), and

i=1 j=1
_ IS
¥ (t) :;Zyij(t)'
=1

Then, the functional sums of squares due to the hypothesis (SSA(#)) and error (SSE(t)) are
calculated as

SSA() = 13, (6~ 3 (O = w_3(0), and )

SSE() = 37 5, () — 7, (0 (26)

i=1 j=1

The general functional F-statistic is

_ SSA(H)/4,
- SSE()/q;”

where the degrees of freedom associated with SSA(¢) and SSE(t) are g4 = a — 1 and gg = a(n

F(1) teT, (27)
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— 1), respectively. These quantities are the functional versions of the scalar counterparts in
one-way univariate ANOVA.

2.3.5 Fpy statistic and permutation test. The functional Fr test statistic [32] summarizes
the variation across levels over the domain through integration, providing a scalar F-value and
corresponding p-value. This overall statistic is

o SSAta,
’ fTSSE(t)dt/qE

To approximate the distribution of Frr under the null hypothesis in Eq 23, the functions are

(28)

permuted (reassigned to a random level of Factor A) a large number of times, and Fry is recal-
culated for each permutation of the functions. The values of Fr; based on the permuted sam-
ples are denoted F},, for r=1, ..., R. Then, for a given significance level, 7, the 100 x (1 — T)th
percentile of the F.,. values is calculated. If the observed statistic, F°%, exceeds the critical value,
Fgit, then we reject Hy. Otherwise, we fail to reject H. A scalar p-value can be estimated by cal-
culating the proportion of F;, permutations that exceed F2&.

Additional F-based statistics have been proposed to summarize the general F(f) statistic,
such as the L*>-norm [33], globalizing-F [34], and F-max statistics [35]. Any of these F-based
statistics could be used for this method, but as shown in [36], the Fpr test is very close to the
nominal size and is slightly below 7 = 0.05, resulting in fewer rejections of a true null hypothe-
sis. Furthermore, it has high power under a variety of alternative hypotheses. Because of the
fundamental differences in the hypotheses between univariate ANOVA, repeated measures
ANOVA, and FANOVA, the power of the three methods cannot be compared to one another;
however, the power of the Frr test compared to the other F-based FANOVA tests is explored
further in [36]. The only assumption required for the FANOVA method described here is that
the individuals are independent of each other.

There are some challenges with implementing FANOVA. Smoothing the curves reduces
variability in the data, which underestimates the true error in the FANOVA model, but this
underestimation can be reduced by fitting the smooth curves to minimize the error between
them and the discretized values, as described in Section 2.3.3. Furthermore, smoothing reduces
the impact of outliers in the data, but even with data-driven choices in place, such as using
cross-validation to choose the smoothing parameter or choice of basis sets, some subjectivity
in smoothing is unavoidable. Thus, a researcher should investigate the effects of smoothing on
their conclusions. Secondly, knowledge of a programming language is currently required to
implement the nonparametric FANOVA that we present. However, the code that we devel-
oped for this analysis is publicly available on the Harvard Dataverse repository [37], and many
modifications can be made with a low level of effort to adapt the code to different PBR studies.

3 lllustration

To illustrate how traditional ANOVA can mask important features in PBR data, we develop a
one-way functional ANOVA example using artificial data for three levels of a factor over a
period of sixty minutes. The factor could correspond to a chemical toxicant with three concen-
tration levels, and the response could be the swim speed.

3.1 Simulating the data

In this illustration, we simulate 20 observations under each level by adding random variation
to the amplitude, period, and phase of sine curves.. Forj =1, ..., 20 and ¢ € [1, 60], let f; (t)
represent the functional observation of the i fish observed under level i = 1, 2, 3 evaluated at
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minute ¢. All of the observations can be represented as

¢
£,(t) = T0+ A, sin %-ﬁ-ﬂpu W, (29)

ij

where A;j represents variation in the amplitude; R;; represents variation in the period; P; rep-

resents variation in the phase; and W; ~ iid N(0, 0* = 36) represents random individual varia-

tion. The distributions for the amplitude, period and phase of each level are shown in Table 2.
For each level, the true average swim pattern can be represented as

_ _ t _
7() =70+ A, sin (% + nPi) : (30)

where A, R,, and P, are the averages of the distributions in Table 2 and are given in Table 3.
Note that the averages of the mean functions taken across the domain are equal, or

/Tﬁ(f)dt=/Tﬁ(t)dtz/Tﬁ(t)dt:m.

The left column of Fig 3 shows twenty functions simulated from Eq 29 for each level. All
sets of functions are smoothed prior to analysis with a Fourier basis set with ten basis func-
tions. The Fourier basis system is chosen because the simulated data are periodic, and the
number of basis functions is selected to balance interpolation and smoothness of the data. The
results of the Fourier smoothing are shown in the right column of Fig 3. For each function, the
mean across the domain is calculated, and Fig 4 shows a boxplot of these values. The boxplots
have very similar means for each of the three levels even though the function shapes at each
level are clearly different.

3.2 Univariate and repeated measures ANOVA

If we are interested in determining if there is a difference in the swim speeds of the fish
observed under the three levels, then it would problematic to employ univariate ANOVA
because reducing each function to its average does not account for the variability in swim
speed over time. In this particular case, the true mean for each of the functions in Fig 3 is 70,

Table 2. Distributions for random variation in amplitude, period, and phase for each level of the factor.

Function Amplitude Period Phase
fifH | Ay ~ iid Unif(37, 43) Ry, ~ iid N(15,0.025) P, ~ iid N(0, 0.0225)
3 0) Ay ~ iid Unif(17, 23) Ry; ~ iid N(15,0.025) Py; ~ iid N(1, 0.0225)
|30 As; ~ iid Unif(57, 63) Rs; ~ iid N(10,0.025) Ps; ~ iid N(1, 0.0225)

https://doi.org/10.1371/journal.pone.0300636.t002

Table 3. Average amplitude, period, and phase for the mean swim pattern functions.

Mean Function Amplitude Period Phase
fi(t) A, =40 R, =15 P, =0
JA0) A, =20 R,=15 P, =1
JAG) A, =60 R, =10 P,=1

https://doi.org/10.1371/journal.pone.0300636.t003
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Fig 3. The left side shows swim speed over time of twenty fish simulated under level 1 of the factor (top), level 2 of the
factor (middle), and level 3 of the factor (bottom), with the true average function overlaid in black. These are treated as
the observed data. The right side shows the corresponding smoothed functions of swim speed.

https://doi.org/10.1371/journal.pone.0300636.9003

so the null hypothesis in the univariate ANOVA is true. Therefore, the correct decision is to
fail to reject the null hypothesis. Indeed, when we apply a univariate ANOVA to the means of
the functions in Fig 4, a large p-value is produced, as shown in Table 4, indicating that there is
no significant difference in the mean swim speeds of the fish under the three conditions. How-
ever, when viewed over the domain, the fish observed under the three levels have very different
swim patterns.

Next, we perform a repeated measures ANOVA, and the results are shown in Table 5. We
find that the interaction between the factor and time is significant, which is an improvement
upon the univariate ANOVA that did not detect any difference between the three levels. Due
to the violation the normality and sphericity assumptions, however, these results are inconclu-
sive. Usually when assumptions of a test are not met, a nonparametric method is used, but no
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Fig 4. Boxplots of the averages of the functions simulated under three levels of a factor.

https://doi.org/10.1371/journal.pone.0300636.g004

such test can be performed in this context. Ignoring the violated assumptions, the significant

interaction between the factor and time implies that a post hoc analysis should be performed.
In this case, there would be 3 x 60 = 180 post hoc comparisons, and this is a prohibitive num-
ber of comparisons to make, so we do not present the post hoc analyses for the repeated mea-
sures ANOVA.

3.3 FANOVA application

Finally, we apply functional ANOVA to this simulated data. Using 10,000 permutations and a
significance level of T = 0.05, the permuted critical value is Fg} = 2.945, which is much smaller
than the observed value of F2% = 77.468. The p-value for F% is zero, meaning that 100% of
the permuted test statistic values were less than F2. Fig 5 shows the F°**(¢) statistic from the
one-way functional ANOVA results on the smoothed data. The F°*(#) statistic is particularly
high in regions where the functional means differ the most. FANOVA not only captures the
significant difference in the mean swim pattern functions, but it also identifies the approxi-
mate locations in the domain where the differences occur.

If the overall function mean and differences from this overall mean for each level are of
interest, then the estimated functional effects can provide insight, as shown in Fig 6. The top
panel of Fig 6 shows the overall functional mean effect, ji(t), and the bottom panel shows the
functional effect of each level of factor A, &,(t). To form 95% pointwise bootstrapped

Table 4. Univariate ANOVA results.

Df Sum Sq Mean Sq F-value Pr(>F)
Factor 2 0.23 0.11 0.17 0.8475
Residual 57 38.85 0.68

https://doi.org/10.1371/journal.pone.0300636.1004
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Table 5. Repeated measures ANOVA results.

Df Sum Sq Mean Sq F-value Pr(>F)
Factor 2 13.57 6.79 0.17 0.8475
Fish(Factor) 57 2331.24 40.90
Time 59 574781.29 9742.06 38.79 <0.0001
FactorxTime 118 1980732.70 16785.87 66.84 <0.0001
Residual 3363 844573.03 251.14

https://doi.org/10.1371/journal.pone.0300636.t005

confidence intervals for each of the estimated functional effects, we sample with replacement
1000 times from the sixty estimated functional subject effects,

V() =y() — (1) —a,(t), i=1,...3,j=1,...,20,
resulting in V/,(t) for r =1, .., 1000. These are used to construct bootstrapped observations as
yi(t) = V() + p(t) +a,(t), i=1,...3, j=1,...,20. (31)

The functional effects, /1" (¢) and 3;(t), are reestimated based on the bootstrap samples in Eq
31. The difference between the bootstrapped and observed functional effects are calculated,
and the 2.5% and 97.5% pointwise percentiles of the 1000 difference functions at each t are
taken to be the upper and lower bounds of the confidence interval. These confidence intervals
can only be interpreted at a point, but they provide a helpful visual reference for the variability
of the estimated functional effects. The computational time to construct the permutation test
and bootstrap intervals is minimal, requiring less than a minute on a personal laptop
computer.

3.3.1 Post hoc analysis. Once the null hypothesis is rejected, we perform post hoc analyses
to determine which pairs of levels differ significantly from one another. The tests employ a

Functional F-Statistic

- 95% perm. F

500

400
|

FObS(t)

200
1

0 10 20 30 40 50 60
Time (min)

Fig 5. One-way FANOVA F°*(f) statistic based on the smoothed dataset. The red dashed line indicates the 95%
pointwise percentile calculated from the permutations.

https://doi.org/10.1371/journal.pone.0300636.g005
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Fig 6. Estimated overall mean effect (top) and factor effect (bottom). Dashed lines are 95% pointwise confidence
intervals formed using 1000 bootstrap replicates.

https://doi.org/10.1371/journal.pone.0300636.9006

Bonferroni correction so that the significance level for each test is the nominal significance
level (7 = 0.05) divided by the number of tests. With three levels, there are three pairwise com-
parisons formed by calculating &,(¢) — &, (¢) with i # 7, so the adjusted level of significance is
0.05/3 = 0.017. The 95% pointwise bootstrapped confidence intervals are constructed as
described in Section 3.3 with 1000 replicates and are shown in Fig 7. There is a significant dif-
ference between the mean swim speeds of each pair of levels.

4 Real data example

In this example, we demonstrate one-way FANOVA on a dataset from a PBR study that com-
pares the effects of an environmental toxicant, 1-heptanol, of different concentrations on the
swim patterns of zebrafish over alternating lightness conditions [8]. Experimental results
examined here were obtained from studies that were approved by the Institutional Animal
Care and Use Committee at Baylor University. Swim speed is recorded for a total of fifty min-
utes, divided into a ten-minute dark acclimation period followed by four alternating light and
dark periods, each lasting ten minutes. A measurement is recorded every minute.

The zebrafish are divided into five groups of twenty four and exposed to concentrations of
1-heptanol at either 0%, 5%, 10%, 20%, and 40% of their median lethal concentration (LCs).
Fig 8 shows the observed swim speed of the 120 zebrafish, grouped by the concentration level.
It is clear that the zebrafish are more active in the dark periods than the light periods. As the
concentration of 1-heptanol increases, the zebrafish also appear to swim less overall.

For each individual fish, the mean swim speed across the light and dark periods is taken
(excluding the acclimation period) and is plotted in Fig 9 by concentration. Each concentra-
tion level has a clearly different mean. This implies that a one-way univariate ANOVA is likely
to be significant, but provides no information about where the differences occur in the
domain.
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Fig 7. Functional post hoc contrasts for the levels. The dashed line is the pointwise 98.33% confidence interval using
1000 bootstrap replicates. The asterisk on the right indicates significance of the Fpr test for the factor effect.

https://doi.org/10.1371/journal.pone.0300636.g007

4.1 Univariate and repeated measures ANOVA

The result of a univariate ANOVA applied to the means of each individual over the domain is
shown in Table 6. As expected, the univariate ANOVA results in a low p-value, indicating a
significant difference in the mean swim speed due to the concentration levels. Because the null
hypothesis is rejected, the proper procedure is to perform a post hoc analysis to determine
which pairs of concentration levels differ significantly, using the hypotheses in Eq 3. However,

the post hoc analysis does not provide any additional information about where in the domain

the differences occur.

Similarly, we apply repeated measures ANOVA to the data. Because all of the assumptions
for repeated measures ANOVA are violated, any results obtained from the analysis are incon-
clusive, but Table 7 provides the results for illustration. All of the terms in the model, including
the interaction, are significant. Because the assumptions are violated, pairwise comparisons for
the interaction between concentration and time would be invalid. Furthermore, with forty

repeated measurements, over 750 pairwise comparisons would be needed, and this is a prohib-
itive number to evaluate. Therefore, we do not include any post hoc analyses for the repeated

measures ANOVA.

17/31

PLOS ONE | https://doi.org/10.1371/journal.pone.0300636 May 21, 2024


https://doi.org/10.1371/journal.pone.0300636.g007
https://doi.org/10.1371/journal.pone.0300636

PLOS ONE

Functional analysis of PBR data

Control

150 250
| 1

Swim Speed (mm/min)
50
|

150 250
| |

Swim Speed (mm/min)
50
]

150 250
| |

Swim Speed (mm/min)
50

150 250
| 1

Swim Speed (mm/min)
50
|

150 250
I |

50
|

Swim Speed (mm/min)

Time (min)

Fig 8. Pointwise observations of swim speed by concentration of 1-heptanol. The color of the background denotes
the acclimation period (dark gray) and the alternating light (white) and dark (light gray) ten-minute periods.

https://doi.org/10.1371/journal.pone.0300636.9008

4.2 FANOVA application

Before applying FANOVA to the data, each function is smoothed using a cubic b-spline basis
with sixty basis functions. The cubic b-spline basis set is selected because the data do not have
a recognizable pattern. When the light turns on/off, the zebrafish display a rapid and immedi-
ate change in their swim pattern, so we build discontinuities into the smoothed functions at

these times by allowing additional flexibility at these points. The basis functions are saturated,
penalization is applied to the square of the second derivative, and the smoothing parameter is
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Table 6. Univariate ANOVA results.
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Fig 9. Boxplots of the averages of the functions for each concentration. Circles outside of the fences of the boxplots
represent potential outliers.

https://doi.org/10.1371/journal.pone.0300636.g009

obtained through generalized cross validation to minimize the squared error between the
smooth curves and discretized values. The smoothing results in the reduction of some large
values that occur in the data, but the smooth curves also reduce the noise of the data. Another
option would be to remove the functions with unusual values, and several methods for identifi-
cation of functional outliers are available but are not explored here [38, 39]. Once the smooth-
ing parameter is chosen, the smooth functions are then evaluated across a fine, evenly-spaced
grid, and negative values are replaced with zeroes so that the swim speed functions remain
non-negative across the domain. The results of the b-spline smoothing are shown in the center
panel of Fig 10. To visualize the average swim speed for each concentration level, the average

Df Sum Sq Mean Sq F-value Pr(>F)
Concentration 4 25577.23 6394.31 48.51 <0.0001
Residual 115 15157.14 131.80
https://doi.org/10.1371/journal.pone.0300636.t006
Table 7. Repeated measures ANOVA results.

Df Sum Sq Mean Sq F-value Pr(>F)

Concentration 4 1023089.35 255772.34 48.51 <0.0001
Fish(Concentration) 115 606285.45 5272.05
Time 39 2052231.27 52621.31 82.38 <0.0001
ConcentrationxTime 156 714188.17 4578.13 7.17 <0.0001
Residual 4485 2865001.94 638.80
https://doi.org/10.1371/journal.pone.0300636.t007
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Fig 10. Raw observations of swim speed (top), smoothed observations of swim speed (center), and the functional
averages of the smoothed swim speed curves for each concentration level (bottom).

https://doi.org/10.1371/journal.pone.0300636.9010

of the smooth swim speed curves for each concentration level is plotted in the bottom panel of
Fig 10. In the two dark periods in particular, the average swim speed decreases as the concen-
tration of 1-heptanol increases. In the light periods, there is only a small difference between
the concentration levels.

One-way FANOVA is applied to the smoothed curves plotted in Fig 10, and the parameters
in the model of Eq 22 are estimated. Fig 11 displays the estimated functional effects and 95%
bootstrapped pointwise confidence intervals formed using the process described in Section
3.3. The overall mean effect illustrates the overall lightness aversion of the zebrafish, which is
also clear in Figs 8 and 10. The concentration effects illustrate that higher concentrations result
in lower swim speeds, particularly in the dark regions. There is less difference in the concentra-
tion effect during the light periods. Note that because we do not include the acclimation period
in our analysis of the data, it is not included in this figure.

The functional F-statistic for the hypotheses given in Eq 23 is computed according to Eq 27.
Fig 12 shows the F” b(1) statistic from the one-way FANOVA results on the smoothed data.
The F°**(t) statistic is particularly high in the dark regions, where the functions differ the most.
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Fig 11. Estimated overall mean effect (top) and concentration effect (bottom). Dashed lines are 95% pointwise

confidence intervals formed using 1000 bootstrap replicates.

https://doi.org/10.1371/journal.pone.0300636.9011

We then perform the permutation test for the Fpy statistic described in Section 2.3.5 using
10,000 permutations. Fig 13 shows a histogram of the 10,000 permuted Fpr statistics, illustrat-
ing its sampling distribution under the null hypothesis. Using a significance level of 7= 0.05,
the permuted critical value of Frris F&f = 2.14, which is much smaller than the observed

Functional F-Statistic
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Fig 12. One-way FANOVA F°*(¢) statistic applied to the smoothed dataset. The red dashed line indicates the 95%

pointwise percentile calculated from the permutations.

https://doi.org/10.1371/journal.pone.0300636.9012
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Fobs = 19.39. The p-value for the Fpy test is zero, indicating that 100% of the permuted statis-
tics are below the critical value. In addition to concluding that significant differences in the
mean functions exist across concentrations, FANOVA also identifies approximately where in
the domain the differences occur.

4.2.1 Post hoc analysis. Because we reject Hp, a post hoc analysis of the concentration lev-
els to test the hypotheses given in Eq 24 are performed next with results in Table 8. We only
compare each concentration level with the control group because the average effect of an
increase in the concentration level on swim speed is negative, which can be seen in Fig 11. The
tests employ a Bonferroni correction so that the significance level for each test is the nominal
significance level (7 = 0.05) divided by the number of tests. The functional contrasts shown in

Table 8. The Fpy test results for the main effects and post hoc tests for the entire domain and each of the light/dark regions. For each region name, the letter refers to
the brightness condition (light/dark), and the number corresponds to whether the region is the first or second light/dark period. In the “Decision” column, FTR means

“fail to reject.”

Region

L1-D2: t € [10, 50)

L1: t € [10, 20)

D1: t € [20, 30)

L2: t € [30, 40)

D2: t € [40, 50)

H,

oy(t)=---=
oy (t) = a(t)
oy (t) = as(t)
oy (t) = ay(t)
oy (t) = as(t)
oy (t) = as(t)
on(t) = ay(t)
a,(t) = as(t)
oy (t) = as(t)
oy (t) = a(t)
o (1) = as(t)
oy (t) = as(t)
oy (t) = ayt)
oy (t) = as(t)
oy (t) = as(t)
oy (t) = ay(t)

oy () = as(t)

https://doi.org/10.1371/journal.pone.0300636.t008

Fgit Fts p-value Sig. Level Decision
2.14 19.39 0.0000 T Reject
0.36 0.26 0.0393 7/4 FTR
0.37 0.86 0.0001 7/4 Reject
0.37 2.35 0.0000 T/4 Reject
0.35 5.11 0.0000 T/4 Reject
0.46 0.22 0.0695 7/12 FTR
0.49 0.54 0.0028 7/12 Reject
0.50 1.60 0.0000 7/12 Reject
0.59 0.83 0.0003 7/12 Reject
0.59 2.60 0.0000 7/12 Reject
0.55 6.09 0.0000 7/12 Reject
0.50 0.87 0.0003 7/12 Reject
0.55 1.59 0.0000 7/12 Reject
0.54 2.89 0.0000 7/12 Reject
0.63 1.32 0.0000 7/12 Reject
0.63 3.22 0.0000 7/12 Reject
0.60 6.17 0.0000 7/12 Reject
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Fig 14. Functional post hoc contrasts for the concentration levels. The dashed line is the pointwise 95% confidence
interval using 1000 bootstrap replicates. The asterisks on the right of the plots indicate significance of the Fpr test for
the concentration effect across the entire domain, and the asterisks inside the plots indicate significance within the
corresponding brightness period.
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Fig 14 are constructed by calculating &,(t) — &, (¢) with i # 1 and forming 95% pointwise boot-
strapped confidence intervals with 1000 replicates. We determine that there is a significant dif-
ference between the mean swim speeds of the control group and the groups with
concentrations of 1-heptanol at 10%, 20%, and 40% of their LCsy.

With the functional approach, it is also possible to explore subregions of the post-hoc con-
trasts to determine under which brightness conditions the differences occur. Note that because
the 5% concentration level was not significantly different from the control group, no further
comparisons are made. Thus, there are twelve comparisons, so the significance level for each
test is 7/12. Table 8 shows that the 1-heptanol 20% (a4()) and 40% (as(t)) LCsq groups are sig-
nificantly different from the control group in all four subregions, while the 1-heptanol 10%
(03(#)) LCsy is significant in every region except for the first light region. While significance in
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Fig 15. The first derivative of the smoothed swim speed curves (top), and the functional averages of the first derivative
of the smoothed swim speed curves for each concentration level (bottom).

https://doi.org/10.1371/journal.pone.0300636.9015

the dark regions is expected, it is surprising to find significance in the light regions. This is
likely due to the time it takes for the fish to slow down at the beginning of the light periods.

4.3 Startle response analysis

Some researchers are particularly interested in the change in swim speed in response to a
change in conditions, called the startle response. There have been many approaches to analyz-
ing the startle response, most of which involve performing univariate or repeated measures
ANOVA for either the maximum swim speed post-stimulus [40, 41]; the average duration of
the response [41]; or the average swim speed for short periods directly preceding and/or fol-
lowing a change in conditions [5, 18, 42, 43]. Sometimes, t-tests or nonparametric alternatives
are performed for every time point against a baseline speed or control group [44, 45]. Another
approach involves grouping swim behavior into speed thresholds that indicate bursting and/or
freezing speeds [8, 15, 17]. Several researchers use univariate statistical methods to capture
more information about the startle response, such as analyzing both the average swim speed
and the net change in swim speed from the end of one period to the beginning of the following
period [9, 46] or analyzing responsiveness, response latency, and maximum angular velocity
during the startle [47]. All of this information is captured using the functional approach.
Because the startle response occurs over some period of time and may last varying amounts of
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time for each individual, the functional representation of the observations provides a natural
way to visualize and quantify it.

A novel way to analyze the startle response is to compute the acceleration function of the
zebrafish. Given smoothed curves of swim speed, the acceleration can be found by taking their
first derivative, as shown in the top panel of Fig 15. When the light is turned on, there is a
downward spike in the acceleration, and conversely, there is an upward spike when time the
light is turned off. The zebrafish appear to accelerate or decelerate for approximately three
minutes after a change in the brightness conditions. To assess if the acceleration differs across
the concentration levels, the average of the acceleration curves for each concentration level is
plotted in the bottom panel of Fig 15. As the concentration of 1-heptanol increases, the
strength of the average response of the zebrafish to the change in brightness decreases.

One-way FANOVA can also be applied to the smooth acceleration curves to test for a sig-
nificant difference in the acceleration of the groups for the three minutes after a change in
brightness. The functional F-statistic for the entire domain is shown in Fig 16. Because the
acclimation period is not relevant for this analysis, it is not included in the remaining figures
in this section. There is a significant difference in the average acceleration across the concen-
tration groups for approximately two to three minutes after the light turns on and a very strong
spike in the F-statistic for two to three minutes after the light turns off. Thus, we perform post
hoc analysis to determine which of the groups are significantly different from the control
group during those periods. Complete results are given in Table 9. The contrasts shown in Fig
17 indicate that the group with the highest concentration of 1-heptanol has a significantly
smaller startle response than the control group at the beginning of each period, which is
shown in Table 9. The 20% LCs, concentration group has a significantly smaller startle
response than the control group at the beginning of each period except for the first light
period, and the 10% LCs, concentration group has a significantly smaller startle response than
the control group at the beginning of the last two periods.
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Table 9. The Fpr test results for the main effects and post hoc tests for the acceleration curves across the entire domain and the first three minutes of each of the
light/dark regions. In the “Decision” column, FTR means “fail to reject.”

Region Hp

L1-D2: t € [10, 50) a(t)=---=as(t)
a,(t) = ax(t)
a,(t) = o5(t)
ay(t) = au(t)
ay(t) = as(t)

L1:t € [10, 13] a(t) = as(t)
ay(t) = ay(t)
a,(t) = as(t)

D1:t € [20, 23] a,(t) = a5(t)
a,(t) = au(t)
a,(t) = as(t)

L2: t € [30, 33] ay(t) = as(t)
ay(t) = au(t)
a,(t) = as(t)

D2: t € [40, 43] ay(t) = as(t)

a; () = ay(t)
ay(t) = as(t)
https://doi.org/10.1371/journal.pone.0300636.t009

Fgit Fgbs p-value Sig. Level Decision
1.50 7.94 0.0000 T Reject
0.23 0.14 0.1086 /4 FTR
0.23 0.39 0.0007 /4 Reject
0.22 1.16 0.0000 /4 Reject
0.23 1.76 0.0000 /4 Reject
0.67 0.59 0.0068 7/12 FTR
0.66 0.31 0.0452 7/12 FTR
0.67 2.80 0.0000 7/12 Reject
0.60 0.28 0.0499 7/12 FTR
0.60 2.03 0.0000 7/12 Reject
0.62 2.88 0.0000 7/12 Reject
0.57 0.87 0.0008 /12 Reject
0.58 1.58 0.0000 7/12 Reject
0.60 3.08 0.0000 7/12 Reject
0.58 0.95 0.0006 7/12 Reject
0.59 3.28 0.0000 7/12 Reject
0.57 4.74 0.0000 7/12 Reject

The startle response is an important behavioral response of interest in PBR literature, and
the functional approach provides researchers with a systematic approach to analyzing the star-
tle response. By using FANOVA, we are able to analyze both the duration and magnitude of
the startle response and determine differences in treatment groups over regions of the domain
of varying lengths. This could offer a new approach for diagnostic evaluation of tipping points
of chemical contaminants following exposure.

5 Conclusion

Zebrafish PBR studies are of great value to toxicological and pharmacological research. How-
ever, the typical statistical methods applied in PBR studies prevents researchers from fully
exploiting all of the information contained in the data. The most common approach, univari-
ate ANOVA for each individual’s average across the entire domain, reduces each individual’s
values to a single value and can produce untrustworthy results due to violation of the indepen-
dence of observations within each individual. Even repeated measures ANOVA, the method
used in PBR literature that best accounts for the temporal dependence in observations, has lim-
itations in its interpretability, practical use, and assumptions that may not be met. To over-
come these problems, we suggest the use of functional ANOVA, a method that naturally
retains the functional structure of PBR data and produces valid, fast, and interpretable results.
The FANOVA presented in this paper only requires that the observations are independent and
can be used to analyze the response over the entire domain, detecting which regions of the
domain have the largest differences. Because of the smooth functional representation of the
data, it becomes possible to take the derivative of the speed functions to find the acceleration
curves, so researchers can analyze the startle response in addition to the original measurement.
Furthermore, FANOVA can be applied to any subregion of the domain, so researchers can
apply FANOVA to the regions where the startle responses occur.
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Fig 17. Functional post hoc contrasts for the acceleration curves for the concentration levels. The dashed line is the
pointwise 98.75% confidence interval using 1000 bootstrap replicates. Regions of interest for the startle response are
represented in light pink shading for dark to light transitions and dark pink shading for light to dark transitions. The
asterisks indicate significance of the Fpy test for the concentration effect in the corresponding region.

https://doi.org/10.1371/journal.pone.0300636.g017

In this paper, we present a framework for implementing one-way FANOVA that has mini-
mal assumptions and demonstrate how to apply it. We compare the results to those obtained
from univariate and repeated measures ANOVA, illustrating the ways FANOVA overcomes
their limitations. In order to facilitate the use of FANOVA in future PBR research, the R code
and data used to perform the analyses in this paper and to create every figure and table are pro-
vided on the Harvard Dataverse data repository [37].

It is possible to extend this work beyond light/dark transition tests to other responses that
are considered functional. Many studies that examine zebrafish also collect data on spontane-
ous movement/tail flexes [21, 48-50], bioaccumulation [51], and/or hatching rate [11]. Even
when the light/dark transition test is not used, general locomotor data are commonly collected
to assess the behavioral response of zebrafish [3, 15, 52]. While we have not performed an
exhaustive comparison of all statistical methods historically used on these types of data, we
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argue that functional methods can and should be used. Any data that are collected repeatedly
for the same subjects over a continuous domain can benefit from a functional approach.
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