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Abstract

Fish photolocomotor behavioral response (PBR) studies have become increasingly preva-

lent in pharmacological and toxicological research to assess the environmental impact of

various chemicals. There is a need for a standard, reliable statistical method to analyze

PBR data. The most common method currently used, univariate analysis of variance

(ANOVA), does not account for temporal dependence in observations and leads to incom-

plete or unreliable conclusions. Repeated measures ANOVA, another commonly used

method, has drawbacks in its interpretability for PBR study data. Because each observation

is collected continuously over time, we instead consider each observation to be a function

and apply functional ANOVA (FANOVA) to PBR data. Using the functional approach not

only accounts for temporal dependency but also retains the full structure of the data and

allows for straightforward interpretation in any subregion of the domain. Unlike the traditional

univariate and repeated measures ANOVA, the FANOVA that we propose is nonparametric,

requiring minimal assumptions. We demonstrate the disadvantages of univariate and

repeated measures ANOVA using simulated data and show how they are overcome by

applying FANOVA. We then apply one-way FANOVA to zebrafish data from a PBR study

and discuss how those results can be reproduced for future PBR studies.

1 Introduction

In photolocomotor behavioral response (PBR) studies, researchers utilize known brightness

preference/avoidance in fish in order to compare the behavior of treatment groups in alternat-

ing light/dark conditions over time. This is also often called the “light/dark transition test.”

PBR studies have become increasingly prevalent over the past two decades in pharmacological

and toxicological research due to their useful indication of the behavioral effect of chemical

compounds and potential underlying mode of action. In Google Scholar, when the keywords

“fish AND locomotor AND behavioral response” are searched, over 90,000 works are

returned. When the same keywords are searched in both PubMed and Scopus, over 15,000
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works are represented. When the keywords “fish AND light/dark AND transition” are

searched across all three search engines, over 39,000 works are listed. The widespread presence

of these studies reflects the fundamental importance of behavioral effects when examining bio-

logical activities of chemicals. In fact, the zebrafish model is increasingly used in basic biomed-

ical and environmental research and translational applications because of societal animal

welfare concerns and due to governmental mandates that are moving away from use of rodent

models. Behavioral changes reflect physiological changes and can impact population-level

development, thus acting as an effective tool for assessing the environmental impact of chemi-

cal contaminants [1] and behavioral phenotypes during drug discovery [2].

1.1 Standard statistical methods used in PBR studies

The standard model used to analyze the behavioral effects of chemical concentrations in the

PBR literature is univariate analysis of variance (ANOVA). Responses, such as swim speed, are

averaged for each observation either over the entire domain or a section of the domain, and

the averages are then used in subsequent analysis. The most common strategy is to calculate

the average of the response variable across the entire domain, regardless of light/dark period

[3–5]. It is also common for univariate ANOVA to be repeated twice, once for the measure-

ments in the light periods and once for those in the dark periods [6–8]. Alternatively, it may be

repeated several times for each individual light/dark period itself [9–11]. When assumptions

for univariate one-way ANOVA are not met, Fisher’s Exact test [12] or the nonparametric

Kruskal-Wallis test [4, 13, 14] are often used. Other approaches include repeated measures

ANOVA [15, 16]; multiple t-tests for each level of the factor against the control group [17]; t-
tests for every time point [18]; and a Kolmogorov-Smirnov test comparing the area under the

curve (AUC) of differential entropy between treatment and control groups [14, 19].

We surveyed over fifty papers in the PBR literature, and while these are not necessarily rep-

resentative of the entire population of PBR studies, even in this small sample, many different

statistical methods to analyze PBR data are represented. These papers were selected based on

the expertise of our colleagues who use them for reference in their work. Fig 1 shows ten differ-

ent categories of methods being used to analyze PBR data in these papers with the majority

being a type of one-way ANOVA in which measurements are averaged for each fish. This

inconsistency makes comparing study results challenging, if not impossible. Furthermore, [20]

mention that there are no available publications comparing the different statistical methods

for behavioral studies of zebrafish and recognizes that handling time series data requires mod-

els with greater complexity. Over 80% of the papers that we surveyed did not account for the

temporal dependency of PBR data, losing useful information about the observations.

Because the data in PBR studies are recorded over time, each individual fish’s observations

are dependent. By averaging across the domain and applying univariate ANOVA, the variabil-

ity within each individual is not accounted for, thereby underestimating the error in the

model. This could result in misleading conclusions, as we demonstrate in this paper. Because

repeated measures ANOVA models time as a factor, it accounts for individual variability

across the domain and is a more favorable way to handle PBR data. However, it is difficult to

interpret the interaction between treatment groups and time. When the interaction is signifi-

cant, post hoc tests must be performed at every time point to determine where in time the dif-

ferences in treatment levels occur. Most studies that use repeated measures ANOVA test the

average differences of the treatment levels in each light/dark period rather than the differences

at each time point [21, 22]. Because the raw data are not consistently made publicly available

for each PBR study, it is difficult to assess the effects of the statistical methods used on the con-

clusions drawn. In spite of the fact that many statistical methods are being used in PBR
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literature, none of the standard methods involve treating the observations as continuous func-

tions, as we propose in this paper. This may occur because once a methodology has been estab-

lished, it gains momentum, and many researchers continue to use similar methods.

Furthermore, functional data analysis (FDA) itself is still a developing branch of statistics, so

we hope to encourage researchers to adopt this new paradigm.

1.2 The functional approach

FDA is a branch of statistical science that deals with data observed over a continuous domain,

such as time, and can be respresented as smooth functions [23, 24]. FDA assumes that the data

are smooth, naturally accounting for the dependence across the domain. Data in PBR studies

are functional in their structure, making FDA the proper approach to use in these studies.

Because there are an infinite number of ways that functions can differ and yet still share the

same mean, information is lost by averaging across the domain and applying univariate

ANOVA. For example, Fig 2 shows eight different functions that share the same mean over

their domain, and their shapes clearly differ. If univariate ANOVA were to be performed on

the means of these functions, no difference would be found. Similarly, the AUC used in [14,

19] is a summary value and suffers from the same problem in that equal values of AUC can

arise from two functions with very different patterns. However, functional ANOVA

(FANOVA) would detect a difference in the functions. Results obtained using the functional

approach, unlike the univariate approach, are both valid and straightforward to interpret.

In this paper, we present a framework for implementing one-way FANOVA that has mini-

mal assumptions and demonstrate how it can be implemented in PBR study datasets. In Sec-

tion 2, we review the methodology for univariate ANOVA and repeated measures ANOVA

and present functional ANOVA. For each method, we define its models, hypotheses, tests, and

assumptions. The FANOVA that we recommend uses a nonparametric permutation test for

Fig 1. Pie chart representing survey of methods used to analyze PBR study data. Methods represented in shades of

blue are variations of traditional ANOVA.

https://doi.org/10.1371/journal.pone.0300636.g001
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an F-based test statistic and bootstrapped pointwise confidence intervals for the estimated

functional effects and contrasts. In Section 3, we illustrate the most extreme possible conse-

quences of applying univariate or repeated measures ANOVA to PBR study data in a simulated

example, and we compare these results with one-way FANOVA. Section 4 details a real exam-

ple using PBR study data and shows how the functional representation of the data provides a

seamless analysis of the startle response when brightness conditions change by constructing

acceleration functions. Section 5 presents concluding remarks.

2 Methodology

In this section, we describe the methodology for traditional univariate ANOVA, repeated mea-

sures ANOVA, and FANOVA. To streamline the presentation, we present the balanced one-

way case with equal sample sizes in each treatment group.

2.1 Univariate ANOVA

In this section, we review the univariate ANOVA model, hypotheses, F-statistic, and assump-

tions. Traditional analysis of variance became widely known after being presented in the clas-

sic text by Fisher [25].

2.1.1 Univariate ANOVA model. The response, yij, is the observed value of subject j at

level i of factor A. The one-way univariate ANOVA model is

yij ¼ m þ ai þ �ij; ð1Þ

where μ is the overall mean response across the domain; αi is the treatment effect of factor A
with levels i = 1, . . ., a; and �ij is the subject effect for j = 1, . . ., ni replicates. In the balanced

case, ni = n.

2.1.2 Univariate ANOVA hypotheses. The following set of hypotheses is used to test the

equality of the treatment effect of factor A:

H0 : a1 ¼ � � � ¼ aa ¼ 0;

vs: H1 : ai 6¼ 0; for some i:
ð2Þ

Fig 2. Eight functions that share an overall mean of 70 across their domain.

https://doi.org/10.1371/journal.pone.0300636.g002
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If H0 is rejected, then we conclude that there is evidence to support the presence of at least one

treatment effect, and post hoc tests are performed on the following hypotheses to determine

which pairs of treatment effects differ:

H0;ai�ai0
: ai � ai0 ¼ 0; for i 6¼ i0;

vs: H1;ai�ai0
: ai � ai0 6¼ 0; for i 6¼ i0:

ð3Þ

2.1.3 Univariate F-Test. The parameters in the model are estimated as follows:

m̂ ¼ �y ::; and

â i ¼ �yi: � �y ::;

where

�y :: ¼
1

an

Xa

i¼1

Xn

j¼1

yij; and

�yi: ¼
1

n

Xn

j¼1

yij :

Then, the sums of squares due to the hypothesis (SSA) and error (SSE) are calculated as

SSA ¼ n
Xa

i¼1

½�yi: � �y ::�
2

¼ n
Xa

i¼1

â2

i ; and ð4Þ

SSE ¼
Xa

i¼1

Xn

j¼1

½�yij � �yi:�
2

ð5Þ

The univariate F-statistic is

Fobs ¼
SSA=qA
SSE=qE

; ð6Þ

and the degrees of freedom (df) associated with SSA and SSE are qA = a − 1 and qE = a(n − 1),

respectively.

To obtain the critical value for the rejection region, Fcrit, the (1 − τ)th percentile of the FqA,qE

distribution for significance level τ is calculated. If Fobs > Fcrit, then reject H0, and post hoc

analyses are performed. Otherwise, we fail to reject H0.

2.1.4 Univariate ANOVA assumptions. The following assumptions are required to per-

form univariate ANOVA:

1. The response variable for each factor level is normally distributed.

2. The distributions of the response variable for each level have the same variance.

3. Each observation is independent of the others.

Averaging the PBR values of an individual across the domain and then applying univariate

ANOVA to them ignores the fact that values of each individual are dependent as well as the

variability of an individual over the course of the experiment. Therefore, the results may be

misleading and should consider biological relevance about the differences in the individuals as

a whole. Violation of the independence assumption is considered to have the highest impact of

all of these assumptions [26].
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2.2 Repeated measures ANOVA

In this section, a review of repeated measures ANOVA model, hypotheses, and F-statistics is

given. This exposition follows largely from [27].

2.2.1 Repeated measures ANOVA model. The response, yijk, represents the response at

time k from the jth subject in level i of factor A. The repeated measures ANOVA model is

yijk ¼ m þ ai þ bk þ ðabÞik þ pjðiÞ þ �ijk; ð7Þ

where μ is the overall mean response across the domain, and αi is the fixed effect of factor A
with levels i = 1, . . ., a. Additionally, βk is the fixed effect of the time point with levels k = 1, . . .,

t with
Pt

k¼1
bk ¼ 0, and finally, (αβ)ik is the fixed effect of the interaction between the ith level

and the kth time point, with constraints

Xa

i¼1

ðabÞik ¼
Xt

k¼1

ðabÞik ¼ 0:

The parameters πj(i) are random effects for the jth subject at the ith level with j = 1, . . ., n. The

πj(i) are assumed to be independent and normally distributed with mean zero and variance s2
p
.

Finally, the �ijk are independent random error terms with �ijk � Nð0; s2
�
Þ.

2.2.2 Repeated measures ANOVA hypotheses. The following series of hypotheses is used

to test the equality of the treatment effect of factor A for all of the time points. The first hypoth-

esis tests the significance of the interaction between the factor and time,

H0AT : ðabÞ
11

¼ � � � ¼ ðabÞat ¼ 0;

vs: H1AT : ðabÞik 6¼ 0; for some ik:
ð8Þ

If H0AT is rejected, then there is evidence to support the presence of at least one interaction

effect between factor A and time, and the cell means, ηik = μ + αi + βk + (αβ)ik, are then tested

for equality based on the following post hoc hypothesis:

H0;Zik�Z
ðikÞ0

: Zik � ZðikÞ0 ¼ 0; for ik 6¼ ðikÞ
0
;

vs: H1;Zik�Z
ðikÞ0

: Zik � ZðikÞ0 6¼ 0; for ik 6¼ ðikÞ
0
:

ð9Þ

Otherwise, failure to reject H0AT indicates that there is no significant evidence that the interac-

tion terms differ from zero, leading to tests of the main effects based on the following two

hypotheses:

H0A : a1 ¼ � � � ¼ aa ¼ 0;

vs: H1A : ai 6¼ 0; for some i;
ð10Þ

and

H0T : b1 ¼ � � � ¼ bt ¼ 0;

vs: H1T : bk 6¼ 0; for some k:
ð11Þ

If H0A or H0T are rejected, then the following hypotheses are tested:

H0;ai�ai0
: ai � ai0 ¼ 0; for i 6¼ i0;

vs: H1;ai�ai0
: ai � ai0 6¼ 0; for i 6¼ i0;

ð12Þ
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and

H0;bj�bk0
: bk � bk0 ¼ 0; for k 6¼ k0;

vs: H1;bj�bk0
: bk � bk0 6¼ 0; for k 6¼ k0:

ð13Þ

When there are a large number of repeated measurements, performing post hoc tests for each

individual time point or interaction between factor A and time becomes impractical and

unwieldy.

2.2.3 Repeated measures F-Test. First, the effects are estimated as,

m̂ ¼ �y ���;

â i ¼ �yi�� � �y ���;

b̂k ¼ �y ��k � �y ���;

ðcabÞik ¼ �yi�k � �yi�� � �y ��k þ �y ���; and

p̂ jðiÞ ¼ �yij� � �yi��;

where

�y ��� ¼
1

ant

Xa

i¼1

Xn

j¼1

Xt

k¼1

yijk;

�yi�� ¼
1

nt

Xn

j¼1

Xt

k¼1

yijk;

�y ��k ¼
1

an

Xa

i¼1

Xn

j¼1

yijk;

�yi�k ¼
1

n

Xn

j¼1

yijk; and

�yij� ¼
1

t

Xt

k¼1

yijk:

Table 1 displays the sum of squares and degrees of freedom for each source of variation.

The sums of squares are calculated as

SSA ¼ t
Xa

i¼1

n½�yi�� � �y ����
2

¼ t
Xa

i¼1

nâ2

i ; ð14Þ

SSSðAÞ ¼ t
Xa

i¼1

Xn

j¼1

½�yij� � �yi���
2

¼ t
Xa

i¼1

Xn

j¼1

p̂2

jðiÞ; ð15Þ

Table 1. Sums of squares and degrees of freedom for repeated measures ANOVA.

Source DF Sum Sq

Factor A a − 1 SSA
Subjects(Factor A) a(n − 1) SSS(A)

Time t − 1 SST
Factor A×Time (a − 1)(t − 1) SSAT
Residual a(n − 1)(t − 1) SSE

https://doi.org/10.1371/journal.pone.0300636.t001
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SST ¼ an
Xt

k¼1

½�y ��k � �y ����
2

¼ an
Xt

k¼1

b̂2

k; ð16Þ

SSAT ¼
Xa

i¼1

Xn

j¼1

Xt

k¼1

½�yi�k � �yi�� � �y ��k þ �y ����
2

¼
Xa

i¼1

Xn

j¼1

Xt

k¼1

ðcabÞ
2

ik; and ð17Þ

SSE ¼
Xa

i¼1

Xn

j¼1

Xt

k¼1

½yijk � �yi�k � �yij� þ �yi���
2
: ð18Þ

Eqs 14, 16 and 17 are the sums of squares needed to test the hypotheses in Eqs 8, 10 and 11,

respectively, while Eq 18 is the SSE. The F-statistic for testing for differences among groups is

given by

FA ¼
MSA
MSSA

¼
SSA=ða � 1Þ

SSSA=aðn � 1Þ
ð19Þ

with a − 1 and a(n − 1) numerator and denominator df, respectively. This test requires the

assumption that the within-group covariance matrices are equal. The F-statistic for testing dif-

ferences among time points is given by

FT ¼
MST
MSE

¼
SST=ðt � 1Þ

SSE=½aðn � 1Þðt � 1Þ�
ð20Þ

with t − 1 and a(n − 1)(t − 1) numerator and denominator df, respectively. Similarly, the F-sta-

tistic for testing the significance of the factor A × time interaction is given by

FAT ¼
MSAT
MSE

¼
SSAT=½ða � 1Þðt � 1Þ�

SSE=½aðn � 1Þðt � 1Þ�
ð21Þ

with (a − 1)(t − 1) numerator and a(n − 1)(t − 1) denominator df. Both of the prior tests

require the assumption that the within-group covariance matrices are equal and that the vari-

ances of the differences between variables are equal.

2.2.4 Repeated measures ANOVA assumptions. The following assumptions are required

to perform repeated measures ANOVA:

1. The response variable for each factor level is normally distributed.

2. All ant observations are independent.

3. The within-group covariance matrices are equal.

4. The variances of the pairwise differences between all combinations of groups are equal; i.e.,

Var(yijk − yi0jk) is constant for all i 6¼ i0, and Var(yijk − yijk0) is constant for all k 6¼ k0. This is

usually referred to as the sphericity assumption.

Because time is treated as a factor in repeated measures ANOVA, it is a valid way to analyze

PBR study data, but there are several disadvantages to using this approach. It is difficult to

interpret the interaction between groups and time. The assumptions of normality, within-

group homogeneity of variance, and sphericity are often violated and can bias results. For

example, [28] showed that if the sphericity assumption is violated, then the true type I error

rate is positively biased, causing excessive false rejection of the null hypotheses for the
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hypotheses in Eqs 8 and 11. Additionally, [29] notes that even repeated measures ANOVA

does not account for temporal autocorrelation between measurements, which is likely present

in PBR data, leading to lower power. This limitation is greatest when adjacent time points have

very similar responses, which is the case for most of the adjacent time points in PBR study

data. Finally, due to the number of repeated measurements over time in PBR data, post hoc

analyses require many tests. Functional ANOVA, however, does not have these disadvantages.

The functional ANOVA that we present makes minimal assumptions and provides simple

interpretations and post hoc analyses.

2.3 FANOVA

In this section, we present the one-way FANOVA model, hypotheses, and F-based statistics.

One-way FANOVA is described in [24, 30]. We also present a nonparametric approach to test-

ing these hypotheses that relies on very few assumptions.

2.3.1 FANOVA model. The functional response, yij(t), is defined over a domain T , with i
corresponding to the levels of factor A and j corresponding to the subject. In this case, t 2 T ,

where T represents an interval of time, and t represents a specific point in time. The one-way

FANOVA model is

yijðtÞ ¼ mðtÞ þ aiðtÞ þ �ijðtÞ; t 2 T ; ð22Þ

where μ(t) is the overall functional mean; αi(t) is the functional effect of factor A with levels

i = 1, . . ., a; and �ij(t) is the functional subject effect for j = 1, . . ., n replicates.

2.3.2 FANOVA hypotheses. The following hypotheses test the equality of the functional

effects.

H0 : a1ðtÞ ¼ � � � ¼ aaðtÞ ¼ 0; for all t 2 T ;

vs: H1 : aiðtÞ 6¼ 0; for some t 2 T and level i:
ð23Þ

If H0 is rejected, then we can conclude that there is evidence of at least one functional effect,

and post hoc tests are performed for the following hypotheses to determine which pairs of

functional effects differ:

H0;ai�ai0
: aiðtÞ � ai0 ðtÞ ¼ 0; for all t 2 T with i 6¼ i0;

vs: H1;ai�ai0
: aiðtÞ � ai0 ðtÞ 6¼ 0; for some t 2 T with i 6¼ i0:

ð24Þ

2.3.3 Smoothing the functions. Before applying FANOVA to the data, the first step is to

create functions of the discretized values by taking a weighted sum of basis functions. The fda
package in R [31] has many helpful functions for smoothing, and we present a summary of

this process [24]. Basis functions are sets of mathematically independent functions, and by tak-

ing linear combinations of them, they can be used to approximate any function. The degree to

which the data are smoothed rather than interpolated is determined by the number of basis

functions. As the number of basis functions increases, the function can be more closely

approximated, but this introduces a possibility of overfitting to noise. Interpolation is achieved

when the number of basis functions is equal to the number of discrete values recorded in the

domain, but this is only desirable when the measurements are errorless. Once the functions

have been fit, they can be evaluated across a fine grid of values over the domain.

The first choice to be made in smoothing is which basis set to use. Many basis systems are

described in [24]. If possible, the set of basis functions chosen should have features that match

those of the functions being approximated. For example, if the data have periodic features, a
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Fourier basis can achieve a good approximation using fewer basis functions. Fourier bases are

most useful when the data have no strong local features, and there is no need to reflect discon-

tinuities in their derivatives. For data with no clear structure, cubic b-splines are the most com-

mon choice of approximation system, and they can be engineered to have discontinuity in the

functions.

Less important than the choice of basis set is how many basis functions should be used in

the approximation. However, the modern way to smooth functions is to use the maximum

number of basis functions, or to “saturate” the model, allowing the number of basis functions

to match the number of measured values for each observation. This would produce functions

that are interpolated and thereby very rough, so a penalty is imposed that controls the trade-

off between fit to the data and smoothness. The smoothness of the function is controlled by a

smoothing parameter that penalizes its roughness using the square of the second derivative of

the estimated functions. The smoothing parameter is chosen by minimizing generalized cross

validation of the squared error between the smooth and discretized values. By minimizing the

squared error, unusually high values are allowed to be influential, but their impact on the over-

all analysis is dampened.

The frequency of measurements necessary to construct a continuous function may vary

based on the variability of the data. The data should be collected frequently enough to capture

important changes in the process at the rate at which they occur. For example, if rapid changes

are expected to occur at a temporal scale of less than a minute, data should be collected more

frequently than a minute. In order to create a smooth function that represents the true data,

features of interest must be captured through the discretized measurements.

2.3.4 Functional F-Statistic. Given the smoothed functions, we then estimate the func-

tional effects as

m̂ðtÞ ¼ �y ::ðtÞ; and

â iðtÞ ¼ �yi:ðtÞ � �y ::ðtÞ;

where

�y ::ðtÞ ¼
1

an

Xa

i¼1

Xn

j¼1

yijðtÞ; and

�yi:ðtÞ ¼
1

n

Xn

j¼1

yijðtÞ:

Then, the functional sums of squares due to the hypothesis (SSA(t)) and error (SSE(t)) are

calculated as

SSAðtÞ ¼ n
Xa

i¼1

½�yi:ðtÞ � �y ::ðtÞ�
2

¼ n
Xa

i¼1

â2

i ðtÞ; and ð25Þ

SSEðtÞ ¼
Xa

i¼1

Xn

j¼1

½�yijðtÞ � �yi:ðtÞ�
2
: ð26Þ

The general functional F-statistic is

FobsðtÞ ¼
SSAðtÞ=qA
SSEðtÞ=qE

; t 2 T ; ð27Þ

where the degrees of freedom associated with SSA(t) and SSE(t) are qA = a − 1 and qE = a(n
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− 1), respectively. These quantities are the functional versions of the scalar counterparts in

one-way univariate ANOVA.

2.3.5 FFT statistic and permutation test. The functional FFT test statistic [32] summarizes

the variation across levels over the domain through integration, providing a scalar F-value and

corresponding p-value. This overall statistic is

Fobs
FT ¼

R

T SSAðtÞdt=qAR

T SSEðtÞdt=qE
: ð28Þ

To approximate the distribution of FFT under the null hypothesis in Eq 23, the functions are

permuted (reassigned to a random level of Factor A) a large number of times, and FFT is recal-

culated for each permutation of the functions. The values of FFT based on the permuted sam-

ples are denoted Fr
FT for r = 1, . . ., R. Then, for a given significance level, τ, the 100 × (1 − τ)th

percentile of the Fr
FT values is calculated. If the observed statistic, Fobs

FT , exceeds the critical value,

Fcrit
FT , then we reject H0. Otherwise, we fail to reject H0. A scalar p-value can be estimated by cal-

culating the proportion of Fr
FT permutations that exceed Fobs

FT .

Additional F-based statistics have been proposed to summarize the general F(t) statistic,

such as the L2-norm [33], globalizing-F [34], and F-max statistics [35]. Any of these F-based

statistics could be used for this method, but as shown in [36], the FFT test is very close to the

nominal size and is slightly below τ = 0.05, resulting in fewer rejections of a true null hypothe-

sis. Furthermore, it has high power under a variety of alternative hypotheses. Because of the

fundamental differences in the hypotheses between univariate ANOVA, repeated measures

ANOVA, and FANOVA, the power of the three methods cannot be compared to one another;

however, the power of the FFT test compared to the other F-based FANOVA tests is explored

further in [36]. The only assumption required for the FANOVA method described here is that

the individuals are independent of each other.

There are some challenges with implementing FANOVA. Smoothing the curves reduces

variability in the data, which underestimates the true error in the FANOVA model, but this

underestimation can be reduced by fitting the smooth curves to minimize the error between

them and the discretized values, as described in Section 2.3.3. Furthermore, smoothing reduces

the impact of outliers in the data, but even with data-driven choices in place, such as using

cross-validation to choose the smoothing parameter or choice of basis sets, some subjectivity

in smoothing is unavoidable. Thus, a researcher should investigate the effects of smoothing on

their conclusions. Secondly, knowledge of a programming language is currently required to

implement the nonparametric FANOVA that we present. However, the code that we devel-

oped for this analysis is publicly available on the Harvard Dataverse repository [37], and many

modifications can be made with a low level of effort to adapt the code to different PBR studies.

3 Illustration

To illustrate how traditional ANOVA can mask important features in PBR data, we develop a

one-way functional ANOVA example using artificial data for three levels of a factor over a

period of sixty minutes. The factor could correspond to a chemical toxicant with three concen-

tration levels, and the response could be the swim speed.

3.1 Simulating the data

In this illustration, we simulate 20 observations under each level by adding random variation

to the amplitude, period, and phase of sine curves.. For j = 1, . . ., 20 and t 2 [1, 60], let fi,j(t)
represent the functional observation of the ith fish observed under level i = 1, 2, 3 evaluated at
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minute t. All of the observations can be represented as

fi;jðtÞ ¼ 70 þ Ai;j sin
pt
Ri;j

þ pPi;j

 !

þ Wi; ð29Þ

where Ai,j represents variation in the amplitude; Ri,j represents variation in the period; Pi,j rep-

resents variation in the phase; and Wi * iid N(0, σ2 = 36) represents random individual varia-

tion. The distributions for the amplitude, period and phase of each level are shown in Table 2.

For each level, the true average swim pattern can be represented as

fiðtÞ ¼ 70 þ �Ai sin
pt
�Ri

þ p�Pi

� �

; ð30Þ

where �Ai,
�Ri, and �Pi are the averages of the distributions in Table 2 and are given in Table 3.

Note that the averages of the mean functions taken across the domain are equal, or
Z

T

�f1ðtÞdt ¼

Z

T

�f2 ðtÞdt ¼

Z

T

�f3ðtÞdt ¼ 70:

The left column of Fig 3 shows twenty functions simulated from Eq 29 for each level. All

sets of functions are smoothed prior to analysis with a Fourier basis set with ten basis func-

tions. The Fourier basis system is chosen because the simulated data are periodic, and the

number of basis functions is selected to balance interpolation and smoothness of the data. The

results of the Fourier smoothing are shown in the right column of Fig 3. For each function, the

mean across the domain is calculated, and Fig 4 shows a boxplot of these values. The boxplots

have very similar means for each of the three levels even though the function shapes at each

level are clearly different.

3.2 Univariate and repeated measures ANOVA

If we are interested in determining if there is a difference in the swim speeds of the fish

observed under the three levels, then it would problematic to employ univariate ANOVA

because reducing each function to its average does not account for the variability in swim

speed over time. In this particular case, the true mean for each of the functions in Fig 3 is 70,

Table 2. Distributions for random variation in amplitude, period, and phase for each level of the factor.

Function Amplitude Period Phase

f1,j(t) A1,j * iid Unif(37, 43) R1,j * iid N(15, 0.025) P1,j * iid N(0, 0.0225)

f2,j(t) A2,j * iid Unif(17, 23) R2,j * iid N(15, 0.025) P2,j * iid N(1, 0.0225)

f3,j(t) A3,j * iid Unif(57, 63) R3,j * iid N(10, 0.025) P3,j * iid N(1, 0.0225)

https://doi.org/10.1371/journal.pone.0300636.t002

Table 3. Average amplitude, period, and phase for the mean swim pattern functions.

Mean Function Amplitude Period Phase

�f1 ðtÞ �A1 ¼ 40 �R1 ¼ 15 �P1 ¼ 0

�f2 ðtÞ �A2 ¼ 20 �R2 ¼ 15 �P2 ¼ 1

�f3 ðtÞ �A3 ¼ 60 �R3 ¼ 10 �P3 ¼ 1

https://doi.org/10.1371/journal.pone.0300636.t003
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so the null hypothesis in the univariate ANOVA is true. Therefore, the correct decision is to

fail to reject the null hypothesis. Indeed, when we apply a univariate ANOVA to the means of

the functions in Fig 4, a large p-value is produced, as shown in Table 4, indicating that there is

no significant difference in the mean swim speeds of the fish under the three conditions. How-

ever, when viewed over the domain, the fish observed under the three levels have very different

swim patterns.

Next, we perform a repeated measures ANOVA, and the results are shown in Table 5. We

find that the interaction between the factor and time is significant, which is an improvement

upon the univariate ANOVA that did not detect any difference between the three levels. Due

to the violation the normality and sphericity assumptions, however, these results are inconclu-

sive. Usually when assumptions of a test are not met, a nonparametric method is used, but no

Fig 3. The left side shows swim speed over time of twenty fish simulated under level 1 of the factor (top), level 2 of the

factor (middle), and level 3 of the factor (bottom), with the true average function overlaid in black. These are treated as

the observed data. The right side shows the corresponding smoothed functions of swim speed.

https://doi.org/10.1371/journal.pone.0300636.g003
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such test can be performed in this context. Ignoring the violated assumptions, the significant

interaction between the factor and time implies that a post hoc analysis should be performed.

In this case, there would be 3 × 60 = 180 post hoc comparisons, and this is a prohibitive num-

ber of comparisons to make, so we do not present the post hoc analyses for the repeated mea-

sures ANOVA.

3.3 FANOVA application

Finally, we apply functional ANOVA to this simulated data. Using 10,000 permutations and a

significance level of τ = 0.05, the permuted critical value is Fcrit
FT ¼ 2:945, which is much smaller

than the observed value of Fobs
FT ¼ 77:468. The p-value for Fobs

FT is zero, meaning that 100% of

the permuted test statistic values were less than Fobs
FT . Fig 5 shows the Fobs(t) statistic from the

one-way functional ANOVA results on the smoothed data. The Fobs(t) statistic is particularly

high in regions where the functional means differ the most. FANOVA not only captures the

significant difference in the mean swim pattern functions, but it also identifies the approxi-

mate locations in the domain where the differences occur.

If the overall function mean and differences from this overall mean for each level are of

interest, then the estimated functional effects can provide insight, as shown in Fig 6. The top

panel of Fig 6 shows the overall functional mean effect, m̂ðtÞ, and the bottom panel shows the

functional effect of each level of factor A, â iðtÞ. To form 95% pointwise bootstrapped

Fig 4. Boxplots of the averages of the functions simulated under three levels of a factor.

https://doi.org/10.1371/journal.pone.0300636.g004

Table 4. Univariate ANOVA results.

Df Sum Sq Mean Sq F-value Pr(>F)

Factor 2 0.23 0.11 0.17 0.8475

Residual 57 38.85 0.68

https://doi.org/10.1371/journal.pone.0300636.t004
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confidence intervals for each of the estimated functional effects, we sample with replacement

1000 times from the sixty estimated functional subject effects,

n̂ ijðtÞ ¼ yijðtÞ � m̂ðtÞ � â iðtÞ; i ¼ 1; . . . 3; j ¼ 1; . . . ; 20;

resulting in n̂r
ijðtÞ for r = 1, . . ., 1000. These are used to construct bootstrapped observations as

yrijðtÞ ¼ n̂r
ijðtÞ þ m̂ðtÞ þ âiðtÞ; i ¼ 1; . . . 3; j ¼ 1; . . . ; 20: ð31Þ

The functional effects, m̂rðtÞ and âr
i ðtÞ, are reestimated based on the bootstrap samples in Eq

31. The difference between the bootstrapped and observed functional effects are calculated,

and the 2.5% and 97.5% pointwise percentiles of the 1000 difference functions at each t are

taken to be the upper and lower bounds of the confidence interval. These confidence intervals

can only be interpreted at a point, but they provide a helpful visual reference for the variability

of the estimated functional effects. The computational time to construct the permutation test

and bootstrap intervals is minimal, requiring less than a minute on a personal laptop

computer.

3.3.1 Post hoc analysis. Once the null hypothesis is rejected, we perform post hoc analyses

to determine which pairs of levels differ significantly from one another. The tests employ a

Table 5. Repeated measures ANOVA results.

Df Sum Sq Mean Sq F-value Pr(>F)

Factor 2 13.57 6.79 0.17 0.8475

Fish(Factor) 57 2331.24 40.90

Time 59 574781.29 9742.06 38.79 <0.0001

Factor×Time 118 1980732.70 16785.87 66.84 <0.0001

Residual 3363 844573.03 251.14

https://doi.org/10.1371/journal.pone.0300636.t005

Fig 5. One-way FANOVA Fobs(t) statistic based on the smoothed dataset. The red dashed line indicates the 95%

pointwise percentile calculated from the permutations.

https://doi.org/10.1371/journal.pone.0300636.g005
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Bonferroni correction so that the significance level for each test is the nominal significance

level (τ = 0.05) divided by the number of tests. With three levels, there are three pairwise com-

parisons formed by calculating â iðtÞ � â i0 ðtÞ with i 6¼ i0, so the adjusted level of significance is

0.05/3 = 0.017. The 95% pointwise bootstrapped confidence intervals are constructed as

described in Section 3.3 with 1000 replicates and are shown in Fig 7. There is a significant dif-

ference between the mean swim speeds of each pair of levels.

4 Real data example

In this example, we demonstrate one-way FANOVA on a dataset from a PBR study that com-

pares the effects of an environmental toxicant, 1-heptanol, of different concentrations on the

swim patterns of zebrafish over alternating lightness conditions [8]. Experimental results

examined here were obtained from studies that were approved by the Institutional Animal

Care and Use Committee at Baylor University. Swim speed is recorded for a total of fifty min-

utes, divided into a ten-minute dark acclimation period followed by four alternating light and

dark periods, each lasting ten minutes. A measurement is recorded every minute.

The zebrafish are divided into five groups of twenty four and exposed to concentrations of

1-heptanol at either 0%, 5%, 10%, 20%, and 40% of their median lethal concentration (LC50).

Fig 8 shows the observed swim speed of the 120 zebrafish, grouped by the concentration level.

It is clear that the zebrafish are more active in the dark periods than the light periods. As the

concentration of 1-heptanol increases, the zebrafish also appear to swim less overall.

For each individual fish, the mean swim speed across the light and dark periods is taken

(excluding the acclimation period) and is plotted in Fig 9 by concentration. Each concentra-

tion level has a clearly different mean. This implies that a one-way univariate ANOVA is likely

to be significant, but provides no information about where the differences occur in the

domain.

Fig 6. Estimated overall mean effect (top) and factor effect (bottom). Dashed lines are 95% pointwise confidence

intervals formed using 1000 bootstrap replicates.

https://doi.org/10.1371/journal.pone.0300636.g006
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4.1 Univariate and repeated measures ANOVA

The result of a univariate ANOVA applied to the means of each individual over the domain is

shown in Table 6. As expected, the univariate ANOVA results in a low p-value, indicating a

significant difference in the mean swim speed due to the concentration levels. Because the null

hypothesis is rejected, the proper procedure is to perform a post hoc analysis to determine

which pairs of concentration levels differ significantly, using the hypotheses in Eq 3. However,

the post hoc analysis does not provide any additional information about where in the domain

the differences occur.

Similarly, we apply repeated measures ANOVA to the data. Because all of the assumptions

for repeated measures ANOVA are violated, any results obtained from the analysis are incon-

clusive, but Table 7 provides the results for illustration. All of the terms in the model, including

the interaction, are significant. Because the assumptions are violated, pairwise comparisons for

the interaction between concentration and time would be invalid. Furthermore, with forty

repeated measurements, over 750 pairwise comparisons would be needed, and this is a prohib-

itive number to evaluate. Therefore, we do not include any post hoc analyses for the repeated

measures ANOVA.

Fig 7. Functional post hoc contrasts for the levels. The dashed line is the pointwise 98.33% confidence interval using

1000 bootstrap replicates. The asterisk on the right indicates significance of the FFT test for the factor effect.

https://doi.org/10.1371/journal.pone.0300636.g007
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4.2 FANOVA application

Before applying FANOVA to the data, each function is smoothed using a cubic b-spline basis

with sixty basis functions. The cubic b-spline basis set is selected because the data do not have

a recognizable pattern. When the light turns on/off, the zebrafish display a rapid and immedi-

ate change in their swim pattern, so we build discontinuities into the smoothed functions at

these times by allowing additional flexibility at these points. The basis functions are saturated,

penalization is applied to the square of the second derivative, and the smoothing parameter is

Fig 8. Pointwise observations of swim speed by concentration of 1-heptanol. The color of the background denotes

the acclimation period (dark gray) and the alternating light (white) and dark (light gray) ten-minute periods.

https://doi.org/10.1371/journal.pone.0300636.g008
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obtained through generalized cross validation to minimize the squared error between the

smooth curves and discretized values. The smoothing results in the reduction of some large

values that occur in the data, but the smooth curves also reduce the noise of the data. Another

option would be to remove the functions with unusual values, and several methods for identifi-

cation of functional outliers are available but are not explored here [38, 39]. Once the smooth-

ing parameter is chosen, the smooth functions are then evaluated across a fine, evenly-spaced

grid, and negative values are replaced with zeroes so that the swim speed functions remain

non-negative across the domain. The results of the b-spline smoothing are shown in the center

panel of Fig 10. To visualize the average swim speed for each concentration level, the average

Fig 9. Boxplots of the averages of the functions for each concentration. Circles outside of the fences of the boxplots

represent potential outliers.

https://doi.org/10.1371/journal.pone.0300636.g009

Table 6. Univariate ANOVA results.

Df Sum Sq Mean Sq F-value Pr(>F)

Concentration 4 25577.23 6394.31 48.51 <0.0001

Residual 115 15157.14 131.80

https://doi.org/10.1371/journal.pone.0300636.t006

Table 7. Repeated measures ANOVA results.

Df Sum Sq Mean Sq F-value Pr(>F)

Concentration 4 1023089.35 255772.34 48.51 <0.0001

Fish(Concentration) 115 606285.45 5272.05

Time 39 2052231.27 52621.31 82.38 <0.0001

Concentration×Time 156 714188.17 4578.13 7.17 <0.0001

Residual 4485 2865001.94 638.80

https://doi.org/10.1371/journal.pone.0300636.t007
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of the smooth swim speed curves for each concentration level is plotted in the bottom panel of

Fig 10. In the two dark periods in particular, the average swim speed decreases as the concen-

tration of 1-heptanol increases. In the light periods, there is only a small difference between

the concentration levels.

One-way FANOVA is applied to the smoothed curves plotted in Fig 10, and the parameters

in the model of Eq 22 are estimated. Fig 11 displays the estimated functional effects and 95%

bootstrapped pointwise confidence intervals formed using the process described in Section

3.3. The overall mean effect illustrates the overall lightness aversion of the zebrafish, which is

also clear in Figs 8 and 10. The concentration effects illustrate that higher concentrations result

in lower swim speeds, particularly in the dark regions. There is less difference in the concentra-

tion effect during the light periods. Note that because we do not include the acclimation period

in our analysis of the data, it is not included in this figure.

The functional F-statistic for the hypotheses given in Eq 23 is computed according to Eq 27.

Fig 12 shows the Fobs(t) statistic from the one-way FANOVA results on the smoothed data.

The Fobs(t) statistic is particularly high in the dark regions, where the functions differ the most.

Fig 10. Raw observations of swim speed (top), smoothed observations of swim speed (center), and the functional

averages of the smoothed swim speed curves for each concentration level (bottom).

https://doi.org/10.1371/journal.pone.0300636.g010
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We then perform the permutation test for the FFT statistic described in Section 2.3.5 using

10,000 permutations. Fig 13 shows a histogram of the 10,000 permuted FFT statistics, illustrat-

ing its sampling distribution under the null hypothesis. Using a significance level of τ = 0.05,

the permuted critical value of FFT is Fcrit
FT ¼ 2:14, which is much smaller than the observed

Fig 11. Estimated overall mean effect (top) and concentration effect (bottom). Dashed lines are 95% pointwise

confidence intervals formed using 1000 bootstrap replicates.

https://doi.org/10.1371/journal.pone.0300636.g011

Fig 12. One-way FANOVA Fobs(t) statistic applied to the smoothed dataset. The red dashed line indicates the 95%

pointwise percentile calculated from the permutations.

https://doi.org/10.1371/journal.pone.0300636.g012

PLOS ONE Functional analysis of PBR data

PLOS ONE | https://doi.org/10.1371/journal.pone.0300636 May 21, 2024 21 / 31

https://doi.org/10.1371/journal.pone.0300636.g011
https://doi.org/10.1371/journal.pone.0300636.g012
https://doi.org/10.1371/journal.pone.0300636


Fobs
FT ¼ 19:39. The p-value for the FFT test is zero, indicating that 100% of the permuted statis-

tics are below the critical value. In addition to concluding that significant differences in the

mean functions exist across concentrations, FANOVA also identifies approximately where in

the domain the differences occur.

4.2.1 Post hoc analysis. Because we reject H0, a post hoc analysis of the concentration lev-

els to test the hypotheses given in Eq 24 are performed next with results in Table 8. We only

compare each concentration level with the control group because the average effect of an

increase in the concentration level on swim speed is negative, which can be seen in Fig 11. The

tests employ a Bonferroni correction so that the significance level for each test is the nominal

significance level (τ = 0.05) divided by the number of tests. The functional contrasts shown in

Fig 13. Histogram of 10,000 FFT permutations. The red dashed line indicates the 95th percentile of the permutations.

https://doi.org/10.1371/journal.pone.0300636.g013

Table 8. The FFT test results for the main effects and post hoc tests for the entire domain and each of the light/dark regions. For each region name, the letter refers to

the brightness condition (light/dark), and the number corresponds to whether the region is the first or second light/dark period. In the “Decision” column, FTR means

“fail to reject.”

Region H0 Fcrit
FT Fobs

FT p-value Sig. Level Decision

L1-D2: t 2 [10, 50) α1(t) = � � � = α5(t) 2.14 19.39 0.0000 τ Reject

α1(t) = α2(t) 0.36 0.26 0.0393 τ/4 FTR

α1(t) = α3(t) 0.37 0.86 0.0001 τ/4 Reject

α1(t) = α4(t) 0.37 2.35 0.0000 τ/4 Reject

α1(t) = α5(t) 0.35 5.11 0.0000 τ/4 Reject

L1: t 2 [10, 20) α1(t) = α3(t) 0.46 0.22 0.0695 τ/12 FTR

α1(t) = α4(t) 0.49 0.54 0.0028 τ/12 Reject

α1(t) = α5(t) 0.50 1.60 0.0000 τ/12 Reject

D1: t 2 [20, 30) α1(t) = α3(t) 0.59 0.83 0.0003 τ/12 Reject

α1(t) = α4(t) 0.59 2.60 0.0000 τ/12 Reject

α1(t) = α5(t) 0.55 6.09 0.0000 τ/12 Reject

L2: t 2 [30, 40) α1(t) = α3(t) 0.50 0.87 0.0003 τ/12 Reject

α1(t) = α4(t) 0.55 1.59 0.0000 τ/12 Reject

α1(t) = α5(t) 0.54 2.89 0.0000 τ/12 Reject

D2: t 2 [40, 50) α1(t) = α3(t) 0.63 1.32 0.0000 τ/12 Reject

α1(t) = α4(t) 0.63 3.22 0.0000 τ/12 Reject

α1(t) = α5(t) 0.60 6.17 0.0000 τ/12 Reject

https://doi.org/10.1371/journal.pone.0300636.t008
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Fig 14 are constructed by calculating â iðtÞ � â1ðtÞ with i 6¼ 1 and forming 95% pointwise boot-

strapped confidence intervals with 1000 replicates. We determine that there is a significant dif-

ference between the mean swim speeds of the control group and the groups with

concentrations of 1-heptanol at 10%, 20%, and 40% of their LC50.

With the functional approach, it is also possible to explore subregions of the post-hoc con-

trasts to determine under which brightness conditions the differences occur. Note that because

the 5% concentration level was not significantly different from the control group, no further

comparisons are made. Thus, there are twelve comparisons, so the significance level for each

test is τ/12. Table 8 shows that the 1-heptanol 20% (α4(t)) and 40% (α5(t)) LC50 groups are sig-

nificantly different from the control group in all four subregions, while the 1-heptanol 10%

(α3(t)) LC50 is significant in every region except for the first light region. While significance in

Fig 14. Functional post hoc contrasts for the concentration levels. The dashed line is the pointwise 95% confidence

interval using 1000 bootstrap replicates. The asterisks on the right of the plots indicate significance of the FFT test for

the concentration effect across the entire domain, and the asterisks inside the plots indicate significance within the

corresponding brightness period.

https://doi.org/10.1371/journal.pone.0300636.g014
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the dark regions is expected, it is surprising to find significance in the light regions. This is

likely due to the time it takes for the fish to slow down at the beginning of the light periods.

4.3 Startle response analysis

Some researchers are particularly interested in the change in swim speed in response to a

change in conditions, called the startle response. There have been many approaches to analyz-

ing the startle response, most of which involve performing univariate or repeated measures

ANOVA for either the maximum swim speed post-stimulus [40, 41]; the average duration of

the response [41]; or the average swim speed for short periods directly preceding and/or fol-

lowing a change in conditions [5, 18, 42, 43]. Sometimes, t-tests or nonparametric alternatives

are performed for every time point against a baseline speed or control group [44, 45]. Another

approach involves grouping swim behavior into speed thresholds that indicate bursting and/or

freezing speeds [8, 15, 17]. Several researchers use univariate statistical methods to capture

more information about the startle response, such as analyzing both the average swim speed

and the net change in swim speed from the end of one period to the beginning of the following

period [9, 46] or analyzing responsiveness, response latency, and maximum angular velocity

during the startle [47]. All of this information is captured using the functional approach.

Because the startle response occurs over some period of time and may last varying amounts of

Fig 15. The first derivative of the smoothed swim speed curves (top), and the functional averages of the first derivative

of the smoothed swim speed curves for each concentration level (bottom).

https://doi.org/10.1371/journal.pone.0300636.g015
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time for each individual, the functional representation of the observations provides a natural

way to visualize and quantify it.

A novel way to analyze the startle response is to compute the acceleration function of the

zebrafish. Given smoothed curves of swim speed, the acceleration can be found by taking their

first derivative, as shown in the top panel of Fig 15. When the light is turned on, there is a

downward spike in the acceleration, and conversely, there is an upward spike when time the

light is turned off. The zebrafish appear to accelerate or decelerate for approximately three

minutes after a change in the brightness conditions. To assess if the acceleration differs across

the concentration levels, the average of the acceleration curves for each concentration level is

plotted in the bottom panel of Fig 15. As the concentration of 1-heptanol increases, the

strength of the average response of the zebrafish to the change in brightness decreases.

One-way FANOVA can also be applied to the smooth acceleration curves to test for a sig-

nificant difference in the acceleration of the groups for the three minutes after a change in

brightness. The functional F-statistic for the entire domain is shown in Fig 16. Because the

acclimation period is not relevant for this analysis, it is not included in the remaining figures

in this section. There is a significant difference in the average acceleration across the concen-

tration groups for approximately two to three minutes after the light turns on and a very strong

spike in the F-statistic for two to three minutes after the light turns off. Thus, we perform post

hoc analysis to determine which of the groups are significantly different from the control

group during those periods. Complete results are given in Table 9. The contrasts shown in Fig

17 indicate that the group with the highest concentration of 1-heptanol has a significantly

smaller startle response than the control group at the beginning of each period, which is

shown in Table 9. The 20% LC50 concentration group has a significantly smaller startle

response than the control group at the beginning of each period except for the first light

period, and the 10% LC50 concentration group has a significantly smaller startle response than

the control group at the beginning of the last two periods.

Fig 16. Functional Fobs(t) statistic of the acceleration curves, where the red dashed line indicates the 95%

pointwise percentile calculated from the permutations. Regions of interest for the startle response are represented in

light pink shading for dark to light transitions and dark pink shading for light to dark transitions.

https://doi.org/10.1371/journal.pone.0300636.g016
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The startle response is an important behavioral response of interest in PBR literature, and

the functional approach provides researchers with a systematic approach to analyzing the star-

tle response. By using FANOVA, we are able to analyze both the duration and magnitude of

the startle response and determine differences in treatment groups over regions of the domain

of varying lengths. This could offer a new approach for diagnostic evaluation of tipping points

of chemical contaminants following exposure.

5 Conclusion

Zebrafish PBR studies are of great value to toxicological and pharmacological research. How-

ever, the typical statistical methods applied in PBR studies prevents researchers from fully

exploiting all of the information contained in the data. The most common approach, univari-

ate ANOVA for each individual’s average across the entire domain, reduces each individual’s

values to a single value and can produce untrustworthy results due to violation of the indepen-

dence of observations within each individual. Even repeated measures ANOVA, the method

used in PBR literature that best accounts for the temporal dependence in observations, has lim-

itations in its interpretability, practical use, and assumptions that may not be met. To over-

come these problems, we suggest the use of functional ANOVA, a method that naturally

retains the functional structure of PBR data and produces valid, fast, and interpretable results.

The FANOVA presented in this paper only requires that the observations are independent and

can be used to analyze the response over the entire domain, detecting which regions of the

domain have the largest differences. Because of the smooth functional representation of the

data, it becomes possible to take the derivative of the speed functions to find the acceleration

curves, so researchers can analyze the startle response in addition to the original measurement.

Furthermore, FANOVA can be applied to any subregion of the domain, so researchers can

apply FANOVA to the regions where the startle responses occur.

Table 9. The FFT test results for the main effects and post hoc tests for the acceleration curves across the entire domain and the first three minutes of each of the

light/dark regions. In the “Decision” column, FTR means “fail to reject.”

Region H0 Fcrit
FT Fobs

FT p-value Sig. Level Decision

L1-D2: t 2 [10, 50) α1(t) = � � � = α5(t) 1.50 7.94 0.0000 τ Reject

α1(t) = α2(t) 0.23 0.14 0.1086 τ/4 FTR

α1(t) = α3(t) 0.23 0.39 0.0007 τ/4 Reject

α1(t) = α4(t) 0.22 1.16 0.0000 τ/4 Reject

α1(t) = α5(t) 0.23 1.76 0.0000 τ/4 Reject

L1: t 2 [10, 13] α1(t) = α3(t) 0.67 0.59 0.0068 τ/12 FTR

α1(t) = α4(t) 0.66 0.31 0.0452 τ/12 FTR

α1(t) = α5(t) 0.67 2.80 0.0000 τ/12 Reject

D1: t 2 [20, 23] α1(t) = α3(t) 0.60 0.28 0.0499 τ/12 FTR

α1(t) = α4(t) 0.60 2.03 0.0000 τ/12 Reject

α1(t) = α5(t) 0.62 2.88 0.0000 τ/12 Reject

L2: t 2 [30, 33] α1(t) = α3(t) 0.57 0.87 0.0008 τ/12 Reject

α1(t) = α4(t) 0.58 1.58 0.0000 τ/12 Reject

α1(t) = α5(t) 0.60 3.08 0.0000 τ/12 Reject

D2: t 2 [40, 43] α1(t) = α3(t) 0.58 0.95 0.0006 τ/12 Reject

α1(t) = α4(t) 0.59 3.28 0.0000 τ/12 Reject

α1(t) = α5(t) 0.57 4.74 0.0000 τ/12 Reject

https://doi.org/10.1371/journal.pone.0300636.t009
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In this paper, we present a framework for implementing one-way FANOVA that has mini-

mal assumptions and demonstrate how to apply it. We compare the results to those obtained

from univariate and repeated measures ANOVA, illustrating the ways FANOVA overcomes

their limitations. In order to facilitate the use of FANOVA in future PBR research, the R code

and data used to perform the analyses in this paper and to create every figure and table are pro-

vided on the Harvard Dataverse data repository [37].

It is possible to extend this work beyond light/dark transition tests to other responses that

are considered functional. Many studies that examine zebrafish also collect data on spontane-

ous movement/tail flexes [21, 48–50], bioaccumulation [51], and/or hatching rate [11]. Even

when the light/dark transition test is not used, general locomotor data are commonly collected

to assess the behavioral response of zebrafish [3, 15, 52]. While we have not performed an

exhaustive comparison of all statistical methods historically used on these types of data, we

Fig 17. Functional post hoc contrasts for the acceleration curves for the concentration levels. The dashed line is the

pointwise 98.75% confidence interval using 1000 bootstrap replicates. Regions of interest for the startle response are

represented in light pink shading for dark to light transitions and dark pink shading for light to dark transitions. The

asterisks indicate significance of the FFT test for the concentration effect in the corresponding region.

https://doi.org/10.1371/journal.pone.0300636.g017
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argue that functional methods can and should be used. Any data that are collected repeatedly

for the same subjects over a continuous domain can benefit from a functional approach.
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