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The factorization method of Schrödinger shows us how to determine the energy eigenstates without needing to deter-
mine the wavefunctions in position or momentum space. A strategy to convert the energy eigenstates to wavefunctions
is well known for the one-dimensional simple harmonic oscillator by employing the Rodrigues formula for the Her-
mite polynomials in position or momentum space. In this work, we illustrate how to generalize this approach in a
representation-independent fashion to find the wavefunctions of other problems in quantum mechanics that can be
solved by the factorization method. We examine three problems in detail: (i) the one-dimensional simple harmonic
oscillator; (ii) the three-dimensional isotropic harmonic oscillator; and (iii) the three-dimensional Coulomb problem.
This approach can be used in either undergraduate or graduate classes in quantum mechanics.

I. INTRODUCTION

Quantum mechanics is typically taught in one of two
approaches—a differential-equation-based approach that uses
the Schrödinger equation in position space or an algebraic
operator-based method which uses abstract operator manip-
ulations to find energy eigenstates. The algebraic method is
primarily used for two problems: (i) solving the simple har-
monic oscillator in one dimension and (ii) determining states
that have both definite total and z-component of angular mo-
mentum. In 1940, Schrödinger showed how to use algebraic
factorization method to solve all exactly solvable quantum
problems1–3 (see Infeld and Hull4 for a review). Schrödinger’s
factorization method was reinvigorated by Witten in his devel-
opment of supersymmetric quantum mechanics.5 The factor-
ization method approach, in its simplest form, is what is used
in the abstract treatment of the simple harmonic oscillator.
Nearly all textbooks that discuss it, will also show how one
can find wavefunctions in this approach as well. Most use the
subsidiary condition (described in more detail below), given
by â|0⟩ = 0, to determine the ground-state wavefunction by
converting it into a first-order differential equation in position
space. A much smaller subset of quantum textbooks (maybe
about 15%) will also show how the higher-energy eigenstates,
given by (1/

√
n!)
(
â†
)n |0⟩= |n⟩ can be expressed as a differ-

ential operator (raised to the nth power) acting on the ground-
state wavefunction. They then convert the power of operators
acting on the ground state, via the Rodrigues formula, into the
well-known result for the excited-state wavefunctions in terms
of a Hermite polynomial multiplied by a Gaussian. In this
work, we show how this approach can be generalized, using
an operator-based methodology (as opposed to a differential
equation-based methodology), to find the wavefunctions of
energy eigenstates in a Rodrigues-formula inspired approach.
Note that we can only do this for exactly solvable problems,
which are so-called shape-invariant potentials for the operator
method. We explicitly cover three problems: (i) the simple

harmonic oscillator in one dimension; (ii) the isotropic oscil-
lator in three dimensions; and (iii) the Coulomb problem in
three dimensions. We provide shorter summaries for two two-
d examples in the supplementary material.6

Here we provide a brief summary of the traditional Ro-
drigues formulas. There are two of these relevant for this
work: (i) the formula for the Hermite polynomials, given by

Hn(x) = (−1)nex2 dn

dxn

(
e−x2

)
(1)

and (2) the formula for the associated Laguerre polynomials,
given by

L(α)
n (x) =

x−α ex

n!
dn

dxn

(
xn+α e−x) . (2)

A treatment of the Rodrigues formula from a differential equa-
tion point of view is given in Chapter 12 of Arfken, Weber
and Harris;7 another way to determine them is by using the
Laplace method to solve the confluent hypergeometric equa-
tion, where they arise as residues in a contour integral.8

The remainder of the paper is organized as follows. In Sec.
II, we describe in detail how the Schrödinger factorization
method works and how it can be manipulated to represent a
generalized operator form of the Rodrigues formulas for the
wavefunctions. In Sec. III, we show how these techniques
can be applied to the simple harmonic oscillator in one di-
mension. Section IV does the same for the isotropic oscillator
in three dimensions. Section V covers the Coulomb problem
in three dimensions. In Sec. VI we describe our thoughts on
how to present these materials in instruction. We summarize
the results in Sec. VII.
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II. FORMALISM OF THE FACTORIZATION METHOD
AND PROCEDURE TO RELATE TO RODRIGUES
FORMULAS

We briefly review the factorization method of Schrödinger1

to clarify our notation and to set the stage for how the Ro-
drigues formula is generalized into an operator form. In the
factorization method, we seek to find Hermitian conjugate
operators Â0 and Â†

0 such that Ĥ = p̂2/2M +V (x̂) = Ĥ0 =

Â†
0Â0 +E0, where we introduce a subscript 0 to the original

Hamiltonian because it will be the first element in the fac-
torization chain. These ladder operators are not the same as
the conventional ones used for the harmonic oscillator, and in
general, their commutator is not equal to one.

The ground-state of Ĥ0 is the state that satisfies Â0|ψ0⟩= 0,
which is called the subsidiary condition. This is the ground
state because the operator part of the Hamiltonian is a posi-
tive semidefinite operator (all eigenvalues greater or equal to
zero) when expressed in terms of the raising and lowering op-
erators. This can be seen by relating expectation values to
norms—⟨ψ|Â†Â|ψ⟩ = |Â|ψ⟩|2 ≥ 0 and the only case where
it equals zero is if the vector Â|ψ⟩ = 0, which is the origin
of the subsidiary condition determining the ground state. To
find the excited states, we next form the factorization chain
by defining the first auxiliary Hamiltonian Ĥ1 = Â0Â†

0 +E0 =

p̂2/2M+V1(x̂), which has the raising and lowering operators
reversed. This auxiliary Hamiltonian has a different poten-
tial from the original Hamiltonian V1(x̂) ̸= V0(x̂), which is
determined after explicitly computing Â0Â†

0, so we factorize
it as well, in the form Ĥ1 = Â†

1Â1 +E1, where the auxiliary
ground state is given by Â1|φ1⟩= 0. We continue forming new
auxiliary Hamiltonians and finding new auxiliary Hamiltonian
ground states by repeating this procedure. So, in general, we
have that

Ĥi+1 =
P̂2

2M
+Vi+1(x̂) = Âi Â†

i +Ei = Â†
i+1Âi+1 +Ei+1

and Âi+1|φi+1⟩= 0. (3)

The definitions of the factorization chain allow us to con-
struct the intertwining relation, given by

ĤiÂ
†
i = Â†

i Âi Â†
i +EiÂ

†
i = Â†

i Ĥi+1, (4)

which follows from the definition of the two auxiliary Hamil-
tonians and factoring the raising operator out to the left or to
the right. The intertwining relation allows us to construct the
excited states of the original Hamiltonian. Consider the state

|ψn⟩=CnÂ†
0Â†

1 · · · Â
†
n−1|φn⟩, (5)

with Cn a normalization constant that will be determined be-
low. To show that this is an energy eigenstate of Ĥ0, we sim-
ply apply the Hamiltonian to the state from the left. As we
move the Hamiltonian to the right through each raising oper-
ator, the intertwining relation tells us that the index increases
by 1 for each shift, until we get to the end of the product,
where we have Ĥn acting on |φn⟩. But that state is the ground

FIG. 1. (Color online) Schematic of the factorization chain. On the
far left, we have the original Hamiltonian and its ground and ex-
cited states as constructed from the factorization by applying strings
of raising operators onto auxiliary Hamiltonian ground states as we
move horizontally upward from the ground state. As we move to
the right, we see the ground and excited states for the first auxiliary
Hamiltonian (vertically), then the second and so on. If we instead
view the figure along the horizontal lines, we see the different states
that are degenerate in energy. For example, the top row shown here
starts with the fourth auxiliary Hamiltonian ground state, then the
first excited state of the third auxiliary Hamiltonian, and so on un-
til we reach the fourth excited state of the original Hamiltonian. All
these states have the same energy E4. In this way, you can see the hid-
den structure behind every energy eigenvalue problem, where there
are other Hamiltonians that share all the bound-state energies except
for a finite number of them.

state of this auxiliary Hamiltonian, with energy En. Hence,
we learn that the full state is an eigenstate of the original Ĥ
with eigenvalue En. To find the normalization constant, we
simply calculate ⟨ψn|ψn⟩, and replace the innermost Â0Â†

0 by
Ĥ1 −E0. We then move the Hamiltonian operator to the right
using the intertwining relation until it reaches the state on the
right, where it is converted to Ĥn. It can then act on the state
giving En. Hence, we can remove the factor Â0Â†

0 and replace
it by En −E0. We repeat this to remove each pair of lowering-
raising operator products and finally determine that

Cn =
1√

(En −E0)(En −E1) · · ·(En −En−1)
. (6)

This procedure of constructing auxiliary Hamiltonians and
finding excited states of the original Hamiltonian via strings
of raising operators acting on auxiliary Hamiltonian ground
states is called the factorization chain. Each auxiliary Hamil-
tonian has the same energy eigenvalues as the previous Hamil-
tonian in the chain, except for the ground state energy eigen-
value. The energies of the states across the chain are all equal
to each other, as illustrated in Fig. 1. A summary of the factor-
ization method can be found in Ohanian9 and Cooper, Khare
and Sukhatme.10

The lowering operator is written in a standard form in terms
of the position x̂ and momentum p̂ operators as

Â =
1√
2M

(
p̂− ih̄kW (k′x̂)

)
, (7)

where k and k′ are real constants with dimensions of inverse
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length, M is the mass, and the superpotential W is a real-
valued function of its dimensionless argument. The name
lowering operator does not imply the well-known properties
of the lowering operator in the one-d harmonic oscillator. By
examining Fig. 1 and using the intertwining relation, one can
see that applying Âi to any eigenstate in the ith column, will
produce an eigenstate of the same energy in the adjacent col-
umn to the right and in the same row. The name superpoten-
tial comes from supersymmetric quantum mechanics. We can
think of it as an operator valued function and also as a reg-
ular function, by replacing x̂ → x. The requirement that the
auxiliary ground state is normalizable is that kW (k′x) must be
positive for x → ∞ and negative for x →−∞—this condition
guarantees the wavefunctions decay faster than any power as
x →±∞. We need this condition because the factorization of
a given Hamiltonian is not unique, and this condition allows
us to determine the correct superpotential to use in each fac-
torization.

The energy eigenstate is given by the product of a string of
raising operators acting on an auxiliary Hamiltonian ground
state. The wavefunction in position space is then found by
simply multiplying this state by a position bra:

ψn(x) = ⟨x|ψn⟩. (8)

We can evaluate this most efficiently if we can convert the
product of the string of operators acting on the auxiliary
ground state into a set of nested commutators acting on a state
derived from the auxiliary Hamiltonian ground state. The
strategy to do this is the operator generalization of the Ro-
drigues formula. Five steps are involved.

1. Rewrite the raising operators as a similarity transforma-
tion in the form

Â†
n =

1√
2M

Ôn p̂Ô−1
n , (9)

with Ôn some operator that needs to be determined.
We will show how to accomplish this in the dif-
ferent examples. Since exactly solvable problems
have shape-invariant superpotentials for the ladder
operators,11 once we solve it for one operator, it is a
simple task to solve it for all other ladder operators in
the factorization chain.

2. Find a state, constructed by applying operators onto
|φn⟩, that is annihilated by p̂. Once we have such a state,
we can add p̂ times that state to any expression, without
changing it, because it corresponds to adding zero.

3. Use the add-zero property to convert the product of a
string of raising operators acting on an auxiliary Hamil-
tonian ground state into a sequence of nested commuta-
tors acting on the state that is annihilated by p̂. Since a
commutator with p̂ acts in the same way as a derivative,
the nested commutator object is a form of a Rodrigues
formula for a polynomial, namely a derivative raised to
the nth power acting on a function and then divided by
that function.

4. Determine a recurrence relation for these nested com-
mutators when we compare the sequence for one ex-
cited state with the next excited state.

5. Solve the recurrence relation to determine an expression
for the product of raising operators acting on an auxil-
iary ground state as a function of the position operator
acting on the same state.

This completes the generalization of the Rodrigues formula in
terms of operators. One can jump from the nested commu-
tators to repeated derivatives, which then become Rodrigues
formulas for the different polynomials in the wavefunctions.
In this work we carry out all steps in a representation-
independent fashion.

This procedure sounds somewhat abstract, so we next de-
scribe an explicit example. But note that by following this
procedure, we can calculate wavefunctions completely alge-
braically, without requiring any differential equations. This
will also become clearer as we go through the examples.

III. ONE-DIMENSIONAL SIMPLE HARMONIC
OSCILLATOR

The simple harmonic oscillator in one dimension is our first
example. The Hamiltonian is

Ĥ =
p̂2

2M
+

1
2

Mω
2x̂2, (10)

with [x̂, p̂] = ih̄. Here, M is the mass of the particle and ω is the
frequency of the oscillator. In the Schrödinger factorization
method, we factorize the Hamiltonian into Â†Â, with

Â =
1√
2M

( p̂− iMω x̂) (11)

and E = h̄ω/2; the requirement that the superpotential
kW (k′x) = Mωx/h̄ has positive values for x → ∞ and nega-
tive values for x → −∞ (to ensure normalizability) is clearly
satisfied. Because ÂÂ† = Â†Â+ h̄ω , we immediately verify
that the auxiliary Hamiltonians in Eq. (3) have the same func-
tional form for the potential Vn(x̂), but each is shifted upward
by a constant nh̄ω for the nth auxiliary Hamiltonian, so that
Vn(x̂) = Mω2x̂2/2+nh̄ω . This means the factorization chain
produces the same ladder operators for each auxiliary Hamil-
tonian in the chain; in fact, this is the only Hamiltonian that
does this. Hence Ân = Â for all n, and the state that satis-
fies the initial subsidiary condition Â|0⟩ = 0 is the auxiliary
Hamiltonian ground state for all n.

Most students are not familiar with the Schrödinger form of
the ladder operators, so before proceeding further we convert
to the more familiar Dirac form given by

â =
i√
h̄ω

Â =

√
Mω

2h̄

(
x̂+ i

p̂
Mω

)
. (12)

Using this Dirac form, we have the familiar results: (i) the
subsidiary condition is â|0⟩ = 0; (ii) the nth excited state is
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|n⟩= (1/
√

n!)
(
â†
)n |0⟩; and (iii) the nth energy eigenvalue is

En = h̄ω (n+1/2).
Now we work out the procedure to generalize the Rodrigues

formula to an operator format. First we need to find the appro-
priate similarity transformation. One can use the Hadamard
lemma (for example, see Ch. 3 of Merzbacher12)

eÂB̂e−Â = B̂+[Â, B̂]+ 1
2 [Â, [Â, B̂]]+

1
3! [Â, [Â, [Â, B̂]]]+ · · ·

(13)

which relates the similarity transformation of B̂ to an infinite
series of increasingly nested commutators. We use it to de-
termine the similarity transformation of p̂ that produces â†.
After a little trial and error, we find that

â† =− i√
2h̄Mω

e
Mω

2h̄ x̂2
p̂e−

Mω

2h̄ x̂2
. (14)

The Hadamard lemma truncates after two terms here, yielding
the lowering operator. Next, we find the state annihilated by
p̂ by taking the Hermitian conjugate of the above similarity
transformation, given by

â = i√
2h̄Mω

e−
Mω

2h̄ x̂2
p̂e

Mω

2h̄ x̂2
, (15)

and use it in the subsidiary condition (â|0⟩ = 0), multiplied
from the left by the appropriate operator. This gives us

−i
√

2h̄Mω e
Mω

2h̄ x̂2
â|0⟩= 0 = p̂ e

Mω

2h̄ x̂2 |0⟩︸ ︷︷ ︸
state annihilated by p̂

. (16)

Now, we work on the nth excited state using the series of steps
that are explained below,

|n⟩= 1√
n!

(−i)n

(2h̄Mω)n/2 e
Mω

2h̄ x̂2
p̂ne−

Mω

2h̄ x̂2 |0⟩

= 1√
n!

(−i)n

(2h̄Mω)n/2 e
Mω

2h̄ x̂2
p̂ne−

Mω

h̄ x̂2
e

Mω

2h̄ x̂2 |0⟩

= 1√
n!

(−i)n

(2h̄Mω)n/2 e
Mω

2h̄ x̂2

×
[

p̂,
[

p̂, · · · ,
[

p̂,e−
Mω

h̄ x̂2
]
· · ·
]]

n
e

Mω

2h̄ x̂2 |0⟩

= 1√
n!

(−i)n

(2h̄Mω)n/2 e
Mω

h̄ x̂2

×
[

p̂,
[

p̂, · · · ,
[

p̂,e−
Mω

h̄ x̂2
]
· · ·
]]

n
|0⟩.) (17)

In the first line, we substitute in for â† using the similarity
transformation in Eq. (15) and cancel “interior” Gaussian op-
erator factors that multiply to one. In the second line, we use
a “multiply-by-one” to introduce the state annihilated by p̂. In
the third line, we start from the rightmost momentum operator
and replace

p̂e−
Mω

h̄ x̂2
e

Mω

2h̄ x̂2 |0⟩= [ p̂,e−
Mω

h̄ x̂2
]e

Mω

2h̄ x̂2 |0⟩, (18)

because this is the same as adding zero due to the fact that p̂
annihilates the state exp(Mω x̂2/2h̄)|0⟩. We then repeat this
procedure with the next momentum operator n−1 more times
to obtain the n-fold nested commutator. Finally, in the fourth

line, we combine the operator factors that depend on x̂, be-
cause the nested commutator is a function of x̂ only so it com-
mutes with x̂. Recall, the commutator of a function of x̂ with p̂
produces a derivative of the function of x̂ multiplied by num-
bers, so it is a function of x̂; this holds for nested commutators
with momentum too.

Readers familiar with Rodrigues formulas will already rec-
ognize that this result looks similar to the Rodrigues formula
for Hermite polynomials. At this stage, one can directly get
to the Rodrigues formula in differential form by replacing
p̂ → −ih̄d/dx and noting that nested commutators become
multiple derivatives. Then one can use the Rodrigues formula
in Eq. (1) to complete the derivation. However, we want to
establish it without derivatives, using just operators. So, we
define a polynomial Hn in terms of the nested commutators
in Eq. (17) and show that it is a Hermite polynomial by veri-
fying its recurrence relation. This requires introducing some
constants to agree with the standard definitions. We define

Hn

(
x̂
√

Mω

h̄

)
|0⟩= (−i)n

(h̄Mω)n/2 e
Mω

h̄ x̂2

×
[

p̂,
[

p̂, · · · ,
[

p̂,e−
Mω

h̄ x̂2
]
· · ·
]]

n
|0⟩

=
√

2n
(
â†)n |0⟩=

√
2nn!|n⟩. (19)

Setting n = 0, we find H0(x̂
√

Mω/h̄) = 1. Simi-
larly, setting n = 1, and computing [p̂,exp(−Mω x̂2/h̄)] =
2iMω x̂exp(−Mω x̂2/h̄), which can be most easily worked
out using the Hadamard lemma, gives us H1(x̂

√
Mω/h̄) =

2x̂
√

Mω/h̄. These are the first two Hermite polynomials
(with the so-called physicist normalization). The general re-
currence relation is found using the series of steps that are
explained below,

Hn+1

(
x̂
√

Mω

h̄

)
|0⟩= −i√

h̄Mω
e

Mω

h̄ x̂2

×
[

p̂,e−
Mω

h̄ x̂2
Hn

(
x̂
√

Mω

h̄

)]
|0⟩

= 2x̂
√

Mω

h̄ Hn

(
x̂
√

Mω

h̄

)
|0⟩

− i√
h̄Mω

[
p̂,Hn

(
x̂
√

Mω

h̄

)]
|0⟩

(20)

The first line comes directly from the definition in Eq. (19);
one needs to use manipulations that move the exponential op-
erator exp(Mω x̂2/2h̄) to the right and use the properties of the
state annihilated by p̂ to establish this result and the second
comes from applying the Leibniz rule for products of oper-
ators in a commutator given by [Â, B̂Ĉ] = B̂[Â,Ĉ] + [Â, B̂]Ĉ.
Using the fact that p̂ = (â − â†)

√
h̄Mω/2/i = [2â − (â +

â†)]
√

h̄Mω/2/i as well as the fact that â+ â† commutes with



5

x̂, we can convert the last term into

−
√

2
[

â,Hn

(
x̂
√

Mω

h̄

)]
|0⟩=−

√
2âHn

(
x̂
√

Mω

h̄

)
|0⟩

=−
√

2n+1â(â†)n |0⟩

=−
√

2n+1n(â†)n−1 |0⟩ .
(21)

The first line uses the subsidiary condition to convert the com-
mutator into just the first term of the commutator, the sec-
ond line applies Eq. (19), and the third line uses the fact that
[â,(â†)n] = n(â†)n−1 and employs the subsidiary condition for
an “add-zero” again. Thus, we have that

Hn+1

(
x̂
√

Mω

h̄

)
|0⟩= 2x̂

√
Mω

h̄ Hn

(
x̂
√

Mω

h̄

)
|0⟩

−2nHn−1

(
x̂
√

Mω

h̄

)
|0⟩ , (22)

which is the same as the recurrence relation for Hermite poly-
nomials. Using induction then implies that Hn(x̂

√
Mω/h̄)|0⟩

is indeed equal to an operator-valued Hermite polynomial act-
ing on |0⟩ . The wavefunction is found by multiplying with a
position bra from the left, so

Ψn(x) ∝ ⟨x|Hn

(
x̂
√

Mω

h̄

)
|0⟩= Hn

(
x
√

Mω

h̄

)
⟨x|0⟩.

(23)

To finish the calculation, we need to determine ⟨x|0⟩.
The ground state wavefunction is found by using a

multiply-by-one with two Gaussian operators, moving one out
of the matrix element by evaluating it against the position bra,
using the translation operator to write ⟨x| as the translation of
the position eigenstate at the origin ⟨0x| to the state ⟨x|, rec-
ognizing that the translation operator can be replaced by unity
when acting on the state to its right (because p̂ annihilates that
state), and finally acting the Gaussian operator against ⟨0x|
where it is replaced by 1. Hence,

⟨x|0⟩= ⟨x|e−
Mω

2h̄ x̂2
e

Mω

2h̄ x̂2 |0⟩= e−
Mω

2h̄ x2 ⟨x|e
Mω

2h̄ x̂2 |0⟩

= e−
Mω

2h̄ x2 ⟨0x|e
i
h̄ xp̂e

Mω

2h̄ x̂2 |0⟩= e−
Mω

2h̄ x2 ⟨0x|e
Mω

2h̄ x̂2 |0⟩

= e−
Mω

2h̄ x2⟨0x|0⟩. (24)

By normalizing, we find that ⟨0x|0⟩= 4
√

Mω/π h̄, so the final
result with all constant factors included is

ψn(x) = 1√
n!2n

(Mω

π h̄

)1/4 Hn

(
x
√

Mω

h̄

)
e−

Mω

2h̄ x2
, (25)

which is the well-known result.
One can also perform this derivation in momentum space,

which would be a good exercise to assign to students. In gen-
eral, the similarity transformation cannot be performed on the
ladder operators in terms of a similarity transformation with
respect to x̂, but the harmonic oscillator is the one case where
this can be done.

IV. THREE-DIMENSIONAL ISOTROPIC OSCILLATOR

The simplest way to solve the three-dimensional isotropic
harmonic oscillator using the factorization method is to use
separation of variables to split the Hamiltonian into its radial
and angular components:

Ĥ =
p̂2

2M
+

1
2

Mω r̂2 =
p̂2

r

2M
+

L̂2

2Mr̂2 +
1
2

Mω r̂2. (26)

We label the angular momentum eigenstates as |l,m⟩ and de-
fine

Ĥl =
p̂2

r

2M
+

h̄2l(l +1)
2Mr̂2 +

1
2

Mω
2r̂2, (27)

so that Ĥ(|ψ⟩⊗ |l,m⟩) = (Ĥl |ψ⟩)⊗|l,m⟩, which is just sepa-
ration of variables in Dirac form.13 Here p̂r is the radial mo-
mentum operator given by (1/r̂) ˆ⃗r · ˆ⃗p− ih̄/r̂. Ĥl can be factored
with the lowering operator

Âl =
1√
2M

(
p̂r +

ih̄(l +1)
r̂

− iMω r̂
)
, (28)

with energy El = h̄ω(l+3/2); for assistance with working out
commutators, please see the appendix of Ref. 13. In this case,
we find ÂlÂ

†
l +El = Ĥl+1 + h̄ω , so the kth auxiliary Hamil-

tonian for Ĥl is just Ĥl+k + kh̄ω . Thus the eigenstates of Ĥl

are given by Ck,lÂ
†
l · · · Â

†
l+k−1 |φl+k⟩, where |φl⟩ represents the

ground state of Ĥl . Note that one needs to be very careful
to keep straight the difference between the Hamiltonians for
definite angular momentum versus the auxiliary Hamiltonians
for each problem with definite angular momentum; they are
related to each other by constant shifts proportional to h̄ω .

Applying the Hadamard lemma as well as the fact that
r̂k p̂r r̂−k = p̂r + ih̄k/r̂, we can re-express the raising operator
as

Â†
l =

1√
2M

e
Mω

2h̄ r̂2 1
r̂l+1 p̂r r̂l+1e−

Mω

2h̄ r̂2
. (29)

One can employ the commutator identities in the appendix of
Ref. 13 to compute these commutators without converting to
differential operators. We likewise convert Âl into

1√
2M

e−
Mω

2h̄ r̂2
r̂l
(

p̂r +
ih̄
r̂

)
1
r̂l e

Mω

2h̄ r̂2
, (30)

giving us the subsidiary condition(
p̂r +

ih̄
r̂

)
1
r̂l e

Mω

2h̄ r̂2 |φl⟩= 0. (31)

The reason we write this with a specific shift of the radial
momentum operator will become clear in the course of the
derivation.

Now, using our formula for the kth eigenstate |ψk,l⟩ of Ĥl ,
we find that

|ψk,l⟩=
Ck,l

√
2M

k e
Mω

2h̄ r̂2 1
r̂l+1

(
p̂r

1
r̂

)k
r̂l+k+1e−

Mω

2h̄ r̂2 |φl+k⟩ ,

(32)
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after canceling out the factors of exp(±Mω r̂2/2h̄) and oppo-
site powers of r̂ from adjacent raising operators. If we look
only at the last factor of p̂r/r̂ and everything that comes after
it, we find

p̂r r̂l+ke−
Mω

2h̄ r̂2 |φl+k⟩= 1
r̂

(
p̂r +

ih̄
r̂

)
r̂l+k+1e−

Mω

2h̄ r̂2 |φl+k⟩

=
[

1
r̂

(
p̂r +

ih̄
r̂

)
,e−

Mω

h̄ r̂2
r̂2l+2k+1

]
r̂−l−ke

Mω

2h̄ r̂2 |φl+k⟩

=
[

1
r̂ p̂r,e−

Mω

h̄ r̂2
r̂2l+2k+1

]
r̂−l−ke

Mω

2h̄ r̂2 |φl+k⟩ . (33)

In the first line, we move one factor of 1/r̂ to the left, shift-
ing the radial momentum by its commutator with 1/r̂. In the
second line, we use a multiply-by-one to create the state anni-
hilated by p̂r + ih̄/r̂, so we can introduce the commutator. In
the third line we recognize that functions of r̂ commute with
1/r̂. Repeating this with each additional factor of p̂r/r̂ gives
us the operator form of the Rodrigues formula

|ψk,l⟩=
Ck,l

√
2M

k e
Mω

2h̄ r̂2 1
r̂l+1

×
[

1
r̂ p̂r, ...

[
1
r̂ p̂r,e−

Mω

h̄ r̂2
r̂2l+2k+1

]
· · ·
]

k

× r̂−l−ke
Mω

2h̄ r̂2 |φl+k⟩

=
1
r̂k

(
−2ih̄√

2M

)k

e
Mω

h̄ r̂2 (Mω

h̄ r̂2)−l− 1
2

×
[

1
r̂

i p̂r
2Mω

, ...

[
1
r̂

i p̂r
2Mω

,e−
Mω

h̄ r̂2 (Mω

h̄ r̂2)k+l+ 1
2

]
· · ·
]

k
|φl+k⟩.

(34)

If one wants to work with the differential form of the Ro-
drigues formula, one can again convert the nested commuta-
tors into multiple derivatives and employ Eq. (2) to determine
the associated Laguerre polynomials in the solution. Instead,
we introduce

L
(l+ 1

2 )

k

(Mω

h̄ r̂2)= (Mω

h̄ r̂2
)−l− 1

2 e
Mω

h̄ r̂2

k!

×
[

1
r̂

i p̂r
2Mω

, · · ·
[

1
r̂

i p̂r
2Mω

,e−
Mω

h̄ r̂2 (Mω

h̄ r̂2)k+l+ 1
2

]
· · ·
]

k
.

(35)

We would like to show that L(l+1/2)
k is equal to an associated

Laguerre polynomial, which we will once again do by a recur-
rence relation. To do this, we need to show that L(l+1/2)

0 (x)= 1
and verify the general recurrence relation

kL
(l+ 1

2 )

k (x) = (k+ l + 1
2 )L

(l+ 1
2 )

k−1 (x)− xL
(l+ 3

2 )

k−1 (x) (36)

for Laguerre polynomials. Starting with k = 0, we see that
there is no commutator but the power of r̂ and the Gaussian
factor remain, so one can see all factors cancel out and we
indeed find the Laguerre polynomial is 1. If we evaluate the
innermost commutator in Eq. (35) by using Leibniz’s product

rule, we find[
1
r̂

i p̂r
2Mω

,e−
Mω

h̄ r̂2 (Mω

h̄ r̂2)k+l+ 1
2

]
=

ie−
Mω

h̄ r̂2

2Mω r̂

(Mω

h̄

)k+l+ 1
2
[

p̂r, r̂2k+2l+1
]

+
i

2Mω r̂

[
p̂r,e−

Mω

h̄ r̂2
](Mω

h̄ r̂2)k+l+ 1
2

= e−
Mω

h̄ r̂2
(k+ l + 1

2 )
(Mω

h̄ r̂2)k+l− 1
2

− e−
Mω

h̄ r̂2 (Mω

h̄ r̂2)k+l+ 1
2 . (37)

Thus, multiplying Eq. (35) by k and using it again to define
the Laguerre polynomials with different indices, we find that

kL
(l+ 1

2 )

k

(Mω

h̄ r̂2)= (k+ l + 1
2 )L

(l+ 1
2 )

k−1

(Mω

h̄ r̂2)
−
(Mω

h̄ r̂2)L
(l+ 3

2 )

k−1

(Mω

h̄ r̂2) . (38)

Hence, the operator definition of the Laguerre polynomials
does properly satisfy the recurrence relation of the Laguerre
polynomials. This then allows us to replace the iterated com-
mutator by the Laguerre polynomial via

|ψk,l⟩=Ck,l

(
− 2ih̄√

2M

)k k!
r̂k L

(l+ 1
2 )

k

(Mω

h̄ r̂2) |φl+k⟩ .

(39)

The normalization constant Ck,l is found from Eq. (5); one
must be careful to use the auxiliary Hamiltonians in this cal-
culation and recall that they are shifted upwards by constants
proportional to integers times h̄ω . We then find that

Ck,l =
1√

(2h̄ω)kk!
. (40)

What remains is to determine the wavefunction for the
ground state. Following a similar strategy as before, we have
that

⟨r|φl⟩= rle−
Mω

2h̄ r̂2 ⟨r| r̂−le
Mω

2h̄ r̂2 |φl⟩

= rle−
Mω

2h̄ r2 ⟨0r|e
i
h̄ r(p̂r+

ih̄
r̂ )r̂−le

Mω

2h̄ r̂2 |φl⟩

= rle−
Mω

2h̄ r2 ⟨0r| r̂−l |φl⟩ (41)

The second line replaces ⟨r| by the r = 0 bra, ⟨0r| times an ex-
ponential of the spherical translation operator,13 and the third
line uses the fact that the state to the right is annihilated by
p̂r + ih̄/r̂, which replaces the spherical translation operator by
1 and then operates exp(Mω r̂2/2h̄) to the left onto ⟨0r| where
it is replaced by 1 as well. The remaining term, ⟨0r| r̂−l |φl⟩ is
a constant, which we can calculate by normalizing the wave-
function, giving

⟨0r| r̂−l |φl⟩=
(

Mω

h̄

) l
2+

3
4 2

l
2+1

π
1
4
√
(2l +1)!!

. (42)

One might have thought that this term diverges, but because
the wavefunction behaves as rl for r → 0, it is the well-defined
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coefficient of this term. Summarizing, our work gives us the
radial wave function

ψk,l(r) = 1

π
1
4

√
2l+k+2k!

(2(l+k)+1)!!

(Mω

h̄

) l
2+

3
4

×L
(l+ 1

2 )

k

(Mω

h̄ r2)rle−
Mω

2h̄ r2
, (43)

where we have omitted the overall phase factor of (−i)k. The
wave function is more commonly expressed in terms of the
principle quantum number. Since the kth auxiliary Hamilto-
nian for Ĥl is Ĥl+k + kh̄ω , the energy of |ψk,l⟩ is the ground
state energy of Ĥl+k+kh̄ω , which is (l+2k+3/2)h̄ω . Hence,
we introduce the principle quantum number n = l +2k to ob-
tain our final result

ψn,l(r) =
1

π
1
4

√
2

n+l
2 +2( n−l

2 )!
(n+ l +1)!!

(Mω

h̄

) l
2+

3
4

×L
(l+ 1

2 )
n−l

2

(Mω

h̄ r2)rle−
Mω

2h̄ r2
, (44)

which is now in standard form for the radial wavefunction.
The problem can also be solved in momentum space, but

this might be too challenging for students to carry out. This
is not because it is too difficult, but rather because it might
be unfamiliar to them. This is again a case where the similar-
ity transformation can be made with respect to the r̂ function
for the ladder operators, which allows for a very similar solu-
tion procedure. But determining the proper definition for the
Laguerre polynomials from the nested commutators and solv-
ing the recurrence relation would be a challenge for students
unless properly scaffolded.

V. COULOMB PROBLEM FOR HYDROGEN

Like the 3D harmonic oscillator problem, it is easiest to
solve the Coulomb problem by using the rotational symmetry
and separation of variables, so that

Ĥ =
p̂2

2M
− e2

r̂
=

p̂2
r

2M
+

L̂2

2Mr̂2 − e2

r̂
. (45)

We can define the Hamiltonians with constant angular mo-
mentum as

Ĥl =
p̂2

r

2M
+

h̄2l(l +1)
2Mr̂2 − e2

r̂
, (46)

so that once again Ĥ(|ψ⟩⊗ |l,m⟩) = (Ĥl |ψ⟩)⊗|l,m⟩. We can
factor Ĥl with the lowering operator given by

Âl =
1√
2M

(
p̂r +

ih̄(l +1)
r̂

− ih̄
(l +1)a0

)
, (47)

and energy El,0 = −e2/[2(l + 1)2a0]. This time, Âl Â†
l +

El,0 = Ĥl+1, so the auxiliary Hamiltonian for Ĥl is Ĥl+1.
Therefore, the kth excited state with angular momentum l
is Cl,kÂ†

l · · · Â
†
l+k−1 |φl+k⟩ (where |φl+k⟩ is the ground state

of Ĥl+k and has energy El,k = −e2/[2(l + k + 1)2a0]. How-
ever, we usually define these states not in terms of l and
k, but in terms of the principal quantum number n, so that
En =−e2/[2n2a0]. The state |n, l⟩ corresponds to k= n− l−1.
Thus, we write

|n, l⟩=Cn,lÂ
†
l · · · Â

†
n−2 |n,n−1⟩ . (48)

Using the Hadamard lemma, we re-express the raising opera-
tor as a similarity transformation via

Â†
l =

1√
2M

1
r̂l+1 e

r̂
(l+1)a0 p̂re

− r̂
(l+1)a0 r̂l+1, (49)

and the subsidiary condition becomes

p̂re
r̂

na0
1
r̂n |n,n−1⟩= 0. (50)

Therefore,

|n, l⟩=
Cn,l

√
2M

n−l−1
1

r̂l+1 e
r̂

(l+1)a0

×
n−l−1

∏
j=1

(
p̂re

− r̂
a0

(
1

l+ j −
1

l+ j+1

)
1
r̂

)
e−

r̂
na0 r̂n |n,n−1⟩ .

(51)

The product contains terms when l ̸= n−1. We take the right-
most factor of the product and act it on everything to the right,
giving us the commutator replacement

p̂re
− r̂

(n−1)a0 r̂n−1 |n,n−1⟩

=

[
p̂r,e

− r̂
a0

2n−1
n(n−1) r̂2n−1

]
e

r̂
na0

1
r̂n |n,n−1⟩ , (52)

after recalling the state annihilated by p̂r. We continue pulling
out factors from the rightmost terms in the remaining products
to similarly convert to additional nested commutators. We ob-
tain |n, l⟩= M̂n,l |n,n−1⟩, with

M̂n,l =
Cn,l

√
2M

n−l−1
1

r̂l+1 e
r̂

(l+1)a0

[
p̂r,e

− r̂
a0(l+1)(l+2)

1
r̂

×
[

p̂r, ...,

[
p̂r,e

− r̂
a0(n−2)(n−1)

1
r̂

[
p̂r,e

− r̂
a0

2n−1
n(n−1)

×r̂2n−1
]]

· · ·
]]

n−l−1
e

r̂
na0

1
r̂n . (53)

The normalization constant is found from Eq. (6), using the
fact that

En −E j =
e2

2a0

(
1
j2 − 1

n2

)
=

e2(n+ j)(n− j)
2a0n2 j2 . (54)

This results in

Cn,l =
(

n
√

2a0
e

)n−l−1 (n−1)!
l!

√
(n+l)!
(2n−1)!

1
(n−l−1)! . (55)
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We need to simplify the nested commutator expressions.
This can again be done with differential operators, but we in-
stead show how to do it with abstract operators. We follow the
same procedure as before. We define a polynomial such that

|n, l⟩=Cn,l
(2n−1)!l!(n−l−1)!

(n+l)!(n−1)!

(
− ih̄√

2M
1
2r̂

)n−l−1

×L(2l+1)
n−l−1

(
2r̂

na0

)
|n,n−1⟩ , (56)

and verify it is a Laguerre polynomial using induction. Start-
ing with l = n− 1, we find that L(2l+1)

0 (2r̂/na0) = 1. When
l = n−2, Eq. (53) becomes

|n,n−2⟩=
Cn,n−2√

2M
1

r̂n−1 e
r̂

(n−1)a0

[
p̂r,e

− r̂
a0

2n−1
n(n−1) r̂2n−1

]
× e

r̂
na0

1
r̂n |n,n−1⟩

=−
ih̄Cn,n−2(2n−1)√

2M(n−1)2r̂

(
2n−2− 2r̂

na0

)
|n,n−1⟩ .

(57)

Using Eq. (56), we find that

L(2n−3)
1

(
2r̂

na0

)
= 2n−2− 2r̂

na0
, (58)

which is also correct for this Laguerre polynomial. To com-
plete the proof by induction, we need to use two more recur-
rence relations for Laguerre polynomials,

mL(α)
m (x) = (2m+α −1− x)L(α)

m−1(x)

− (m+α −1)L(α)
m−2(x) (59)

and

L(α+1)
m (x)−L(α+1)

m−1 (x) = L(α)
m (x), (60)

as well as the explicit formula for the Laguerre polynomials,

L(α)
m (x) =

m

∑
j=0

(−1) j
(

m+α

m− j

)
x j

j!
. (61)

The induction step assumes that Eq. (56) holds for l and
l+1, and then we need to establish that it also holds for l−1.
Using Eq. (53), we have that

|n, l −1⟩= M̂n,l−1 |n,n−1⟩=
Cn,l−1√
2MCn,l

1
r̂l e

r̂
la0

×
[

p̂r,e
− r̂

la0 r̂lM̂n,le
− r̂

na0 r̂n
]

e
r̂

na0
1
r̂n |n,n−1⟩ .

(62)

After expanding the commutator using the Leibniz product

rule and simplifying, we find that this becomes

|n, l −1⟩=
Cn,l−1√
2MCn,l

(
ih̄M̂n,l

(
n+l
nla0

− n+l
r̂

)
+[ p̂r,M̂n,l ]

)
|n,n−1⟩

=
Cn,l−1√
2M

n−l

(−ih̄
2

)n−l−1 (2n−1)!l!(n−l−1)!
(n+l)!(n−1)!

×
(

ih̄
r̂n−l−1 L(2l+1)

n−l−1

(
2r̂

na0

)(
n+l
nla0

− n+l
r̂

)
+
[

p̂r,
1

r̂n−l−1 L(2l+1)
n−l−1

(
2r̂

na0

)])
. (63)

The commutator can be determined using Eq. (61) and evalu-
ating the commutators term-by-term. It becomes

ih̄
r̂n−l

(
2r̂

na0
L(2l+2)

n−l−2

(
2r̂

na0

)
+(n− l −1)L(2l+1)

n−l−1

(
2r̂

na0

))
=

ih̄
r̂n−l (n+ l)L(2l+1)

n−l−2

(
2r̂

na0

)
, (64)

where the last equality used Eq. (36), with l + 1/2 → 2l + 1.
Substituting this result back into Eq. (63) gives

|n, l −1⟩=Cn,l−1
(2n−1)!(l−1)!(n−l−1)!

(n+l−1)!(n−1)!

× (−1)n−l−1
(

ih̄√
2M2r̂

)n−l (
2lL(2l+1)

n−l−2

(
2r̂

na0

)
+
(

2r̂
na0

−2l
)

L(2l+1)
n−l−1

(
2r̂

na0

))
|n,n−1⟩ , (65)

after bringing in a factor of 2l/(n + l) from the con-
stants out front into the parenthesis. Using Eq. (59) with
m = n − l and α = 2l + 1 gives (n − l)L(2l+1)

n−l (2r̂/na0) =

(2n−2r̂/na0)L(2l+1)
n−l−1 (2r̂/na0)− (n+ l)L(2l+1)

n−l−2 (2r̂/na0). Us-
ing this fact, as well as Eq. (60) multiple times, we find that(

2lL(2l+1)
n−l−2

(
2r̂

na0

)
+
(

2r̂
na0

−2l
)

L(2l+1)
n−l−1

(
2r̂

na0

))
=− (n− l)

(
L(2l+1)

n−l

(
2r̂

na0

)
−2L(2l+1)

n−l−1

(
2r̂

na0

)
+ L(2l+1)

n−l−2

(
2r̂

na0

))
=− (n− l)

(
L(2l)

n−l

(
2r̂

na0

)
−L(2l)

n−l−1

(
2r̂

na0

))
=− (n− l)L(2l−1)

n−l

(
2r̂

na0

)
. (66)

In the first step, we replaced (2r̂/na0)L
(2l+1)
n−l−1 (2r̂/na0) using

Eq. (59) and then Eq. (60) was used twice to obtain the third
line and once to obtain the final result. The final result is

|n, l −1⟩=Cn,l−1
(2n−1)!(l−1)!(n−l)!
(n+l−1)!(n−1)!

×
(
− ih̄√

2M2r̂

)n−l
L(2l−1)

n−l

(
2r̂

na0

)
|n,n−1⟩ , (67)

which establishes the proof by induction.
The wavefunction of the l = n− 1 state can then be calcu-

lated from the subsidiary condition using techniques similar
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to what we used before. Namely, we find that

⟨r|n,n−1⟩= rn−1e−
r

na0 ⟨r|e
r̂

na0
1

r̂n−1 |n,n−1⟩

= rn−1e−
r

na0 ⟨0r|e
i
h̄ r(p̂r+

ih̄
r̂ )e

r̂
na0

1
r̂n−1 |n,n−1⟩

= rn−1e−
r

na0 ⟨0r|e
r̂

na0
1

r̂n−1 |n,n−1⟩

= rn−1e−
r

na0 ⟨0r|
1

r̂n−1 |n,n−1⟩ . (68)

The normalization constant is then immediately found by in-
tegration, resulting in

⟨0r|
1

r̂n−1 |n,n−1⟩=
(

2
na0

)n+ 1
2 1√

(2n)!
. (69)

Combining this with the result for Cn,l and Eq. (56), gives us
the final Coulomb radial wavefunction,

ψn,l(r) =
√

(n−l−1)!
2n(n+1)!

(
2

na0

)l+ 3
2

L(2l+1)
n−l−1

(
2r

na0

)
rle−

r
na0 ,

(70)

which is the standard result.

VI. APPROACHES TO INCLUDE THIS TECHNIQUE IN
QUANTUM INSTRUCTION

The operator Rodrigues formula approach to calculating
wavefunctions has some aspects to it that are tedious, tech-
nical, and abstract. The steps leading up to the nested com-
mutators are quite straightforward and certainly can be shown
to undergraduates and graduate students alike. The determi-
nation of the special polynomial for each solution is a more
complex task. Similar to how the Rodrigues polynomials are
defined in terms of n-fold derivatives acting on the generating
functions, one could just define the Rodrigues polynomials
here via nested commutators and simply tell the students what
the general form is without requiring them to determine the
recurrence relations. This can make the approach easier to di-
gest by students and then it has a similar level of complexity as
the differential Rodrigues formula approaches where students
are told the special polynomial. Graduate students, however,
should be able to work with the recurrence relations, espe-
cially because the identities needed to solve all of the recur-
rence relations can be easily derived from the defining power
series expansion for the Laguerre polynomials.

In instruction, it is probably better to spread out the content
in different units, so that the material can be revisited multiple
times and be absorbed more easily by the students. We would
recommend covering the material for the simple harmonic os-
cillator in one dimension and three dimensions and for the
Coulomb problem in three dimensions. The two-d examples
or the Morse potential could then be assigned as exercises for
the students, as could the harmonic oscillator problems in mo-
mentum space, which we did not cover in this work. They
would likely need scaffolding to help students derive the re-
currences if this is a goal of the homework problems.

We believe there is an elegance to these approaches, espe-
cially to how the ground-state wavefunctions are found, that
students are likely to enjoy working with. We anticipate this
is similar to how students prefer working with ladder oper-
ators in many different calculations for the simple harmonic
oscillator instead of working with differential equations or in-
tegration. It is for this reason, that these materials are likely to
be well-received by students and are worth the effort needed
to work more abstractly.

VII. SUMMARY AND CONCLUSIONS

Quantum mechanics suffers from being taught primarily
in the position-space representation. This is often argued to
be necessary because this is the only representation where
the Schrödinger equation is always expressed as a second-
order linear differential equation. Hence, all energy eigen-
value problems are treated on the same footing.

However, not everybody teaches quantum mechanics solely
in this fashion. Most instructors will teach both the simple
harmonic oscillator and the angular momentum eigenstates
using an abstract, representation-independent approach. Ever
since 1940, we have known how to do this for all solvable
problems in quantum mechanics, but the approach has not
been widely adopted. We suspect this is true primarily be-
cause using these approaches does not allow for a direct cal-
culation of the wavefunctions in position or momentum space.
This work shows how one can ameliorate such a concern and
actually calculate wavefunctions without resorting to work-
ing in the position representation. Because of the importance
of working with representation-independent formulations, we
feel this is an important new tool that is available for instruc-
tors to use who wish to teach quantum mechanics without re-
lying solely on the position representation.

VIII. ACKNOWLEDGMENTS

J. R. N. was supported by the National Science Founda-
tion under Grant No. DMR–1950502. L.X. was supported
by U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research (ASCR), Quantum
Computing Application Teams (QCATS) program, under field
work proposal number ERKJ347. J.K.F. was supported by the
National Science Foundation under Grant No. PHY-1915130
and was supported by the McDevitt bequest at Georgetown
University. J.K.F. planned the project, including developing
the steps to construct an operator-based generalization of the
Rodrigues formula. J.R.N. and M.R.S. performed calculations
for different Hamiltonians. L.X. served as a mentor to J.R.N.’s
work. All authors contributed to writing up the work.

IX. AUTHOR DECLARATIONS

The authors have no conflicts to disclose.



10

REFERENCES
1E. Schrödinger, “A Method of Determining Quantum-Mechanical Eigen-
values and Eigenfunctions," Proc. R. Irish Acad. A 46, 9–16 (1940-41).

2E. Schrödinger, “Further studies on solving eigenvalue problems by factor-
ization,” Proc. R. Irish Acad. A 46, 183–206 (1940-41).

3E. Schrödinger, “The Factorization of the Hypergeometric Equation,” Proc.
R. Irish Acad. A 47, 53–54, (1941-42).

4L. Infeld, and T. E. Hull, “The Factorization Method,” Rev. Mod. Phys., 23,
21–68, (1951).

5E. Witten, “Dynamical Breaking of Supersymmetry,” Nucl. Phys. B 188,
513–554 (1981).

6Supplemental material reference.
7G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical methods for
physicists: A comprehensive guide, 7th ed., (Amsterdam, The Netherlands,
2013).

8J. Canfield, A. Galler, and J. K. Freericks, “The Laplace Method for Energy
Eigenvalue Problems in Quantum Mechanics,” Quantum Rep. 5, 370–397
(2023).

9H. C. Ohanian, Principles of Quantum Mechanics (Englewood Cliffs, NJ,
Prentice-Hall, Inc., 1990).

10F. Cooper, A. Kare, and U. V. Sukhatme, Supersymmetry in Quantum Me-
chanics (Singapore, World Scientific, 2001).

11L. E. Gendenshtein, “Derivation of exact spectra of the Schrödinger equa-
tion by means of supersymmetry,” JETP Lett., 38, 356–359 (1983).

12E. Merzbacher, Quantum Mechanics, 3rd ed. (New York, John Wiley &
Sons, Inc., 1998).

13M. Rushka, M. Esrick, W. N.,Mathews Jr., and J. K. Freericks, “Converting
translation operators into plane polar and spherical coordinates and their
use in determining quantum-mechanical wavefunctions in a representation-
independent fashion,” J. Math. Phys. 62, 072102 (2021).

Supplemental material for Noonan, Rehman Shah, Xu,
and Freericks “Employing an operator form of the Ro-
drigues formula to calculate wavefunctions without differ-
ential equations.”

SUPPLEMENTAL MATERIAL: SUMMARY OF OTHER
PROBLEMS THAT CAN BE SOLVED THIS WAY

This strategy can be used to solve other problems as well.
The approach is identical to that given in the examples we
have seen already. Rather than go through these examples in
full detail, we sketch how they work, providing only summary
formulas. We explicitly show results for the two-dimensional
isotropic oscillator and the two-dimensional Coulomb prob-
lem. The Morse potential can also be solved this way, but we
do not provide any details here.

We start with the isotropic oscillator in two dimensions. We
solve it in polar coordinates. The wavefunction is written in a
tensor-product form |Ψ⟩ = |ψ⟩⊗ |m⟩, where |m⟩ is an eigen-
state of the z-component of angular momentum. The Hamil-
tonian is

Ĥ =
p̂2

x

2M
+

p̂2
y

2M
+

1
2

Mω
2(x̂2 + ŷ2). (S1)

After separating variables and acting onto the tensor-product
state, we have Ĥ|Ψ⟩= Ĥm|ψ⟩⊗ |m⟩, with

Ĥm =
p̂2

ρ

2M
+

h̄2(m2 − 1
4 )

2Mρ̂2 +
1
2

Mω
2
ρ̂

2, (S2)

where p̂ρ is the radial component of the momentum p̂ρ =
1
ρ̂
(x̂ p̂x + ŷ p̂y)− ih̄

2ρ̂
and ρ̂2 = x̂2 + ŷ2. Ĥm can be factorized

with the lowering operator given by

Âm =
1√
2M

(
p̂ρ − i

(−h̄(m+ 1
2 )

ρ̂
+Mωρ̂

))
, (S3)

with energy Em = h̄ω(m + 1). While this factorization
works for all integers m, we focus on working with non-
negative m values, because the negative values can be
easily constructed from the positive ones. The auxiliary
Hamiltonian for each m is then ÂmÂ†

m + Em = Ĥm+1 + h̄ω ,
which is again a constant shift of the next larger con-
stant angular momentum Hamiltonian. The intertwining re-
lationship is ĤmÂ†

m = Â†
m(Ĥm+1 + h̄ω). The kth excited

state of Ĥm satisfies ĤmÂ†
mÂ†

m+1 · · · Â
†
m+k−1 |φm+k⟩= (Em+k +

kh̄ω)Â†
m · · · Â†

m+k−1 |φm+k⟩, with the energy h̄ω(m+ 2k + 1),
where |φm⟩ is the ground state of Ĥm. The normalization con-
stant is Cm,k = 1/

√
(2h̄ω)kk!.

The similarity transformation for the raising operator is
Â†

m = 1√
2M

e
Mω

2h̄ ρ̂2
ρ̂−m− 1

2 p̂ρ ρ̂m+ 1
2 e−

Mω

2h̄ ρ̂2
. The subsidiary con-

dition becomes

p̂ρ ρ̂
−m− 1

2 e
Mω

2h̄ ρ̂2 |φm⟩= 0, (S4)
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which gives the state annihilated by p̂ρ . The kth excited state
of Ĥm is then

|ψm,k⟩=Cm,kÂ†
m · · · Â†

m+k−1 |φm+k⟩= 1√
(4h̄Mω)kk!

e
Mω

2h̄ ρ̂2
ρ̂
−m− 1

2 p̂ρ
1
ρ̂

p̂ρ · · · 1
ρ̂

p̂ρ ρ̂
m+k−1+ 1

2 e−
Mω

2h̄ ρ̂2 |φm+k⟩

=(−i)k 1√
k!

e
Mω

h̄ ρ̂2 (Mω

h̄ ρ̂
2)−m− k

2

[
h̄

2Mωρ̂

ip̂ρ

h̄ ,

· · · ,
[

h̄
2Mωρ̂

ip̂ρ

h̄ ,
(Mω

h̄ ρ̂
2)m+k

e−
Mω

h̄ ρ̂2
]
· · ·

]
k

|φm+k⟩ .

(S5)

The Laguerre polynomial is defined as follows

L(m)
k (

Mω

h̄
ρ̂

2) =
1
k!

(Mω

h̄
ρ̂

2
)−m

e
Mω

h̄ ρ̂2

×

[
1
ρ̂

ip̂ρ

2Mω
, · · ·
[

1
ρ̂

ip̂ρ

2Mω
,
(Mω

h̄ ρ̂
2)m+k

e−
Mω

h̄ ρ̂2
]
· · ·

]
k

.

(S6)

We then need to show that L(m)
k is equal to an associated La-

guerre polynomial, which we will once again do by a recur-
rence relation. To do this, we need to show that Lm

0 (x) = 1 and
the general recurrence relation

kL(m)
k (x) = (m+ k)L(m)

k−1(x)− xL(m+1)
k−1 (x) (S7)

for Laguerre polynomials. Starting with k = 0 where the poly-
nomial L(m)

0 does not contain any commutator, Eq. (S6) then
becomes

L(m)
0

(
Mω

h̄
ρ̂

2
)
=
(Mω

h̄
ρ̂

2
)−m

e
Mω

h̄ ρ̂2
(Mω

h̄
ρ̂

2
)m

e−
Mω

h̄ ρ̂2

= 1 (S8)

If we evaluate the innermost commutator in Eq. (S6) by using
Leibniz’s product rule, we find that[

1
ρ̂

ip̂ρ

2Mω
,
(Mω

h̄ ρ̂
2)m+k

e−
Mω

h̄ ρ̂2
]
=

(m+ k)e−
Mω

h̄ ρ̂2
(Mω

h̄ ρ̂
2)m+k−1 − e−

Mω

h̄ ρ̂2
(Mω

h̄ ρ̂
2)m+k

(S9)

Thus, multiplying Eq. (S6) by k and using it again to define
the Laguerre polynomials with different indices, we find that

kL(m)
k

(Mω

h̄ ρ̂
2)= (m+ k)L(m)

k−1

(Mω

h̄ ρ̂
2)

−
(Mω

h̄ ρ̂
2)L(m+1)

k−1

(Mω

h̄ ρ̂
2) , (S10)

which means the Laguerre polynomials defined in Eq. (S6) do
properly satisfy the recurrence relation of the Laguerre poly-
nomials. This then allows us to replace the iterated commuta-
tor with the Laguerre polynomial via

|ψm,k⟩=
√

k!
(

−i
√

h̄
ρ̂
√

Mω

)k
L(m)

k

(Mω

h̄ ρ̂
2) |φm+k⟩ . (S11)

The wavefunction for the ground state can be found in the
same way as we did before and is given by

φm(ρ) = ⟨ρ|φm⟩= ρ
me−

Mω

2h̄ ρ2 ⟨0ρ | 1
ρ̂m |φm⟩ . (S12)

The term ⟨0ρ | 1
ρ̂m |φm⟩ can be found by normalizing the wave-

function

⟨0ρ | 1
ρ̂m |φm⟩=

(Mω

h̄

)m+1
2
√

2
m!

(S13)

Omitting the overall phase factor (−i)k, the radial wavefunc-
tion is then

ψm,k(ρ) =

√
k!h̄k

(Mω)k
1
ρ

L(m)
k

(Mω

h̄ ρ
2)

φm+k(ρ)

=
√

2k!
(m+k)! (

Mω

h̄ )m+1ρ
me−

Mω

2h̄ ρ2
L(m)

k

(Mω

h̄ ρ
2) .

(S14)

Using the principal quantum number, defined to be n=m+2k
and adding in the angular part of the wavefunction, we get the
final wavefunction

Ψn,m(ρ,φ) =

√( n−|m|
2

)
!√

π

( n+|m|
2

)
!

√
(Mω

h̄ )|m|+1L(|m|)
n−|m|

2

(Mω

h̄ ρ
2)

× e−
Mω

2h̄ ρ2
eimφ . (S15)

In this final step, we use the fact that the results for positive
and negative m only differ in the angular factor.13 The factor

1√
2π

has been introduced to account for the normalization of

eimφ .
The two-dimensional Coulomb problem can be solved in a

similar way. The constant angular momentum Hamiltonian is

Ĥm =
p̂2

ρ

2M
+

h̄2(m2 − 1
4 )

2Mρ̂2 − e2

ρ̂
, (S16)

and the lowering operator is given by

Âm =
1√
2M

(
p̂ρ −

ih̄
(m+ 1

2 )a0
+

ih̄(m+ 1
2 )

ρ̂

)
(S17)

with the energy being Em = −e2/(2a0
(
m+ 1

2 )
2
)
. As in the

three-dimensional case, the kth auxiliary Hamiltonian for Ĥm
is Ĥm+k, and in particular, the intertwining relation is ĤmÂ†

m =
Â†

mĤm+1. Thus, the eigenstates are the same form as before:
|ψm,k⟩ = Cm,kÂ†

mÂ†
m+1 · · · Â

†
m+k−1 |φm+k⟩, with energies Em+k,

and normalization constant

Cm,k =

(
a0
√

2M(m+ k+ 1
2 )

h̄

)k
(2m+2k−1)!!

2k(2m−1)!!

×

√
(2m+ k)!

k!(2m+2k)!
(S18)
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The similarity transformation for the raising operator is Â†
m =

1√
2M

e
ρ̂

a0(m+ 1
2 )

ρ̂−m− 1
2 p̂ρ ρ̂m+ 1

2 e
− ρ̂

a0(m+ 1
2 ) . The subsidiary condi-

tion is then

p̂ρ ρ̂
−m− 1

2 e
ρ̂

a0(m+ 1
2 ) |φm⟩= 0. (S19)

The excited states become

|ψm,k⟩=Cm,kÂ†
m · · · Â†

m+k−1 |φm+k⟩=
Cm,k
√

2M
k ×(

m+k−1

∏
j=m

e
ρ̂

a0( j+ 1
2 )

ρ̂
− j− 1

2 p̂ρ ρ̂
+ j+ 1

2 e
− ρ̂

a0( j+ 1
2 )

)
|φm+k⟩

=
Cm,k
√

2M
k e

ρ̂

a0(m+ 1
2 )

ρ̂
−m− 1

2

(
m+k−1

∏
j=m

p̂ρ

1
ρ̂

e
− ρ̂

a0( j+ 1
2 )( j+ 3

2 )

)

× ρ̂
2m+2k+1e

− 2ρ̂

a0(m+k+ 1
2 )

ρ̂
−m−k− 1

2 e
ρ̂

a0(m+k+ 1
2 ) |φm+k⟩

=
Cm,k
√

2M
k e

ρ̂

a0(m+ 1
2 )

ρ̂
−m− 1

2

[
p̂ρ ,

1
ρ̂

e
− ρ̂

a0(m+ 1
2 )(m+ 3

2 )

[
p̂ρ ,

1
ρ̂

e
− ρ̂

a0(m+ 3
2 )(m+ 5

2 ) · · ·
[

p̂ρ ,
1
ρ̂

e
− ρ̂

a0(m+k− 1
2 )(m+k+ 1

2 )
ρ̂

2m+2k+1

e
− 2ρ̂

a0(m+k+ 1
2 )
]
· · ·

]]
k

ρ̂
−m−k− 1

2 e
ρ̂

a0(m+k+ 1
2 ) |φm+k⟩ . (S20)

Now we introduce

L(2m)
k

(
2ρ̂

a0(m+k+ 1
2 )

)
=
(
− 1

ih̄

)k (2m+k)!
k!(2m−1)!!(2m+2k)!! ρ̂

−2m−1

e
(2m+k+1)ρ̂

a0(m+ 1
2 )(m+k+ 1

2 ) ×

[
p̂ρ ,

1
ρ̂

e
− ρ̂

a0(m+ 1
2 )(m+ 3

2 )
[

p̂ρ ,
1
ρ̂

e
− ρ̂

a0(m+ 3
2 )(m+ 5

2 ) · · ·
[

p̂ρ ,
1
ρ̂

e
− ρ̂

a0(m+k− 1
2 )(m+k+ 1

2 )
ρ̂

2m+2k+1

e
− 2ρ̂

a0(m+k+ 1
2 )
]
· · ·
]]

k

. (S21)

For k = 0, we get 1, and for k = 1, we find

L(2m)
1 =− 1

ih̄
(2m+1)!

(2m−1)!!(2m+2)!! ρ̂
−2m−1e

(2m+2)ρ̂
a0(m+ 1

2 )(m+ 3
2 )[

p̂ρ , ρ̂
2m+2e

− (2m+2)ρ̂
a0(m+ 1

2 )(m+ 3
2 )

]
= (2m+1)!

(2m+2)(2m)!

×
(
(2m+2)− (2m+2)ρ̂

a0(m+ 1
2 )(m+ 3

2 )

)
= 2m+1− 2ρ̂

a0(m+ 3
2 )
,

(S22)

which is the expected result for the Laguerre polynomial

L2m
1

(
2ρ̂

a0(m+ 3
2 )

)
. To complete the proof by induction, we need

to use the recurrence relations in Eqs. (60) and (S7) to show

that

L2m−2
k+1 (x) = L2m−1

k+1 (x)−L2m−1
k (x)

= L2m
k+1(x)−L2m

k (x)− (L2m
k (x)−L2m

k−1(x))

= L2m
k+1(x)−2L2m

k (x)+L2m
k−1(x)

= 1
k+1

(
(k+1+2m)L2m

k (x)− xL2m+1
k (x)

)
−2L2m

k (x)+L2m
k−1(x)

= 1
k+1

(
(2m−1− x)L2m

k (x)− (2m−1)L2m
k−1(x)

)
.

(S23)

Thus, we need to show that Eq. (S21) holds for m−1,

L(2m−2)
k+1

(
2ρ̂

a0(m+k+ 1
2 )

)
=− (2m−1)

ih̄(k+1)(2m+k) ρ̂
−2m+1

e
(2m+k)ρ̂

a0(m− 1
2 )(m+k+ 1

2 )

[
p̂ρ , ρ̂

2me
− (2m+k)ρ̂

a0(m− 1
2 )(m+k+ 1

2 ) L(2m)
k

]
. (S24)

After expanding the commutator using the Leibniz rule and
plugging the explicit formula for the Lagurre polynomials

L2m
k (x) =

k

∑
j=0

(−1) j

j!

(
k+2m
k− j

)
x j, (S25)

Eq. (S24) becomes

L(2m−2)
k+1

(
2ρ̂

a0(m+k+ 1
2 )

)
=

1
k+1

(
2m−1− 2ρ̂

a0(m+k+ 1
2 )

)
×L(2m)

k

(
2ρ̂

a0(m+k+ 1
2 )

)
− 2m−1

k+1 L(2m)
k−1

(
2ρ̂

a0(m+k+ 1
2 )

)
,

(S26)

which agrees with the recurrence relation we derived in
Eq. (S23). Thus the Lagurre polynomial defined in Eq. (S21)
is a proper Lagurre polynomial. Then, omitting the overall
phase (−i)k, the wavefunction becomes

ψm,k(ρ) =

(
a0(m+k+ 1

2 )
2

)k√
(2m+2k)!k!
(2m+k)! ρ

−k
φm+k(ρ)

×L2m
k

(
2ρ

a0(m+k+ 1
2 )

)
(S27)

The ground state wavefunction can be found as

⟨ρ|φm⟩= e
− ρ

a0(m+ 1
2 )

ρ
m ⟨0ρ | ρ̂−m |φm⟩

=
1√

(2m+1)!

(
2

a0(m+ 1
2 )

)m+1

e
− ρ

a0(m+ 1
2 )

ρ
m, (S28)

by the same algebra as before. Hence, the radial wavefunction
is

ψm,k(ρ) =

(
2

a0(m+k+ 1
2 )

)m+1√
k!

(2m+2k+1)(2m+k)! ρ
m

e
− ρ

a0(m+k+ 1
2 ) L2m

k

(
2ρ

a0(m+k+ 1
2 )

)
. (S29)
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We now define n = |m|+ k + 1, and including eimφ
√

2π
for the angular wavefunction, the full wavefunction is

Ψn,m(ρ,φ) =

(
2

a0(n− 1
2 )

)|m|+1√
(n−|m|−1)!

(2n−1)(n+|m|−1)! ρ
|m|

× e
− ρ

a0(n−
1
2 ) L|2m|

n−|m|−1

(
2ρ

a0(n− 1
2 )

)
eimφ

√
2π

. (S30)


