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Figure 1: LIDAR scanned cotton plants visualized as point clouds in various states of annotation used for the user study. The
two young cotton plants on the left were used for an annotation task, and the two mature plants on the right were used for a
cotton boll counting task.

ABSTRACT
This work presents a hybrid immersive headset- and desktop-based
virtual reality (VR) visualization and annotation system for point
clouds, oriented towards application on laser scans of plants. The
system can be used to paint regions or individual points with �ne
detail, while using compute shaders to address performance limi-
tations when working with large, dense point clouds. The system
can either be used with an immersive VR headset and tracked con-
trollers, or with mouse and keyboard on a 2D monitor using the
same underlying rendering systems. A within-subjects user study
(N=16) was conducted to compare these interfaces for annotation
and counting tasks. Results showed a strong user preference for the
immersive virtual reality interface, likely as a result of perceived
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and actual signi�cant di�erences in task performance. This was
especially true for annotation tasks, where users could rapidly iden-
tify, reach and paint over target regions, reaching high levels of
accuracy with minimal time, but we found nuances in the ways
users approached the tasks in the two systems.
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Many important real-world applications obtain and process digital
representations of built and natural environments. These surveying
activities are vital for scienti�c and engineering pursuits, as they
provide a means to measure physical traits of the environments and
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how they change over time. Commonly, scans of the environment
are created using methods such as light detection and ranging
(LIDAR) or photogrammetry, which output discrete spatial samples,
known as point clouds. From here, a variety of automated and
manual tasks ensue. Tasks involving human interaction with these
point clouds, such as counting, measuring, and annotation, may
be well-suited for immersive virtual reality (VR), which, through
stereoscopic, head-tracked rendering, could provide a better sense
of measurement depth and also improve navigation performance.
Further, tracked controllers commonly used in VR may improve
selection of point data. Though immersive LIDAR visualization
tools exist (e.g. LIDAR Viewer [12], there is little evidence that they
improve task performance over desktop-based tools (e.g. Cloud
Compare or Mesh Lab). To both address and better understand this
gap, we aimed to design a VR-based tool. This paper reports on that
tool, including a study that addresses the critical question of how
VR may improve task performance relative to desktop tools.

Beyond visualization, one of the contemporary use cases for such
a tool is to provide labelled training data for automatic semantic
segmentation, which allows higher level information processing.
Manual annotation is required, as can be seen in public datasets with
pre-annotated features, such as the DublinCity [32], Semanticposs
[20], and Semantic3D [9] datasets. These are often quite large in
scale, and are generally useful for self-driving vehicle applications,
as this is one of the foremost uses of raw point cloud data for the
present and near future. As machine learning methods become
more widespread, this technique is being applied to a wider variety
of �elds, and the development of these new algorithms requires
new ground-truth datasets, which often do not exist for application-
speci�c annotation, counting, or classi�cation problems. The intent
of this work is not to contribute to this body of datasets directly, but
to present and analyze a system that makes the development of new
datasets more accurate and e�cient, especially for applications that
require datasets that do not exist, since their focus is too narrow or
too innovative for an existing e�ort to have occurred.

This work was motivated by one such application, a research
project aiming to automate and accelerate the measurement of
agricultural products. As a part of this project, LIDAR point cloud
datasets of cotton plants were produced, and then subsequently pro-
cessed and annotated, either directly using a point cloud visualiza-
tion toolkit, or more recently, by automatic annotation algorithms.
The development and training of these algorithms via machine
learning depends heavily on a large variety of point cloud data
that are annotated correctly on a per-point level, or "ground-truth,"
through which their e�ectiveness could be evaluated. Given that
this was seen as a tedious task using existing tools, we aimed to de-
velop a tailored tool optimized for the process, and were particularly
interested in the value of headset VR interfaces.

VR displays have immediate bene�ts in depth perception over tra-
ditional 2D displays through both stereoscopic display technology
as well as parallax shift from motion tracking [8, 29]. The interac-
tion a�ordances of scenes viewed in this manner may also change,
especially when combined with 6-Degree-of-Freedom (DoF) motion
controllers. For example, users may reach into the point cloud, di-
rectly selecting points, or move about the environment di�erently,
such as by walking and turning in the real world. Enabling these
actions with dense, natural point clouds is a major performance

challenge. VR experiences must run at high frame rates to remain
usable and to reduce simulator sickness, but incur signi�cant ren-
dering performance overhead due to high resolution stereoscopic
rendering. To mitigate this, our application uses a continuous level
of detail (LOD) system, with the novel variation of applying LOD
emphasis on the hand positions, facilitating annotation work. We
also addressed performance issues encountered when selecting
points, and by doing this, enabled �uid, high frame rate point cloud
interactions in immersive VR.

In addition, we aimed to quantify the task performance gains
with this system, especially compared to a desktop interface. Thus,
we also co-designed such an interface that could be used for the
same tasks, but was optimized for mouse-keyboard-monitor inter-
actions. These interfaces were compared through a within-subjects
user study (N=16), where participants performed annotation and
counting tasks on LIDAR scans of cotton plants and provided feed-
back on usability. Large performance advantages were found for the
VR interface on the point annotation task, especially during early
phases, where precision may be less important, but this advantage
became much smaller as the task neared completion. Counting
performance was similar, with a small, but signi�cant advantage
for the VR interface. Surveys and written responses qualify these
results, highlighting that users strongly preferred the VR interface
for both tasks, mostly due to a perceived performance advantage
(even though this was not always the case). Altogether, results were
promising that our VR interface could accelerate, and make more
enjoyable, the currently tedious tasks on point cloud datasets, espe-
cially given that there is signi�cant room for improvement in VR
hardware and interface design.

1 RELATEDWORKS
1.1 Immersive LIDAR Visualization
Immersive data visualization became practical in the early 1990s
with the introduction of the CAVE [6], a cube of projection displays
that surround the user. CAVEs, and similar spatially immersive
displays, have since been used for a variety of visualization appli-
cations in architecture, astronomy, mathematics, biology, medicine,
and physics. [5, 18]. Kreylos et al. was one of the �rst to explore
large-scale immersive point cloud visualization and interaction,
resulting in the open source LIDAR Viewer application [12], which
has been used extensively for geographic science visualizations
[14, 26]. This systemwas originally designed to be usedwith CAVEs,
which provide access to high-performance computing and sup-
port multiple users [10]. Though visualization walls have remained
popular [7], recent e�orts have brought LIDAR Viewer and other
similar systems to personal computers and personal VR headsets
[11, 13, 17, 23, 31], greatly lowering the barrier for use.

Performance has been a dominant theme in the above LIDAR
visualization research. LIDAR point clouds tend to be large, greatly
exceeding the boundaries of system memory, requiring so-called
"out-of-core" techniques that pre-process and subdivide datasets
into hierarchical levels-of-detail (LOD), loading increased LOD
into memory as the camera approaches. The exceptional perfor-
mance of this technique is highlighted by web-based point cloud
viewers, such as Potree [23] that gracefully reduce performance
to run on most hardware. However, Schütz et al. point out that
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it is worthwhile to explore the maximization of in-memory point
cloud visualization, i.e. the maximum number of points that can
be precisely visualized in real time. They presented a continuous
LOD method that they classify as a "view-dependent, continuous
LOD method with �delity-based simpli�cations [24]." Their system
creates a lower resolution version of the full point cloud based on
both gaze direction and viewpoint position and is updated regularly
to account for movements of the camera using a compute shader.
This method was found to e�ectively render point clouds of up to
104M points with a GTX 1080 on an HTC VIVE Pro. The continu-
ous LOD system was found to have more "subtle and less irritating
changes of detail as users move through the scene" compared to
discrete LOD methods. Another, related approach furthers the idea
of fully in-memory rendering, dividing work to render the cloud
over multiple frames [25, 27].

Commercial software solutions also exist for the purposes of
visualizing large points clouds both on desktop displays and in VR,
such as Nubigon 1 and Interviews3D 2. Our work builds upon exist-
ing e�orts, with a focus on agricultural LIDAR datasets that have
vast di�erences in point density, owing to the need to capture �ne
features of plants by capturing data from multiple perspectives. We
focus on in-memory visualization, as our tasks are isolated to single
plants at a time, and hence levels of detail o�er few advantages.

1.2 Annotation Interfaces
Annotation is the process of ascribing data beyond that contained
in the original data set, and is a common goal for machine learning
algorithms to complete automatically. For scanned environments,
this is often assigning each point or region a label (e.g. chair, teapot).
Algorithms for this tend to rely upon supervised machine learning
techniques, which in turn rely upon manually annotated data as a
ground-truth for training and evaluation. For example, there are
several large pre-labeled points that are available to use for this
kind of training, such as the TUBS Road User Dataset with 12,000
labeled scans [22], the H3D dataset with 1 million labeled objects
from 27,000 scans [21], or the semantic3D.net dataset with over 4
billion points, which was created as a benchmark for other machine
learning classi�cation algorithms [9]. These datasets were each
annotated using either manual or semi-automatic methods, making
annotation a key, though tedious, part of the pipeline, and the
interface to this has received attention from the 3DUI research
community.

Wirth et al. investigated whether the advanced 3D visualization
and input capabilities of an immersive VR headset would improve
annotation performance [30]. Points were selected by placing and
scaling boxes using the position and rotation of the 6-DoF Oculus
Rift Touch controllers. The authors then evaluated the performance
of the technique using amethod detailed inMonica et al. [19], basing
the evaluation on both time to completion and accuracy of the
annotation result. The work of Monica et al. made use of manually
placed control points in the middle of segment regions, and then
calculated the correct segment for all the points in the cloud based
on "distance" using a cost function based on position, normal, and

1https://www.nubigon.com/
2https://www.3dinteractive.de/products/interviews3d/

color of the points. Wirth et al.’s VR method compared favorably in
all metrics to this method of control point based selection.

Li et al. developed a similar point cloud annotation software
called SUSTech POINTS [16]. The software is designed as a web
application to be used on a computer monitor. The main interface
is divided into several sub-views showing top, side, front, and per-
spective views, along with a context photo of the environment from
which the point cloud was scanned. 3D annotation is performed by
creating and transforming boxes around the selected points. Once
a box is placed, the user has options for adjusting its 3D transform
using gizmos. The box size can be adjusted automatically by scaling
to tightly enclose the points it contains. Since the tool is designed
for use on LIDAR data streams, which contain consecutive frames
of similar data, an algorithm enables the transfer of annotations
between frames. This allows the user to then manually adjust the
annotation to �t the new data. Annotation e�ciency was measured
using both accuracy and speed as metrics.

Several other works have investigated the use of alternate input
methods to improve the point cloud annotation ormanipulation pro-
cess. BioVR uses the Leap Motion hand tracking system to eliminate
the need for tracked controllers while visualizing and manipulating
similar bio-informatics datasets [31]. Bacim et al. designed a system
to annotate point clouds based on the concept of repeated bisection
of the data [1]. Due to the reduced input complexity of bisection,
they were able to use a Leap Motion to perform the slicing. In order
to change the viewpoint of the camera, a six-degree-of-freedom
3DConnexion SpacePilot Pro 3D mouse was used. The authors
noted the use of progressive re�nement was critical to allowing a
less precise input device such as the Leap Motion to still provide
su�cient annotation accuracy. Veit et al. proposed a point cloud an-
notation framework that makes use of a tracked smartphone for the
selection of points [28]. The touchscreen makes text entry for the
labels convenient. HyFinBall was developed to meld the advantages
of traditional 2D inputs and 3D natural user interfaces by using
multi-touch ball input devices that can be used while resting on
a surface [4]. The authors tested their device by exploring LIDAR
datasets.

It has been found that VR o�ers advantages over 2D modali-
ties for complex 3D visualization tasks, and our work con�rms
these �ndings using using modern hardware and a new applied
task [2, 3]. Surprisingly, few works have evaluated di�erences in
task performance between di�erent user interfaces for this type of
application [15]. As such, alongside our designs for the immersive
and non-immersive interfaces, we also provide evidence of how
the immersive interface improves certain aspects of the annotation
process.

2 SYSTEM DESIGN
As mentioned in Section 1, our system was designed for visualizing
point cloud datasets acquired through LIDAR scanning of cotton
plants, with the primary task of annotating point clouds at the
individual point level (as opposed to bounding regions). The raw
data were obtained with a Faro Scanner Focus 3D, a rotating LIDAR
system that provides colored point clouds. As multiple scans had
to be taken to account for occlusion, these were �rst merged into a
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single, high density, point cloud (see Figure 1) using the CloudCom-
pare software. The data were then exported into the Point Cloud
Library’s point cloud data (PCD) �le format, which is an emerging
standard and o�ers signi�cant interoperability between point cloud
tools. From here, they can be processed by our application.

Our application3 was designed entirely within the Unity3D game
engine (version 2020.3 LTS), which supports a wide range of op-
erating systems and hardware. However, it does not natively load
PCD �les, which required a custom importer and exporter to be
built. To minimize time consuming steps in the pipeline between
CloudCompare and Unity, PCD �les are parsed and loaded directly
into memory and then brie�y processed to determine their extents
such that their size can be automatically normalized. We use a
compute shader for this processing, which takes less than 10 ms
for point clouds of several million points on an NVidia Titan V
graphics processing unity (GPU). All data is loaded into a compute
bu�er on the GPU, with 20 bytes stored per point; 12 bytes are used
by the 3 single-precision �oating point numbers for the xyz posi-
tion of the point, and the remaining bytes are used to store color,
assigned layer, and a reference, or "correct" layer, which was only
used for the user study to give immediate feedback on completion
percentage. Without this last reference value, the data could be
packed into 16 bytes.

2.1 Point Cloud Rendering and Annotating
Immediately upon loading our �rst point clouds, which are ex-
tremely dense relative to their real-world scale (a cotton plant is
roughly a 1-meter cube, with scans being in some cases over 7 mil-
lion points), we found signi�cant performance issues when attempt-
ing to visualize them in VR at interactive frame rates. Modern GPUs
are capable of processing and rendering millions, even hundreds
of millions, of triangles per frame at interactive rates. However,
doing so while all triangles are visible on screen (i.e., they are not
culled and are shaded), with signi�cant overdraw (triangles are not
sorted), and while processing them for annotation tasks, severely
limits performance. This is compounded by the high resolution and
frame rate requirements of VR systems. These problems do not
typically occur with lower-density clouds such as environmental
scans, as an LOD system can automatically reduce the number of
in-memory points being rendered based on camera distance. Do-
ing so when all points are reachable and clearly visible introduces
quality issues, as details pop in and out.

In order to maintain high visual quality and detail while re-
maining performant with the high requirements of a VR-enabled
application, our system implemented a continuous LOD similar
to that presented in the work by Schütz et al. [24]. However one
additional feature was implemented to improve the utility of the
downsampling technique when dealing with precise input. While
the original work changed density based on view direction and
head gaze, our system uses the hand positions to smoothly increase
the point cloud render density in the target area. This allowed the
area of focus to be guaranteed to have the maximum density, while
limiting the total number of points to a modest point budget. To
achieve this, all of the points are added to a compute bu�er. A

3Source is available at https://github.com/velaboratory/DataFoldvr-Virtual-Reality-
Point-Cloud-Annotation

Figure 2: An example of the continuous LOD system used to
render the point clouds. This system ensures that the full
detail present in the source data is always visible in the area
near the cursor/tracked hands, which happens to be in the
center of the image here. The points in this image are reduced
in size to exaggerate the low density areas and emphasize
the e�ect.

compute shader is dispatched on the GPU every frame to select
the appropriate subset of points to add to an AppendBu�er. This
output bu�er is then rendered using Unity’s DrawProceduralIndi-
rectNow method, avoiding the expensive operation of transferring
data between the CPU and GPU memory. From here, the number
of triangles rendered was variable (between 2 and 12), as produced
by a geometry shader, ranging from a circular shape to a quad, de-
pending on distance from the camera, based on Keijiro Takahashi’s
PCX example (https://github.com/keijiro/Pcx). The e�ect can be
seen in Figure 2.

Beyond visualization, performance was a major concern when
developing realtime annotation, and again compute shaders were
used heavily to speed up the process. CPU-based implementations
may use indexed data structures to retrieve close points to the cur-
sor, and subsequently annotate them. However, this data is also
needed on the GPU for visualization, and in our case, the high
density of the point clouds would result in large transfers between
the CPU and GPU. Instead, we inverted the problem for GPU im-
plementation. For every frame that annotation is indicated over a
designated region, a compute shader performs a distance calcula-
tion on the GPU for every point. If the point is within the region,
the byte corresponding to the current layer index is changed to
match the desired layer. During the rendering process, this layer
index is used by the fragment shader to draw the points in either
original color, a distinct solid color, or to hide the point. This allows
the operation to proceed in parallel entirely on the GPU, greatly
accelerating the process.
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Figure 3: Screenshot of the counting task in the VR condition.
The tablet interface is visible, on which participants entered
their subtotals when counting groups of bolls.

2.2 User Interfaces
Two interfaces were designed for the study, which we abbreviate
as our "VR" and "2D" interface going forward. The VR interface was
designed for use with a stereoscopic VR headset and two 6-DoF
controllers. The 2D interface was designed for a single-monitor,
keyboard and mouse setup. These interfaces could be swapped
in real time, via a keyboard switch or by clicking on a button.
When in VR mode, the monitor would show a mirror of the VR-
view. Both interfaces could be in "counting" or "annotation" modes,
depending on the task, which slightly varied the interface to show
relevant feedback to users. In the study, these were switched by
the experimenter, but would otherwise be switchable by the user,
meaning that both 2D and VR could be used in practice, though not
simultaneously in the current implementation.

The VR condition interface is depicted in Figure 3. The user was
spawned into a virtual room large enough to easily accommodate
the point cloud, which was placed in the center according to its
bounds. A virtual tablet was used to show task-relevant UI elements,
which was most prominent in the counting task. All controls were
identical on both controllers, eliminating the need for dominant
hand preferences and simplifying the learning experience. The
virtual tablet is called up by users by pressing the B or Y button
on the Oculus Touch controller, allowing them to use the opposite
controller to make selections (depicted by a 2D cursor that appeared
on the tablet when the controller was held near it). In the annotation
task, the completion percentage was shown near the lower part of
the controller.

In order to assign points to a particular label, a paintingmetaphor
was used. In the VR condition, this was done by visualizing a sphere
around each of the users’ hands, and allowing them to mark all the
points within the sphere for every frame that the index trigger on
that controller was held. To show the marked points, the color of
the points was changed from the original scan color to a solid color.
The user was able to select a layer using a color picker, though
in the user study only a single color was used, and a secondary
controller button (A or X) was used to erase previously painted

points and return them to the original color. The spheres could be
scaled by moving either controller thumbstick on its Y axis to allow
for more broad or precise painting actions.

While the point clouds were relatively small in real-world scale,
and thus walkable within a small space, a VR locomotion system
was added to make the system usable in a seated position, and
the study was performed seated to match the desktop interface.
Rather than transforming the point cloud, as other systems have
done [12], we chose to keep the transform between the virtual
room and point cloud �xed and instead moved the user’s position
with a combination of pulling motions (either hand) and use of
the thumbstick for rotations. When the hand grip trigger was held
down, the world was pulled to match the controller position, with a
small amount of momentum if the grip was released while moving.
Smooth rotation (at a relatively high rate of 200 degrees/second)
was activated by the X axis on the thumbstick. When combining
smooth rotation and world grabbing, the origin of the rotation was
moved to the hand position. In our study, participants did not show
any signi�cant di�culty getting used to the controls, and more
experienced VR users were able to use this system to paint with
one hand and move with the other hand simultaneously in one
smooth motion. In addition, we did not have any reports of nausea
or discomfort from users.

The 2D condition interface is shown in Figure 4. In contrast
to the VR condition interface, the user is shown only the point
cloud, rather than a virtual room, as their environment is the real
room. The on-screen interface, though custom designed, mimics the
features found in other annotation systems, including the ability to
choose from a variety of aligned orthographic views of the cloud,
or to "free look" with the mouse. The mouse operated in two modes,
one for navigation and the other for annotation. In navigation mode,
the left mouse button was used to select, middle to pan the orbit
point in view space, scroll-wheel to zoom, and right to orbit around
that point. In annotation mode, which was accessed by holding the
shift key, the left mouse button would annotate selected points, the
right would remove the annotation, and the scroll-wheel would
change the size of the selection region.

On a traditional computer display with mouse interaction, the
selection of a speci�c sphere of in�uence is more di�cult. Initially,
the system was designed to paint all points overlayed by the 2D
circular cursor, essentially creating an in�nitely long cylinder of
in�uence. While this di�erence between the 2D and VR conditions
could be considered fair because it arose as a result of a funda-
mental di�erence between the two systems, an additional feature
was added to the 2D condition to achieve a more similar spherical
in�uence e�ect. To achieve this, a compute shader calculated and
returned the points within a smaller circle 1/5 the size of the current
cursor size to the CPU. The resulting points were then iterated on
the CPU to determine the point closest to the camera. This point
was then used by the annotation shader such that the depth of selec-
tion was limited to the diameter of the circular region (essentially
placing a depth-limited cylinder at the cursor point). This approach
prevented background points from being selected accidentally, as
seen in Figure 5. We also included a toggle button for this behavior,
as the in�nite cylinder could also be useful, though the majority
of participants left the feature on (the default). Before pressing the
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Figure 4: Screenshot of the annotation task in the 2D condi-
tion. The semi-transparent circular cursor can be adjusted
in size.

Figure 5: An example of the depth limiting algorithm used in
the 2D system. The top images show the initial painted view.
The bottom two images show the same cotton boll from a
rotated perspective after the paint operation. The left two
images have the depth limit turned o�, and the right two
have the feature turned on.

button that performed the paint operation, the points were high-
lighted by increasing the brightness of the original color, as seen in
Figure 6. This was especially useful for the 2D condition with the
depth limit feature enabled, since not all points under the cursor
would be painted, though the highlight e�ect was visible in both
conditions.

3 STUDY DESIGN
Our study was designed to evaluate and compare the two interfaces
for two tasks that are commonly performed on point clouds: pre-
cise annotation and feature counting. A within-subjects, crossover
design was used, such that each participant used each interface

Figure 6: The highlight e�ect previewing the points that will
be selected by a potential paint operation in the 2D interface.
In this image, the depth limit feature is preventing the back-
ground points from being selected. The VR condition also
has this highlight e�ect for points within the hand spheres.

once for each type of task, resulting in a sequence of four tasks. The
order of VR-2D was alternated in order to account for the learning
e�ect, so that half of the participants used order VR-2D-2D-VR and
half used 2D-VR-VR-2D, with the �rst two instances being an an-
notation task, and the last two being the counting task. The order
of the annotation and counting tasks was �xed, as there was no
intention to compare between the two tasks and point clouds. In
addition, we decided to use the same point cloud for completing
the VR and 2D versions of each task for every participant, as it
would be di�cult to �nd di�erent point clouds with similar di�-
culty, avoiding a source of bias or variation in the timing between
VR and 2D. Each task consisted of a training phase and a testing
phase, as described below.

3.1 Tasks
In the annotation task, participants were instructed to precisely
paint a portion of the point cloud according to the part of the object
that it represents. In the training phase, the point cloud was a
scan of a relatively small cotton plant in a pot. The task was to
mark the points that belonged to the plant itself, excluding the pot,
soil, and ground. The evaluation phase was a larger potted cotton
plant with a bamboo pole used as a support. The task was to mark
the points belonging only to the bamboo pole, which was colored
signi�cantly lighter than the rest of the plant or the plant’s stem.
As the plant was growing around the pole in all directions, this
task was signi�cantly more di�cult, and impossible to perform
from a single perspective, though the pole was nearly straight. The
task was completed by achieving a 98 percent score. The score
was determined by comparing the present annotation to a ground-
truth annotation. As the ground-truth was also approximate, 98
percent was chosen empirically as being consistently achievable.
The percentage indicated was the �1 score (see Equations 1-3),
which requires eliminating false positives (annotating incorrect
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points) and false negatives (not annotating the correct points), such
that the user could not simply select the entire point cloud to achieve
a high score.
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In the counting task, participants were asked to count cotton
bolls that were scattered throughout the plant. This task would be
challenging to perform in the �eld without picking the cotton. The
training and testing tasks were similar, except that the testing task
was a larger plant with more bolls. During the task, participants
could mark already counted bolls with the painting interface. In
addition, participants were given an interface to serve as a counter,
and if they desired, to "commit" that count, which would erase the
currently painted areas akin to picking the cotton. The task was
completed when the participant indicated that they had counted
all bolls.

3.2 Hypotheses
The following hypotheses were formulated based on prior work
and pilot testing, which suggested that the VR interface would
enable superior task performance and result in higher levels of user
satisfaction.

(1) Participants will be faster overall with the VR system
in the counting task. We expected VR to allow for more
rapid identi�cation of bolls, quicker marking of counted
bolls, and easier navigation, resulting in faster performance.

(2) Boll counts will be higher and more consistent when
counting with the VR system. The e�ects of stereoscopic
rendering and smoother parallax motion present in the VR
condition will result in fewer missed bolls due to occlusion
and a more precise count.

(3) Participants will report higher accuracy and perceived
e�ciency using the VR system. Similar to the previous
hypothesis, the VR condition will present information in a
more intuitive format that will be perceived as better for
these tasks.

(4) Participants will prefer to use the VR system. In�uences
such as the novelty e�ect and the more intuitive nature of
the VR system will overwhelm any negative e�ects such as
comfort caused by wearing the headset.

3.3 Study Population and Environment
Following human-subjects review approval, 16 participants were
recruited from the local university population and lab groups to
participate in the study by direct invitation and word-of-mouth.
The study took place over the course of 3 weeks, and was performed
within our research laboratory. For the VR condition, an Oculus
Quest 2 headset (1832x1920 resolution) using the wired Oculus
Link feature set to 90Hz and default 2448×2688 per eye rendering
resolution was connected to a PC with a i9-7980XE CPU and an
NVidia Titan V GPU. As described earlier, the application frame rate

was veri�ed to have remained at a constant 90 frames per second
throughout the study, and the Oculus Link cable data rate was set
to the maximum of 500 Mbps to avoid visible compression artifacts.
Our study used a point budget of 3 million for point clouds of up to
7.8 million points, as seen in Table 1, though none of the participants
remarked that they noticed the LOD system at all. This budget
was empirically chosen because it o�ered su�cient visual quality
for the selected points and fell well within the testing computer’s
performance limits, even while recording the screen, rendering to
multiple monitors, and using the Oculus Link encoder. For the 2D
condition, a standard mouse and mechanical keyboard were used
with a 32 inch 2560x1440 monitor at 60 Hz. We chose to retain
the 3 million point budget for this condition to be consistent with
the possible information available within the VR condition at any
given time, although no LOD optimization was strictly necessary
to maintain 60 frames per second.

3.4 Procedure and Measures
After getting informed consent, participants �lled out a background
survey with questions about demographics and prior experience
with VR and point cloud data. As described earlier, the study con-
sisted of two task-types, annotation and counting, which were
repeated in the VR and 2D conditions. Each task consisted of a
training session as well as a timed session on a larger and more
complex point cloud. During the training session, the participant
was instructed by the researcher on how to perform the task and
how to use the controls for both viewing and interacting with the
point cloud. While the training task was timed, the participants
were encouraged to take their time and get used to the controls.
Once the participant completed the task on the training point cloud,
they were moved on to the larger point cloud of the same task. They
were instructed to complete the task as quickly as possible and were
given minimal external instruction during the activity. After com-
pleting the task in VR, participants performed the exact same task
using the same point clouds using the 2D interface before switching
to the second task in the opposite order. During both the 2D and VR
training periods, time was only logged while the participant, and
not the researcher, was actively operating the controls themselves.
We excluded the time when the researcher was demonstrating the
controls. In both conditions, the participant was only moved on
to the main task after completing the task and reporting that they
were comfortable with the controls and task. Brief questionnaires
were given between every task, asking for any sources of di�culties
after each of the four tasks and relative preference scores between
the VR and 2D cases after both the annotating and counting groups
of tasks.

Table 1: Point cloud sizes used in the experiment

Task Point Cloud Size
Annotation Training 3,844,639

Annotation 4,485,971
Counting Training 2,609,825

Counting 7,867,195
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4 RESULTS
All participants were able to complete all tasks successfully, though
one participant was asked to restart the �rst 30 seconds of one of the
tasks due to a software crash. The average age was 28 yrs (SD=9.26).
Of the 16 participants, 12 reported male, 3 reported female, and 1
declined to identify. There was a mix of very experienced and inex-
perienced VR users, but the majority (9/16) were very comfortable
with 3D video games. Completion of the study took between 30
minutes and 1 hour for all participants.

Using a Chi-square test for independence, no signi�cant di�er-
ences were found between the two groups assigned to di�erent
condition orders. In addition, none of these background variables
(shown in Figure 7) correlated strongly with the performance vari-
ables, so they were not used as covariables in subsequent analyses.
No motion sickness, vision problems, or discomfort were reported
during the study.

Three relative preference questions were asked for each of the
two tasks. Responses were recorded on a numerical scale with a
response of 1 representing strong preference for the VR condition,
and 7 representing strong preference for the 2D condition. The ques-
tions and distributions are shown in Figure 8. Using a one-sample
two-tailed t-test centered at neutral, all of the results showed signif-
icant preference for the VR condition at the p<.001 level, except for
the question asking about relative speed/e�ciency for the counting
task, which was signi�cant with p=.03.

The main objective evaluation metric for both the annotation
and counting tasks was completion time. In the annotation task, par-
ticipants were asked to continue the annotation until they reached
98% completion, but intermediate times to 80% and 90% were evalu-
ated as well. These results are shown in Figure 9. Generally, there
was a learning e�ect across subsequent trials for within subjects
comparisons, but a paired two-tailed t-test between all the �rst-
and second-attempt completion times found no signi�cant di�er-
ence. In the annotation task using a paired two-tailed t-test, the VR
condition was found to be signi�cantly faster to 80% (p=.002) and
90% (p=.001) completion, but no signi�cant di�erences were found
at the 98% completion threshold. For 80% completion, times were
55% faster in the VR condition (M=43.5, SD=31.7) than in the 2D
condition (M=97.7, SD=69.8), and for 90% completion, they were

Figure 7: Background questionnaire results.

Figure 8: Relative preference between the VR and 2D condi-
tions. A score of 1 represents preference for the VR system,
and a score of 7 represents preference for the 2D system.

51% faster in the VR condition (M=62.3, SD=46.1) than the 2D condi-
tion (M=126.8, SD=79.4). No signi�cant di�erences between the VR
and 2D conditions were found in completion times for the training
session for either of the tasks using paired two-tailed t-tests.

For the counting task, times were found to be 16% faster on
average in the VR condition, which was found to be signi�cant
(p=.022) using a paired two-tailed t-test. While no true count was
calculated to compare accuracy, as such a count would be inherently
biased toward one of the conditions depending on how it was
calculated, the average counts between the VR and 2D conditions
showed a trend towards higher counts in the VR condition with
p=.051. Participants also performed signi�cantly fewer commit
operations in the VR condition (p=.008), meaning they kept higher
numbers in working memory before entering their subtotals and
restarting the count. The results for these measures in the counting
task are shown in Figure 10.

4.1 User Feedback
Free response user feedback was requested after each of the four
tasks primarily to discover any usability issues that would not
otherwise be captured. In the annotation task, the most common
response was the di�culty in visually �nding the last few percent
needed to achieve 98% completion, with 9 out of 16 users having a
similar comment during their �rst attempt at the task. Two users
reported di�culty as a result of depth estimation, and three users
found it di�culty to annotate due to occlusion problems with the
rest of the point cloud. These reports only occurred in the 2D
condition. No other signi�cant usability issues were reported by
participants. After all parts of the study were completed, general
feedback was requested. One participant noted that "Precision with
keyboard and mouse was a little better, but visual perception was
much easier in VR." Another stated, "For the �rst task I preferred
the 2D much more than the second task, where I preferred the VR.
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Figure 9: Completion times for the annotation task at the
3 target completion levels. Signi�cant di�erences occurred
between the VR and 2D conditions at the 80% and 90% levels
using a paired t-test.

I believe that has a lot do with the movement and accuracy needed.
... For the second task the 2d was harder because there was a lot
more to pay attention to."

5 DISCUSSION
The results largely supported our hypotheses, though interesting
nuances arose that were not expected.

H1: Participants will be faster overall with the VR system
in the counting task. Con�rmed. Completion time for the count-
ing task was signi�cantly faster in VR, though we were surprised
that the magnitude of the di�erence was not higher. It should be
noted (see H3) that participants also tended to �nd more cotton
bolls in VR, likely increasing the amount of time required slightly
due to the extra work involved.

H2: Boll counts will be higher and more consistent when
counting with the VR system. Not con�rmed. A trend towards
higher boll counts was found in the VR condition, but the di�erence
was not signi�cant. Unexpectedly, the variance of the counts be-
tween the two conditions was also similar (in fact, count variance
was higher in VR). This is an encouraging result, since the purpose
of a system like this is for ground-truth gathering, and signi�cant
di�erences between the two conditions would cast doubt onto the
reliability of either of the systems. Absolute accuracy of either of
the conditions can not be calculated, as there were ambiguities in
what parts of the plant should count as a boll. Participants were told
to use their own judgement when determining whether to count a
half-opened bud as a boll or not, but were asked to be consistent
between the VR and 2D conditions with these decisions.

H3: Participants will report higher accuracy and perceived
e�ciency using the VR system Con�rmed. Both 7-point scale
questions asking about perceived accuracy aswell as speed/e�ciency
resulted in signi�cant preference for the VR condition, even for the
annotation task where the di�erence was not signi�cant. Prefer-
ence questions were presented as a re�ection of the task as a whole,
and participants were not aware of the 80% and 90% thresholds for
timing used in the evaluation. The reason for this discrepancy in

Figure 10: Output measures from the counting task. Signi�-
cant di�erences were found between the VR/2D conditions
for completion time and number of commits using a paired
t-test.

the perceived and actual speed in the annotation task may suggest
an altered sense of time caused by a more engaging and novel ex-
perience in the VR system, rather than the more familiar desktop
interface. This e�ect may also have had an in�uence on the results
of the �nal hypothesis.

H4: Participants will prefer to use the VR system. Con-
�rmed. Both the annotation and counting tasks showed signi�cant
preference for the VR system. This was further veri�ed by partici-
pant feedback.

Other �ndings: Though we did not form any hypotheses about
cognitive load of the task, the commit interface of the counting
task o�ered a way to delve into this aspect. We found that a signi�-
cantly lower number of commit actions were performed in the VR
condition than the 2D condition during the counting task. While
not entirely unexpected based on our pilot usage of the system,
this showed a willingness of the participants to keep larger counts
in working memory compared to the 2D condition. There are sev-
eral e�ects that could have contributed to this result. It is possible
that the VR condition allowed for a more intuitive and instinctive
painting operation, reducing the mental workload of the painting
and leaving more room for the actual counting process. Another
possible explanation for this e�ect is the reduction of clear con-
tinuity breaks in the VR system. In the 2D condition, every time
the camera perspective is changed, the user is presented with a
visually di�erent scene with few corresponding elements to the
previous image, but in the VR condition, perspective is changed
more gradually through head movement and locomotion by hand
movement. Combined with the e�ect the stereoscopic rendering
has on perception of the scene as a 3D object rather than a projected
2D image, the VR condition is a more continuous experience, while
the 2D system can conceptually be broken into smaller segments of
panning movement separated by orbit interactions. These breaks
may have provided a better opportunity for entering the subtotals.
The last potential reason for the behavior could be increased fric-
tion in entering the total using the virtual keypad in VR, though
none of the participants reported this as a source of di�culty.

We also investigated the completion times for the annotation
task. In an attempt to characterize the completion time curve be-
tween the two conditions, completion times were compared at a
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few checkpoints, including 98%, 90%, and 80%. 98% represents the
maximum easily achievable completion percentage as seen in infor-
mal pilot trials during development, and 80 and 90% were chosen
as regular intervals below this point. Comparing checkpoints much
lower than this completion percentage was not expected to pro-
vide useful data in the completion of the task, since a single rough
painting stroke could already achieve 50-70% F1 score in tests. The
majority of participants did not use the same method as predicted
by the authors in the 2D condition. The originally conceptualized
method involved painting roughly down the length of the point
cloud to cover the target bamboo stem, then rotating the camera by
90 degrees and erasing any areas that were previously not visible
and were false positives. However, this method assumed that partic-
ipants would disable the depth limit feature, which they generally
did not do. With depth limiting turned on, the completion trajectory
was more linear. In order to get to 90% completion, only a general
concept of the structure of the bamboo stem was needed in VR to
paint broadly through the center of the point cloud. However, in
order to achieve the full 98% dictated by the completion guideline,
the task switched to more of a searching problem. The greater an-
gular resolution of the 32" 1440p monitor may have contributed to
better performance in the 2D condition during this part of the task.
In addition, it is possible that visual search for small details was
inhibited by stereo convergence, which requires not only searching
a 2D visual space, but to converge to multiple depth planes.

6 CONCLUSIONS, LIMITATIONS, AND
FUTUREWORK

This work designed and evaluated the potential of an immersive
VR system for point cloud visualization and annotation of agri-
cultural LIDAR datasets. The system enabled users to annotate, at
the individual point level, large clouds at interactive frame rates
in immersive VR with the help of a continuous LOD system that
emphasized details at controller locations. We also designed a desk-
top interface for non-immersed use and comparison in a user study.
Our study �ndings suggest that the immersive VR interface would
increase both user performance and user satisfaction, though its e�-
cacy likely diminished during latter stages of completion, requiring
more detailed search and manipulation.

Our study had several limitations. First, participants had a rel-
atively high overall level of expertise with VR and 3D modeling
programs, game playing and some with experience using point
cloud tools. This recruitment was intentionally designed to avoid
issues that we may have faced with a lack of familiarity with such
tools within the general population, which may have created a bias
in our outcomes. This is, perhaps, why we did not �nd any evi-
dence of nausea from using the VR locomotion interface, though in
practice, more comfortable techniques such as real-walking could
be used. The gender disparity that arose from this recruitment
also limits the generalizability of this work to the general popula-
tion. Another limitation was that we did not give users multiple
attempts with each Task-Interface combination, aside from the
training-testing phases of each task. This compromise was made
due to the already long study duration and worry about fatigue.
It is unclear which interface is fastest to learn, and if additional
training would reduce the di�erence in performance. Finally, the

study compared two hardware interfaces that di�ered in many
ways (stereoscopy, resolution, �eld of view, controller DoF, etc.),
and hence we cannot ascribe the di�erences in outcomes to par-
ticular features. Instead, we optimized the application interface to
the available input and output devices, in an attempt to minimize
the di�erence in user performance between the two systems. A
lingering issue with this approach is that there is no e�ective limit
to this optimization process. In all likelihood, both interfaces could
continue to be improved for the task, though VR interfaces may
have more room to grow. For example, we could reduce hand jitter
during painting operations in VR, by increasing the control-display
ratio, or by adding interactions that allow the user to scale the
point cloud dynamically to focus on a speci�c region at a more
comfortable size.

In fact, we see the greatest future value in combining the two in-
terfaces. The current application is able to switch between modes in
the middle of a task, and could be made to function simultaneously
(two users) to accelerate the work. Already, mixed reality displays
are emerging that allow for e�ective use of planar displays and
3D content. The bene�ts of both systems could be used to comple-
ment each other, and deeper understanding of their corresponding
strengths could result in higher quality user experiences in the
future.
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