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Meta-omic profiling reveals
ubiquity of genes encoding for the
nitrogen-rich biopolymer
cyanophycin in activated sludge
microbiomes
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Keith Tyo? and George Wells*

Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States, ?Chemical
and Biological Engineering, Northwestern University, Evanston, IL, United States, *Chemical
Engineering, Stanford University, Stanford, CA, United States

Recovering nitrogen (N) from municipal wastewater is a promising approach to
prevent nutrient pollution, reduce energy use, and transition toward a circular
N bioeconomy, but remains a technologically challenging endeavor. Existing N
recovery techniques are optimized for high-strength, low-volume wastewater.
Therefore, developing methods to concentrate dilute N from mainstream
wastewater will bridge the gap between existing technologies and practical
implementation. The N-rich biopolymer cyanophycin is a promising candidate for
N bioconcentration due to its pH-tunable solubility characteristics and potential
for high levels of accumulation. However, the cyanophycin synthesis pathway
is poorly explored in engineered microbiomes. In this study, we analyzed over
3,700 publicly available metagenome assembled genomes (MAGs) and found that
the cyanophycin synthesis gene cphA was ubiquitous across common activated
sludge bacteria. We found that cphA was present in common phosphorus
accumulating organisms (PAO) Ca. ‘Accumulibacter’ and Tetrasphaera, suggesting
potential for simultaneous N and P bioconcentration in the same organisms.
Using metatranscriptomic data, we confirmed the expression of cphA in lab-scale
bioreactors enriched with PAO. Our findings suggest that cyanophycin synthesis
is a ubiquitous metabolic activity in activated sludge microbiomes. The possibility
of combined N and P bioconcentration could lower barriers to entry for N
recovery, since P concentration by PAO is already a widespread biotechnology in
municipal wastewater treatment. We anticipate this work to be a starting point for
future evaluations of combined N and P bioaccumulation, with the ultimate goal
of advancing widespread adoption of N recovery from municipal wastewater.

KEYWORDS

nitrogen recovery, microbial ecology, cyanophycin, activated sludge, phosphorus
accumulating organisms

1. Introduction

Recovering nitrogen (N) from municipal wastewater is a promising method to circularize
anthropogenic N use. Traditionally, fertilizer manufacturing and other industries synthetically
fix N from the atmosphere through the energy intensive Haber Bosch process, which accounts
for 1-2% of global energy use (Batstone et al., 2015). A significant portion of this reactive N is
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ultimately lost to municipal and industrial wastewater or agricultural
drainage water. This reactive N harms aquatic environments and
impacts public health (Galloway et al., 2008). Therefore, reducing N
emissions to the environment is a key goal of wastewater treatment
plants. Reactive N is typically removed from municipal wastewater
through microbially driven redox reactions back to inert N,, which is
dissipated back to the atmosphere. N recovery from wastewater is
appealing because it can reduce N release to the environment while
rerouting reactive N back to food or chemical production, promoting
a transition from a linear to a circular anthropogenic N cycle and
reducing reliance on Haber Bosch. However, existing N recovery
techniques are optimized for high-strength, low-volume wastewater
and are not feasible to apply to low-strength, high-volume mainstream
municipal wastewater (Beckinghausen et al., 2020). Therefore, a
partition-release-recovery (PRR) approach has been proposed to
sequester nutrients from mainstream wastewater to a highly
concentrated sidestream (Batstone et al., 2015). An efficient partition
step to concentrate dilute N is an essential yet poorly explored element
of this approach for N recovery.

A promising lead for N bioconcentration is cyanophycin, an
intracellular biopolymer composed of amino acids aspartate and
arginine. Cyanophycin is polymerized via cyanophycin synthetase,
cphA. Cyanophycin can be synthesized de novo by cyanophycin
synthetase, or existing cyanophycin can be used as a primer compound
(Ziegler et al., 1998). Cyanophycin synthesis results in ATP hydrolysis
to ADP (Berg et al, 2000). Cyanophycin is broken down into
1999;

may

dipeptides by cyanophycinase, c¢phB (Richter et al,
Supplementary  Figure S1). Cyanophycin dipeptides
be hydrolyzed by isoaspartyl peptidase iaaA, though other enzymes
can perform this function (Sharon et al., 2023). Cyanophycin was
originally characterized in cyanobacteria and has also been studied in
a limited number of non-phototrophic bacteria (Fiiser and
Steinbiichel, 2007). In phototrophic and diazotrophic cyanobacteria,
cyanophycin is most likely used as a nitrogen storage compound
under alternating light conditions, during periods where nitrogen is
in excess, and during periods where sulfate and phosphate are limited
(Flores et al.,, 2019). In non-phototrophic bacteria, cyanophycin
synthesis, prevalence, and function is poorly understood. It is not
known if these selective pressures for cyanophycin synthesis are
generalizable to other taxa, particularly to as-yet-uncultivated
heterotrophs that are prevalent in wastewater treatment bioreactors.
Studies on axenic Acinetobacter cultures have found that cyanophycin
accumulation occurs under phosphate or sulfate limitation, as well as
in the presence of ammonium or arginine in excess of what is needed
for growth (Elbahloul et al., 2005).

In isolate cultures, cyanophycin can reach up to 40% of cell dry
weight (Elbahloul et al, 2005). Cyanophycin granules can be
selectively by manipulating pH, enabling straightforward purification
(Fiiser and Steinbiichel, 2005). Given the attractive solubility
properties, industrial biotechnology research has focused on
maximizing cyanophycin production in recombinant bacteria, yeasts,
and transgenic plants (Nausch et al, 2016; Du et al, 2019).
Cyanophycin has been explored as a starter compound for a variety of
downstream applications, including animal feedstock supplementation
(Nausch et al.,, 2020), polyelectrolyte multilayer production for
biomedical applications (Uddin et al., 2020), and feedstock for
biodegradable plastic production (Neumann et al., 2005).
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Cyanophycin production in mixed microbial communities,
particularly in wastewater bioprocesses, has not been well-
documented to date. Recent work has shown that cyanophycin can
be produced unintentionally in activated sludge (Zou et al., 2022).
Other meta-omic studies have incidentally identified cyanophycin
synthetase genes in microbes commonly found in activated sludge
(Fiser and Steinbiichel, 2007; Singleton et al., 2022) but have not
systematically searched for the cyanophycin pathway in wastewater
bioprocesses. Cyanophycin accumulation could add immense value
to existing biological nutrient removal practices, namely the enhanced
biological phosphorus removal (EBPR) process. EBPR processes
enrich phosphorus accumulating organisms (PAO), heterotrophs that
release and uptake P under alternating redox conditions and substrate
availability. Existing EBPR processes already use the PRR approach for
P recovery, where P-rich biomass is bioconcentrated and physically
separated from the dilute liquid stream. Therefore, integrating
cyanophycin accumulation with existing P removal practices offers a
lower barrier to entry for N recovery.

To better understand the potential role of cyanophycin as an
N-rich biopolymer for the PRR approach, we assessed over 3,700
publicly available metagenome assembled genomes (MAGs) to
understand the prevalence of the cyanophycin biosynthetic pathway
in activated sludge microbiomes. We also curated MAGs and isolate
genomes of key functional groups known to contribute to N cycling
and P accumulation to determine their capability for cyanophycin
accumulation. Finally, we analyzed gene expression data of known
PAO to understand whether PAO could utilize cyanophycin synthesis
genes. We found that genes enabling cyanophycin accumulation were
ubiquitous amongst activated sludge communities, which may
be leveraged in the future to partition and recover N as cyanophycin.

2. Materials and methods

2.1. Large metagenome-assembled
genome datasets

Wastewater bioprocess MAGs were obtained from two primary
sources that used the minimum information about a metagenome-
assembled genome (MIMAG) standard, where high-quality MAGs
met >90% completeness and <5% contamination and medium-
quality MAGs met >50% completion and<10% contamination
(Bowers et al.,, 2017). The first dataset is Genomes from Earth’s
Microbiomes, a dataset assembled by the IGM/M Data Consortium
from a variety of natural and engineered systems (Nayfach et al.,
2021). Out of the entire collection of 52,515 medium and high-quality
MAGs, MAGs with the metadata field “ecosystem_category” matching
the query “wastewater” were selected for this analysis, resulting in a
subset of 2,627 MAGs. We annotated the MAGs for coding regions
and function using prokka v1.14.6 with default e-value threshold of
1e-06 (Seemann, 2014). The wastewater MAGs from this dataset were
primarily represented by anaerobic digester samples, so a second set
of MAGs representing activated sludge was also used and accessed
through NCBI BioProject PRINA629478. In this study, 1,083 high-
quality MAGs were recovered through a combination of short-read
and long-read sequencing (Singleton et al., 2021). In total, we analyzed
3,710 MAGs from activated sludge and wastewater bioreactors.
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2.2. Activated sludge functional groups

Isolate genomes and high-quality MAGs from activated sludge
functional groups were curated from NCBI. As a point of comparison,
genomes of cyanobacteria and Acinetobacter with known cyanophycin
metabolic pathways were also included. A complete list of genomes
used is available in Supplementary Table S1. To understand patterns
among genes clustered near cphA, conserved gene clusters with gene
synteny 6,000 bp upstream and downstream of cphA were identified
and binned using GeneGrouper, with search settings of >=20%
identity and >=80% coverage of the seed gene (McFarland et al., 2022).

2.3. Cyanophycin gene expression in
phosphorus accumulating organisms

High-quality Candidatus ‘Accumulibacter’ (referred to herein as
Accumulibacter) MAGs and associated metatranscriptomic data were
used to examine cphA expression in Accumulibacter PAO. Our group
previously operated a lab-scale denitrifying PAO reactor enriched in
Accumulibacter (Gao et al., 2017; Wang et al., 2021). Three high
quality Ca. Accumulibacter MAGs were assembled from this work
belonging to clades IA, IC, and IF based on polyphosphate kinase
(ppk1) gene phylogeny. MAGs and time-series metatranscriptomic
data from this study were accessed through NCBI BioProject
PRJNA576469. Raw RNA reads were filtered for quality with fastp
(Chen et al,, 2018) and reads mapping to rRNA were removed using
BBMap against the SILVA database (Quast et al., 2012)." Cleaned reads
were aligned against Accumulibacter MAGs using kallisto (Bray et al.,
2016). Expression levels of each mapped gene were normalized to
Transcript per Million Reads (TPM). We also examined MAGs and
expression levels in TPM from a lab-scale EBPR reactor where
Tetrasphaera MAGs were recovered (McDaniel et al., 2022). Further
operational details of the EBPR reactors can be found in their
respective publications.

3. Results

3.1. Cyanophycin metabolism genes are
widespread

We searched for cphA in broad collections of wastewater-associated
MAGs to understand the prevalence of the cyanophycin synthesis
function. The first dataset we examined was primarily represented by
MAGs recovered from anaerobic digester sludge (Figure 1). Around
10% of the MAGs, 271 out of 2,627, possessed the cphA gene. While
nearly three quarters of the MAGs were derived from anaerobic
digesters, only one third of these MAGs possessed a cphA gene
(Figure 1A). On the other hand, the nutrient removal and activated
sludge categories had greater proportions of MAGs with cphA compared
to the original dataset. Examining the MAGs with cphA more closely,
we found that key nutrient cycling organisms possessed a cphA gene,
including known PAO Accumulibacter and Tetrasphaera, as well as

1 sourceforge.net/projects/bbmap/

Frontiers in Microbiology

10.3389/fmicb.2023.1287491

ammonia oxidizing bacteria affiliated with the genus Nitrosomonas
(Figure 1B). This result was surprising, because cphA had not been
documented in Ca. Accumulibacter genomes to our knowledge.

A key limitation of the GEM dataset is the metadata categories.
For example, separate nutrient removal and activated sludge categories
are not representative of real wastewater treatment systems. Nutrient
removal is often performed in activated sludge systems, where redox
conditions are controlled to achieve N and P removal, such as the
anaerobic-anoxic-oxic (A20) process. One specific example from this
dataset of potential category overlap is from Taxon Object ID
3300009540. This study was marked as activated sludge in the
metadata, but further examination of the study (GOLD ID Gs0103597)
shows that the samples were collected from an activated sludge system
performing nitrification.

Given the metadata limitations of the GEM dataset, as well as the
presence of cphA in nutrient cycling microbes, we next searched for
cphA in a set of MAGs from activated sludge systems performing
EBPR and N removal (Singleton et al., 2021). Out of 1,083 MAGs from
this study, 552 possessed a cphA gene copy. Similar to the GEM
dataset, we found that N and P cycling microbes harbored the cphA
genes, including Ca. Accumulibacter, Dechloromonas, Nitrosomonas,
and Propionivibrio (Supplementary Figure S2).

We also found that common filamentous bacteria possessed a cphA
gene copy, including Zoogloea and Kouleothrix. Although filamentous
bacteria are undesirable in large quantities in activated sludge systems
due to their contribution to sludge bulking and poor settling, they are
ubiquitous throughout activated sludge systems and can improve floc
strength in balance with other microbes (Burger et al,, 2017). The
presence of cphA in filamentous bacteria may improve the viability of
future cyanophycin applications, as filamentous bacteria can represent
over 25% of sludge biomass in well-functioning systems (Mielczarek
etal,, 2012; Araujo Dos Santos et al., 2015).

A prominent cphA harboring genus in both large-scale datasets
was PHOS-HE28. These organisms are poorly characterized members
of the Flavobacteriales order. PHOS-HE28 have been identified in
activated sludge and are related to bacteria isolated from saline
environments, primarily seawater (Bowman, 2020). PHOS-HE28 and
other related bacteria possess a ppkl gene, so it is possible that these
bacteria can store phosphate like PAO (Lucena et al., 2022), though
more examination of ppkI phylogeny and other phosphate transport
genes is necessary to infer this function. Further investigation of
PHOS-HE28 may be a promising avenue for integrating cyanophycin
accumulation into existing treatment facilities given its ubiquity in
activated sludge.

Overall, the unexpectedly high prevalence cphA genes in activated
sludge MAGs is a positive sign that cyanophycin accumulation could
integrate with existing wastewater treatment practices. This finding
agrees with recent work that studied cyanophycin gene abundance
and production in two full-scale wastewater treatment facilities using
biofilm reactors for N and P removal (Zou et al., 2022). This work
successfully identified cphA genes in biomass samples and found an
association between cphA abundance and Accumulibacter marker
gene abundance. However, they used read-based analysis for their
metagenomic work rather than assembly-based analysis, while
we analyzed MAGs to directly associate cphA genes with particular
taxa. We next focused our analysis on specific N and P cycling
better their
cyanophycin accumulation.

organisms to understand potential  for
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3.2. Nitrogen and phosphorus cycling
bacteria harbor cyanophycin genes

Since cphA genes were widespread among wastewater treatment
microbiomes, we next examined a wider suite of complete genomes
and near-complete MAGs obtained from NCBI of N and P cycling
microbes to determine their potential for cyanophycin accumulation.
We selected genomes of ammonia oxidizing bacteria (AOB), nitrite
oxidizing bacteria (NOB), denitrifiers, PAO, and GAO to search for
the cphA gene. A complete list of genomes examined is available in
Supplementary Table S1.

Out of 68 genomes searched, 34 possessed at least one copy of the
cphA gene. Notably, nearly all PAO genomes possessed a copy of the
cphA gene. All Accumulibacter and Tetrasphaera genomes had a copy,
as well as Ca. ‘Dechloromonas phosphorivorans. This finding is
consistent with previous research; ¢phA has been identified in
Tetrasphaera (Singleton et al., 2022), and correlations were found
between Accumulibacter phylogenetic markers and cphA gene
abundance (Zou et al., 2022). The only PAO genome without a cphA
gene copy was one Ca. ‘Dechloromonas phosphorivorans’ genome.
This result was surprising since the six other Dechloromonas species
analyzed possessed a cphA gene. It is unclear whether this discrepancy
is due to a true lack of cphA in this particular species or limitations in
sequencing and metagenome assembly. Regardless, given that PAO are
already harnessed for their affinity for P bioconcentration, the
potential for simultaneous N recovery via synthesis of cyanophycin in
the same organism may be a promising avenue for combined P and
N recovery.

Frontiers in Microbiology

Another notable finding was that no NOB genome possessed a
cphA gene, while multiple AOB genomes possessed a cphA gene
copy. This finding was surprising since AOB and NOB are similar
metabolically as chemolithoautotrophs. Furthermore, some
Nitrospira-aftiliated taxa previously thought to be NOB are capable
of complete ammonia oxidation (comammox), resulting in even
more metabolic similarities to AOB with the ability to oxidize
ammonia (Daims et al., 2016). We analyzed a known comammox
genome of Ca. Nitrospira nitrosa (van Kessel et al., 2015) and did
not find a cphA gene. Among the AOB genera, we found cphA in all
Nitrosospira genomes and seven out of 12 Nitrosomonas genomes.
A previous study also identified cphA in a Nitrosospira originally
isolated from soil (Norton et al., 2008). Of the five Nitrosomonas
genomes that did not possess cphA, four were originally isolated
from marine or brackish environments, not activated sludge, and
required a salt-enriched medium for growth (Koops et al., 1991).
The other Nitrosomonas genome that did not possess cphA was
originally isolated from cattle manure (Nakagawa and Takahashi,
2015). The presence of cphA in common activated sludge AOB, such
as N. europaea and N. nitrosa, is promising for future study and
integration of cyanophycin accumulation with existing
nitrification bioprocesses.

We also assessed the presence of ¢phB in all functional group
genomes. Interestingly, out of all analyzed genomes, only Tetrasphaera
species possessed a cphB gene. This was unlike the four cyanobacterial
genomes, which all possessed a cphB gene copy. The lack of a cphB
gene does not guarantee that an organism is incapable of
depolymerizing cyanophycin, which has been confirmed in isolate
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cultures of Pseudomonas aeruginosa (Sharon et al., 2023). To better
understand how cyanophycin could fit into a broader biosynthetic
pathway, particularly in genomes lacking a cphB gene, we next
examined the genes upstream and downstream of cphA in
each genome.

3.3. Phosphorus accumulating organisms
harbor distinct cphA gene clusters

We used GeneGrouper to identify genes surrounding cphA in each
genome analyzed in section 3.2 and bin the gene clusters into homologous
groups. We also included four cyanobacterial genomes and an
Acinetobacter species with a well-characterized cphA gene to understand
whether ¢phA gene clusters from the activated sludge functional groups
were similar to known cyanophycin producers. This gene cluster grouping
approach is useful for determining the potential role of cyanophycin in a
broader bacterial metabolism; genes that cluster together in a genome
often constitute a specific biosynthetic pathway or operon (Fischbach and
Voigt, 2010), and operons have been shown to be conserved across
bacterial classes (Brandis et al., 2019).

We found two distinct gene clusters with gene synteny 6,000 bp
upstream and downstream of cphA, shown in Figure 2. The cphA gene
clusters from Tetrasphaera formed their own distinct group (Group 2),
while the remainder of the genomes formed another group (Group 1).
The reference cyanobacteria and Acinetobacter genomes did not form
their own cluster nor cluster with the activated sludge taxa. The
complexity of the Group 2 gene cluster was notable. The cluster
consisted of a copy of cphB directly upstream of cphA, similar to cphA
gene clusters of cyanobacteria (Krehenbrink et al., 2002; Fiiser and
Steinbiichel, 2007). Furthermore, the Group 2 gene cluster harbored
genes for glycogen synthesis and storage including glycogen synthetase
glgA and glucose-1-adenylyltransferase glgC, as well as the amino acid

10.3389/fmicb.2023.1287491

utilization gene phosphoserine phosphatase serB. Glycogen is an
important carbon reserve for Tetrasphaera, as they utilize glycogen
under anaerobic conditions and replenish stores during aerobic
conditions (Close et al., 2021; Yu et al., 2023).

The clustering of cphA and cphB with glycogen synthesis genes
suggests that cyanophycin could be an active storage compound for
Tetrasphaera. Genes in biosynthetic pathways with increasingly
complex metabolites or related functions often cluster together, such
as complex electron transport chains (Simon et al., 2004), protection
against bacterial host immune response (Fischbach et al., 2006), and
intracellular carbon storage (Kutralam-Muniasamy et al., 2017).
Further analysis of carbon storage and amino acid utilization in
Tetrasphaera can illuminate the role of cyanophycin as a
storage compound.

The other cphA gene cluster group, Group 1, included a variety of
activated sludge taxa. This gene cluster consisted of two copies of
cphA, an unclassified transmembrane transport gene (ATP-binding
ABC transporter), and two insertion sequences (IS). Notably, the gene
cluster did not include a cphB gene copy. The presence of flanking IS
indicates that this cluster could be a composite transposon, a type of
mobile genetic element that facilitates movement of genetic material
within a genome and between bacteria. Flanking IS around functional
genes are a hallmark of composite transposons (Siguier et al., 2009).
Composite transposons have been studied extensively for facilitating
the spread of antibiotic resistance and xenobiotic resistance genes via
horizontal gene transfer between taxa in diverse microbiomes (Top
and Springael, 2003; Bennett, 2008). Mobile genetic elements have
previously been identified as important vectors for horizontal gene
transfer of antibiotic resistance genes in activated sludge microbiomes
(Petrovich et al., 2018; Razavi et al., 2020), and recent work has also
highlighted the role of composite transposons in transferring
micropollutant degradation genes between bacteria (Bonatelli
etal., 2023).
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FIGURE 2
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Further analysis of the cphA gene cluster in the Group 1 organisms
would greatly improve our understanding of whether the gene cluster
is a composite transposon or another type of mobile genetic element,
which may have important implications for gene mobilization and
transfer in complex microbial communities that are typical in
wastewater bioprocesses. Future work could validate our findings
through targeted PCR and long read sequencing to compare cphA
gene clusters within activated sludge samples collected over time.
Furthermore, the role of cyanophycin in the absence of cphB can
be interrogated in future work that focuses on potential cphB analogs
and cyanophycin transport genes.

3.4. Cyanophycin synthetase is expressed
in phosphorus accumulating organisms

Since PAO would be an excellent candidate for combined N and
P bioconcentration, we wanted to determine whether cphA could
be expressed in-situ by these bacteria. We first examined gene
expression by mapping metatranscriptomic reads against three high
quality Ca. Accumulibacter MAGs assembled from a lab-scale
denitrifying P removal bioreactor (Gao et al., 2019; Wang et al., 2021).
The samples were obtained over complete reactor cycles consisting of
three redox phases: anaerobic, anoxic (N supplied as nitrite), and
aerobic. The reactor was fed with either acetate or propionate as a
carbon source in equivalent concentrations on a COD basis. The three
Accumulibacter MAGs affiliated with different clades (IA, IC, and IF)
based on ppkI phylogeny and will be referred to hereafter by their
clades. All three MAGs had two neighboring copies of cphA present
in the genome. Neighboring copies of cphA have also been observed
in other non-cyanobacterial genomes (Fiiser and Steinbiichel, 2007).

Each of the Accumulibacter MAGs exhibited different expression
patterns across redox conditions; IA and IF had the greatest cphA
expression during the aerobic phase, while IC had the greatest cphA
expression during the anoxic phase (Supplementary Figure S3).
Overall, IF had the greatest cphA expression, which agrees with
previous findings that IF was the most transcriptionally active of all
three MAGs (Wang et al., 2021). There were no apparent differences
in cphA expression as a result of different carbon sources in the feed
(Supplementary Figure S3).

In addition to analyzing the cphA expression of each MAG,
we compared cphA expression to other key functional genes shown in
Table 1. We used ppkI, phaC, and glgC as points of comparison against
the expression of cphA, These genes are part of important phosphate
transport and carbon storage functions and have been identified in a
majority of Ca. Accumulibacter genomes (Petriglieri et al., 2022). The

TABLE 1 Genes of interest for PAO expression analysis.

Abbreviation ‘ Gene ‘ Function
Cyanophycin
cphA Cyanophycin synthetase
polymerization
Glucose-1-phosphate Glycogen
8leC
adenylyltransferase polymerization
Poly(3-hydroxyalkanoate)
phaC* PHA polymerization
polymerase
ppki Polyphosphate kinase Phosphate transport

*Not detected in Tetrasphaera MAGs.
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ppkl gene is an essential biomarker for PAO phosphate cycling activity
and is expressed actively in EBPR processes (He et al., 2007; He and
McMahon, 2011). Both phaC and glgC are used in carbon storage
pathways. Accumulibacter PAO assimilate biodegradable substrate
under anaerobic conditions and store the carbon intracellularly using
polyhydroxyalkanoates (PHA), while simultaneously depleting glycogen
reserves. Under anoxic or aerobic conditions, Accumulibacter replenish
glycogen reserves while depleting PHA reserves (Lanham et al., 2014).
As shown in Figure 3, phaC had the highest level of expression across all
MAGs. Surprisingly, cphA expression was significantly higher than ppk1
and glgC expression in IE While gene expression does not directly
indicate microbial activity or kinetics, the level of cphA expression
relative to ppkI and glgC points to the possibility of a highly active
cyanophycin synthesis pathway.

We also examined gene expression data of two Tetrasphaera
MAGs, TET1 and TET2, recovered from a time-series study of an
EBPR bioreactor (McDaniel et al., 2022). These MAGs contained two
copies of the cphA gene in series, similar to Accumulibacter and the
Group 1 cluster from section 3.3. TET1 and TET2 had similar genes
surrounding cphA as the other Tetrasphaera genomes examined in
section 3.3, with a neighboring cphB as well as other carbon storage
and cycling genes (Supplementary Figure S4). Furthermore, the cphA
copies in TET1 and TET2 were not surrounded by flanking IS.

Unlike the cphA expression in Accumulibacter, where both
copies were expressed evenly, there was a notable difference in
expression levels between the two cphA copies in the Tetrasphaera
MAGs (Supplementary Figure S5). Notably, in both MAGs, the
longer copy of cphA exhibited higher expression levels than the
shorter copy; since the gene length is included in the normalization
technique of calculating TPM, the gene length should not impact the
reported expression levels. The combined gene expression of both
cphA copies was relatively close to that of glgC and ppkI in the
Tetrasphaera bins across the sampling period (Figure 4). Again, gene
expression does not directly indicate degree of function or activity,
but the comparable level of expression of cphA compared to well-
understood genes of the PAO phenotype is a positive indication that
cyanophycin is an active storage polymer for Tetrasphaera. We also
observed gene expression of cphB in the Tetrasphaera MAGs
(Figure 4), further increasing the likelihood that cyanophycin is
actively produced and utilized in these bacteria.

The expression of cphA in PAO Ca. Accumulibacter and
Tetrasphaera is promising for future applications of combined P and
N accumulation. In particular, the location of the cphA gene in
Tetrasphaera near other key carbon cycling genes, such glgA and glgC
for glycogen synthesis, increases the likelihood that cyanophycin is an
actively used biopolymer. Further analyses of cyanophycin pathway
activity in response to operational variables and measurements of
cyanophycin in real biomass would increase our confidence in
successful simultaneous N and P bioconcentration in PAO.

4. Conclusion

In this study, we examined the prevalence of cyanophycin
synthesis genes in wastewater bioprocess microbiomes. We observed
a high prevalence of the cphA gene across a broad phylogenetic
spectrum of common bacterial taxa in wastewater bioprocesses. The
capacity for cyanophycin accumulation seems widespread given the
presence of cphA in common PAO Accumulibacter, Tetrasphaera, and
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Dechloromonas and nitrifiers Nitrosomonas and Nitrosospira. We also
used metatranscriptomic profiling to determine whether cphA genes
were expressed by PAO under typical operating conditions, and found
expression levels of cphA similar to other important P and carbon
cycling genes. We also observed expression of cphB in Tetrasphaera,
indicating that Tetrasphaera can actively produce and utilize
cyanophycin. Overall, the presence of cyanophycin synthetase in
nutrient cycling taxa suggests that cyanophycin cycling may already
be occurring in existing biological nutrient removal processes.
Further research will expand on the findings of this work to
advance N bioconcentration and fundamental microbial ecology
questions. First, the feasibility of integrating cyanophycin
accumulation into existing nutrient removal processes will largely
depend on the ability to modulate cyanophycin production in concert
with other desired functions, particularly P accumulation. Although
we found that PAO harbor and express cph4, it is not clear whether
cyanophycin accumulation occurs simultaneously with P
accumulation. Second, fundamental understanding of cyanophycin
accumulation by wastewater bioprocess taxa will improve with further
examination of the cphA gene cluster as a possible mobile genetic
element. While mobile genetic elements are intensely studied as a
means of transferring antibiotic resistance genes in wastewater-
associated microbiomes, their role in transferring nutrient cycling
genes is less clear. Overall, our findings provide evidence that
cyanophycin accumulation is a widespread function in nutrient
removal bioprocesses and opens possibilities for accelerating nutrient

recovery from wastewater through N bioconcentration.
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