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Abstract: In this paper, we address the problem of deploying a team of agents over a given
environment. The environment we consider here is different from most of the existing works
and includes mixed-dimensional and hybrid cases. To deploy the agents, we first find the geodesic
Voronoi partitions from the agents’ current locations. Then, we let each agent move to the “center”
of its partition; this would minimize the worst-case response time for any agent to arrive at an
arising event inside the workspace. Due to the non-convexity of the environment under study, it is
natural to use geodesic distance instead of the generally used Euclidean distance as the distance
measurement metric to keep the trajectory of each agent inside its admissible space. We present
algorithms for agents deployment and show that the proposed approaches ensure that each agent
converges to the optimal position quantified by a cost function in terms of the geodesic distance.
Finally, the results of the simulation study are presented to demonstrate the effectiveness of the

distributed deployment algorithms.
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1. INTRODUCTION

Using a group of agents (robots or sensors) in a planar or
spatial space to cover or monitor surrounding environment
has been a popular research topic in the last decade.
The agents can handle tasks such as area exploration
and mapping, surveillance and intruder detection, search
and rescue, environmental monitoring and field opera-
tion (Cortés and Egerstedt, 2017; Kantaros et al., 2015;
Nourbakhsh et al., 2005; Howard et al., 2006; Hameed,
2018; Barrientos et al., 2011). There is no doubt that a
team of agents can provide more complete sensing results
from different aspects, angles, or locations than a single
robot or sensor can. It is unbeatable in speed, efficiency
and capability with collaborative agents compared to a
single agent. Multi-agent coverage control takes care of
the agents deployment by maximizing overall performance
and minimizing a cost so that collaborative agents can
optimally accomplish assigned task(s).

Most of the existing works on multi-agent coverage control
problem use convex polytopes to represent the workspace
of agents (Cortes et al., 2004; Wang, 2010; Schwager et al.,
2009; Li and Cassandras, 2005). Beyond the simplicity in
convex shapes, a lot of tools and properties are applicable
to solve underlying problems. One commonly used tool is
the Voronoi diagram. It is used to divide the environment
into sub-regions such that each agent is assigned with a
region. The activities or events within the region should
be then taken care of by the agent. This method not
only guarantees that the events are handled by the closest
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agent, but also avoids possible conflict between agents
since each agent will not get across the border and enter
the others’ partitions. However, for cases that the environ-
ment is not a convex polytope, the centroid of each sub-
region may not be inside it. In addition, the agents may
also need to get across the border in the process of moving
to their centroid. In many cases, the space outside the
given environment could be obstacles or no-entry regions.
So, it is necessary to keep the whole trajectory inside the
given environment rather than letting the agents move
across the border. Since there is no guarantee that the
line segment connecting two points is inside the environ-
ment, the commonly used Euclidean distance may not
work properly as expected when dealing with non-convex
cases. To keep the whole trajectory inside the admissible
region, one way to define the distance between two points
is using the geodesic metric. Relevant research coping with
non-convex environments can be found in (Breitenmoser
et al., 2010; Lee et al., 2014; Stergiopoulos et al., 2015;
Thanou et al., 2013; Pimenta et al., 2008; Alitappeh and
Pimenta, 2016; Alitappeh et al., 2017; Lee et al., 2016).
Even though most of the research in multi-agent coverage
control studies continuous workspace, another branch uses
graph-based methods to handle environments that consist
of discrete paths (Alitappeh et al., 2017; Davoodi et al.,
2020; Davoodi and Velni, 2020).

Inspired by the works in continuous and discrete environ-
ments, we found a combination of them, a hybrid environ-
ment composed of continuous parts and discrete parts, and
an environment composed of parts with different dimen-
sions, to be also intriguing. These new compounds not only
inherit the merits and features of each element, but also
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generate new application scenarios. For instance, several
regions connected by a narrow path can be modeled by
2D polytopes connected by a 1D curve; a region whose ma-
jority are concentrated in a polytope but several isolated
outliers are far away can be modeled by a continuous part
connecting discrete points.

In this paper, we introduce the concepts of mixed-
dimensional and hybrid environments. We employ the
geodesic distance as the metric of distance measurement
in this work to solve the locational optimization problem.
The environments that can be modeled are combinations
of the elements in Figure 1. Some examples of the combi-
nation are shown in Figure 2.
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Fig. 1. Allowable elements of an environment.
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Fig. 2. Some examples of environments composed of basic
elements.

The main contributions of this paper are as follows:

(1) We propose the concepts of mixed-dimensional and
hybrid environments in coverage control problem.

(2) We develop algorithms to solve the coverage control
problem in mixed-dimensional and hybrid environ-
ments.

(3) We prove that the proposed method ensures conver-
gence.

(4) We present a novel understanding of the cost function
in terms of the geodesic distance.

The paper is organized as follows. The problem statement
and some preliminary information are presented in Section
2. In Section 3, we present the methodology and the
problem to be addressed. In Section 4, simulation results
are presented. Finally, concluding remarks are made in
Section 5.

2. PROBLEM STATEMENT AND PRELIMINARIES
2.1 Problem Statement

The problem we intend to address in this paper is the
deployment of a team of agents in a bounded space for
minimizing the worst-case response time for any agent to
arrive at an arising event in the workspace. The bounded
space is one of the aforementioned mixed-dimensional,
hybrid environments, or a combination of them.

2.2 Environments

We call a region a mized-dimensional environment if it is
composed of multiple connected parts where at least one

part has different dimension than others. For example,
the regions shown in Figure 2(a) and (b) are mixed-
dimensional environments. In these mixed-dimensional
cases, the square areas are in two-dimensional space and
the line segments are in one-dimensional space. Even
though the whole connected region is in two-dimensional
plane, the line segments actually are one-dimensional geo-
metric shape. This notation can be extended to cases with
curves, where curves may appear in 2D or 3D space but
still 1D in essence.

We call a region a hybrid environment if it is composed
of connected parts where at least one part is a continu-
ous space and another part is a set of discrete positions
connected through paths. For example, the regions shown
in Figure 2(c) and (d) are hybrid environments. In Fig-
ure 2(d), the black dots are discrete positions connected
through paths (black lines), and the thick green line seg-
ment is in 1D space. The difference between the black lines
and the thick green line segment is that all the points on
the thick green line are considered as admissible workspace
for agents to stay; the paths between discrete vertices
are only allowed for agents to pass through. Similar to
the mixed-dimensional case, a curve is considered as a
continuous region in 1D space.

In a hybrid environment, we call the point that connects
the continuous region and the discrete part access point.
All the access points and isolated points in the environ-
ment together constitute a weighted graph G = (V, £, W),
where V is the set of vertices, i.e., the access points and
isolated points in the environment, £ C V x V is the set
of edges, which represent the paths the agents are allowed
to go through, and W is the set of weight values corre-
sponding to each edge, where the values are the distance
between the two vertices connected by the edge.

A mixed-dimensional environment can be considered as a
special case of a non-convex environment, in which several
regions are connected by narrow tunnels. When reducing
the width of the narrow tunnels to zero, the non-convex
environment becomes a mixed-dimensional environment.
A mixed-dimensional environment can be used to repre-
sent the cases that several major areas are connected with
paths. It is useful in applications such as city areas con-
nected by highways, distributed large farmlands connected
by roads, islands connected by sea bridges or courses. This
environment is different from the non-convex one, since
all the areas are needed to be covered in the non-convex
case, even the narrow tunnels. In a mixed-dimensional
environment, the connection segments do not have area
and only take time to transport.

Similarly, a hybrid environment can also be considered
as a special case of the mixed-dimensional environment.
When the areas of some polytopes are reduced to zero,
they become discrete points in the space with the original
density of a region condensed to a single point. A hybrid
environment can be used to represent cases that involve
several major areas and discrete outliers. Events are dis-
tributed relatively sparse over the major areas, while the
events at discrete points are condensed.
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2.8 FEuclidean Distance, Geodesic Distance, and Shortest
Path

Euclidean distance is used in traditional Voronoi parti-
tions, which requires the environment to be convex. The
shortest path between two points, which is the line seg-
ments connecting them, is straightforward in the convex
polytope. However, issues arise when applying the Eu-
clidean distance in non-convex, mixed-dimensional, and
hybrid environments. Since there is no guarantee that the
direct connection of two points stays in the environment
all the time, the Euclidean distance cannot stand for the
real travel distance of agents. Thus, it is necessary to use
the geodesic distance as the measurement of distance such
that the real feasible travel distance is represented.

Finding the shortest path between two points in a 2D
non-convex space or space with polygonal obstacles is
known as the Euclidean shortest path problem (Li and
Klette, 2011). There are many algorithms in the literature
that can be used to solve this problem (Li and Klette,
2011; Mitchell, 1996; Hershberger and Suri, 1993; LaValle,
2006; Crane et al., 2020). We adopt the wvisibility graph
approach to build the graph (De Berg et al., 1997; Ghosh
and Mount, 1991) and then use the Dijkstra algorithm to
compute the shortest path and the geodesic distance. This
approach also works in our mixed-dimensional and hybrid
environments. The details will be provided in Section 3.

2.4 Voronoi Partitioning and Geodesic Voronoi Partitioning

Consider an environment ) and a team of m agents r;,
i€ R={1,...,m}, and denote the position of agent r; as
pi € R2.

In existing body of works, the Voronoi diagram has been
widely used to partition a convex polytope such that each
cell of the diagram is assigned to one agent. In this way, the
agent will stay in its own region and take care of the events
in this region. No agent will get into other agents’ region
and hence collide with each other or conflict with other
agents’ tasks. Furthermore, the Voronoi diagram ensures
that any events in the environment is taken care of by the
closest agent.

In a Voronoi diagram, the partition cells are separated by
straight lines or line segments such that all the points on
the boundary satisfy

d(¢,pi) = d(¢,pj), i,j €ER (1)
where ¢ € @ is any point on the boundary, p; and p; are

the positions of nearby agents, and d(q, p;) is the Euclidean
distance between ¢ and p;, i.e., d(gq,p;) = |lg — p:ll-

The precise boundary of geodesic Voronoi diagram is much
more complicated. Since geodesic distance is used instead
of Euclidean distance, the boundary (1) becomes

dw(pig) = dw(p;.0) (2)
where w(p;,q) represents the shortest path connecting
them and remains inside the admissible space at all times,
du(p;,q) 18 the length of this shortest path w(p;, q), i.e., the
geodesic distance. The geodesic Voronoi partition of agent
i is given by

Vi = {q € Q ‘ dw(p,;,q) < dw(p_j,q)aVi7j € R} (3)
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If the environment is mixed-dimensional, we use W; to
denote the continuous partition ie.,

i =W, ieR. (4)
If the environment is hybrid, we use W; to denote the
continuous portion, V; to denote the discrete points, g; to
represent the graph connecting all the vertices, and the
pair (W;, g;) to denote all the elements in this partition,

ie.,
Vi=WiU{g; |jeVi},ieR (5)

where g; is the position of the jth vertex in V.
3. METHODOLOGY

3.1 Cost Function

If the environment is mixed-dimensional, we employ the
following locational cost for agent r;, ¢ € R (Alitappeh
and Pimenta, 2016)

pza 1, / f pl,q) ( )dq, (6)

where

f(a) = a? (7)
is used throughout the following content. The total cost is
the sum of all the agent costs defined as

HoW) =Y [ fupao@d @

where p = {p1,....pa}, W = {Wi,..., W}, é(q) is the
density function at ¢ € @, which represents the possibility
of events happening at that location.

If the environment is hybrid, we employ the locational
optimization function for agent r;, ¢ € R in its partition
(Wi, gi) (Alitappeh and Pimenta, 2016; Alitappeh et al.,
2017)

Hioe g W) = [ i) @

+ ) fd

qeV;
where g; is the graph connecting the continuous region W;
and isolated points in V;. The total cost is given by

H(p, G, W) = ; /W F(duipy.0)) b1 (0)dg

+ Z Z f(dw(pi,q))¢2(Q)7

1=1q€V;
where G is the graph connecting all the continuous regions
and isolated points.

wipia))$2(2), (9)

(10)

Remark 1. Tt is noted that the cost function (8) is similar
to the standard cost function initially proposed by Cortes
et al. (2004). The only difference is replacing the Euclidean
distance with the geodesic distance.

Remark 2. Here, we specifically use (7) for its merit in
distance-related integration. With this form, the parallel
axis theorem can be applied to decompose the integration
into two parts: (a) integration about the centroid, and
(b) a value only concerned about the distance from any
point to the centroid of the region. This decomposition
greatly simplifies the integration and reduces the amount
of calculations.
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Remark 3. With the consideration in Remark 2, we can
have a new understanding of the effect of the geodesic
distance on the cost function. As shown in Figure 3(a),
the cost function of this region when p; is located at the
red dot equals to the integration of the geodesic distance
from the red dot to all the points in the region in blue.
Then, we can decompose the whole concave shape into two
parts as shown in Figure 3(b). All the points in the green
region can “see” the red dot directly, and hence the distance
between any point and the red dot equals to their Euclidean
distance. All other points (i.e., in the pink region) cannot
“see” the red dot directly, and hence the geodesic distance
is needed. Since the total cost is the sum of the two parts,
we can actually move the pink triangle to anywhere if the
Euclidean distance from the centroid of the triangle to the
red dot equals to the geodesic distance of it (Figure 3(c)).
After that, the total cost remains the same value. With
proper partitioning, it is possible to transform the concave
shape to a convex shape. However, this decomposition does
not remain the same for every point in the region. At a
different location, the partition might be different — this is
in fact the source of complexity in using geodesic distance.

»
/

(@ »©

Fig. 3. Transformation of a concave environment.

3.2 Proposed Algorithms and Analysis

We first present an algorithm to calculate the geodesic
distance in mixed-dimensional or hybrid environments.
As mentioned in Section 2, we adopt the visibility graph
approach to build a graph and applying the Dijkstra algo-
rithm to find the geodesic distances in these environments.
In these algorithms, we assume that

e each agent has full knowledge of the environment;

e each agent only has the knowledge of its neighboring
agents’ location information;

e there exists a path between any two positions.

Remark 4. Above assumptions are not against the dis-
tributed requirement. On one hand, the agents can con-
tinuously communicate with their neighboring agents to
exchange their status data without a centralized control
station to manage the information. On the other hand, each
agent only requires information from its neighbors rather
than all the agents.

Next, we present the distributed coverage control algo-
rithm over mixed-dimensional or hybrid environment. We
show that the geodesic Voronoi partitioning ensures the
minimum value of the total cost function H with given
positions of agents, and the distributed coverage control
algorithm ensures convergence to the minimum value of
the total cost function H.

Remark 5. Using the proposed algorithm, the agents do not
collide with each other since each agent would only move
inside its own Voronoi partition and not enter other agents’
partitions.

Algorithm 1 Find the shortest path and geodesic distance
in a mixed-dimensional or hybrid environment.

Input: Start point ¢stqrt, end point genq, admissible region
W (mixed dimensional) or (W, G) (hybrid)
OUtPUt w(Qstarh qend) and dw(qsm”,qend)

1: Qstart, Qends Jenv < Collect all the vertices involved,
where ¢epn, is the set of vertices composing the envi-
ronment polygon in the mixed-dimensional case or the
polygon of the continuous region W and the isolated
points in the graph G in the hybrid case

2: G < Build a complete graph from vertices qstart, qend,
and Genv

3: G, < Remove all the edges in G which are not totally
inside W (or not edges in G in the hybrid case), i.e.,
create the visibility graph

4: w(qstart; gend) + Use Dijkstra’s algorithm to find the
shortest path from ¢start 10 gend in G

5: d;; < Calculate the length of each edge in

w(Qstarta qend)
6: d

w(QStartJIend) A (i,j)Ew(qsmM,qend) dz]

Algorithm 2 Implementation of the distributed coverage
control algorithm.

Input: Initial position of agents (p;) and the information
of the environment (Q)
1: while True do
2:  Acquire locational information of neighbor agents
3:  g; + Compute the geodesic Voronoi partition based
on the drone and its neighbors’ current location
4: ¢; < Find the point with the minimum cost
for each agent, i.e., argminy, H;(p;,W;) or
arg minpi Hi (pm i Wz)
5. w(ps,ci) + Find the shortest path from current
location to ¢;
6:  Move to ¢; following the path w(p;, ¢;)
7. Update all the states
8: end while

Theorem 1. For a given bounded environment @, the
geodesic Voronoi partitioning renders the minimum value
of the total cost H.

Proof. Denote the regions generated by geodesic Voronoi
partitioning by {W;}, i € R (or {(W;, ¢;)} in hybrid case).
Denote the regions generated by any other partitioning
methods by {W;} (or {(W;,§;)} in hybrid case).

Let us first consider a mixed-dimensional environment.
The total cost of the geodesic Voronoi partitioning and
an arbitrary partitioning is given by

B Z/W F(duw(p; ) 0(9)da; (11)

and

W) = Z; /W Flduwp,.q))0(a)dg, (12)

respectively.
The geodesic Voronoi partitioning ensures that
Du(pig) < Qw0 V2 EWis ] ERiFE G (13)

This means that all the points in W; (i € R) are closer to
r; than any other agents.
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For the arbitrary partitioning, Ji,5 € R (4
q € W; such that

# ), and

d >d

w(pi,q) = (14)

w(p;,q)*

Consider that gy € W is the unique point partitioned into
W; with the arbitrary partitioning. Then, we have

Hi(pi, Wi) = Hi(pi, Wi) + f(dus(ps.0))9(00) (15)
and
Hj(pj, W5) = Hi(0js Wi) — f(dw(p,.q0))?(20)- (16)
Adding (15) to (16), we obtain
ﬂi(pla )+H (p]7 ):
Hi(pi, Wi) + Hj(p]" Wj)
+ f(dw(pi,qo))qs(qo) - f(dzzj(pj,qo))¢(QO) (17)
Due to (14), we have
f(dw(pi,qo))(b(QO) > f(dw(pj,qo))(b(QO)' (18)
Substituting (18) into (17) we have
ﬁl(plaWZ)+7:[ (pJ7 ) >H (pla )+H (p]7 ) (19)
Then, the total cost functions satisfy
H(p, W) < H(p,W). (20)
This means that the value of H;(p;, W;)+H,;(pj, W;) either

increases or does not change due to gg with the arbltrary
partitioning. If go is the only difference between {W;}
and {W;}, the value of the total cost function also either
increases or does not change.

If multiple points are assigned to other regions with the
arbitrary partitioning, (20) still holds. Then, we know that
the total cost either increases or does not change with the
arbitrary partitioning method, i.e., the geodesic Voronoi
partition renders the minimum value of the total cost
function H.

For a hybrid environment, the above conclusion still holds.
The proof is very similar and hence omitted here. |

Theorem 2. For a given environment, Algorithm 2 ensures
that the cost function H converges to the minimum value.

Proof. The algorithm involves a loop with two steps at
each iteration. In step A, the geodesic Voronoi partitions
are acquired based on the agents’ current location. In
step B, each agent moves to the optimal location of its
partition. We will prove that the value of the total cost
function H will not increase in both steps of each iteration.

Step A: At each iteration, the partitioning renders the
minimum value of the total cost function H at current
location of agents (this was proven in Theorem 1). It means
that the value of the total cost function should be less than
or equal to the value from the last iteration if this is not
the initial partitioning.

Step B: The optimal position is the point that has the min-
imum cost in each region. This leads to H;(¢;) < H;(p;)-
Then, we can obtain H(c) = > Hi(ci) < D7 Hilpi) =
H(p)-

In summary, both steps will reduce the value of the total
cost function, until the iteration that H(p, W) = H(p, W),

and H(c) = H(p), where W and W are partitions from
current step and last step, respectively. This means that

the agents already arrived at the positions that have the
minimum cost. n

4. NUMERICAL SIMULATION RESULTS
4.1 Basic Configurations

In the numerical validation, we employ a uniform den-
sity distribution to the environment. Specifically, we set
¢(¢) = 1 in the mixed-dimensional environment. Due to
the limited space, the simulation results of the hybrid case
is omitted here.

4.2 Mized-dimensional Environment

In this simulation, the environment consists of a square
and a triangle connected by a line segment. Four agents
were used and initially started from the square region as
shown in Figure 4(a). In each step, each agent moved to
the position with the minimum value of the cost function
in its partition. The trajectories are shown in Figure 4(b).
Finally, all the agents moved to the centroid of their own
partition, where three agents covered the square area and
one agent moved to the centroid of the triangle through the
one-dimensional path. The total cost function is decreasing
all the time until converging to a constant value as shown
in Figure 4(c).

5

.7"3 4_
T4

T3
(a)

2,
T3

T4 ] ——
/” % 12345678 91011

Iteration

(b) (c)

Fig. 4. Simulation results in a mixed-dimensional environ-
ment: (a) initial positions of agents and the correspond-
ing geodesic Voronoi partitions, (b) final positions of
agents and the corresponding geodesic Voronoi parti-
tions, and (c¢) total cost function.

5. CONCLUSIONS

In this work, we proposed the concepts of mixed dimen-
sional and hybrid environments, and the coverage control
problem in those environments was addressed. We pro-
vided distributed solution methods to address the coverage
control problem in those irregular environments by em-
ploying geodesic distance and geodesic Voronoi partitions.
We proved that the proposed methods can ensure that the
agents converge to their optimal positions quantified by a
cost function. A novel understanding of the cost function in
terms of the geodesic distance was also presented. Finally,
we showed the effectiveness of the proposed algorithm
using numerical simulations on a mixed-dimensional en-
vironment. It is worth mentioning that the concepts and
algorithm we proposed here do not rely on a specific
number of agents or the configuration of the environment.
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