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Abstract— Flow-based generative models enjoy certain advan-
tages in computing the data generation and the likelihood,
and have recently shown competitive empirical performance.
Compared to the accumulating theoretical studies on related
score-based diffusion models, analysis of flow-based models,
which are deterministic in both forward (data-to-noise) and
reverse (noise-to-data) directions, remain sparse. In this paper,
we provide a theoretical guarantee of generating data distribution
by a progressive flow model, the so-called JKO flow model,
which implements the Jordan-Kinderleherer-Otto (JKO) scheme
in a normalizing flow network. Leveraging the exponential
convergence of the proximal gradient descent (GD) in Wasserstein
space, we prove the Kullback-Leibler (KL) guarantee of data
generation by a JKO flow model to be O(e®) when using
N < log(1/e) many JKO steps (IN Residual Blocks in the
flow) where € is the error in the per-step first-order condition.
The assumption on data density is merely a finite second
moment, and the theory extends to data distributions without
density and when there are inversion errors in the reverse
process where we obtain KL-WW> mixed error guarantees. The
non-asymptotic convergence rate of the JKO-type WW.-proximal
GD is proved for a general class of convex objective functionals
that includes the KL divergence as a special case, which can
be of independent interest. The analysis framework can extend
to other first-order Wasserstein optimization schemes applied to
flow-based generative models.

Index Terms— Proximal gradient descent, Kullback-Leibler
divergence, Wasserstein space, generative models.

I. INTRODUCTION
ENERATIVE models, from generative adversarial net-
Gworks (GAN) [28], [30], [37] and variational auto-
encoder (VAE) [41], [42] to normalizing flow [44], have
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achieved many successes in applications and have become a
central topic in deep learning. More recently, diffusion mod-
els [33], [66], [67] and closely related flow-based models [2],
[3], [26], [50], [74] have drawn much research attention, given
their state-of-the-art performance in image generations. Com-
pared to score-based diffusion models, which are designed
for sampling, flow models have certain advantages due to
their direct capability in estimating likelihood, a basis for
statistical inference. However, despite the empirical successes,
the theoretical understanding and guarantees for flow-based
generative models remain limited.

In this paper, we provide a theoretical guarantee of generat-
ing data distribution by a “progressive” flow model, mainly
following the JKO flow model in [74] but similar models
have been proposed in, e.g., [4], [54], and [70]. We prove
the exponential convergence rate of such flow models in both
(data-to-noise and noise-to-data) directions. Below, we give an
overview of the main results. We provide a brief introduction
of the most related types of flow-based models, particularly
the progressive one, in Section I-A. A more complete literature
survey can be found in Section I-B.

An abundance of theoretical works has provided the gener-
ation guarantee of score-based diffusion models [11], [14],
[17], [20], [47], [48], [59]. In comparison, the theoretical
study of flow-based generative models is much less developed.
Most recent works on the topic focused on the generation
guarantee of the Ordinary Differential Equation (ODE) reverse
process (deterministic sampler) once a score-based model
is trained from the forward Stochastic Differential Equation
(SDE) diffusion process [16], [18], [49]. For generative mod-
els which are flow-based in the forward process, generation
guarantee for flow-matching models under continuous-time
formulation was shown in [3] under W5, and in [2] under the
Kullback-Leibler (KL) divergence by incorporating additional
SDE diffusion. The current paper focuses on obtaining the
theoretical guarantee of the JKO flow model [74], which is
progressively trained over the Residual Blocks (steps) and
generates a discrete-time flow in both forward and reverse
directions. The mathematical formulation of the JKO flow
is summarized in Section III, where we introduce needed
theoretical assumptions on the learning procedure.

Our analysis is based on first proving the convergence
of the forward process (the JKO scheme by flow network),
which can be viewed as an approximate proximal Gradient
Decent (GD) in the Wasserstein-2 space to minimize G(p),
a functional on the space of probability distributions. While
the convergence analyses of Wasserstein GD and proximal GD
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have appeared previously in literature [40], [63], our setup
differs in several ways, primarily in that we consider the JKO
scheme, which is a “fully-backward” discrete-time GD. For the
N step discrete-time proximal GD, which produces a sequence
of transported distributions p,, we prove the convergence
of both Ws(p,,,q) and the objective gap G(p,) — G(q) at
an exponential rate, where ¢ is the global minimum of G
(Theorem 10). The convergence applies to a general class of
(strongly) convex G that includes the KL divergence KL(p||q)
as a special case. This result echos the classical proximal GD
convergence in vector space where one expects an exponential
convergence rate for strongly convex minimizing objectives.
While exponential convergence is a natural result from the
point of view of gradient flow, this convergence result of JKO-
type Ws-proximal GD did not appear in previous literature
to the authors’ best knowledge and can be of independent
interest.

After obtaining a small G(p,) = KL(p,||¢) from the
convergence of the forward process, we directly obtain the KL
guarantee of the generated density from the data density by the
invertibility of the flow and the data processing inequality, and
this implies the total variation (TV) guarantee (Corollary 12).
The requirement for data distribution is to have a finite
second moment and a density (with respect to the Lebesgue
measure). The TV and KL guarantees are of O(e) and O(e?),
respectively, where ¢ is the bound for the magnitude of the
Wasserstein (sub-)gradient of the loss function (hence error
in the first order condition) in each of the N JKO steps
(Assumption 1), and the process achieves the error bound in
N <log(1/¢) many steps (each step is a Residual Block).

To handle the situation when the data distribution only
has a finite second moment but no density, we apply a
short-time initial diffusion and start the forward process from
the smoothed density. This short-time diffusion was adopted
in practice and prior theoretical works. We then obtain KL and
TV guarantee to generate the smoothed density, which can be
made arbitrarily close to the data distribution in YW, when the
initial diffusion time duration tends to zero (Corollary 13).
The above results are obtained when the reverse process is
computed exactly with no inversion error. Our analysis can
also extend to the case of small inversion error by proving a
Ws-guarantee between the generated density from the exact
reverse process and that from the actual computed one. Theo-
retically, the Wh-error can be made O(¢) or smaller assuming
that the inversion error can be made O(e®) for some exponent
a (Corollary 15).

A. Normalizing Flow Models

1) Normalizing Flow: Normalizing flow is a class of deep
generative models for efficient sampling and density estima-
tion. Compared to diffusion models, Continuous Normalizing
Flow (CNF) models [44] appear earlier in the generative
model literature. Largely speaking, CNF models fall into two
categories: discrete-time and continuous-time. The discrete-
time CNF models adopt the structure of a Residual Network
(ResNet) [32] and typically consist of a sequence of mappings:

xl:xlfl'i_fl(xlfl)a l:17 aLa (1)
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data P

Fig. 1. The arrows indicate the forward-time flow from data distribution P
to normal distribution g. The forward and reverse processes (19) consist of
the sequence of transported densities at discrete time stamps.

where f; is the neural network mapping parameterized by the
I-th “Residual Block”, and x; is the output of the [-th block.
Continuous-time CNFs are implemented under the neural ODE
framework [15], where the neural network features xz(t) is
computed by integrating an ODE

(1) = v(x(t), 1),

and v;(x) = v(x,t) is parametrized by a neural ODE network.
The discrete-time CNF (1) can be viewed as computing the
numerical integration of the neural ODE (2) on a sequence of
time stamps via the forward Euler scheme.

In both categories, a CNF model computes a determin-
istic transport from the data distribution towards a target
distribution ¢ typically normal, ¢ = N(0, I ), per the name
“normalizing.” The forward time flow is illustrated in Figure 1.
Taking the continuous-time formulation (2), let P be the
data distribution with density p, #(0) ~ p, and denote by
pt(x) = p(z,t) the probability density of x(¢). Then p; solve
the continuity equation (CE)

t €[0,7T], (2)

Ope + V- (pror) = 0, 3)

from pg = p. If the algorithm can find a v; such that pr
at some time 7' is close to g, then one would expect the
reverse-time flow from ¢ = 7T to ¢ = 0 to transport from ¢
to a distribution close to p. Note that in the continuous-time
flow, invertibility is presumed since the neural ODE can be
integrated in two directions of time alike. For discrete-time
flow (1), invertibility needs to be ensured either by special
designs of the neural network layer type [24], [25], [43], or
by regularization techniques such as spectral normalization [9]
or transport cost regularization [58], [72].

A notable advantage of the flow model is the computation
of the likelihood. For discrete-time flow (1), this involves the
computation of the log-determinant of the Jacobian of f;. For
continuous-time flow (2), this is by the relation

log pe(2(t)) — logpa(a(s)) = — / V - w(a(r), 7)dr,

which involves the time-integration of the trace of the Jacobian
of vy [29]. While these computations may encounter challenges
in high dimensions, the ability to evaluate the (log) likelihood
is fundamentally useful; in particular, it allows for evaluating

Authorized licensed use limited to: Duke University. Downloaded on October 29,2024 at 17:51:45 UTC from IEEE Xplore. Restrictions apply.



CHENG et al.: CONVERGENCE OF FLOW-BASED GENERATIVE MODELS

the maximum likelihood training objective on finite samples.
This property is also adopted in the deterministic reverse
process in diffusion models [67], called the “probability flow
ODE” (see more in Section I-B.1), so the likelihood can be
evaluated once a forward diffusion model has been trained.

2) Progressive Flow Models: Another line of works, devel-
oped around the same time as diffusion models, explored the
variational form of normalizing flow as a Wasserstein gradient
flow and proposed the so-called progressive training of the
flow model.

The progressive training of ResNet, i.e., training block-wise
by a per-block variational loss, was proposed by [38] at an
earlier time under the GAN framework. Later on, the Jordan-
Kinderleherer-Otto (JKO) scheme, as a time-discretized
Wasserstein gradient flow (see more in Section II-C), was
explored in several flow-based generative models: [4], [54]
implemented the JKO scheme using input convex neural
networks [8], [26] proposed a forward progressive flow
from noise to data, showing empirical success in gen-
erating high-dimensional real datasets; [74] developed the
JKO flow model under the invertible continuous-time CNF
framework, achieving competitive generating performance on
high-dimensional real datasets at a significantly reduced com-
putational and memory cost from previous CNF models; an
independent concurrent work [70] proposed a block-wise JKO
flow model utilizing the framework of [58]. Many other flow
models related to diffusion and Optimal Transport (OT) exist
in the literature; see more in Section I-B.2. Our theoretical
analysis will focus on the progressive flow models, and we
primarily follow the invertible flow framework in [74].

To be more specific, a progressive flow model represents the
flow on [0, T as the composition of N sub-flow models where
each one computes the flow on a sub-interval [t,,_1,t,], n =
1,..., N. The training is “progressive”’, meaning that at one
time, only one sub-model is trained, and the training of the n-
th sub-model is conducted once the previous n—1 sub-models
are trained and fixed. The progressive block-wise training is
in contrast of the end-to-end training, where the flow on [0, T']
(or N Residual Blocks) is trained simultaneously by a single
objective. The sub-flow model on [t,,_1,t,] can take different
forms, e.g., a ResNet block or a continuous-time neural ODE,
and the N sub-intervals always provide a time-discretization
of the flow. In this context, we call the sub-model on the n-th
sub-interval a “Residual Block™.

B. Additional Related Works

1) Score-Based Diffusion Models: In score-based diffusion
models, the algorithm first simulates a forward process, which
is a (time-discretized) SDE, from which a score function
parameterized as a neural network is trained. The reverse (SDE
or ODE) process is simulated using the learned score model
to generate data samples.

a) SDE in diffusion models: As a typical example, in the
variance preserving Denoising Diffusion Probabilistic Model-
ing (DDPM) process [33], [67], the forward process produces
a sequence of X,,,

Xn: l—ﬁan,1+ ﬁnanla n= 1; aNa (4)
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where Z,, ~ N(0, 1) i.i.d. and Xy ~ P is drawn from data
distribution. With large N, the continuum limit of the discrete
dynamic (4) is a continuous-time SDE,

AX, =~ f()X,dt +/BOAW, teT],  ©)

where ((t) > 0 is a function and W; is a standard Wiener
process (Brownian motion). Since 5(t) in (5) corresponds to
a time reparametrization of ¢, after changing the time (¢ +—
fg B(s)/2ds), (5) becomes the following SDE

dX; = —X;dt + V2dW,, (6)

which is the Ornstein-Uhlenbeck (OU) process in R%. We con-
sider the time-parametrization in (6) for exhibition simplicity.
More generally, one can consider a diffusion process

dX; = —VV(X,)dt +V2dW,, X, ~ P, )

and the OU process is a special case with V (x) = ||z]|?/2.

We denote by p; = L;(P) the marginal distribution of
X, for ¢ > 0. The time evolution of p; is described by the
Fokker-Planck Equation (FPE) written as

Oipr =V - (p:VV + Vpy). 3)

b) Forward and reverse processes: When simulating
the forward process, the diffusion models train a neural
network to learn the score function s;(x) := Vlogp; by
score matching [36], [71]. The training objective can be
expressed as the mean-squared error defined as fOT S I5e(x) —
s¢(x)||?p¢(x)dwdt, which facilitates training and is scalable
to high dimension data such as images (in the original pixel
space).

Once the neural-network score function §; is learned, the
algorithm simulates a reverse-time SDE X, (with time dis-
cretization in practice) [67], such that from XT ~ N(0,1)
the distribution of X is expected to the close to the data
distribution P. It has also been proposed in [67] to compute
the reverse process by integrating the following ODE reverse
in time

2(t) = =VV(Z(t) — se(Z(t)), 9

and (9) was called the “probability flow ODE.” The validity of
this ODE reverse process can be justified by the observation
that the CE (3) and FPE (8) are the same when setting
ve(x) = —(VV(x)+s.(z)). This equivalence between density
evolutions by SDE and ODE has been known in the literature
of diffusion processes and solving FPE, dating back to the
90s [21], [22].
2) Flow Models Related to Diffusion and OT:

a) Flow-matching models: After diffusion models gained
popularity, several flow-based models (in the reverse and
forward directions) closely related to the diffusion model
emerged. In particular, the Flow-Matching ODE model was
proposed in [50] using the formulation conditional probability
paths, where a neural ODE parameterized ¢(x, t) is trained to
match a velocity field v(x,t) whose corresponding CE (3) can
evolve the density p; towards normality. The algorithm can
adopt diffusion paths, where the CE will equal the density
evolution equation (8) of an SDE forward process, as well
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as non-diffusion paths. A similar approach was developed
under the “stochastic interpolant” framework in [3], where the
terminal distribution ¢ can be arbitrary (not necessarily the
normal distribution) and only accessible via finite samples.
These models train a continuous-time CNF by minimizing
a “matching” objective instead of the maximum likelihood
objective as in [29], thus avoiding the computational chal-
lenges of the latter.

b) Optimal transport flows: Apart from diffusion models
and Wasserstein gradient flow, Wasserstein distance and OT
have inspired another line of works on flow models where
the Wasserstein distance, or a certain form of transport cost,
is used to regularize the flow model and to compute the OT
map between two distributions. Transport cost regularization
of neural network models was suggested in several places: [62]
provided a general framework for solving high-dimensional
mean-field games (MFG) and control problems, [27] proposed
a kinetic regularization aiming to stabilize neural ODE train-
ing, [58] and [72] developed the transport regularization in
CNF and invertible ResNet, respectively, and [34] applied to
MFG and flow models. Other works developed flow models
to compute the optimal coupling or the optimal transport
between two distributions. For example, Rectified Flow [51]
proposed an iterative method to adjust the flow towards the
optimal coupling. The method is closely related to the stochas-
tic interpolant approach [3] which, in principle, can solve
the OT trajectory if the interpolant map can be optimized.
A flow model to compute the dynamic OT between two high
dimensional distributions from data samples was proposed
in [73] by refining the flow using the transport cost from
a proper initialization. Despite the wealth of methodology
developments and empirical results, the theoretical guarantees
of these flow models are yet to be developed.

3) Theoretical Guarantees of Generative Models:

a) Approximation and estimation of GAN: On theoretical
guarantees of generative models, earlier works focused on
the approximation and estimation analysis under the GAN
framework. The expressiveness of a deep neural network to
approximate high dimensional distributions was established
in a series of works, e.g., [46], [52], [60], and [75], among
others. The neural network architectures in these universal
approximation results are typically feed-forward, like the gen-
erator network (G-net) proposed in the original GAN. The
approximation and estimation of the discriminator network (D-
net) in GAN were studied in [19], and the problem can be cast
and analyzed as the learning of distribution divergences in high
dimension [68]. Convergence analysis of GAN was studied in
several places, e.g., [35].

b) Guarantees of diffusion models: An earlier work [69]
studied the expressiveness of a generative model using a latent
diffusion process and proved guarantees for sampling and
inference; however, the approach only involves a forward pro-
cess and differs from the recent diffusion models. Motivated
by the prevailing empirical success of score-based diffusion
models, recent theoretical works centralized on the generation
guarantee of such models using both SDE and ODE samplers,
i.e., the reverse process.
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For the SDE reverse process, the likelihood guarantee of the
score-based diffusion model was first derived in [65] without
time discretization. Taking into account the time discretiza-
tion, which significantly influences the efficiency in practice,
a series of theoretical studies have established polynomial
convergence bounds for such models [11], [14], [17], [20],
[47], [48], [59]. In particular, [47] were the first to attain
polynomial convergence without succumbing to the curse of
dimensionality, although this required a log-Sobolev Inequality
on the data distribution. For a general data distribution, [17]
achieved polynomial error bounds in Total Variation (TV)
distance under the Lipschitz assumption, leveraging Girsanov’s
theorem. In parallel, [48] derived similar polynomial conver-
gence bounds, employing a technique for converting L°°-
accurate score estimates into LZ-accurate score estimation.
Further advancements by [14] established a more refined
bound, reducing the requirement of smoothness of data dis-
tribution. Most recently, [59] improved the convergence rates
under mild assumptions by introducing prediction-correction,
and [11] established the first convergence bounds for diffu-
sion models, which are linear in the data dimension (up to
logarithmic factors) without requiring any smoothness of the
data distribution.

¢) Guarantees of ODE flows: Within the studies of
score-based diffusion models (note that the forward process
is always SDE), theoretical findings for the ODE reverse
process are relatively fewer. To the best of our knowledge, [18]
established the first non-asymptotic polynomial convergence
rate where the error bound involves an exponential factor in the
flow time; [16] provided the first polynomial-time convergence
guarantees for the probability flow ODE implementation with
a corrector step. Recently, [49] established bounds for both
deterministic (ODE) and non-deterministic (SDE) samplers
under certain additional assumptions on learning the score. The
analysis is done by directly tracking the density ratio between
the law of the diffusion process and that of the generated
process in discrete time, leading to various non-asymptotic
convergence rates.

Compared to score-based diffusion models, the guarantees
of flow models (in both forward and reverse processes) are
significantly less developed. We are aware of two recent
works: The error bounds for the flow-matching model [3]
were proved in [10] and applied to probability flow ODE in
score-based diffusion models; for neural ODE models trained
by likelihood maximization (the framework in [29]), [53]
proved non-parametric statistical convergence rates to learn a
distribution from data. Both works used a continuous-time for-
mulation, and the flow models therein are trained end-to-end.
Compared to end-to-end training, progressive flow models can
offer advantages in training efficiency and accuracy, in addition
to other advantages such as smaller model complexity. For
the analysis, the formulation of progressive flow models is
variational and time-discretized in nature. Theoretical studies
of time-discretized ODE flow models in both forward and
reverse directions remain rudimentary.

4) Optimization in Wasserstein Space: Continuing the clas-
sical literature in optimization and information geometry,
several recent works established a convergence guarantee of
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first-order optimization in probability space in various con-
texts, leveraging the connection to the Wasserstein gradient
flow. These analyses can potentially be leveraged under the
theoretical framework of this paper to develop new (pro-
gressive) flow models as well as theoretical guarantees of
generative models.

a) Optimization in probability distribution space:
Convergence and rate analysis for first-order methods for
vector-space optimization, primarily gradient descent and
stochastic gradient descent — sometimes referred to as the
Sample Average Approximation (SAA) approach — for con-
vex and strongly convex problems have been established in the
original works [55], [56], and extended in various contexts in
subsequent papers. Optimization in the space of probability
distributions (which forms a manifold) naturally arises in
many learning problems and has become an important field
of study in statistics and machine learning. In particular,
the seminal work of Amari [5], [6] introduced information
geometry emerging from studies of a manifold of probability
distributions. It includes convex analysis and its duality as a
special but important component; however, the line of work did
not develop error analysis or convergence rates for algorithms
on the probabilistic manifold. More recently, a Frank-Wolfe
procedure in probability space was proposed in [40] motivated
by applications in nonparametric estimation and was shown to
converge exponentially fast under general mild assumptions on
the objective functional.

b) Wasserstein proximal gradient descent: The landmark
work [39] showed the solution to the Fokker Planck equation
as the gradient flow of the KL divergence under the Ws-
distance. The proof in [39] employed a time discretization of
the gradient flow now recognized as the JKO scheme. Making
a connection between Langevin Monte Carlo and Wasserstein
gradient flow, [12] proposed a proximal version of the Unad-
justed Langevin Algorithm corresponding to a splitting scheme
of the discrete Wasserstein GD and derived non-asymptotic
convergence analysis. To analyze the convergence of discrete-
time Wh-gradient flow, [63] introduced a Forward-Backward
time discretization in the proximal Wasserstein GD and proved
convergence guarantees akin to the GD algorithm in Euclidean
spaces. We comment on the difference between [63] and our
scheme in more detail later in Remark 3.

The JKO scheme also inspired recent studies in variational
inferences (VI). In the context of Gaussian VI, [45] proposed
gradient flow of the KL divergence on the Bures-Wasserstein
(BW) space, namely the space of Gaussian distributions on
R? endowed with the W,-distance. The algorithm enjoys the
explicit solution of the JKO scheme in the BW space, and
convergence of the continuous-time gradient flow was proved.
In a follow-up work [23], the forward-backward splitting was
adopted in the proximal Wasserstein GD in the BW space,
leading to convergence guarantees of the discrete-time GD to
first-order stationary solutions. The closed-form solution of the
JKO operator only applies to the BW space, while the JKO
flow network tries to learn a transport map to solve the JKO
scheme in each step, leveraging the expressiveness of neural
networks. Theoretically, we consider distributions with finite
second moments in this work.
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C. Notations

Throughout the paper, we consider distributions over X and
the domain X = RZ. We denote by P, meaning Pg(Rd),
the space of probability distributions on R? that has finite
second moment. Specifically, for a distribution P, define
My(P) := [gul|l#||?dP(x). When P has a density (with
respect to the Lebesgue measure dx), we also write My (P) as
Ma(p). Then Py = {P on R?, s.t., Ma(P) < oo}. We denote
by P; the distributions in P, that have densities, namely
Py = {P € P2, P < dz}. We also say a density p € P
when dP(z) = p(x)dz is in Pj. In this paper, we consider
distributions that have densities in most places. When there
is no confusion, we use the density p to stand for both the
density and the distribution dP(z) = p(x)dz, e.g., we say
that a random variable X ~ p.

Given a (measurable) map v : R — R? and P a
distribution on R?, its L? norm is denoted as |jv||p :=
(fga llv(2)||?dP(2))/2. When P has density p, we also
denote it as ||v]|,. For P € P,, we denote by L?*(P) (and
also by L?(p) when P has density p) the L? space of vector
fields, that is, L2(P) = {v : R? — RY, |lv||p < oc}. For
u,v € L?(P), define (u,v)p := [, u(z)"v(x)dP(x), which
is also denoted as (u, v), when p is the density. The notation
I4 stands for the identity map, which is always in L?(P) for
P € P,. For T : R* — R?, the pushforward of a distribution
P is denoted as Ty P, such that Ty P(A) = P(T~1(A)) for
any measurable set A. When P has density p and T4 P also
has a density, we also denote by Tl p the density of Tl P. For
two maps S, 7 : R? — R?, SoT is the function composition.

II. PRELIMINARIES
A. Wasserstein-2 Distance and Optimal Transport

We first review the definitions of the Wasserstein-2 distance
and optimal transport (OT) map, which are connected by the
Brenier Theorem (see, e.g., [7, Section 6.2.3]).

Given two distributions p, v € Po, the Wasserstein-2 dis-
tance Wh(p, v) is defined as

/d Nz =yl* dn(z,y), (10)
R xR

where II(11, ) denotes the family of all joint distributions with
p and v as marginal distributions. When P and @) are in
P5 and have densities p and ¢ respectively, we also denote
Ws(P,Q) as Wa(p,q). When at least one of p and v has
density, we have the Brenier Theorem, which allows us to
define the optimal transport (OT) map from p to v.

Theorem 1 (Brenier Theorem): Let 1 € Pj and v € Ps.
Then
(i) There exists a unique minimizer m of (10), which is
characterized by a uniquely determined yi-a.e. map T}, :
R? — R? such that 7 = (Iq,T})xp, where (Iq,T})
maps (z,y) to (z,T}/(y)). Moreover, there exists a con-
vex function ¢ : R — R such that T =V p-ae.
The minimum of (10) equals that of the Monge problem,
namely

inf
well(p,v)

W22(:u7 v) =

(ii)

inf
T:R4—R, Ty p=v

W2 (1, v) = / e — T(@)|2du(a).
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(iii) If moreover v € P3, then we also have the OT map T}
defined v-ae., and T} o T)] = I p-ae., ) o T} = Iq
v-a.e.

In most places in our analysis, we will consider the OT
between p and v both in Pj, and we will frequently use the
Brenier Theorem (iii) to obtain the pair of OT maps which are
inverse of each other in the a.e. sense.

B. Differential and Convexity of Functionals on P

Consider a proper lower semi-continuous functional ¢ :
Py — (—00,00] and we denote the domain to be Dom(¢) =
{1 € Pa, ¢(u) < oo}. The subdifferential of ¢ was defined in
the Fréchet sense, see, e.g., Definition 10.1.1 of [7]. We recall
the definition of strong subdifferential as below.

Definition 2 (Strong Subdifferential): Given u € Pa, a vec-
tor field £ € L?(p) is a strong (Fréchet) subdifferential of ¢
at p if for v € L?(pu),

O((la +v)gp) — ¢(p) = (€ v)u + ol[[v]]n)-

We denote by dyy,¢(ut) the set of strong Fréchet subdifferen-
tials of ¢ at p (which may be empty).

There can be different ways to introduce convexity of
functions on P,. The most common way is the convexity
along geodesics, also known as “displacement convexity.” In
our analysis, we technically need the notation of convexity
along generalized geodesics (a.g.g.), which is stronger than
geodesic convexity. In short, displacement convexity is along
the geodesic from p; to pso, which, in the simple case where
there is a unique OT map 77 from jy to po, is defined
using interpolation (1 — ¢)Ig + t7% for ¢ € [0,1]. In contrast,
convexity a.g.g. involves a third distribution v and is defined
using interpolation of the two OT maps from v to p; and
Lo respectively.

Specifically, let v € P}, p; € P2, i = 1,2, and let T be
the OT map from v to pu; respectively. A general geodesic
joining pq to po (with base v) is a curve of type

p = (L= 0T, +1T7) v, te[0,1]. (1)

Definition 3 (Convexity Along Generalized Geodesics):
For A > 0, a functional ¢ on Py is said to be A-convex
along generalized geodesics (a.g.g.) if for any v € Pj and
11, 2 € P2 and Vit € [0, 1],

A
(1= YW (i1, p2),

o) < (1= 1)p(m) + té(pa) — St
12)
where ;1172 is as in (11) and

Wi (1, pi2) = /Rd 1T (2) = T () [P dv(x) = W3 k1, pa)-
(13)

Note that the definition implies the following property which
is useful in our analysis, V¢ € [0, 1],

St~ (1= 00(n) +19(1z) — 11— W (1 2).
(14
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The definition of convexity a.g.g. in [7, Section 9.2] is for the
more general case when v may not have density and the OT
maps from v to p; need to be replaced with optimal plans,
and then the generalized geodesics may not be unique. In this
paper, we only consider the case where v has a density, so we
simplify the definition, see [7, Remark 9.2.3] (and make it
slightly weaker, but there is no harm for our purpose).

We also note that many functionals ¢(u) on Py that are
geodesically convex actually also satisfy the convexity a.g.g.
in Definition 3. Examples include ¢(p) = [V (z)dp(z) with
V convex on RY, ¢(p) = [ [ W (1, z2)du(x1)dp(z2) with
convex W, and ¢(p) = [ F(p(x))dz, p being the density,
where F' is convex on [0,00). (In these examples, V, W,
and F' need to satisfy other technical conditions.) The last
example includes negative entropy as a special case, where
F(z) = xzlogx. The primary case for our work is when ¢ is
the KL divergence, which will be discussed in more detail in
Section IV-A. We refer to [7, Section 9] for other examples
and detailed discussions of convex a.g.g. functionals.

C. JKO Scheme for Fokker-Planck Equations

Consider the diffusion process (7) starting from P € Ps.
It is known that under generic conditions, as ¢ — o0, p;
converges to the equilibrium distribution of (7) which has
density

goceV, (15)

and the convergence is exponentially fast [13]. The function
V' is called the potential function of q.

The evolution of p; by FPE of the diffusion process can
be interpreted as a continuous-time gradient flow under the
Ws-metric in the probability space Ps. The JKO scheme [39]
computes a Wasserstein proximal GD which is a time dis-
cretization of the gradient flow. Specifically, define G : P5 —
R as the KL divergence w.r.t. g, i.e.,

G(p) = KL(pllg) = H(p) + E(p),
H(p) = /plogp, 5(0)=C+/VP7 (16)

where c is a constant. More general G can be considered, see
Section IV-A, and in this work we mainly focus on the case
where G is the KL divergence as being considered in [39].

Under certain regularity condition of V, the JKO scheme
computes a sequence of distributions p,,, n = 0,1, ..., starting
from pg € Ps. For a fixed step size v > 0, and the scheme at
the n-th step can be written as

_ 1
pn+1 = arg min G(p) + gwg(pm p)- (17)

PEP2

The scheme computes the W,-proximal Gradient Descent
(GD) of G with step size «y, and can be written as

Pn+1 = PI‘OX»YG (pn) (18)

The original JKO paper [39] proved the convergence of the
discrete-time solution {p,} (after interpolation over time) to
the continuous-time solution p; of the FPE (8) when step size
v — 0+. In the context of flow-based generative models by
neural networks, the discrete-time JKO scheme with finite ~
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was adopted and implemented as a flow network in [74]. Our
analysis in this work will prove the exponential convergence of
pn to g by the JKO scheme (including learning error), echoing
the exponential convergence of the continuous-time dynamic
(the FPE). This result leads to the guarantee of generating data
distributions up to (TV) error O(g) in O(log(1/¢)) JKO steps.
We will summarize the flow model and introduce theoretical
assumptions in Section III.

III. SETUP OF JKO FLOW MODEL AND ASSUMPTIONS

In this section, we summarize the mathematical setup for
the JKO flow model and introduce the necessary theoretical
assumptions for our analysis. The guarantee of generating
the data distribution will be derived in Section V based on
the exponential convergence of the Ws-proximal GD (JKO
scheme) in Section IV.

A. Forward and Reverse Processes of JKO Flow Model

As has been introduced in Section I-A, the flow model
implements an ODE model (transport equation), where both
the forward process and the reverse process are computed
by an invertible Residual Network [9] or a neural-ODE net-
work [15], [29]. The forward process consists of N steps,
where each step is computed by a Residual Block — in the
neural-ODE model, this is the neural ODE integration on a
sub-time-interval [t,,t,+1], and we also call it a Residual
Block. The backward process consists of the N steps of
the same flow network “backward in time,” where each step
computes the inverse map of the Residual Block, and in the
neural-ODE model, this is via integrating the ODE in reverse
time.

The forward and reverse processes (without inversion error)
are induced by a sequence of transport maps, 1,, n =
1,..., N, which we will define more formally later. The two
processes are summarized in (19),

(forward) P =Dpo 1>p1£> "'T—NW?N%%
Tt ;7 T
(reverse)  p = qo qQ e gy =q. (19)

where p is the density of data distribution (when exists,
otherwise a smoothified density by a short time diffusion),
and ¢ is the equilibrium density, typically chosen as Gaus-
sian. Inversion error in the reverse process is considered in
Section III-C.

a) Forward process: In the forward process, the
algorithm learns a sequence of 7,,, which transports from
data distribution P to the equilibrium distribution ¢, which
is typically the normal distribution, A/(0, I). We denote by ¢
the density of (), and p the density of the data distribution P
when there is one.

Following the neural-ODE framework used in [74], each
step computes a transport map T}, 1 : R? — R? which is the
solution map of the ODE from time ¢,, to 41, i.e.,

Tn—i—l(xn) = x(tn+1)7 (20)

where x(t) solves @(t) = 0(x(t),t) on [tn, tni1]s (tn) = Tn,
and 9(x, t) is the velocity field on R? parametrized by the n-th
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Residual Block. Equivalently, we have

tnt1
Tot1(xn) =y +/ 0(x(t), t)dt, x(tp) =z, (21)
tn
In the implementation of the JKO scheme in a flow network,
the learning of the N Residual Blocks is conducted progres-
sively forn = 1,--- , N by minimizing a training objective per
step [74]. We emphasize that, unlike other normalizing flow
models, which are trained end-to-end, the training procedure
here is done step-wise and progressively over the N Residual
Blocks.
Once T, is learned, it pushes from p, to p,41, i.e.,

Pnt+1 = (Tn+1)#pn' (22)

In our problem, we want the distributions in the intermediate
steps to have a density. To guarantee that this is the case
for p,+1, we technically need 7),4; to be non-degenerate.
Intuitively, a non-degenerate map cannot collapse a set of finite
(Lebesgue) measures into a set of measure zero.

Definition 4 (Non-Degenerate Map): Denote by Leb the
Lebesgue measure. 7 : RY — R? is non-degenerate if for
any set A C R? s.t. Leb(A) = 0, then Leb(T~1(A)) = 0.

If a transport map is non-degenerate, then it pushes forward a
density to a distribution that also has density, as shown in the
following lemma proved in Appendix A.

Lemma 5: Suppose T : R* — R? is non-degenerate, P <
Leb, then Ty P < Leb.

Assuming T;, are all non-degenerate, then the sequence of
P produced by (22) all have densities, starting from py = p
the data density. When data distribution has no density, we
will introduce an initial short-time diffusion that mollifies the
data distribution into ps which we set to be py (see more in
Section V-A.2). The learning aims that after NV steps, the final
pn s close to the equilibrium density q.

b) Reverse process (without inversion error): The reverse
process computes the inverse of the N-steps transport by
inverting each T, in the forward process. We first assume that
T, can be exactly inverted in computation, which allows for
a simplified analysis. In practice, T}, ! can be implemented by
fixed-point iteration [9] or reverse-time ODE integration [29].
The case when the inverse cannot be exactly computed is dis-
cussed in Section III-C, where we need additional assumptions
on the closeness of the computed inverse to the true inverse
of T, for our analysis.

The reverse process outputs generated samples, which are
aimed to be close in distribution to the data samples, by draw-
ing samples from ¢ and pushing them through the reverse
N steps. In terms of the sequence of probability densities
generated by the process, the reverse process computes

an = (T ) #n1, (23)

starting from ¢y = ¢ and the output density is qg. Theoret-
ically, the data processing inequality for the KL divergence
applied to invertible transforms (Lemma 11) guarantees that
if py is close to gy = ¢, then gg is close to py, which is
the data density (possibly after short-time smoothing). This
allows us to prove the guarantee of gy ~ po once we can
prove that of px ~ ¢, the latter following the convergence of
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the Ws-proximal GD up to a hopefully small learning error
to be detailed below.

B. Learning Assumptions of the Forward Process

We consider the sequence of densities p,, in the forward
process in (19). Recall from Section II-C that for fixed step-
size v > 0, the n-th step classical JKO scheme finds p,,+1 by
minimizing

1
min F,11(p) :== G(p) + %Wgz(pn,p), (24)

pPEP2
where G(p) = KL(pl||g). The learning in the n-th Residual
Block in a JKO flow network computes the minimization via
parameterizing the transport 7,1 1. Here we briefly review the
rational of solving (24) by solving for 7T;,;, which leads to
our assumption of the learned forward process.

a) JKO step by learning the transport: In the right hand
side of (24), when both p, and p are in Pj, the Brenier
Theorem (Theorem 1) implies the existence of a unique OT
map 7' from p, to p. Consider the following minimization
over the transport 7,

. 1
min - G(Tgpn) + —Egpmp, |z — T(:E)||2 .

25
T:R4—R4 2y @5)

The following lemma, proved in Appendix A, shows that the
minimizer 7" makes Txp, € P3:

Lemma 6: Suppose p, € P5 makes G(py) < oo, and T is
a minimizer of (25), then T p,, € P5.
Thus, in (25) it is equivalent to minimize over 7' that renders
Typ, € P3 and this means that the minimizer T is the OT
map. One can also verify that (25) is equivalent to (24) in the
sense that a minimizer T of (25) makes (T).p, a minimizer
of (24), and for a minimizer p* of (24) the OT map from p,
to p* is a minimizer of (25) [74, Lemma A.1].

b) Learning error in JKO flow network: In the n-step of
the JKO flow network, the transport 7" in (25) is parameterized
by a Residual block, and the learning cannot find the T
that exactly minimizes (25) (and equivalently (24)) for three
reasons:

(i) Approximation error: The minimization of (25) is over T’
constrained inside some neural network family 7g. When
the function family 7g is large enough to express the
desired optimal transport from p,, to Prox,c(pn), the
solution can approximate the exact minimizer of (24),
but this usually cannot be guaranteed.

Finite-sample effect: The training is computed on empir-
ical data samples, while in this analysis, we focus on the
minimization of population loss.

Imperfect optimization: The learning of neural networks
is a non-convex optimization typically implemented by
Stochastic Gradient Descent (SGD) over mini-batches
and there is no guarantee of achieving a minimizer of
the empirical loss.

(i)

(iii)

As a result, the learned transport 7,4 finds a p,4+1 =
(Th+1)#Ppr that at most approximately minimizes (24). While
the learned 7}, is usually not the exact minimizer, we assume
that it is regular enough such that p, is still in P3. This
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would hold if T}, is non-degenerate and also in L?(p,,) by
the following lemma proved in Appendix A.

Lemma 7: Letp € Py, then {T : R — R4 T € L%(p)} =
{T:R? — R?, Typ € Py}. As a result, if T € L?(p) and is
non-degenerate, then Tup € P3.

When p, and p,y; are both in P;, we have a unique
invertible OT map from p,, to p, 1 by Brenier Theorem, and
its (a.e.) inverse is the OT map from p, 41 to p,,. Specifically,
we define

T+ is the OT map from p, t0 P11, pn-ae.,
Ty 4 is the OT map from p,y1 t0 P, pny1-ae.,

(26)

and we have T7 ; o Tt =14 pp-ae., TP o TP | = 1Iq
Pn+1-a.e. Note that T{[*l differs from the learned map 7}, 1,
see Remark 2.
c) Assumption on approximate first-order condition:
For our analysis, we theoretically characterize the error in
learning 7,41 by quantifying the error in the first-order
condition. Specifically, the W,-gradient (strictly speaking,
a sub-differential) of F),;; at p can be identified as
Ty —1q

szFn+1(p) = szG(p) - ~ >

where 7'} is the OT map from p to p,,. Here we use Vw, ¢ to
denote the sub-differential dyy,¢ assuming unique existence
to simplify exhibition. The formal statement in terms of
subdifferential is provided in Lemma 16 (which follows the
argument of [7, Lemma 10.1.2]) for more general G (which
includes KL divergence as a special case). For KL divergence
G, if V is differentiable, the sub-differential dyy, G is reduced
to the unique Ws-gradient written as

Vw,G(p) = VV + Vlog p,

when p € P; has a well-defined score function.

If p is the exact minimizer of (24), we will have
Vw, Fri1(p) = 0 (and for sub-differential the condition is
0 € Ow, Frnt1(p)). At ppi1 which is pushed-forward by the
learned 7,11, we denote the Ws-gradient of F,; by the
following (recall the definition of 77!, ; as in (26))

p-a.e. 27

(28)

En+1 =V, Fg1(pns1)
mn

= Vw,G(Pn+1) — W,
and it is interpreted as sub-differential when needed. Making
an analogy to the (approximate) first-order condition in vector-
space optimization, we assume that p,4; is close to the
exact minimizer such that the (sub-)gradient £, ; is small.
In practice, the SGD algorithm to minimize the training objec-
tive (25) (assuming 7g is expressive enough to approximate
the exact minimizer 7*) would stop making progress when
the Ws-gradient vector field £, evaluated on data samples
collectively give a small magnitude. We characterize this
by a small L?(p,.1) norm of the (sub-)gradient &,y in
our theoretical assumption. The assumptions on the learned
transport 7,1 are summarized as follows:

Assumption 1 (Approximate n-th Step Solution): The

learned transport 7}, 1 is non-degenerate and in L?(p,); it is

Pny1-a.e.  (29)

Authorized licensed use limited to: Duke University. Downloaded on October 29,2024 at 17:51:45 UTC from IEEE Xplore. Restrictions apply.



CHENG et al.: CONVERGENCE OF FLOW-BASED GENERATIVE MODELS

invertible on R and 7, jl is also non-degenerate. In addition,
for some € > 0, 3,41 € Ow, Fror1(Dnt1) St

||§n+aln+1 <e. (30)

We experimentally verify the smallness of [|£,41]|p, ., in
neural network training of one JKO step. Figure 3 shows the
decrease of the squared L? norm ||£n+1||]21”+1 over training
iterations. The Wasserstein gradient £,, 1 is plotted as a vector
field in Figure 4, whose magnitude gradually decreases over
training. See Appendix D for more details.

The error magnitude £ can be viewed as an algorithmic
parameter that reflects the accuracy of first-order methods,
and similar assumptions have been made in the analysis of
stochastic (noisy) gradient descent in vector space, see, e.g.,
[55] and [56]. We emphasize that theoretically, ¢ does not
need to be small but will enter the final error bound. For T},
satisfying Assumption 1, from p,, € P§, pp+1 = (Tnt1)#Dn
is also in P by Lemma 7. Then the subdifferential Oy, F}, 11
can be defined at p,,+; and characterized by Lemma 16.

Remark 1 (Assumptions on T,): The L? integrability con-
dition of T, is natural and together with non-degeneracy
ensures that the next p,, is in P5. When T, ! is also non-
degenerate, the p,’s in the forward process and ¢,,’s in the
reverse process in (19) all have densities, and this allows
us to apply the data processing inequality in both directions
(Lemma 11).

When there is an inversion error in the reverse process,
we will further impose Lipschitzness of 7;* on R and the
Lipschitz constant will theoretically enter the error bound, see
more in Section V-B.

Remark 2 (1,41 and T[j“ ): Recall that T,y is the
learned transport map and 77 *! is the OT map. In our setting
(of imperfect minimization in the n-th step), both 7;,; and
T+ push p,, to p,+1 but they are not necessarily the same.
The notion of 7" is introduced only for theoretical purposes
(the existence and invertibility are by Brenier Theorem), and
our theory do not need 7,1 to equal 7", On the other
hand, one would expect T}, ;1 to approximate 771 when the
JKO-step optimization (24) is approximately solved, leading
to a small ¢ in (30).

C. Reverse Process With Inversion Error

Considering potential inversion error in the reverse process,
we denote the sequence of transports as S, and the transported
densities as ¢, that is,

q~n = (Sn+1)#(in+17 (31)

from gy = gy = q. The reverse process with and without
inversion error is summarized as

Tt Tt !
(exact reverse) qo —— q1 > - gqN = ¢,
~ ST .~ Ss SN~
(computed reverse) o<— Q1< -+ qN = (¢

(32)

The computed transport S,, is not the same as 7, ! but the
algorithm aims to make the inversion error small. For our
theoretical analysis, we make the following assumption on the
error.
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Assumption 2 (Inversion Error): For n = N,--- 1, the
computed reverse transport S,, is non-degenerate, in L?(gy,),

and satisfies that
||Tn o Sn - Id”(jn < Einy- (33)

In practice, the quantity ||T;,05, —1I4||Z can be empirically
estimated by sample average, namely the mean-squared error

1
1\/ISEinv = ZHTTLOS’I’L(mZ) _xiH27

Ninv

x; = Spy10---0Sn_1(2:), 2 ~q,

computed from ny,, test samples. With sufficiently large nyy,
one can use MSE;,, to monitor the inversion error of the
reverse process and enhance numerical accuracy when needed.
It was empirically shown in [74] that the inversion error
computed on testing samples (though all the N blocks) can be
made small towards the floating-point precision in the neural-
ODE model.

The inversion error objective (33) resembles the “cycle con-
sistency” loss in Cycle-GAN [76]. Our theory in Section V-B
suggests that keeping the inversion error small is crucial for
the success of generating a close-to-data distribution gy in the
reverse process. Thus, there may be benefits by introducing
the objective (33) as a regularization in the training of flow-
based models, similar to the cycle consistency mechanisms in
the GAN literature.

IV. CONVERGENCE OF FORWARD PROCESS

The current paper mainly concerns the application to flow
generative networks where G is the KL divergence. In this
section, we prove the exponentially fast convergence of the
forward process, which applies to potentially a more general
class of GG as long as the subdifferential calculus in P5 can be
conducted (see Section 10.1 of [7]) and G is strongly convex
along generalized geodesics (a.g.g., see Definition 3), which
may be of independent interest.

We will revisit the KL divergence G as a special case
and prove the generation guarantee of the reverse process in
Section V. All proofs and technical lemmas are provided in
Appendix B.

A. Conditions on G and V

We introduce the more general condition of G needed by
the forward process convergence.

Assumption 3 (General Condition of G): G : Py —
(=00, 400] is lower semi-continuous, Dom(G) C PJ; G is
A-convex a.g.g. in Ps.

The first part of Assumption 3 ensures that the strong
subdifferential Oy, G(p) can be defined, see Definition 2.
The strong convexity of G is used to prove the exponential
convergence of the (approximated) Ws-proximimal Gradient
Descent in the forward process.

Next, we show that the KL divergence G satisfies the gen-
eral condition under certain general conditions of the potential
function V' plus its strong convexity. We also introduce an
upper bound of A\ due to a rescaling argument.
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p, m, p € Py, G is A-convex a.g.g.,
G(m) — G(p) >

(Vw,Glp) o T, T = Tp) + 3W3(, p)

Fig. 2.

g(m) —g(p) >

The monotonicity of a.g.g.-convex G in Pa proved in Lemma 8, as an analog to strong convexity in vector space. We remark that in the usual

7, p € R, g is A-convex,

(Vg(p),m = p) + 5w — pll?

vector space, the convexity definition does not involve a third vector, since the inner product is uniform; while in probability space, inner product is defined
at tangent space associated with p. The dotted line indicates the general geodesic between p and 7, see the definitions in Section II-B.

1) KL Divergence and f-Divergence G: Recall that the
KL divergence G(p) = H(p) + E(p) as defined in (16),
where E(p) = [ Vp involves the potential function V' of the
equ111br1um density. We introduce the following assumption
on V:

Assumption 4 (Condition of V' the Potential of q): The
potential function V' : RY — (—o0,00] is proper, lower
semi-continuous, and V'~ := max{—V, 0} is bounded; V' (z)
is A-strongly convex on R%, and q < e~V is in Pj.

The first part of Assumption 4 is for the sub-differential
calculus of £(p) = [Vp in P,. The A-strong convexity is
used to make 5 ( ) (and subsequently G(p)) A-convex a.g.g.
Under such condition of V, the KL divergence G(p) satisfies
Assumption 3, which is verified in Lemma 19. Thus our result
applies to the KL divergence as being used in the JKO flow
model. For the important case when ¢ is standard normal,
V(x) = ||z]|?/2, and X\ = 1.

More generally, consider the f-divergence G(p) =
Dy(pllq) :== [ f(p/@)q, | : (0,00) — R being convex, lower-
semicontinuous and f(1) = 0. KL divergence corresponds
to a special case where f(z) = xlogz. Under Assumption 4,
we have ¢ oc e~V and is log-concave, and then G(p) is convex
a.g.g. in P5 (under additional technical conditions on f) [7
Theorem 9.4.12]. We think it is possible to establish the \-
convexity a.g.g. of f-divergence G for a certain class of f,
and details are postponed here.

2) Positive and Bounded \: Note that for strongly convex V'
we can use a scaling argument to make A bounded to be O(1)
without loss of generality. Specifically, for V' that is A-convex
on R%, the function = +— V(ax) for a > 0 is (a?)\)-convex.
This means that for ¢ that has a strongly convex V as the
potential function, one can rescale samples from ¢ to make
V' strongly convex with A < 1. In the case where G is KL
divergence, the A-convexity of GG has the same A as that of V.
Thus, for the general G we assume its A is also bounded by
1.

Assumption 5 (A Bounded): In Assumptions 3 and 4, 0 <
P

Our technique can potentially extend to analyze the A = 0
case, where an algebraic O(1/n) convergence rate is expected
instead of the exponential rate proved in Theorem 10. For
the application to flow-based generative model, one would
need the equilibrium density ¢ o< e~V convenient to sample
from, and thus the normal density (corresponding to V(z) =
|z||?/2) is the most common choice and the other choices
usually render A > 0 (to enable fast sampling of the starting
distribution). We thus leave the A = 0 case to future work.

B. Evolution Variational Inequality and Convergence of the
Forward Process

The a.g.g. A-convexity of GG leads to the following lemma,
which is important for our analysis. All proofs in this section
are provided in Appendix B.

Lemma 8 (Monotonicity of G): Letp,p € P;, m € Ps, and
denote by T} and T)7 the OT maps from p to p and to 7
respectively. Suppose G satisfies Assumption 3, then for any

ne aWzG(p)’
G(m) = G(p) = (no

The relationship among p, p, 7 is illustrated in Figure 2,
which also includes an analog to the strong-convex function
in Euclidean space. This lemma extends Lemma 5 in [63] and
originally the argument in Section 10.1.1.B of [7]. We include
a proof in Appendix B for completeness.

Based on the monotonicity lemma and the condition
of small strong subdifferential &, in Assumption 1, we
are ready to derive the discrete-time Evolution Variational
Inequality (EV]) [7, Chapter 4] for the (approximate) JKO
scheme.

Lemma 9 (EVI for Approximate JKO Step): Given m €
P, suppose G satisfies Assumption 3 with A € (0, 1], and
0 < v < 2. If po € Pj, and Assumption 1 holds for
n=20,1,---, then for all n,

(1 + ) WE(pus1,7) + 27 (Cpnsr) — G(m))

I A 2
Tﬁan _T£>p+ §W2(7T7p)'

2y 4

< W3 (pn, ) + e 34

The condition of A < 1 and v < 2 can be replaced with
other constants, and our analysis will give similar results.
Specifically, the upper bound 1 of A in Assumption 5 is a
generic choice and we keep it, then replacing the requirement
of v < 2 with 7 < 7ypax for another yp,x > 1 will only
affect the constant in the final bound and does not affect the
order. For exhibition simplicity, we give our analysis under
A <1 and v < 2 without loss of generality. We also provide
some rationale for upper bounding the step size v motivated by
practice: First, it has been empirically observed that successful
computation of the JKO flow model in practice needs the
step size not to exceed a certain maximum value, which is
an algorithmic parameter [74]. Setting the step size too large
may lead to difficulty in training the Residual blocks as well
as in maintaining small inversion errors. Meanwhile, from the
formulation of the JKO scheme, it can be seen that for large ~,
the proximal GD in (17) approaches the global minimization
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of G(p), which asks for the flow to transport from the current
density to the target density ¢ in one step. Though the proximal
GD (as a backward Euler scheme) does not impose a step-size
constraint, the optimization problem (17) is, in principle, easier
with a small (but no need to converge to zero) step size.

The EVI directly leads to the NN-step convergence of the
forward process, which achieves O(g) Wa-error and O(g?)
gap from the optimal objective value in N < log(1/e) JKO
steps.

Theorem 10 (Convergence of Forward Process): Suppose
q € P5 is the global minimum of G, and the other assumptions
are the same as Lemma 9, then for n =1,2,---,

A\ 7" 42
W < (1+5) Mo+ 09
In particular, if
8
n > Py (log Wa(po, q) +log(A/e)), (36)
then
€ 9 /en\2
<5 - <2 (=
Walpnoa) S VS, Glonn) = Cla) < 5 (5) - 6D

Remark 3 (Comparison to [63]): The convergence rates of
Wasserstein proximal GD were previously studied in [63],
and our proof techniques, namely the monotonicity of G
plus discrete-time EVI, are similar to the analysis therein.
However, the setups differ in several aspects: first, we consider
the “fully-backward” proximal GD, i.e., the JKO scheme,
while [63] focuses on the forward-backward scheme to mini-
mize G having a decomposed form £ + H (which does cover
the KL convergence as a special case). Second, [63] assumed
the exact solution of the proximal step while our analysis
takes into account the error ¢ in the first-order condition
Assumption 1, which is more realistic for neural network-
based learning. At last, [63] assumed L-smoothness of V,
namely VV is L-Lipschitz, and step size v < 1/L, as a result
of the forward step in the splitting scheme, which is not needed
in our fully backward scheme. The motivation for [63] is to
understand the discretized Wasserstein gradient flow and to
recover the same convergence rates as the (forward-backward)
proximal GD in the vector space. Our analysis is motivated by
the JKO flow network, and the forward process convergence
is an intermediate result to prove the generation guarantee of
the reverse process.

V. GENERATION GUARANTEE OF REVERSE PROCESS

In this section, we first consider the reverse process as
in (19), called the exact reserves process, when there is no
inversion error. In Section V-A, we prove a KL (and TV)
guarantee of generating by gy any data distribution P in Pj,
and extend to P with no density by introducing a short-time
initial diffusion.

Taking into account the inversion error, we consider the
sequence ¢, induced by S, in (32), called the computed
reverse process, where the inversion error satisfies Assump-
tion 2. In Section V-B, we prove a closeness bound of gy to
qo in W,, which leads to a W,-KL mixed generation guarantee
of o based on the proved guarantee of qg.

8097

A. Convergence Guarantee Without Inversion Error

We start by presenting convergence analysis assuming there
are no errors in the reverse process; then, we extend to
the more practical situation considering inversion errors. All
proofs in this section are given in Appendix C.

1) KL (TV) Guarantee of Generating P With Density:
Consider the transport map over the N steps in (19) denoted
as

TN :=Tno---oTh. (38)

Since each T, is invertible (Assumption 1), the overall map-
ping T} is also invertible. We have

oy = (T1)gpo,  av = (T1) .

The following lemma follows from the data processing
inequality of KL, which allows us to obtain KL bound of
po = p and qo from that of px and gy = q.

Lemma 11 (Bi-Direction Data Processing Inequality): If
T : R?* — R? is invertible and for two densities p and g on
R, Typ and T4q also have densities, then

KL(pllq) = KL(Typ||T4q)-

The following corollary establishes an O(¢?) KL bound in
N < log(1/e) JKO steps, which implies an O(g) TV bound
by Pinsker’s inequality.

Corollary 12 (KL guarantee for P € P5): Suppose
G(p) = KL(p|lg), the potential function V satisfies
Assumption 4 with A € (0,1], and 0 < v < 2. Suppose
P € P; with density p, let py = p, and Assumption 1 holds
for some ¢ and all n. Then, let

N= m (1og Wa(po. q) + 1og<A/e>ﬂ , (39)

the generated density go of the reverse process satisfies that

9 re\2 3 ¢
KL(pllg0) < % (X) , TV(p,q) < ﬁx

Remark 4 (Extension to f-Divergence): As has been dis-
cussed in Section IV-A, it is possible to show that G(p) =
Dy (pllg) satisfies Assumption 3 (possibly under additional
conditions of f), and then the convergence of the forward pro-
cess, Theorem 10, extends to such f-divergence G. In addition,
data processing inequality holds generally for f-divergence,
and thus Lemma 11 also extends. As a result, Corollary 12
can potentially extend to certain f-divergences and show a
guarantee of D¢ (p||qo) in N JKO steps.

2) Guarantee of Generating P € P, up to Initial Short
Diffusion: For P € Py that may not have a density, we first
obtain ps € Pj that is close to P in W, by a short-time
initial diffusion (specifically, the OU process as introduced
in Section II-C) up to time § > 0, as shown in Lemma 20.
The short-time initial diffusion was used in [48] and called
“early stopping” in [14]. It is also used in practice by flow
model [74] as well as score-based diffusion models to bypass
the irregularity of data distribution [67]. In principle, one
can also use the Brownian motion only (corresponding to
convolving P with Gaussian kernel) to obtain ps. Here we
use the OU process to stay in line with the literature.

(40)
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The introduction of ps allows us to prove a guarantee of
KL(ps||qo) in the following corollary, which is the same type
of result as [14, Theorem 2].

Corollary 13 (KL Guarantee for P € Py From ps):
Suppose P € P, and the conditions on G, V, A and
~ are the same as in Corollary 12. Then Ve’ > 0, there
exists 0 > 0 s.t. Wa(P,ps) < & and, with pg = ps and
Assumption 1 holds for some ¢ and all n, let IV as in (39), the
generated density go of the reverse process makes KL(ps||qo)
and TV (ps, qo) satisfy the same bounds as in (40).

The corollary shows that there is a density p; € P35 that
is arbitrarily close to P in WW,, such that the output density
qo of the reverse process can approximate ps up to the same
error as in Corollary 12. Note that the corollary holds when
the potential function V' of g satisfies the general condition
Assumption 4. The OU process in the proof (Lemma 20) is
only used in constructing ps, and there are other means to
construct the surrogate initial density p;s.

B. Convergence Guarantee With Inversion Error

Recall the set-up from Section III-C. To prove the W-
control between ¢y and ¢p, we first introduce a Lipschitz
condition on the inverse of the learned transport map 7;, and
explain the motivation.

1) Lipschitz Constant of Computed Transport Maps: Pre-
viously in Assumption 1, we required that both T,, and its
inverse are non-degenerate. Here, we further require that 7},
is globally Lipschitz on R? with a uniform Lipschitz constant.

Assumption 6 (Lipschitz condition on T, '): There is K >
0 s.t. ;7! is Lipschitz on R? with Lipschitz constant e?¥ for
alln=N,... 1.

The assumed Lipschitz constants are theoretical and moti-
vated by neural ODE models, to be detailed below. Our
analysis of W5 (qo, go) applies to any type of flow network
(like invertible ResNet) as long as the needed assumptions on
T,, and S,, hold.

We justify the assumptions on T},, T,;! and S,, under the
framework of neural ODE flow, namely (20)(21), including the
Lipschitz constant e?X of T)-1. Specifically, by the elementary
Lemma 21 proved in Appendix C, we know that if T},
can be numerically exactly computed as (21) and o(z,t)
on R? x [t,,t,41] satisfies a uniform z-Lipschitz condition
with Lipschitz constant K, then both T),,; and its inverse
are Lipschitz on R? with Lipschitz constant ¥, We will
assume the same K throughout time for simplicity. In practice,
Lipschitz regularization techniques can be applied to the neural
network parametrized ©(z,t), and the global Lipchitz bound
of © on R? can be achieved by “clipping” 7 to vanish outside
some bounded domain of x. Meanwhile, note that if T :
R? — R? is invertible and 7! is globally Lipschitz on R?,
then T' is non-degenerate. Thus 7T, and T, ﬁl both being
non-degenerate are implied by (and weaker than) the global
Lipschitzness of 7}, and its inverse. In addition, in a neural-
ODE-based flow model, the reverse process is by integrating
the neural ODE in reverse time, and thus we can expect similar
properties of S,,.

While the computed transport 7}, and S,, often differ from
the exact numerical integration of the ODE, we still expect the
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Lipschitz property to retain. For general flow models, which
may not be neural ODE, we impose the same theoretical
assumptions. At last, the global Lipschitz condition may be
theoretically relaxed by combining with truncation arguments
of the probability distributions, which is postponed here.

2) Ws-Control of the Computed Reverse Process From the
Exact One:

Proposition 14: Suppose in (32), gv = v = q € P3,
and the computed transport maps 7, and S,, satisfy Assump-
tions 1, 2 and 6. Then all ¢, and g, are in P and

Waldos o) < Zge €O, )
A continuous-time counterpart of Proposition 14 was derived
in [3, Proposition 3]. We include a proof in Appendix C
for completeness. The proof uses a coupling argument of
the (discrete-time) ODE flow, which as has been pointed
out in [16], obtains a growing factor VKN in the Ws-
bound as shown in (41). To overcome this exponential factor,
[16] adopted an SDE corrector step. Here, without involving
any corrector step, we show that the factor e"EN can be
controlled at the order of some negative power of ¢ thanks
to the exponential convergence in the forward process. This
is because N can be chosen to be at the order of log(1/¢)
as in (39), then e?® " can be made O(e~%) for some a > 0.
As a result, the Wh-error (41) can be suppressed if €j,, can
be made smaller than a higher power of ¢.

More specifically, combined with the analysis of the forward
process, we arrive at the following guarantee, proved in
Appendix C.

Corollary 15 (Mixed Bound With Inversion Error):
Suppose G(p) = KL(p||q), the potential function V satisfies
Assumption 4 with A € (0,1], and 0 < v < 2. Suppose the
computed transports maps 7, and S, satisfy the Assumptions
1, 2, 6 for some ¢ and €;,, for all n. Suppose P € Pj with
density p, let pg = p and N as in (39), then the generated
density gop of the computed reverse process satisfies that

62A/K

vK

and qq satisfies the KL and TV bounds to p as in (40).

Remark 5 (O(g) error and need for small ¢,y ): The
corollary implies that if ej,, can be made small, then
the W, bound can be made equal to or smaller than ¢
in order. For example, if ci,, = O(35/ 1), then we
have Wh(Go,qo) = O(e). This suggests that if one focuses
on getting KL(pn||¢) small in the forward process, then
maintaining an inversion error small is crucial for the
generation quality of the flow model in the reverse process.

At last, when P is merely in Py and does not have density,
then one can start the forward process from py = ps same as
in Section V-A.2. Then we have the same W5-bound between
Go and qg as in (42), and qo is close to ps in the sense of
Corollary 13.

€inv
(Wa(po, ) A)*F/*

WQ(QOvQO) < 88K/A7

(42)

VI. DISCUSSION

The work can be extended in several directions. First,
it is interesting to see if the assumption on learning in the
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forward process, Assumption 1, can be derived from further
analysis of the neural network learning, e.g., the approximation
and optimization error (c.f. the list of sources of errors in
Section III-B). The current work does not contain such analysis
and instead handles the goodness of the learned T, by a
single assumption. In particular, it would be of interest to
theoretically justify the assumed “first order condition,” i.e.,
the smallness of the Ws-gradient £, in (30), by analyzing
the convergence of the optimization. One possibility is by
showing the weak convergence of the learned p,4; to the
exact minimizer p* of F},; and then utilizing the convergence
of Vi, Fryi1(p) to Vi, Fry1(p*) = 0 in a proper sense
[7, Section 5.4]. Second, the current generation result only
covers the case of GG being the KL divergence. An extension
to the cases when G is other types of divergence, such
as f-divergence (see Remark 4), will broaden the scope of
the result. Third, our theory uses the population quantities
throughout. A finite-sample analysis, which can be based on
our population analysis, will provide statistical convergence
rates in addition to the current result.

Meanwhile, the JKO scheme computes a fully backward
proximal GD. Given the existing convergence rates of the
other Wasserstein GD [40], [63], one would expect that a
variety of first-order Wasserstein GD schemes can be applied
to progressive flow models and the theoretical guarantees
can be derived similarly to the JKO scheme. We also note
the connection between the JKO scheme and learning of the
score function, at least in the limit of small step size [74,
Section 3.2]. Given the growing literature on the analysis
of score-based diffusion models, it can be worthwhile to
investigate this connection further to develop new theories for
the ODE flow models.

Finally, it would be interesting to use theory to guide
practice and to develop new or improved methodologies of
flow-based generative models. As discussed in Section III-C,
one may consider incorporating the inversion error as part
of training loss to enforce the accuracy of the reverse pro-
cess. The potential theoretical extension to f-divergences also
suggests utilizing more general f-divergence as the per-step
training objective in JKO flow networks, e.g., by adopting
techniques in f-GAN [57]. It would be interesting to explore
different choices of f and the relationships among the f-
divergences [31]. In addition, our theory indicates that using
larger step-size <y leads to a shorter sequence of Residual
Blocks in the network architecture (as long as the optimization
in each JKO step can be efficiently solved). It would be natural
to consider an adaptive choice of v in practice and also in
extending the theory.

APPENDIX A
PROOFS AND LEMMAS IN SECTION III

A. Lemma on the Ws-(sub)gradient

Lemma 16: Suppose G : P2(X) — (—00,400] is lower
semi-continuous and Dom(G) C P3. Let v > 0, p € Pj, and

1
F(p) =G(p) + ng@, p). (A.1)
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If (at p € Py, Ow, F(p) is non empty and) & € O, F(p),
then

T — 14

The argument follows that in Lemma 10.1.2 in [7], and we
include a proof for completeness.
Proof: [Proof of Lemma 16] We are to verify that

T 14
=&+~
2!

is a strong subdifferential of G at p. By Definition 2, it suffices
to show that for any v € L?(p) and § — 0,
G((a + 6v)4p) — G(p) = 6(n,v), + 0(0). (A2)

By construction,
Lrw
<777U>P = <§7U>P + ;<Tp - Idav>p7
and since ¢ is a strong subdifferential of F' at p,

F((La+6v)4p) — F(p) > (6, 0), + 0(0).

Combining the two and by the definition of F', we can
deduce (A.2) as long as we can show that

1 1
§W2(P7 (Ta+00)4p)*+0(0) < §W2(P=P)2—<T5—Id,5v>p~
(A3)

To show (A.3), note that by Brenier Theorem (ii),

Wa(p, p)? = / iz — TP (2)]? )z = [Tg — T2
Thus,

1
§W2(p7 p)2 - <Tpp - Id75v>,0

1
= Sl = T2 + (Ta = T2, 60),

= I+ o)~ TER - SIlE (A
Note that, because v € L?(p),
J60l2 = O(&?)
and
I +60) =~ 21 = [ 1(0a+ 00)(e) ~ T2@) oo
> Wa((Ia + 0v)p, p)*.

Putting together, this gives that the r.h.s. of (A.4) is greater
than or equal to

1
SWa((la + 8v)4p,p)* + O(5%)

which implies (A.3). J
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B. Proofs of Lemmas

Proof: [Proof of Lemma 5] It suffices to show that for
any A s.t. Leb(A) = 0, Ty P(A) = 0. By the definition of
push-forward, T P(A) = P(T~'(A)), which is zero because
Leb(T~1(A)) = 0 (since T is non-degenerate) and P < Leb.

O

Proof: [Proof of Lemma 6] First, the minimizer makes
the r.h.s. finite because T’ = Iy makes it finite: When T’ is
identity, the r.h.s. equals G(p,,) < co. As a result, p := Tup,
needs to have density because otherwise the KL divergence
G(p) = +oo.

It remains to show that M>(p) < co. By definition,

M) = | lolPia)do
= By, 7))

< 2(Egmp, |2]|° + Egnp, l2=T(2)|?),

L~Pn

where E,,. [|z]|? = Ma(p,) < oo, and, at the minimizer 7,
Eynp, [|z=T(x)||? also needs to be finite due to that it is in
the 2nd term of (25). O
Proof: [Proof of Lemma 7] We first show that T' € L?(p)
iff Tlp € Po. This is because M (Typ) = E,p||T ()], and
thus is finite iff. 7" is in L?(p).
As a result, when T € L?(p), Typ € P2. If T is also non-
degenerate, Lemma 5 implies that T p also has density. This
proves that Tlyp € Pj. O

APPENDIX B
PROOFS AND LEMMAS IN SECTION IV

A. Technical Lemmas in Section IV-A

Lemma 17: H(p) is convex a.g.g. in Ps.

Proof: The a.g.g.-convexity of functional in the form
of F(p) = [F(p(x))dz in P, is established in Proposition
9.3.9 of [7] when F : [0,400) — (—o0,00] is a proper,
lower semi-continuous convex function satisfying that s +—
s7F(s~%) is convex and non-increasing on (0,+oc). The
entropy H(p) = F(p) with F(s) = slog s, and this F satisfies
the above conditions. ]

Lemma 18: Under Assumption 4, £(p) is A-convex a.g.g.
in Pz.

Proof: This is a direct result of Proposition 9.3.2(i)
of [7], noting that assuming the boundedness of V= implies
the growth condition needed in Section 9.3 therein. The proof
of Proposition 9.3.2(i) shows that £(p) is A-convex along any
interpolation curve which implies A-convexity a.g.g. |

Lemma 19: Under Assumptions 4, the KL divergence G(p)
defined in (16) satisfies Assumption 3.

Proof: The lower semi-continuity follows from that of
H(p) and the condition on V' in Assumption 4. The domain
of G is restricted to p with density because H(p) diverges
otherwise. The a.g.g. A-convexity of G directly follows from
Lemma 17 and Lemma 18. (]

B. Proofs in Section IV-B

Proof: [Proof of Lemma 8] The unique existences of Tlﬁ’
and 777 are by Brenier Theorem. Since p € P, the map T

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

has an inverse denoted by 777 which is defined p-a.e. Under
Assumption 3 first part, the strong subdifferential of Ay, G(p)
is well-defined, and we assume 7 is one of them.

Let v := T7 oTH —14. One can verify that v € L?(p), since
[T o TP||2 = Ma(n), |1al|2 = Mz(p), and both are finite.
By definition, for d € [0, 1],

(Ia+0v)y p=(Ia+ (T o Ty —1a))pp
= (T) +6(T; —T3))#p- (A.5)
We also have

(n,0), = (no Tf,T7 =Tp) . (A.6)

Since v € L?(p), by that € dy,G(p) and the definition
of strong subdifferential (Definition 2), with § — 0+ we have

G ((Id +6v)., p) > Glp) + 8 (n,v), +0(6).  (AT)
Combined with (A.5)(A.6), this gives
G ((T§ +0(Ty = T7))#p) — G(p)
>6(noT), Ty —Tf) +o0(9). (A.8)

Meanwhile, by the A-convexity of G a.g.g. (Definition 3),
and specifically (14), we have

G ((Tf + 6(TF —TF))4p)

< (1-0)G(p) +0G(n) — %5(1 — OWa(p,m)%  (A9)

Comparing (A.8) and (A.9), we have

G(m)=G(p) = (no T}, Ty ~Tf)

- %(1 — Wa(p, )% + o(1).

We get the conclusion by letting 6 — 0+ O

Proof: [Proof of Lemma 9] In the n-th step, 7}, 41 is in
L?(p,) and is non-degenerate under Assumption 1, thus from
Pn € P, b1 = (Tnt1)#pn is also in P; by Lemma 7.
This holds for n = 0,--- , N — 1, and thus all p,, are in PJ,
where py € P5 is by the lemma assumption. By the Brenier
Theorem, the OT map from p,, to p,+1 is denoted as TT’LLH,
which is uniquely defined p,-a.e. Let T}},; be the OT map
from p,,+1 to p,, and it is also the p,4;-a.e. inverse of T,’}“.
We use the short-hand notation

— +1
Xpyy o= T

Under the assumption on G, Lemma 16 applies which gives
the relationship between Oy, F,+1 and Oy, G. Together with
the assumption on &,4; by Assumption 1, we have that for
each n, In,41 € O, G(Pn11) sit.

Yént1 = Vn+1 =1a = Tilpy,  Pny1-ae.

and equivalently,

Id - X7L+1 - fY(nn-‘rl - gn-l-l) o Xn+1- Pn-a.c. (AIO)

Denote by T'7 the unique OT map from p,, to 7. Expanding
[ Xn1 =TI, as

Pn a
HXn+1 - T’r;r ;

Pn
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= [|(la = Xps1) = (la = T7)II2,

= |llq — Tg”i —2(Ig = T7 . 1q — Xps1)p,,
+ [Ta = Xpga 3,

= ||Id - Tifllf,n - 2<Xn+1
—Ta = Xniall3,

<o = T2, = 2(Xnp1 = T Lo = Xpt1)p,

- T;Lra Id - Xn+1>pn

where in the last inequality we use that [|Iqg — Xy 41]2 > 0.
By that

La = T3, = Wa(pn, )2,
and together with (A.10), we have
[ Xn1 =T 7, < Wa(pn, )
= 2y(Xng1 = T, (M1 — &nv1) © Xpga)p, - (ALD)
Applying Lemma 8 with p = p,, and p = p,,+1, we have
G(m) = G(pnta)
>(T7 — Xnt1,Mn+1 © Xny1)p, + %W2(pn+1a m)?.
(A.12)

Meanwhile, by Cauchy Schwartz,

[(Xnt1 = T3, €nt1 © Xng1)p, |

<[ Xns1 = T llp, 1€nt1 0 Xngallp,

< el Xnt1 = T3 [|p.,
where the 2nd inequality is by that ||€,41 0 Xyyillp, =
l€n+1llpny: <€ (Assumption 1). Since A > 0, we have

52

A
5||Xn+1 - T’rTLern < BY + ZHXTL+1 - T:erQ,L‘ (A.13)
Putting together, this gives
T 52 A (|2
—T7, &1 0 X’rb+1>pn| < BN + ZHXH-H =Ty ||pn'
(A.14)

|<Xn+1

Inserting (A.12)(A.14) into (A.11) gives

YA -
(1—- 7)\|Xn+1 —-T7|2.

< W2(pm77)2 + 2y (G(W) — G(pny1) — ;\Wz(pn+1,7r)2)

2y 4
—e”.
A
Because (X,41,7.7)xpy is a coupling between p,y;1 and 7,
we have

n (A.15)

Wa(pns1,m)* < [ X1 — TFII (A.16)

Under the condition of the lemma, 0 < YA < 2, and thus 1 —
22 > 0 and then the Lh.s. of (A.15) > (1— 2 )Wa(pyy1, )2
This proves (34). O

Proof: [Proof of Theorem 10] Taking m = ¢ and apply
Lemma 9, by that 2y (G(pn+1) — G(7)) > 0, (34) gives that
for all n,

A 2
(1 + é) W3 (Pni1,0) W3 (0as0) + L% (ALT)
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Define the numbers p and « as

A\ 2
p::(l—i—’é) , O0<p<l, a«a:= —75,

and define

E, = W2(pm(J)27
then (A.17) can be written as

En11 < p(En + ).

Recursively applying from O to n — 1 gives that

(1-p")

E, < p"Eo+ o’ < p"Eo+a—t—

1-p 1—p’
which by definition is equivalent to (35).
By (35), one will have Wy (py,, q)? < 5¢2/A2 if

2

A e €
<1+2> WQ(p07q) < Fa

which is fulfilled as long as

. 2 (log Wa(po, q) +log(M/¢))
- log(1 4+ vA/2)
This requirement of n is satisfied under (36) by that 0 <
YA < 2 and the elementary relation that log(1+ ) > /2 for
x € (0,1). We have proved the Ws-error bound.
To show the smallness of the objective gap G(p,,) — G(q),
we use (34) again, and by that W3(p,11,q) > 0,

27 (G(pnt1) — G(q)) < W3 (pn,q) + 2—752.

Al
3 (A.18)
When n already makes Wa(py,, q)? < 5e2/\2, we have
£2 2
27 (G(pn+1) —G(g)) < 5+ 27)\)? < 9?’ (A.19)

where in the 2nd inequality we use that yA < 2 because 0 <
A <1and0 < 7 < 2. This proves the bound of G(p,,) —G(q)
in (37). 0

APPENDIX C
PROOFS IN SECTION V

A. Proofs in Section V-A.1
Proof: [Proof of Lemma 11] Let X; ~ p, X5 ~ ¢, and

Yi=T(X1), Yo=T(Xo).

Then Y; and Y, also have densities, Y1 ~ p := Tup
and Yo ~ ¢ := Tyq. By the data processing inequality
concerning two probability distributions through the same
stochastic transformation for the KL divergence (see, e.g., the
introduction of [61]),

KL(p||q) < KL(p||q).

In the other direction, X; = T~ 1(Y;), i = 1,2, then data
processing inequality also implies

KL(pllq) < KL(p|q)-
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Proof: [Proof of Corollary 12] Under Assumption 4, the
KL divergence G(p) satisfies Assumption 3 (Lemma 19), also
g € P3 and G(q) = 0 is the global minimum of G. The
needed assumptions of Theorem 10 are all satisfied, by which
we have that for the N defined in the corollary,

(A.20)

KL(pallo) = Glon) < - (5)

Under Assumption 1, 7}, are all invertible, and thus TlN
as defined in (38) is invertible. In addition, by Definition 4,
one can verify that if 7} and 75, are non-degenerate, then so
is Ty o Ty. Using the arguments for N — 1 times, we have
that T} is non-degenerate. Similarly, since each 7),! is non-
degenerate, we have that (7}¥) ™1 is also non-degenerate. Now,
po = p has density, and then py = (T})4po also has density
(Lemma 5). Meanwhile, gy = g has density (Assumption 4),
then gy = ((T7)~1)4qn also has density. We now have that
P0» q0s PN = (T)po and g = (T) 4o all have densities.
Then Lemma 11 gives that

KL(po||q0) = KL(pn|lan) = KL(pn||q),

which, by (A.20), is bounded as stated in the corollary. The
TV bound is followed by Pinsker’s inequality. (]

B. Proofs in Section V-A.2

Lemma 20 (ps and W- Closeness): Suppose P € Po, and
p¢ 18 the density of X; in an OU process as in (6), then

(i) pt € P3 for any t > 0,

(if) Ve > 0, 36 > 0 s.t. Wa(ps, P) < e. In this case, one
can choose § ~ £2.

Proof: [Proof of Lemma 20] For the OU process, we have

V(x) = ||«]|?/2 in (7). Then for any t > 0, p; = L(P) has
the expression as, with af =1—e 2,

1 —t 2 2
- = e llE=eTWlIT/ ) gp(ey).  (A21
pw) = [ e v). a21)
Equivalently, p, is the probability density of the random vector
Zy=e ' Xo+ 02, Z~N(0,I),

where Z is independent from X,. Since E|Z;)|> =
e 2 My(P)+ o?d < oo, we have p; € Py and this proves (i).

To prove (ii): Because the law of (Z;, Xj) is a coupling of
pt and P,

Wa(pi, P)* < E||Z; — Xol?
=E|(e”" = )Xo + 0, Z|)?
=(1—e )2 My(P)+ (1 —e *)d
< t?My(P) + 2td,

where in the last inequality we used that 1 —e™* < z, Vz > 0.
Since My (P) < oo, we have bounded Wy(p;, P)? to be O(t).
d

Proof: [Proof of Corollary 13] For the ¢ in Assumption 1,

the existence of § to make Wh(ps, P) < ¢ is by Lemma 20,
and we also have ps € P3. The rest of the proof is the same
as in Corollary 12 by starting from pg = ps. (I
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C. Proofs and Lemmas in Section V-B

Lemma 21 (Lipschitz Bound of ODE Solution Map):
Suppose for v > 0, ¥(z,t) is C! in (z,t) and Lipschitz in x
uniformly on R? x [0,~] with Lipschitz constant K > 0. Let
z(t) be the solution to the ODE

‘T(t> - {)(‘T(t)vt)v

and define the solution map from 0 to v as 7 : RY — R?, that
is,

t €[0,7], (A.22)

T(a0) = 70 + /0 Lo dt 1(0) = 20, (A23)

Then T is invertible on R%, and both T and T are Lipschitz
on R? with Lipschitz constant 7%,

Proof: [Proof of Lemma 21] Let x;(¢) and x2(t) be the
solution to the ODE (A.22) from z1(0) = y, and 22(0) = z
respectively. By definition,

T(y) = z1(y), T(2) = w2(7).

Under the condition of ©, the ODE is well-posed [64]. This
implies the invertibility of 7", and T~" is the solution map of
the reverse time ODE from ¢ = v to t = 0.

We now prove the Lipschitz constant of 7" on R%, and that
of T~1 can be proved similarly by considering the reverse
time ODE. We want to show that

IT(y) = T2 < e ly==], Vy,z € RY,
and this is equivalent to that for any 2;(0), z2(0) € RY,
lz1(7) = 22N < 7 [l21(0) — 22(0)]-

For fixed 21(0), 22(0), define

(A.24)

B(t) = 5 la(t) — 2(0),

then E(0) = ||1(0) — 22(0)||?/2, and
E(t) = (21(t) — 22(t))" (&1(t) — d2(1))
= (21(t) — 22(t))" (0(21(), 1) — D(22(t), 1))

Thus, by that ||0(z1(t),t) — 0(x2(t), )| < K||lx1(t) — 22(t)],
we have

)
)

E(t) < K1 (t) — 22(8)|> = 2K E(2).
By Gronwall’s inequality, F(t) < E(0)e?X?, and this gives
lz1(t) = 22()* < e2X|21(0) — 22(0)[, ¢ € [0,7].

Setting ¢t = ~ proves (A.24). (]
Lemma 22: Suppose p € Py, and T : R — R9 is Lipschitz
on RY, then T € L?(p).
Proof: We are to show that

By IT(@)]? < oo,
Suppose T is L-Lipschitz on RY, then Vz € RY,
1T (@) < 1 TO) + 1T (x) = TO)[| < [[T(0)[| + Li|]|.
Thus,
Eunp| T(@)I* < 21 T(0)|* + L*Eznypllz]?)
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= 2(|IT(0)|]* + L*Ma(p)) < o0,

because Ms(p) < . O
Proof: [Proof of Proposition 14] By construction, for n =
1,---,N,

dn—1 = (Tn_l)#Qna qnfl = (Sn)#(j’n

We also have that gy = ¢y = ¢ € P5 by assumption.

For the sequence of ¢,,, we know that 7, * is non-degenerate
(Assumption 1). Meanwhile, for g, € P5, T, ! being globally
Lipschitz on R? also implies that it is in L?(g,,) (Lemma 22).
Then by Lemma 7, ¢,—1 = (T, ') 4y is also in Pj. For the
sequence of ¢, by Assumption 2, .S,, is non-degenerate and
in L2(gy), thus from g, € P5, Go—1 = (Sn)4qy is also in P}
by Lemma 7 again. Thus by induction, we have that ¢,, and
G are all in PJ.

For each n, we have

Wa(Gn-1: n—1) = Wa((Sn)#an: (T ) n)
< Wa((Sn) s (T, ") in)

@
+ WQ((ijl)#qnv (Tgl)#Q7L) .

@
To bound (D), we use Assumption 2 and the Lipschitzness of
T, L. Define L := e, Using (S,,, T,;1)#Gn as the coupling,
we have

W2((S0)4ns (T 1) wGn)
< / 18n(z) — T4 (@) 2 (2)dx
Rd

< / L2||Tn o Sp(x) — :z:Hz(jn(x)dx
R
=L*|T, 0S8, — 142,

where for the second inequality, we use the fact that T, ' is
L-Lipschitz. Thus,

CD S Lginv-

To bound ), we use that 7}, is L-Lipschitz on R? again.
Specifically, let Y,, be the unique OT map from ¢, to ¢,
which is well-defined by the Brenier Theorem, then (7! o

Yo, Tt ) 2qn is a coupling of (T;')4G, and (T, 1) xqp.
We have that
W3 (T ) gn (T, 1) )

< [T oY) = T @) Pan oo

< / LY,y ()| 2gu(x)da
Rd
= L*W3(Gn, qn)-

(A.25)

Thus
@ < IWa(Gny aqn)-

Putting together, we have

W2(qn71; anl) S e’YK(Einv + W2(qn7 qn))

(A.26)
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squared L% norm of Wasserstein Gradient

12 —— from pi trained
from pq true
10
B
B
4
2
D T T T T T T T T T
o > 50 s 100 125 150 175 200
number of batches
Fig. 3. Computed values of |[Vyy, F"+1(p"+1)||120n+1 from

N = 2000 samples, where pp4+1 is pushforwarded by a trained
neural network transport 7' from a Gaussian initial p,, in R2, n = 0. The
blue line shows the value as the training progresses, and the dashed line
is a base value computed from the analytical solution p:ﬂ‘_‘i (where the
Wasserstein gradient vanishes).

Note that W5(Gn, gn) = 0 by that Gy = gn = g. Applying
recursively from n = N to n = 1 gives that

eﬁ/K(e'yKN _ 1)

Wa(do, qo) < Einv oK1 (A.27)
which proves (41) by that e — 1 > x for any = € R. ]

Proof: [Proof of Corollary 15] Under the condition of
the corollary, Corollary 12 applies to bound KL(p||qgo) and
TV (p,qo) as in (40), and Proposition 14 applies to bound
Wh(Go, qo) as in (41). It suffices to show that the r.h.s. of (41)
is less than or equal to that of (42).

By the choice of N in (39),
8
N < Py (log Wa(po, q) +1og(A/e)) + 1,

and thus
8K /A
e’yK(N+1) S 627[( <W2(p0a q)5> )

which proves the needed inequality. ]

APPENDIX D
NUMERICAL EVIDENCE TO SUPPORT ASSUMPTION 1

We conduct training of one JKO block to ver-
ify (30) in Assumption 1. The code is available at
https://github.com/yixintan-zeta/jko_wass_grad.

Data is in R2. Let n = 0, po = N ([3,3]7, 1), ¢ = N(0, 1),
and G(p) = KL(p||q). The step size v = 0.5. We train a JKO
flow network block to minimize F,, 11 in (24) via the training
objective (25), where T is parametrized by a neural ODE block
consisting of two hidden layers with 128 hidden dimensions
and using the softplus activation (8 = 20). We use 10,000
training samples, batch size 2000, and 200 total iterations,
with learning rate 10~%. The implementation of the JKO flow
network follows the setup in [74].
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0 batches 40 batches 80 batches
6 f F g 6
4 4
2 2
0 0 -
-2 -2 -2 5
0.0 2.5 5.0 0.0 25 5.0 0.0 2.5 5.0
120 batches 160 batches 200 batches
6 6 6
4 - 4 4
2 2 21
0 L 0 0 . ¢
-2 -2 -2

0.0 2.5 5.0 0.0

2.5 5.0 0.0 2.5 5.0

Fig. 4. The Wasserstein gradient vector field £ at samples :cz(l) = T'(z;) (shown by green arrows), where 7" is the trained neural network transport map,

plotted as the training progresses. The yellow dots are samples xil . The length of the arrow is proportional to the magnitude of ||&(x

Making use of the explicit expression of Vy,G(p), let &
be &1, then (27) gives that

Po _ Id

§=(VV +Vlogp1) — plf,
where V(z) = ||x]|?/2. To compute ¢ as a vector field,
we used N = 2000 samples x; ~ po, and then the

neural-network trained 7" will push-forward x; to T'(x;) ~ ps.
Let Xy = {xl(o) =} and X = {:c§1) =T (x:)}Y be
two data clouds. We approximate the OT map T;)’lo evaluated
on a:l@ by the solution of a discrete OT problem, computed by
the Python POT package [1]. The score function Vlogp; is
approximately computed by a kernel approach, where we
used a Gaussian kernel with a properly chosen bandwidth
parameter. Once & (:cgl)) is computed at every sample, we can
approximately compute the squared L? norm |[£]| 12, L by a
sample average.

We compute & at p; induced by trained 7" not only at the
end of training but also during intermediate iterations. This
will show the change in the Wasserstein gradient as the neural
network training progresses. At 0, 20, ..., 200 batches, the
estimated L? norm is shown in Figure 3. The dash-line shows
the computed value of the Wasserstein gradient at the true
solution pi™¢ = N([2,2]T,I), since the JKO step is from
a Gaussian py and thus the true population minimizer p; is
analytically available. The numerical value is not exactly zero
because it is also computed on N = 2000 finite samples. The
dash-line shows a baseline of the numerical L2 norm, and it
can be seen that at the end of training, the neural network
learned p; archives a comparable value.

We further illustrate the vector field & on xgl) ’s in Figure 4,
which shows the evolution of the Wasserstein gradient over

M.

i

training iterations. It can be seen that the magnitude of the
vector field decreases, and the values are getting small at least
within the region where the distribution density p; has a large
value. In the outskirts, the vector field £ does not numerically
get small because it is at the tail of the Gaussian distribution,
where a small L? norm does not imply pointwise smallness of
¢ in these regions and the estimation of the vector field may
also be of lower accuracy.
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