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Abstract— Flow-based generative models enjoy certain advan-

tages in computing the data generation and the likelihood,

and have recently shown competitive empirical performance.

Compared to the accumulating theoretical studies on related

score-based diffusion models, analysis of flow-based models,

which are deterministic in both forward (data-to-noise) and

reverse (noise-to-data) directions, remain sparse. In this paper,

we provide a theoretical guarantee of generating data distribution

by a progressive flow model, the so-called JKO flow model,

which implements the Jordan-Kinderleherer-Otto (JKO) scheme

in a normalizing flow network. Leveraging the exponential

convergence of the proximal gradient descent (GD) in Wasserstein

space, we prove the Kullback-Leibler (KL) guarantee of data

generation by a JKO flow model to be O(ω2) when using

N ↭ log(1/ω) many JKO steps (N Residual Blocks in the

flow) where ω is the error in the per-step first-order condition.

The assumption on data density is merely a finite second

moment, and the theory extends to data distributions without

density and when there are inversion errors in the reverse

process where we obtain KL-W2 mixed error guarantees. The

non-asymptotic convergence rate of the JKO-type W2-proximal

GD is proved for a general class of convex objective functionals

that includes the KL divergence as a special case, which can

be of independent interest. The analysis framework can extend

to other first-order Wasserstein optimization schemes applied to

flow-based generative models.

Index Terms— Proximal gradient descent, Kullback-Leibler

divergence, Wasserstein space, generative models.

I. INTRODUCTION

G
ENERATIVE models, from generative adversarial net-
works (GAN) [28], [30], [37] and variational auto-

encoder (VAE) [41], [42] to normalizing flow [44], have
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achieved many successes in applications and have become a
central topic in deep learning. More recently, diffusion mod-
els [33], [66], [67] and closely related flow-based models [2],
[3], [26], [50], [74] have drawn much research attention, given
their state-of-the-art performance in image generations. Com-
pared to score-based diffusion models, which are designed
for sampling, flow models have certain advantages due to
their direct capability in estimating likelihood, a basis for
statistical inference. However, despite the empirical successes,
the theoretical understanding and guarantees for flow-based
generative models remain limited.

In this paper, we provide a theoretical guarantee of generat-
ing data distribution by a “progressive” flow model, mainly
following the JKO flow model in [74] but similar models
have been proposed in, e.g., [4], [54], and [70]. We prove
the exponential convergence rate of such flow models in both
(data-to-noise and noise-to-data) directions. Below, we give an
overview of the main results. We provide a brief introduction
of the most related types of flow-based models, particularly
the progressive one, in Section I-A. A more complete literature
survey can be found in Section I-B.

An abundance of theoretical works has provided the gener-
ation guarantee of score-based diffusion models [11], [14],
[17], [20], [47], [48], [59]. In comparison, the theoretical
study of flow-based generative models is much less developed.
Most recent works on the topic focused on the generation
guarantee of the Ordinary Differential Equation (ODE) reverse
process (deterministic sampler) once a score-based model
is trained from the forward Stochastic Differential Equation
(SDE) diffusion process [16], [18], [49]. For generative mod-
els which are flow-based in the forward process, generation
guarantee for flow-matching models under continuous-time
formulation was shown in [3] under W2, and in [2] under the
Kullback-Leibler (KL) divergence by incorporating additional
SDE diffusion. The current paper focuses on obtaining the
theoretical guarantee of the JKO flow model [74], which is
progressively trained over the Residual Blocks (steps) and
generates a discrete-time flow in both forward and reverse
directions. The mathematical formulation of the JKO flow
is summarized in Section III, where we introduce needed
theoretical assumptions on the learning procedure.

Our analysis is based on first proving the convergence
of the forward process (the JKO scheme by flow network),
which can be viewed as an approximate proximal Gradient
Decent (GD) in the Wasserstein-2 space to minimize G(ω),
a functional on the space of probability distributions. While
the convergence analyses of Wasserstein GD and proximal GD

0018-9448 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Duke University. Downloaded on October 29,2024 at 17:51:45 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-1034-6019
https://orcid.org/0000-0001-6777-2951


8088 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

have appeared previously in literature [40], [63], our setup
differs in several ways, primarily in that we consider the JKO
scheme, which is a “fully-backward” discrete-time GD. For the
N step discrete-time proximal GD, which produces a sequence
of transported distributions pn, we prove the convergence
of both W2(pn, q) and the objective gap G(pn) → G(q) at
an exponential rate, where q is the global minimum of G

(Theorem 10). The convergence applies to a general class of
(strongly) convex G that includes the KL divergence KL(p||q)
as a special case. This result echos the classical proximal GD
convergence in vector space where one expects an exponential
convergence rate for strongly convex minimizing objectives.
While exponential convergence is a natural result from the
point of view of gradient flow, this convergence result of JKO-
type W2-proximal GD did not appear in previous literature
to the authors’ best knowledge and can be of independent
interest.

After obtaining a small G(pn) = KL(pn||q) from the
convergence of the forward process, we directly obtain the KL
guarantee of the generated density from the data density by the
invertibility of the flow and the data processing inequality, and
this implies the total variation (TV) guarantee (Corollary 12).
The requirement for data distribution is to have a finite
second moment and a density (with respect to the Lebesgue
measure). The TV and KL guarantees are of O(ε) and O(ε2),
respectively, where ε is the bound for the magnitude of the
Wasserstein (sub-)gradient of the loss function (hence error
in the first order condition) in each of the N JKO steps
(Assumption 1), and the process achieves the error bound in
N ↭ log(1/ε) many steps (each step is a Residual Block).

To handle the situation when the data distribution only
has a finite second moment but no density, we apply a
short-time initial diffusion and start the forward process from
the smoothed density. This short-time diffusion was adopted
in practice and prior theoretical works. We then obtain KL and
TV guarantee to generate the smoothed density, which can be
made arbitrarily close to the data distribution in W2 when the
initial diffusion time duration tends to zero (Corollary 13).
The above results are obtained when the reverse process is
computed exactly with no inversion error. Our analysis can
also extend to the case of small inversion error by proving a
W2-guarantee between the generated density from the exact
reverse process and that from the actual computed one. Theo-
retically, the W2-error can be made O(ε) or smaller assuming
that the inversion error can be made O(εω) for some exponent
ϑ (Corollary 15).

A. Normalizing Flow Models

1) Normalizing Flow: Normalizing flow is a class of deep
generative models for efficient sampling and density estima-
tion. Compared to diffusion models, Continuous Normalizing
Flow (CNF) models [44] appear earlier in the generative
model literature. Largely speaking, CNF models fall into two
categories: discrete-time and continuous-time. The discrete-
time CNF models adopt the structure of a Residual Network
(ResNet) [32] and typically consist of a sequence of mappings:

xl = xl→1 + fl(xl→1), l = 1, · · · , L, (1)

Fig. 1. The arrows indicate the forward-time flow from data distribution P
to normal distribution q. The forward and reverse processes (19) consist of
the sequence of transported densities at discrete time stamps.

where fl is the neural network mapping parameterized by the
l-th “Residual Block”, and xl is the output of the l-th block.
Continuous-time CNFs are implemented under the neural ODE
framework [15], where the neural network features x(t) is
computed by integrating an ODE

ẋ(t) = v(x(t), t), t ↑ [0, T ], (2)

and vt(x) = v(x, t) is parametrized by a neural ODE network.
The discrete-time CNF (1) can be viewed as computing the
numerical integration of the neural ODE (2) on a sequence of
time stamps via the forward Euler scheme.

In both categories, a CNF model computes a determin-
istic transport from the data distribution towards a target
distribution q typically normal, q = N (0, Id), per the name
“normalizing.” The forward time flow is illustrated in Figure 1.
Taking the continuous-time formulation (2), let P be the
data distribution with density p, x(0) ↓ p, and denote by
pt(x) = p(x, t) the probability density of x(t). Then pt solve
the continuity equation (CE)

ϖtpt +↔ · (ptvt) = 0, (3)

from p0 = p. If the algorithm can find a vt such that pT

at some time T is close to q, then one would expect the
reverse-time flow from t = T to t = 0 to transport from q

to a distribution close to p. Note that in the continuous-time
flow, invertibility is presumed since the neural ODE can be
integrated in two directions of time alike. For discrete-time
flow (1), invertibility needs to be ensured either by special
designs of the neural network layer type [24], [25], [43], or
by regularization techniques such as spectral normalization [9]
or transport cost regularization [58], [72].

A notable advantage of the flow model is the computation
of the likelihood. For discrete-time flow (1), this involves the
computation of the log-determinant of the Jacobian of fl. For
continuous-time flow (2), this is by the relation

log pt(x(t))→ log ps(x(s)) = →

∫ t

s
↔ · v(x(ϱ), ϱ)dϱ,

which involves the time-integration of the trace of the Jacobian
of vt [29]. While these computations may encounter challenges
in high dimensions, the ability to evaluate the (log) likelihood
is fundamentally useful; in particular, it allows for evaluating
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the maximum likelihood training objective on finite samples.
This property is also adopted in the deterministic reverse
process in diffusion models [67], called the “probability flow
ODE” (see more in Section I-B.1), so the likelihood can be
evaluated once a forward diffusion model has been trained.

2) Progressive Flow Models: Another line of works, devel-
oped around the same time as diffusion models, explored the
variational form of normalizing flow as a Wasserstein gradient
flow and proposed the so-called progressive training of the
flow model.

The progressive training of ResNet, i.e., training block-wise
by a per-block variational loss, was proposed by [38] at an
earlier time under the GAN framework. Later on, the Jordan-
Kinderleherer-Otto (JKO) scheme, as a time-discretized
Wasserstein gradient flow (see more in Section II-C), was
explored in several flow-based generative models: [4], [54]
implemented the JKO scheme using input convex neural
networks [8], [26] proposed a forward progressive flow
from noise to data, showing empirical success in gen-
erating high-dimensional real datasets; [74] developed the
JKO flow model under the invertible continuous-time CNF
framework, achieving competitive generating performance on
high-dimensional real datasets at a significantly reduced com-
putational and memory cost from previous CNF models; an
independent concurrent work [70] proposed a block-wise JKO
flow model utilizing the framework of [58]. Many other flow
models related to diffusion and Optimal Transport (OT) exist
in the literature; see more in Section I-B.2. Our theoretical
analysis will focus on the progressive flow models, and we
primarily follow the invertible flow framework in [74].

To be more specific, a progressive flow model represents the
flow on [0, T ] as the composition of N sub-flow models where
each one computes the flow on a sub-interval [tn→1, tn], n =
1, . . . , N . The training is “progressive”, meaning that at one
time, only one sub-model is trained, and the training of the n-
th sub-model is conducted once the previous n→1 sub-models
are trained and fixed. The progressive block-wise training is
in contrast of the end-to-end training, where the flow on [0, T ]
(or N Residual Blocks) is trained simultaneously by a single
objective. The sub-flow model on [tn→1, tn] can take different
forms, e.g., a ResNet block or a continuous-time neural ODE,
and the N sub-intervals always provide a time-discretization
of the flow. In this context, we call the sub-model on the n-th
sub-interval a “Residual Block”.

B. Additional Related Works

1) Score-Based Diffusion Models: In score-based diffusion
models, the algorithm first simulates a forward process, which
is a (time-discretized) SDE, from which a score function
parameterized as a neural network is trained. The reverse (SDE
or ODE) process is simulated using the learned score model
to generate data samples.

a) SDE in diffusion models: As a typical example, in the
variance preserving Denoising Diffusion Probabilistic Model-
ing (DDPM) process [33], [67], the forward process produces
a sequence of Xn,

Xn =
√

1→ ςnXn→1 +
√

ςnZn→1, n = 1, · · · , N, (4)

where Zn ↓ N (0, Id) i.i.d. and X0 ↓ P is drawn from data
distribution. With large N , the continuum limit of the discrete
dynamic (4) is a continuous-time SDE,

dXt = →
1
2
ς(t)Xtdt +

√
ς(t)dWt, t ↑ [0, T ], (5)

where ς(t) > 0 is a function and Wt is a standard Wiener
process (Brownian motion). Since ς(t) in (5) corresponds to
a time reparametrization of t, after changing the time (t ↗↘∫ t
0 ς(s)/2ds), (5) becomes the following SDE

dXt = →Xtdt +
≃

2dWt, (6)

which is the Ornstein-Uhlenbeck (OU) process in Rd. We con-
sider the time-parametrization in (6) for exhibition simplicity.
More generally, one can consider a diffusion process

dXt = →↔V (Xt) dt +
≃

2 dWt, X0 ↓ P, (7)

and the OU process is a special case with V (x) = ⇐x⇐
2
/2.

We denote by ωt = Lt(P ) the marginal distribution of
Xt for t > 0. The time evolution of ωt is described by the
Fokker-Planck Equation (FPE) written as

ϖtωt = ↔ · (ωt↔V +↔ωt). (8)

b) Forward and reverse processes: When simulating
the forward process, the diffusion models train a neural
network to learn the score function st(x) := ↔ log ωt by
score matching [36], [71]. The training objective can be
expressed as the mean-squared error defined as

∫ T
0

∫
⇐ŝt(x)→

st(x)⇐2ωt(x)dxdt, which facilitates training and is scalable
to high dimension data such as images (in the original pixel
space).

Once the neural-network score function ŝt is learned, the
algorithm simulates a reverse-time SDE X̃t (with time dis-
cretization in practice) [67], such that from X̃T ↓ N (0, I)
the distribution of X̃0 is expected to the close to the data
distribution P . It has also been proposed in [67] to compute
the reverse process by integrating the following ODE reverse
in time

˙̃x(t) = →↔V (x̃(t))→ st(x̃(t)), (9)

and (9) was called the “probability flow ODE.” The validity of
this ODE reverse process can be justified by the observation
that the CE (3) and FPE (8) are the same when setting
vt(x) = →(↔V (x)+st(x)). This equivalence between density
evolutions by SDE and ODE has been known in the literature
of diffusion processes and solving FPE, dating back to the
90s [21], [22].

2) Flow Models Related to Diffusion and OT:

a) Flow-matching models: After diffusion models gained
popularity, several flow-based models (in the reverse and
forward directions) closely related to the diffusion model
emerged. In particular, the Flow-Matching ODE model was
proposed in [50] using the formulation conditional probability
paths, where a neural ODE parameterized v̂(x, t) is trained to
match a velocity field v(x, t) whose corresponding CE (3) can
evolve the density pt towards normality. The algorithm can
adopt diffusion paths, where the CE will equal the density
evolution equation (8) of an SDE forward process, as well
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as non-diffusion paths. A similar approach was developed
under the “stochastic interpolant” framework in [3], where the
terminal distribution q can be arbitrary (not necessarily the
normal distribution) and only accessible via finite samples.
These models train a continuous-time CNF by minimizing
a “matching” objective instead of the maximum likelihood
objective as in [29], thus avoiding the computational chal-
lenges of the latter.

b) Optimal transport flows: Apart from diffusion models
and Wasserstein gradient flow, Wasserstein distance and OT
have inspired another line of works on flow models where
the Wasserstein distance, or a certain form of transport cost,
is used to regularize the flow model and to compute the OT
map between two distributions. Transport cost regularization
of neural network models was suggested in several places: [62]
provided a general framework for solving high-dimensional
mean-field games (MFG) and control problems, [27] proposed
a kinetic regularization aiming to stabilize neural ODE train-
ing, [58] and [72] developed the transport regularization in
CNF and invertible ResNet, respectively, and [34] applied to
MFG and flow models. Other works developed flow models
to compute the optimal coupling or the optimal transport
between two distributions. For example, Rectified Flow [51]
proposed an iterative method to adjust the flow towards the
optimal coupling. The method is closely related to the stochas-
tic interpolant approach [3] which, in principle, can solve
the OT trajectory if the interpolant map can be optimized.
A flow model to compute the dynamic OT between two high
dimensional distributions from data samples was proposed
in [73] by refining the flow using the transport cost from
a proper initialization. Despite the wealth of methodology
developments and empirical results, the theoretical guarantees
of these flow models are yet to be developed.

3) Theoretical Guarantees of Generative Models:

a) Approximation and estimation of GAN: On theoretical
guarantees of generative models, earlier works focused on
the approximation and estimation analysis under the GAN
framework. The expressiveness of a deep neural network to
approximate high dimensional distributions was established
in a series of works, e.g., [46], [52], [60], and [75], among
others. The neural network architectures in these universal
approximation results are typically feed-forward, like the gen-
erator network (G-net) proposed in the original GAN. The
approximation and estimation of the discriminator network (D-
net) in GAN were studied in [19], and the problem can be cast
and analyzed as the learning of distribution divergences in high
dimension [68]. Convergence analysis of GAN was studied in
several places, e.g., [35].

b) Guarantees of diffusion models: An earlier work [69]
studied the expressiveness of a generative model using a latent
diffusion process and proved guarantees for sampling and
inference; however, the approach only involves a forward pro-
cess and differs from the recent diffusion models. Motivated
by the prevailing empirical success of score-based diffusion
models, recent theoretical works centralized on the generation
guarantee of such models using both SDE and ODE samplers,
i.e., the reverse process.

For the SDE reverse process, the likelihood guarantee of the
score-based diffusion model was first derived in [65] without
time discretization. Taking into account the time discretiza-
tion, which significantly influences the efficiency in practice,
a series of theoretical studies have established polynomial
convergence bounds for such models [11], [14], [17], [20],
[47], [48], [59]. In particular, [47] were the first to attain
polynomial convergence without succumbing to the curse of
dimensionality, although this required a log-Sobolev Inequality
on the data distribution. For a general data distribution, [17]
achieved polynomial error bounds in Total Variation (TV)
distance under the Lipschitz assumption, leveraging Girsanov’s
theorem. In parallel, [48] derived similar polynomial conver-
gence bounds, employing a technique for converting L

↑-
accurate score estimates into L

2-accurate score estimation.
Further advancements by [14] established a more refined
bound, reducing the requirement of smoothness of data dis-
tribution. Most recently, [59] improved the convergence rates
under mild assumptions by introducing prediction-correction,
and [11] established the first convergence bounds for diffu-
sion models, which are linear in the data dimension (up to
logarithmic factors) without requiring any smoothness of the
data distribution.

c) Guarantees of ODE flows: Within the studies of
score-based diffusion models (note that the forward process
is always SDE), theoretical findings for the ODE reverse
process are relatively fewer. To the best of our knowledge, [18]
established the first non-asymptotic polynomial convergence
rate where the error bound involves an exponential factor in the
flow time; [16] provided the first polynomial-time convergence
guarantees for the probability flow ODE implementation with
a corrector step. Recently, [49] established bounds for both
deterministic (ODE) and non-deterministic (SDE) samplers
under certain additional assumptions on learning the score. The
analysis is done by directly tracking the density ratio between
the law of the diffusion process and that of the generated
process in discrete time, leading to various non-asymptotic
convergence rates.

Compared to score-based diffusion models, the guarantees
of flow models (in both forward and reverse processes) are
significantly less developed. We are aware of two recent
works: The error bounds for the flow-matching model [3]
were proved in [10] and applied to probability flow ODE in
score-based diffusion models; for neural ODE models trained
by likelihood maximization (the framework in [29]), [53]
proved non-parametric statistical convergence rates to learn a
distribution from data. Both works used a continuous-time for-
mulation, and the flow models therein are trained end-to-end.
Compared to end-to-end training, progressive flow models can
offer advantages in training efficiency and accuracy, in addition
to other advantages such as smaller model complexity. For
the analysis, the formulation of progressive flow models is
variational and time-discretized in nature. Theoretical studies
of time-discretized ODE flow models in both forward and
reverse directions remain rudimentary.

4) Optimization in Wasserstein Space: Continuing the clas-
sical literature in optimization and information geometry,
several recent works established a convergence guarantee of
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first-order optimization in probability space in various con-
texts, leveraging the connection to the Wasserstein gradient
flow. These analyses can potentially be leveraged under the
theoretical framework of this paper to develop new (pro-
gressive) flow models as well as theoretical guarantees of
generative models.

a) Optimization in probability distribution space:

Convergence and rate analysis for first-order methods for
vector-space optimization, primarily gradient descent and
stochastic gradient descent — sometimes referred to as the
Sample Average Approximation (SAA) approach — for con-
vex and strongly convex problems have been established in the
original works [55], [56], and extended in various contexts in
subsequent papers. Optimization in the space of probability
distributions (which forms a manifold) naturally arises in
many learning problems and has become an important field
of study in statistics and machine learning. In particular,
the seminal work of Amari [5], [6] introduced information
geometry emerging from studies of a manifold of probability
distributions. It includes convex analysis and its duality as a
special but important component; however, the line of work did
not develop error analysis or convergence rates for algorithms
on the probabilistic manifold. More recently, a Frank-Wolfe
procedure in probability space was proposed in [40] motivated
by applications in nonparametric estimation and was shown to
converge exponentially fast under general mild assumptions on
the objective functional.

b) Wasserstein proximal gradient descent: The landmark
work [39] showed the solution to the Fokker Planck equation
as the gradient flow of the KL divergence under the W2-
distance. The proof in [39] employed a time discretization of
the gradient flow now recognized as the JKO scheme. Making
a connection between Langevin Monte Carlo and Wasserstein
gradient flow, [12] proposed a proximal version of the Unad-
justed Langevin Algorithm corresponding to a splitting scheme
of the discrete Wasserstein GD and derived non-asymptotic
convergence analysis. To analyze the convergence of discrete-
time W2-gradient flow, [63] introduced a Forward-Backward
time discretization in the proximal Wasserstein GD and proved
convergence guarantees akin to the GD algorithm in Euclidean
spaces. We comment on the difference between [63] and our
scheme in more detail later in Remark 3.

The JKO scheme also inspired recent studies in variational
inferences (VI). In the context of Gaussian VI, [45] proposed
gradient flow of the KL divergence on the Bures-Wasserstein
(BW) space, namely the space of Gaussian distributions on
Rd endowed with the W2-distance. The algorithm enjoys the
explicit solution of the JKO scheme in the BW space, and
convergence of the continuous-time gradient flow was proved.
In a follow-up work [23], the forward-backward splitting was
adopted in the proximal Wasserstein GD in the BW space,
leading to convergence guarantees of the discrete-time GD to
first-order stationary solutions. The closed-form solution of the
JKO operator only applies to the BW space, while the JKO
flow network tries to learn a transport map to solve the JKO
scheme in each step, leveraging the expressiveness of neural
networks. Theoretically, we consider distributions with finite
second moments in this work.

C. Notations

Throughout the paper, we consider distributions over X and
the domain X = Rd. We denote by P2, meaning P2(Rd),
the space of probability distributions on Rd that has finite
second moment. Specifically, for a distribution P , define
M2(P ) :=

∫
Rd ⇐x⇐

2
dP (x). When P has a density (with

respect to the Lebesgue measure dx), we also write M2(P ) as
M2(p). Then P2 = {P on Rd

, s.t., M2(P ) < ⇒}. We denote
by P

r
2 the distributions in P2 that have densities, namely

P
r
2 = {P ↑ P2, P ⇑ dx}. We also say a density p ↑ P

r
2

when dP (x) = p(x)dx is in P
r
2 . In this paper, we consider

distributions that have densities in most places. When there
is no confusion, we use the density p to stand for both the
density and the distribution dP (x) = p(x)dx, e.g., we say
that a random variable X ↓ p.

Given a (measurable) map v : Rd
↘ Rd and P a

distribution on Rd, its L
2 norm is denoted as ⇐v⇐P :=

(
∫

Rd ⇐v(x)⇐2dP (x))1/2. When P has density p, we also
denote it as ⇐v⇐p. For P ↑ P2, we denote by L

2(P ) (and
also by L

2(p) when P has density p) the L
2 space of vector

fields, that is, L
2(P ) := {v : Rd

↘ Rd
, ⇐v⇐P < ⇒}. For

u, v ↑ L
2(P ), define ⇓u, v⇔P :=

∫
Rd u(x)T

v(x)dP (x), which
is also denoted as ⇓u, v⇔p when p is the density. The notation
Id stands for the identity map, which is always in L

2(P ) for
P ↑ P2. For T : Rd

↘ Rd, the pushforward of a distribution
P is denoted as T#P , such that T#P (A) = P (T→1(A)) for
any measurable set A. When P has density p and T#P also
has a density, we also denote by T#p the density of T#P . For
two maps S, T : Rd

↘ Rd, S ↖T is the function composition.

II. PRELIMINARIES

A. Wasserstein-2 Distance and Optimal Transport

We first review the definitions of the Wasserstein-2 distance
and optimal transport (OT) map, which are connected by the
Brenier Theorem (see, e.g., [7, Section 6.2.3]).

Given two distributions µ, φ ↑ P2, the Wasserstein-2 dis-
tance W2(µ, φ) is defined as

W
2
2 (µ, φ) := inf

ε↓!(µ,ϑ)

∫

Rd↔Rd

⇐x→ y⇐
2
d↼(x, y), (10)

where !(µ, φ) denotes the family of all joint distributions with
µ and φ as marginal distributions. When P and Q are in
P

r
2 and have densities p and q respectively, we also denote

W2(P,Q) as W2(p, q). When at least one of µ and φ has
density, we have the Brenier Theorem, which allows us to
define the optimal transport (OT) map from µ to φ.

Theorem 1 (Brenier Theorem): Let µ ↑ P
r
2 and φ ↑ P2.

Then
(i) There exists a unique minimizer ↼ of (10), which is

characterized by a uniquely determined µ-a.e. map T
ϑ
µ :

Rd
↘ Rd such that ↼ = (Id, T

ϑ
µ )#µ, where (Id, T

ϑ
µ )

maps (x, y) to (x, T
ϑ
µ (y)). Moreover, there exists a con-

vex function ↽ : Rd
↘ R such that T

ϑ
µ = ↔↽ µ-a.e.

(ii) The minimum of (10) equals that of the Monge problem,
namely

W
2
2 (µ, φ) = inf

T :Rd↗Rd, T#µ=ϑ

∫
⇐x→ T (x)⇐2dµ(x).
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(iii) If moreover φ ↑ P
r
2 , then we also have the OT map T

µ
ϑ

defined φ-a.e., and T
µ
ϑ ↖ T

ϑ
µ = Id µ-a.e., T

ϑ
µ ↖ T

µ
ϑ = Id

φ-a.e.
In most places in our analysis, we will consider the OT

between µ and φ both in P
r
2 , and we will frequently use the

Brenier Theorem (iii) to obtain the pair of OT maps which are
inverse of each other in the a.e. sense.

B. Differential and Convexity of Functionals on P2

Consider a proper lower semi-continuous functional ⇀ :
P2 ↘ (→⇒,⇒] and we denote the domain to be Dom(⇀) =
{µ ↑ P2, ⇀(µ) < ⇒}. The subdifferential of ⇀ was defined in
the Fréchet sense, see, e.g., Definition 10.1.1 of [7]. We recall
the definition of strong subdifferential as below.

Definition 2 (Strong Subdifferential): Given µ ↑ P2, a vec-
tor field ⇁ ↑ L

2(µ) is a strong (Fréchet) subdifferential of ⇀

at µ if for v ↑ L
2(µ),

⇀((Id + v)#µ)→ ⇀(µ) ↙ ⇓⇁, v⇔µ + o(⇐v⇐µ).

We denote by ϖW2⇀(µ) the set of strong Fréchet subdifferen-
tials of ⇀ at µ (which may be empty).

There can be different ways to introduce convexity of
functions on P2. The most common way is the convexity
along geodesics, also known as “displacement convexity.” In
our analysis, we technically need the notation of convexity
along generalized geodesics (a.g.g.), which is stronger than
geodesic convexity. In short, displacement convexity is along
the geodesic from µ1 to µ2, which, in the simple case where
there is a unique OT map T

2
1 from µ1 to µ2, is defined

using interpolation (1→ t)Id + tT
2
1 for t ↑ [0, 1]. In contrast,

convexity a.g.g. involves a third distribution φ and is defined
using interpolation of the two OT maps from φ to µ1 and
µ2 respectively.

Specifically, let φ ↑ P
r
2 , µi ↑ P2, i = 1, 2, and let T

i
ϑ be

the OT map from φ to µi respectively. A general geodesic

joining µ1 to µ2 (with base φ) is a curve of type

µ
1↗2
t := ((1→ t)T 1

ϑ + tT
2
ϑ )#φ, t ↑ [0, 1]. (11)

Definition 3 (Convexity Along Generalized Geodesics):

For λ ↙ 0, a functional ⇀ on P2 is said to be λ-convex
along generalized geodesics (a.g.g.) if for any φ ↑ P

r
2 and

µ1, µ2 ↑ P2 and ∝t ↑ [0, 1],

⇀(µ1↗2
t ) ′ (1→ t)⇀(µ1)+ t⇀(µ2)→

λ

2
t(1→ t)W2

ϑ (µ1, µ2),

(12)

where µ
1↗2
t is as in (11) and

W
2
ϑ (µ1, µ2) :=

∫

Rd

⇐T
1
ϑ (x)→ T

2
ϑ (x)⇐2dφ(x) ↙W

2
2 (µ1, µ2).

(13)

Note that the definition implies the following property which
is useful in our analysis, ∝t ↑ [0, 1],

⇀(µ1↗2
t )′ (1→ t)⇀(µ1)+t⇀(µ2)→

λ

2
t(1→ t)W2

2 (µ1, µ2).

(14)

The definition of convexity a.g.g. in [7, Section 9.2] is for the
more general case when φ may not have density and the OT
maps from φ to µi need to be replaced with optimal plans,
and then the generalized geodesics may not be unique. In this
paper, we only consider the case where φ has a density, so we
simplify the definition, see [7, Remark 9.2.3] (and make it
slightly weaker, but there is no harm for our purpose).

We also note that many functionals ⇀(µ) on P2 that are
geodesically convex actually also satisfy the convexity a.g.g.
in Definition 3. Examples include ⇀(µ) =

∫
V (x)dµ(x) with

V convex on Rd, ⇀(µ) =
∫ ∫

W (x1, x2)dµ(x1)dµ(x2) with
convex W , and ⇀(ω) =

∫
F (ω(x))dx, ω being the density,

where F is convex on [0,⇒). (In these examples, V , W ,
and F need to satisfy other technical conditions.) The last
example includes negative entropy as a special case, where
F (x) = x log x. The primary case for our work is when ⇀ is
the KL divergence, which will be discussed in more detail in
Section IV-A. We refer to [7, Section 9] for other examples
and detailed discussions of convex a.g.g. functionals.

C. JKO Scheme for Fokker-Planck Equations

Consider the diffusion process (7) starting from P ↑ P2.
It is known that under generic conditions, as t ↘ ⇒, ωt

converges to the equilibrium distribution of (7) which has
density

q ∞ e
→V

, (15)

and the convergence is exponentially fast [13]. The function
V is called the potential function of q.

The evolution of ωt by FPE of the diffusion process can
be interpreted as a continuous-time gradient flow under the
W2-metric in the probability space P2. The JKO scheme [39]
computes a Wasserstein proximal GD which is a time dis-
cretization of the gradient flow. Specifically, define G : Pr

2 ↘

R as the KL divergence w.r.t. q, i.e.,

G(ω) = KL(ω||q) = H(ω) + E(ω),

H(ω) =
∫

ω log ω, E(ω) = c +
∫

V ω, (16)

where c is a constant. More general G can be considered, see
Section IV-A, and in this work we mainly focus on the case
where G is the KL divergence as being considered in [39].

Under certain regularity condition of V , the JKO scheme
computes a sequence of distributions ωn, n = 0, 1, . . ., starting
from ω0 ↑ P2. For a fixed step size γ > 0, and the scheme at
the n-th step can be written as

ωn+1 = arg min
ϖ↓P2

G(ω) +
1
2γ
W

2
2 (ωn, ω). (17)

The scheme computes the W2-proximal Gradient Descent
(GD) of G with step size γ, and can be written as

ωn+1 = ProxϱG(ωn). (18)

The original JKO paper [39] proved the convergence of the
discrete-time solution {ωn} (after interpolation over time) to
the continuous-time solution ωt of the FPE (8) when step size
γ ↘ 0+. In the context of flow-based generative models by
neural networks, the discrete-time JKO scheme with finite γ
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was adopted and implemented as a flow network in [74]. Our
analysis in this work will prove the exponential convergence of
ωn to q by the JKO scheme (including learning error), echoing
the exponential convergence of the continuous-time dynamic
(the FPE). This result leads to the guarantee of generating data
distributions up to (TV) error O(ε) in O(log(1/ε)) JKO steps.
We will summarize the flow model and introduce theoretical
assumptions in Section III.

III. SETUP OF JKO FLOW MODEL AND ASSUMPTIONS

In this section, we summarize the mathematical setup for
the JKO flow model and introduce the necessary theoretical
assumptions for our analysis. The guarantee of generating
the data distribution will be derived in Section V based on
the exponential convergence of the W2-proximal GD (JKO
scheme) in Section IV.

A. Forward and Reverse Processes of JKO Flow Model

As has been introduced in Section I-A, the flow model
implements an ODE model (transport equation), where both
the forward process and the reverse process are computed
by an invertible Residual Network [9] or a neural-ODE net-
work [15], [29]. The forward process consists of N steps,
where each step is computed by a Residual Block — in the
neural-ODE model, this is the neural ODE integration on a
sub-time-interval [tn, tn+1], and we also call it a Residual
Block. The backward process consists of the N steps of
the same flow network “backward in time,” where each step
computes the inverse map of the Residual Block, and in the
neural-ODE model, this is via integrating the ODE in reverse
time.

The forward and reverse processes (without inversion error)
are induced by a sequence of transport maps, Tn, n =
1, . . . , N , which we will define more formally later. The two
processes are summarized in (19),

(forward) p = p0
T1
→↘ p1

T2
→↘ · · ·

TN
→→↘ pN ∈ q,

(reverse) p ∈ q0
T→1

1
∋→→→ q1

T→1
2

∋→→→ · · ·
T→1

N
∋→→→ qN = q. (19)

where p is the density of data distribution (when exists,
otherwise a smoothified density by a short time diffusion),
and q is the equilibrium density, typically chosen as Gaus-
sian. Inversion error in the reverse process is considered in
Section III-C.

a) Forward process: In the forward process, the
algorithm learns a sequence of Tn, which transports from
data distribution P to the equilibrium distribution Q, which
is typically the normal distribution, N (0, I). We denote by q

the density of Q, and p the density of the data distribution P

when there is one.
Following the neural-ODE framework used in [74], each

step computes a transport map Tn+1 : Rd
↘ Rd which is the

solution map of the ODE from time tn to tn+1, i.e.,

Tn+1(xn) = x(tn+1), (20)

where x(t) solves ẋ(t) = v̂(x(t), t) on [tn, tn+1], x(tn) = xn,
and v̂(x, t) is the velocity field on Rd parametrized by the n-th

Residual Block. Equivalently, we have

Tn+1(xn) = xn +
∫ tn+1

tn

v̂(x(t), t)dt, x(tn) = xn. (21)

In the implementation of the JKO scheme in a flow network,
the learning of the N Residual Blocks is conducted progres-
sively for n = 1, · · · , N by minimizing a training objective per
step [74]. We emphasize that, unlike other normalizing flow
models, which are trained end-to-end, the training procedure
here is done step-wise and progressively over the N Residual
Blocks.

Once Tn+1 is learned, it pushes from pn to pn+1, i.e.,

pn+1 = (Tn+1)#pn. (22)

In our problem, we want the distributions in the intermediate
steps to have a density. To guarantee that this is the case
for pn+1, we technically need Tn+1 to be non-degenerate.
Intuitively, a non-degenerate map cannot collapse a set of finite
(Lebesgue) measures into a set of measure zero.

Definition 4 (Non-Degenerate Map): Denote by Leb the
Lebesgue measure. T : Rd

↘ Rd is non-degenerate if for
any set A △ Rd s.t. Leb(A) = 0, then Leb(T→1(A)) = 0.
If a transport map is non-degenerate, then it pushes forward a
density to a distribution that also has density, as shown in the
following lemma proved in Appendix A.

Lemma 5: Suppose T : Rd
↘ Rd is non-degenerate, P ⇑

Leb, then T#P ⇑ Leb.
Assuming Tn are all non-degenerate, then the sequence of

pn produced by (22) all have densities, starting from p0 = p

the data density. When data distribution has no density, we
will introduce an initial short-time diffusion that mollifies the
data distribution into ως which we set to be p0 (see more in
Section V-A.2). The learning aims that after N steps, the final
pN is close to the equilibrium density q.

b) Reverse process (without inversion error): The reverse
process computes the inverse of the N -steps transport by
inverting each Tn in the forward process. We first assume that
Tn can be exactly inverted in computation, which allows for
a simplified analysis. In practice, T

→1
n can be implemented by

fixed-point iteration [9] or reverse-time ODE integration [29].
The case when the inverse cannot be exactly computed is dis-
cussed in Section III-C, where we need additional assumptions
on the closeness of the computed inverse to the true inverse
of Tn for our analysis.

The reverse process outputs generated samples, which are
aimed to be close in distribution to the data samples, by draw-
ing samples from q and pushing them through the reverse
N steps. In terms of the sequence of probability densities
generated by the process, the reverse process computes

qn = (T→1
n+1)#qn+1, (23)

starting from qN = q and the output density is q0. Theoret-
ically, the data processing inequality for the KL divergence
applied to invertible transforms (Lemma 11) guarantees that
if pN is close to qN = q, then q0 is close to p0, which is
the data density (possibly after short-time smoothing). This
allows us to prove the guarantee of q0 ∈ p0 once we can
prove that of pN ∈ q, the latter following the convergence of
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the W2-proximal GD up to a hopefully small learning error
to be detailed below.

B. Learning Assumptions of the Forward Process

We consider the sequence of densities pn in the forward
process in (19). Recall from Section II-C that for fixed step-
size γ > 0, the n-th step classical JKO scheme finds pn+1 by
minimizing

min
ϖ↓P2

Fn+1(ω) := G(ω) +
1
2γ
W

2
2 (pn, ω), (24)

where G(ω) = KL(ω||q). The learning in the n-th Residual
Block in a JKO flow network computes the minimization via
parameterizing the transport Tn+1. Here we briefly review the
rational of solving (24) by solving for Tn+1, which leads to
our assumption of the learned forward process.

a) JKO step by learning the transport: In the right hand
side of (24), when both pn and ω are in P

r
2 , the Brenier

Theorem (Theorem 1) implies the existence of a unique OT
map T from pn to ω. Consider the following minimization
over the transport T ,

min
T :Rd↗Rd

G(T#pn) +
1
2γ

Ex↘pn ⇐x→ T (x)⇐2 . (25)

The following lemma, proved in Appendix A, shows that the
minimizer T makes T#pn ↑ P

r
2 :

Lemma 6: Suppose pn ↑ P
r
2 makes G(pn) < ⇒, and T is

a minimizer of (25), then T#pn ↑ P
r
2 .

Thus, in (25) it is equivalent to minimize over T that renders
T#pn ↑ P

r
2 and this means that the minimizer T is the OT

map. One can also verify that (25) is equivalent to (24) in the
sense that a minimizer T

≃ of (25) makes (T ≃)#pn a minimizer
of (24), and for a minimizer ω

≃ of (24) the OT map from pn

to ω
≃ is a minimizer of (25) [74, Lemma A.1].
b) Learning error in JKO flow network: In the n-step of

the JKO flow network, the transport T in (25) is parameterized
by a Residual block, and the learning cannot find the T

that exactly minimizes (25) (and equivalently (24)) for three
reasons:
(i) Approximation error: The minimization of (25) is over T

constrained inside some neural network family T”. When
the function family T” is large enough to express the
desired optimal transport from pn to ProxϱG(pn), the
solution can approximate the exact minimizer of (24),
but this usually cannot be guaranteed.

(ii) Finite-sample effect: The training is computed on empir-
ical data samples, while in this analysis, we focus on the
minimization of population loss.

(iii) Imperfect optimization: The learning of neural networks
is a non-convex optimization typically implemented by
Stochastic Gradient Descent (SGD) over mini-batches
and there is no guarantee of achieving a minimizer of
the empirical loss.

As a result, the learned transport Tn+1 finds a pn+1 =
(Tn+1)#pn that at most approximately minimizes (24). While
the learned Tn+1 is usually not the exact minimizer, we assume
that it is regular enough such that pn+1 is still in P

r
2 . This

would hold if Tn+1 is non-degenerate and also in L
2(pn) by

the following lemma proved in Appendix A.
Lemma 7: Let p ↑ P

r
2 , then {T : Rd

↘ Rd
, T ↑ L

2(p)} =
{T : Rd

↘ Rd
, T#p ↑ P2}. As a result, if T ↑ L

2(p) and is
non-degenerate, then T#p ↑ P

r
2 .

When pn and pn+1 are both in P
r
2 , we have a unique

invertible OT map from pn to pn+1 by Brenier Theorem, and
its (a.e.) inverse is the OT map from pn+1 to pn. Specifically,
we define

T
n+1
n is the OT map from pn to pn+1, pn-a.e.,

T
n
n+1 is the OT map from pn+1 to pn, pn+1-a.e.,

(26)

and we have T
n
n+1 ↖ T

n+1
n = Id pn-a.e., T

n+1
n ↖ T

n
n+1 = Id

pn+1-a.e. Note that T
n+1
n differs from the learned map Tn+1,

see Remark 2.
c) Assumption on approximate first-order condition:

For our analysis, we theoretically characterize the error in
learning Tn+1 by quantifying the error in the first-order
condition. Specifically, the W2-gradient (strictly speaking,
a sub-differential) of Fn+1 at ω can be identified as

↔W2Fn+1(ω) = ↔W2G(ω)→
T

n
ϖ → Id

γ
, ω-a.e. (27)

where T
n
ϖ is the OT map from ω to pn. Here we use ↔W2⇀ to

denote the sub-differential ϖW2⇀ assuming unique existence
to simplify exhibition. The formal statement in terms of
subdifferential is provided in Lemma 16 (which follows the
argument of [7, Lemma 10.1.2]) for more general G (which
includes KL divergence as a special case). For KL divergence
G, if V is differentiable, the sub-differential ϖW2G is reduced
to the unique W2-gradient written as

↔W2G(ω) = ↔V +↔ log ω, (28)

when ω ↑ P
r
2 has a well-defined score function.

If ω is the exact minimizer of (24), we will have
↔W2Fn+1(ω) = 0 (and for sub-differential the condition is
0 ↑ ϖW2Fn+1(ω)). At pn+1 which is pushed-forward by the
learned Tn+1, we denote the W2-gradient of Fn+1 by the
following (recall the definition of T

n
n+1 as in (26))

⇁n+1 := ↔W2Fn+1(pn+1)

= ↔W2G(pn+1)→
T

n
n+1 → Id

γ
, pn+1-a.e. (29)

and it is interpreted as sub-differential when needed. Making
an analogy to the (approximate) first-order condition in vector-
space optimization, we assume that pn+1 is close to the
exact minimizer such that the (sub-)gradient ⇁n+1 is small.
In practice, the SGD algorithm to minimize the training objec-
tive (25) (assuming T” is expressive enough to approximate
the exact minimizer T

≃) would stop making progress when
the W2-gradient vector field ⇁n+1 evaluated on data samples
collectively give a small magnitude. We characterize this
by a small L

2(pn+1) norm of the (sub-)gradient ⇁n+1 in
our theoretical assumption. The assumptions on the learned
transport Tn+1 are summarized as follows:

Assumption 1 (Approximate n-th Step Solution): The
learned transport Tn+1 is non-degenerate and in L

2(pn); it is
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invertible on Rd and T
→1
n+1 is also non-degenerate. In addition,

for some ε > 0, ▽⇁n+1 ↑ ϖW2Fn+1(pn+1) s.t.

⇐⇁n+1⇐pn+1 ′ ε. (30)

We experimentally verify the smallness of ⇐⇁n+1⇐pn+1 in
neural network training of one JKO step. Figure 3 shows the
decrease of the squared L

2 norm ⇐⇁n+1⇐
2
pn+1

over training
iterations. The Wasserstein gradient ⇁n+1 is plotted as a vector
field in Figure 4, whose magnitude gradually decreases over
training. See Appendix D for more details.

The error magnitude ε can be viewed as an algorithmic
parameter that reflects the accuracy of first-order methods,
and similar assumptions have been made in the analysis of
stochastic (noisy) gradient descent in vector space, see, e.g.,
[55] and [56]. We emphasize that theoretically, ε does not
need to be small but will enter the final error bound. For Tn+1

satisfying Assumption 1, from pn ↑ P
r
2 , pn+1 = (Tn+1)#pn

is also in Pr
2 by Lemma 7. Then the subdifferential ϖW2Fn+1

can be defined at pn+1 and characterized by Lemma 16.
Remark 1 (Assumptions on Tn): The L

2 integrability con-
dition of Tn is natural and together with non-degeneracy
ensures that the next pn is in P

r
2 . When T

→1
n is also non-

degenerate, the pn’s in the forward process and qn’s in the
reverse process in (19) all have densities, and this allows
us to apply the data processing inequality in both directions
(Lemma 11).

When there is an inversion error in the reverse process,
we will further impose Lipschitzness of T

→1
n on Rd and the

Lipschitz constant will theoretically enter the error bound, see
more in Section V-B.

Remark 2 (Tn+1 and T
n+1
n ): Recall that Tn+1 is the

learned transport map and T
n+1
n is the OT map. In our setting

(of imperfect minimization in the n-th step), both Tn+1 and
T

n+1
n push pn to pn+1 but they are not necessarily the same.

The notion of T
n+1
n is introduced only for theoretical purposes

(the existence and invertibility are by Brenier Theorem), and
our theory do not need Tn+1 to equal T

n+1
n . On the other

hand, one would expect Tn+1 to approximate T
n+1
n when the

JKO-step optimization (24) is approximately solved, leading
to a small ε in (30).

C. Reverse Process With Inversion Error

Considering potential inversion error in the reverse process,
we denote the sequence of transports as Sn and the transported
densities as q̃n, that is,

q̃n = (Sn+1)#q̃n+1, (31)

from q̃N = qN = q. The reverse process with and without
inversion error is summarized as

(exact reverse) q0
T→1

1
∋→→→ q1

T→1
2

∋→→→ · · ·
T→1

N
∋→→→ qN = q,

(computed reverse) q̃0
S1
∋→ q̃1

S2
∋→ · · ·

SN
∋→→ q̃N = q.

(32)

The computed transport Sn is not the same as T
→1
n but the

algorithm aims to make the inversion error small. For our
theoretical analysis, we make the following assumption on the
error.

Assumption 2 (Inversion Error): For n = N, · · · , 1, the
computed reverse transport Sn is non-degenerate, in L

2(q̃n),
and satisfies that

⇐Tn ↖ Sn → Id⇐q̃n ′ εinv. (33)

In practice, the quantity ⇐Tn↖Sn→Id⇐2q̃n
can be empirically

estimated by sample average, namely the mean-squared error

MSEinv =
1

ninv

∑

i

⇐Tn ↖ Sn(xi)→ xi⇐
2
,

xi = Sn+1 ↖ · · · ↖ SN→1(zi), zi ↓ q,

computed from ninv test samples. With sufficiently large ninv,
one can use MSEinv to monitor the inversion error of the
reverse process and enhance numerical accuracy when needed.
It was empirically shown in [74] that the inversion error
computed on testing samples (though all the N blocks) can be
made small towards the floating-point precision in the neural-
ODE model.

The inversion error objective (33) resembles the “cycle con-
sistency” loss in Cycle-GAN [76]. Our theory in Section V-B
suggests that keeping the inversion error small is crucial for
the success of generating a close-to-data distribution q̃0 in the
reverse process. Thus, there may be benefits by introducing
the objective (33) as a regularization in the training of flow-
based models, similar to the cycle consistency mechanisms in
the GAN literature.

IV. CONVERGENCE OF FORWARD PROCESS

The current paper mainly concerns the application to flow
generative networks where G is the KL divergence. In this
section, we prove the exponentially fast convergence of the
forward process, which applies to potentially a more general
class of G as long as the subdifferential calculus in P2 can be
conducted (see Section 10.1 of [7]) and G is strongly convex
along generalized geodesics (a.g.g., see Definition 3), which
may be of independent interest.

We will revisit the KL divergence G as a special case
and prove the generation guarantee of the reverse process in
Section V. All proofs and technical lemmas are provided in
Appendix B.

A. Conditions on G and V

We introduce the more general condition of G needed by
the forward process convergence.

Assumption 3 (General Condition of G): G : P2 ↘

(→⇒,+⇒] is lower semi-continuous, Dom(G) △ P
r
2 ; G is

λ-convex a.g.g. in P2.
The first part of Assumption 3 ensures that the strong

subdifferential ϖW2G(ω) can be defined, see Definition 2.
The strong convexity of G is used to prove the exponential
convergence of the (approximated) W2-proximimal Gradient
Descent in the forward process.

Next, we show that the KL divergence G satisfies the gen-
eral condition under certain general conditions of the potential
function V plus its strong convexity. We also introduce an
upper bound of λ due to a rescaling argument.
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Fig. 2. The monotonicity of a.g.g.-convex G in P2 proved in Lemma 8, as an analog to strong convexity in vector space. We remark that in the usual
vector space, the convexity definition does not involve a third vector, since the inner product is uniform; while in probability space, inner product is defined
at tangent space associated with p. The dotted line indicates the general geodesic between ω and ε, see the definitions in Section II-B.

1) KL Divergence and f -Divergence G: Recall that the
KL divergence G(ω) = H(ω) + E(ω) as defined in (16),
where E(ω) =

∫
V ω involves the potential function V of the

equilibrium density. We introduce the following assumption
on V :

Assumption 4 (Condition of V the Potential of q): The
potential function V : Rd

↘ (→⇒,⇒] is proper, lower
semi-continuous, and V

→ := max{→V, 0} is bounded; V (x)
is λ-strongly convex on Rd, and q ∞ e

→V is in P
r
2 .

The first part of Assumption 4 is for the sub-differential
calculus of E(ω) =

∫
V ω in P2. The λ-strong convexity is

used to make E(ω) (and subsequently G(ω)) λ-convex a.g.g.
Under such condition of V , the KL divergence G(ω) satisfies
Assumption 3, which is verified in Lemma 19. Thus our result
applies to the KL divergence as being used in the JKO flow
model. For the important case when q is standard normal,
V (x) = ⇐x⇐

2
/2, and λ = 1.

More generally, consider the f -divergence G(ω) =
Df (ω||q) :=

∫
f(ω/q)q, f : (0,⇒) ↘ R being convex, lower-

semicontinuous and f(1) = 0. KL divergence corresponds
to a special case where f(x) = x log x. Under Assumption 4,
we have q ∞ e

→V and is log-concave, and then G(ω) is convex
a.g.g. in P

r
2 (under additional technical conditions on f ) [7,

Theorem 9.4.12]. We think it is possible to establish the λ-
convexity a.g.g. of f -divergence G for a certain class of f ,
and details are postponed here.

2) Positive and Bounded λ: Note that for strongly convex V

we can use a scaling argument to make λ bounded to be O(1)
without loss of generality. Specifically, for V that is λ-convex
on Rd, the function x ↗↘ V (ax) for a > 0 is (a2

λ)-convex.
This means that for q that has a strongly convex V as the
potential function, one can rescale samples from q to make
V strongly convex with λ ′ 1. In the case where G is KL
divergence, the λ-convexity of G has the same λ as that of V .
Thus, for the general G we assume its λ is also bounded by
1.

Assumption 5 (λ Bounded): In Assumptions 3 and 4, 0 <

λ ′ 1.
Our technique can potentially extend to analyze the λ = 0

case, where an algebraic O(1/n) convergence rate is expected
instead of the exponential rate proved in Theorem 10. For
the application to flow-based generative model, one would
need the equilibrium density q ∞ e

→V convenient to sample
from, and thus the normal density (corresponding to V (x) =
⇐x⇐

2
/2) is the most common choice and the other choices

usually render λ > 0 (to enable fast sampling of the starting
distribution). We thus leave the λ = 0 case to future work.

B. Evolution Variational Inequality and Convergence of the

Forward Process

The a.g.g. λ-convexity of G leads to the following lemma,
which is important for our analysis. All proofs in this section
are provided in Appendix B.

Lemma 8 (Monotonicity of G): Let p, ω ↑ P
r
2 , ↼ ↑ P2, and

denote by T
ϖ
p and T

ε
p the OT maps from p to ω and to ↼

respectively. Suppose G satisfies Assumption 3, then for any
▷ ↑ ϖW2G(ω),

G(↼)→G(ω) ↙
〈
▷ ↖ T

ϖ
p , T

ε
p → T

ϖ
p

〉
p

+
λ

2
W

2
2 (↼, ω).

The relationship among p, ω,↼ is illustrated in Figure 2,
which also includes an analog to the strong-convex function
in Euclidean space. This lemma extends Lemma 5 in [63] and
originally the argument in Section 10.1.1.B of [7]. We include
a proof in Appendix B for completeness.

Based on the monotonicity lemma and the condition
of small strong subdifferential ⇁n+1 in Assumption 1, we
are ready to derive the discrete-time Evolution Variational

Inequality (EVI) [7, Chapter 4] for the (approximate) JKO
scheme.

Lemma 9 (EVI for Approximate JKO Step): Given ↼ ↑

P2, suppose G satisfies Assumption 3 with λ ↑ (0, 1], and
0 < γ < 2. If p0 ↑ P

r
2 , and Assumption 1 holds for

n = 0, 1, · · · , then for all n,
(

1 +
γλ

2

)
W

2
2 (pn+1, ↼) + 2γ (G(pn+1)→G(↼))

′W
2
2 (pn, ↼) +

2γ

λ
ε
2
. (34)

The condition of λ ′ 1 and γ < 2 can be replaced with
other constants, and our analysis will give similar results.
Specifically, the upper bound 1 of λ in Assumption 5 is a
generic choice and we keep it, then replacing the requirement
of γ < 2 with γ < γmax for another γmax > 1 will only
affect the constant in the final bound and does not affect the
order. For exhibition simplicity, we give our analysis under
λ ′ 1 and γ < 2 without loss of generality. We also provide
some rationale for upper bounding the step size γ motivated by
practice: First, it has been empirically observed that successful
computation of the JKO flow model in practice needs the
step size not to exceed a certain maximum value, which is
an algorithmic parameter [74]. Setting the step size too large
may lead to difficulty in training the Residual blocks as well
as in maintaining small inversion errors. Meanwhile, from the
formulation of the JKO scheme, it can be seen that for large γ,
the proximal GD in (17) approaches the global minimization
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of G(ω), which asks for the flow to transport from the current
density to the target density q in one step. Though the proximal
GD (as a backward Euler scheme) does not impose a step-size
constraint, the optimization problem (17) is, in principle, easier
with a small (but no need to converge to zero) step size.

The EVI directly leads to the N -step convergence of the
forward process, which achieves O(ε) W2-error and O(ε2)
gap from the optimal objective value in N ↭ log(1/ε) JKO
steps.

Theorem 10 (Convergence of Forward Process): Suppose
q ↑ P2 is the global minimum of G, and the other assumptions
are the same as Lemma 9, then for n = 1, 2, · · · ,

W
2
2 (pn, q) ′

(
1 +

γλ

2

)→n

W
2
2 (p0, q) +

4ε
2

λ2
. (35)

In particular, if

n ↙
8
γλ

(logW2(p0, q) + log(λ/ε)) , (36)

then

W2(pn, q) ′
≃

5
ε

λ
, G(pn+1)→G(q) ′

9
2γ

(
ε

λ

)2
. (37)

Remark 3 (Comparison to [63]): The convergence rates of
Wasserstein proximal GD were previously studied in [63],
and our proof techniques, namely the monotonicity of G

plus discrete-time EVI, are similar to the analysis therein.
However, the setups differ in several aspects: first, we consider
the “fully-backward” proximal GD, i.e., the JKO scheme,
while [63] focuses on the forward-backward scheme to mini-
mize G having a decomposed form E +H (which does cover
the KL convergence as a special case). Second, [63] assumed
the exact solution of the proximal step while our analysis
takes into account the error ε in the first-order condition
Assumption 1, which is more realistic for neural network-
based learning. At last, [63] assumed L-smoothness of V ,
namely ↔V is L-Lipschitz, and step size γ < 1/L, as a result
of the forward step in the splitting scheme, which is not needed
in our fully backward scheme. The motivation for [63] is to
understand the discretized Wasserstein gradient flow and to
recover the same convergence rates as the (forward-backward)
proximal GD in the vector space. Our analysis is motivated by
the JKO flow network, and the forward process convergence
is an intermediate result to prove the generation guarantee of
the reverse process.

V. GENERATION GUARANTEE OF REVERSE PROCESS

In this section, we first consider the reverse process as
in (19), called the exact reserves process, when there is no
inversion error. In Section V-A, we prove a KL (and TV)
guarantee of generating by q0 any data distribution P in P

r
2 ,

and extend to P with no density by introducing a short-time
initial diffusion.

Taking into account the inversion error, we consider the
sequence q̃n induced by Sn in (32), called the computed

reverse process, where the inversion error satisfies Assump-
tion 2. In Section V-B, we prove a closeness bound of q̃0 to
q0 in W2, which leads to a W2-KL mixed generation guarantee
of q̃0 based on the proved guarantee of q0.

A. Convergence Guarantee Without Inversion Error

We start by presenting convergence analysis assuming there
are no errors in the reverse process; then, we extend to
the more practical situation considering inversion errors. All
proofs in this section are given in Appendix C.

1) KL (TV) Guarantee of Generating P With Density:

Consider the transport map over the N steps in (19) denoted
as

T
N
1 := TN ↖ · · · ↖ T1. (38)

Since each Tn is invertible (Assumption 1), the overall map-
ping T

N
1 is also invertible. We have

pN = (TN
1 )#p0, qN = (TN

1 )#q0.

The following lemma follows from the data processing
inequality of KL, which allows us to obtain KL bound of
p0 = p and q0 from that of pN and qN = q.

Lemma 11 (Bi-Direction Data Processing Inequality): If
T : Rd

↘ Rd is invertible and for two densities p and q on
Rd, T#p and T#q also have densities, then

KL(p||q) = KL(T#p||T#q).

The following corollary establishes an O(ε2) KL bound in
N ↭ log(1/ε) JKO steps, which implies an O(ε) TV bound
by Pinsker’s inequality.

Corollary 12 (KL guarantee for P ↑ P
r
2 ): Suppose

G(ω) = KL(ω||q), the potential function V satisfies
Assumption 4 with λ ↑ (0, 1], and 0 < γ < 2. Suppose
P ↑ P

r
2 with density p, let p0 = p, and Assumption 1 holds

for some ε and all n. Then, let

N =
⌈

8
γλ

(logW2(p0, q) + log(λ/ε))
⌉

, (39)

the generated density q0 of the reverse process satisfies that

KL(p||q0) ′
9
2γ

(
ε

λ

)2
, TV(p, q0) ′

3
2≃γ

ε

λ
. (40)

Remark 4 (Extension to f -Divergence): As has been dis-
cussed in Section IV-A, it is possible to show that G(ω) =
Df (ω||q) satisfies Assumption 3 (possibly under additional
conditions of f ), and then the convergence of the forward pro-
cess, Theorem 10, extends to such f -divergence G. In addition,
data processing inequality holds generally for f -divergence,
and thus Lemma 11 also extends. As a result, Corollary 12
can potentially extend to certain f -divergences and show a
guarantee of Df (p||q0) in N JKO steps.

2) Guarantee of Generating P ↑ P2 up to Initial Short

Diffusion: For P ↑ P2 that may not have a density, we first
obtain ως ↑ P

r
2 that is close to P in W2 by a short-time

initial diffusion (specifically, the OU process as introduced
in Section II-C) up to time ◁ > 0, as shown in Lemma 20.
The short-time initial diffusion was used in [48] and called
“early stopping” in [14]. It is also used in practice by flow
model [74] as well as score-based diffusion models to bypass
the irregularity of data distribution [67]. In principle, one
can also use the Brownian motion only (corresponding to
convolving P with Gaussian kernel) to obtain ως . Here we
use the OU process to stay in line with the literature.

Authorized licensed use limited to: Duke University. Downloaded on October 29,2024 at 17:51:45 UTC from IEEE Xplore.  Restrictions apply. 



8098 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

The introduction of ως allows us to prove a guarantee of
KL(ως||q0) in the following corollary, which is the same type
of result as [14, Theorem 2].

Corollary 13 (KL Guarantee for P ↑ P2 From ως):

Suppose P ↑ P2, and the conditions on G, V , λ and
γ are the same as in Corollary 12. Then ∝ε

⇐
> 0, there

exists ◁ > 0 s.t. W2(P, ως) < ε
⇐ and, with p0 = ως and

Assumption 1 holds for some ε and all n, let N as in (39), the
generated density q0 of the reverse process makes KL(ως||q0)
and TV(ως, q0) satisfy the same bounds as in (40).

The corollary shows that there is a density ως ↑ P
r
2 that

is arbitrarily close to P in W2, such that the output density
q0 of the reverse process can approximate ως up to the same
error as in Corollary 12. Note that the corollary holds when
the potential function V of q satisfies the general condition
Assumption 4. The OU process in the proof (Lemma 20) is
only used in constructing ως , and there are other means to
construct the surrogate initial density ως .

B. Convergence Guarantee With Inversion Error

Recall the set-up from Section III-C. To prove the W2

control between q̃0 and q0, we first introduce a Lipschitz
condition on the inverse of the learned transport map Tn and
explain the motivation.

1) Lipschitz Constant of Computed Transport Maps: Pre-
viously in Assumption 1, we required that both Tn and its
inverse are non-degenerate. Here, we further require that T

→1
n

is globally Lipschitz on Rd with a uniform Lipschitz constant.
Assumption 6 (Lipschitz condition on T

→1
n ): There is K >

0 s.t. T
→1
n is Lipschitz on Rd with Lipschitz constant e

ϱK for
all n = N, . . . , 1.

The assumed Lipschitz constants are theoretical and moti-
vated by neural ODE models, to be detailed below. Our
analysis of W2(q̃0, q0) applies to any type of flow network
(like invertible ResNet) as long as the needed assumptions on
Tn and Sn hold.

We justify the assumptions on Tn, T
→1
n and Sn under the

framework of neural ODE flow, namely (20)(21), including the
Lipschitz constant e

ϱK of T
→1
n . Specifically, by the elementary

Lemma 21 proved in Appendix C, we know that if Tn+1

can be numerically exactly computed as (21) and v̂(x, t)
on Rd

̸ [tn, tn+1] satisfies a uniform x-Lipschitz condition
with Lipschitz constant K, then both Tn+1 and its inverse
are Lipschitz on Rd with Lipschitz constant e

ϱK . We will
assume the same K throughout time for simplicity. In practice,
Lipschitz regularization techniques can be applied to the neural
network parametrized v̂(x, t), and the global Lipchitz bound
of v̂ on Rd can be achieved by “clipping” v̂ to vanish outside
some bounded domain of x. Meanwhile, note that if T :
Rd

↘ Rd is invertible and T
→1 is globally Lipschitz on Rd,

then T is non-degenerate. Thus Tn+1 and T
→1
n+1 both being

non-degenerate are implied by (and weaker than) the global
Lipschitzness of Tn+1 and its inverse. In addition, in a neural-
ODE-based flow model, the reverse process is by integrating
the neural ODE in reverse time, and thus we can expect similar
properties of Sn.

While the computed transport Tn and Sn often differ from
the exact numerical integration of the ODE, we still expect the

Lipschitz property to retain. For general flow models, which
may not be neural ODE, we impose the same theoretical
assumptions. At last, the global Lipschitz condition may be
theoretically relaxed by combining with truncation arguments
of the probability distributions, which is postponed here.

2) W2-Control of the Computed Reverse Process From the

Exact One:

Proposition 14: Suppose in (32), qN = q̃N = q ↑ P
r
2 ,

and the computed transport maps Tn and Sn satisfy Assump-
tions 1, 2 and 6. Then all qn and q̃n are in P

r
2 and

W2(q̃0, q0) ′
εinv

γK
e
ϱK(N+1)

. (41)

A continuous-time counterpart of Proposition 14 was derived
in [3, Proposition 3]. We include a proof in Appendix C
for completeness. The proof uses a coupling argument of
the (discrete-time) ODE flow, which as has been pointed
out in [16], obtains a growing factor e

ϱKN in the W2-
bound as shown in (41). To overcome this exponential factor,
[16] adopted an SDE corrector step. Here, without involving
any corrector step, we show that the factor e

ϱKN can be
controlled at the order of some negative power of ε thanks
to the exponential convergence in the forward process. This
is because N can be chosen to be at the order of log(1/ε)
as in (39), then e

ϱKN can be made O(ε→ω) for some ϑ > 0.
As a result, the W2-error (41) can be suppressed if εinv can
be made smaller than a higher power of ε.

More specifically, combined with the analysis of the forward
process, we arrive at the following guarantee, proved in
Appendix C.

Corollary 15 (Mixed Bound With Inversion Error):

Suppose G(ω) = KL(ω||q), the potential function V satisfies
Assumption 4 with λ ↑ (0, 1], and 0 < γ < 2. Suppose the
computed transports maps Tn and Sn satisfy the Assumptions
1, 2, 6 for some ε and εinv for all n. Suppose P ↑ P

r
2 with

density p, let p0 = p and N as in (39), then the generated
density q̃0 of the computed reverse process satisfies that

W2(q̃0, q0) ′
e
2ϱK

γK
(W2(p0, q)λ)8K/φ εinv

ε8K/φ
, (42)

and q0 satisfies the KL and TV bounds to p as in (40).
Remark 5 (O(ε) error and need for small εinv): The

corollary implies that if εinv can be made small, then
the W2 bound can be made equal to or smaller than ε

in order. For example, if εinv = O(ε8K/φ+1), then we
have W2(q̃0, q0) = O(ε). This suggests that if one focuses
on getting KL(pN ||q) small in the forward process, then
maintaining an inversion error small is crucial for the
generation quality of the flow model in the reverse process.

At last, when P is merely in P2 and does not have density,
then one can start the forward process from p0 = ως same as
in Section V-A.2. Then we have the same W2-bound between
q̃0 and q0 as in (42), and q0 is close to ως in the sense of
Corollary 13.

VI. DISCUSSION

The work can be extended in several directions. First,
it is interesting to see if the assumption on learning in the
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forward process, Assumption 1, can be derived from further
analysis of the neural network learning, e.g., the approximation
and optimization error (c.f. the list of sources of errors in
Section III-B). The current work does not contain such analysis
and instead handles the goodness of the learned Tn by a
single assumption. In particular, it would be of interest to
theoretically justify the assumed “first order condition,” i.e.,
the smallness of the W2-gradient ⇁n+1 in (30), by analyzing
the convergence of the optimization. One possibility is by
showing the weak convergence of the learned pn+1 to the
exact minimizer p

≃ of Fn+1 and then utilizing the convergence
of ↔W2Fn+1(p) to ↔W2Fn+1(p≃) = 0 in a proper sense
[7, Section 5.4]. Second, the current generation result only
covers the case of G being the KL divergence. An extension
to the cases when G is other types of divergence, such
as f -divergence (see Remark 4), will broaden the scope of
the result. Third, our theory uses the population quantities
throughout. A finite-sample analysis, which can be based on
our population analysis, will provide statistical convergence
rates in addition to the current result.

Meanwhile, the JKO scheme computes a fully backward
proximal GD. Given the existing convergence rates of the
other Wasserstein GD [40], [63], one would expect that a
variety of first-order Wasserstein GD schemes can be applied
to progressive flow models and the theoretical guarantees
can be derived similarly to the JKO scheme. We also note
the connection between the JKO scheme and learning of the
score function, at least in the limit of small step size [74,
Section 3.2]. Given the growing literature on the analysis
of score-based diffusion models, it can be worthwhile to
investigate this connection further to develop new theories for
the ODE flow models.

Finally, it would be interesting to use theory to guide
practice and to develop new or improved methodologies of
flow-based generative models. As discussed in Section III-C,
one may consider incorporating the inversion error as part
of training loss to enforce the accuracy of the reverse pro-
cess. The potential theoretical extension to f -divergences also
suggests utilizing more general f -divergence as the per-step
training objective in JKO flow networks, e.g., by adopting
techniques in f -GAN [57]. It would be interesting to explore
different choices of f and the relationships among the f -
divergences [31]. In addition, our theory indicates that using
larger step-size γ leads to a shorter sequence of Residual
Blocks in the network architecture (as long as the optimization
in each JKO step can be efficiently solved). It would be natural
to consider an adaptive choice of γ in practice and also in
extending the theory.

APPENDIX A
PROOFS AND LEMMAS IN SECTION III

A. Lemma on the W2-(sub)gradient

Lemma 16: Suppose G : P2(X) ↘ (→⇒,+⇒] is lower
semi-continuous and Dom(G) △ P

r
2 . Let γ > 0, p ↑ P

r
2 , and

F (ω) = G(ω) +
1
2γ
W

2
2 (p, ω). (A.1)

If (at ω ↑ P
r
2 , ϖW2F (ω) is non empty and) ⇁ ↑ ϖW2F (ω),

then

⇁ +
T

p
ϖ → Id

γ
↑ ϖW2G(ω).

The argument follows that in Lemma 10.1.2 in [7], and we
include a proof for completeness.

Proof: [Proof of Lemma 16] We are to verify that

▷ := ⇁ +
T

p
ϖ → Id

γ

is a strong subdifferential of G at ω. By Definition 2, it suffices
to show that for any v ↑ L

2(ω) and ◁ ↘ 0,

G((Id + ◁v)#ω)→G(ω) ↙ ◁⇓▷, v⇔ϖ + o(◁). (A.2)

By construction,

⇓▷, v⇔ϖ = ⇓⇁, v⇔ϖ +
1
γ
⇓T

p
ϖ → Id, v⇔ϖ,

and since ⇁ is a strong subdifferential of F at ω,

F ((Id + ◁v)#ω)→ F (ω) ↙ ◁⇓⇁, v⇔ϖ + o(◁).

Combining the two and by the definition of F , we can
deduce (A.2) as long as we can show that

1
2
W2(p, (Id+◁v)#ω)2+o(◁) ′

1
2
W2(p, ω)2→⇓T p

ϖ →Id, ◁v⇔ϖ.

(A.3)

To show (A.3), note that by Brenier Theorem (ii),

W2(p, ω)2 =
∫
⇐x→ T

p
ϖ (x)⇐2ω(x)dx = ⇐Id → T

p
ϖ ⇐

2
ϖ.

Thus,

1
2
W2(p, ω)2 → ⇓T p

ϖ → Id, ◁v⇔ϖ

=
1
2
⇐Id → T

p
ϖ ⇐

2
ϖ + ⇓Id → T

p
ϖ , ◁v⇔ϖ

=
1
2
⇐(Id + ◁v)→ T

p
ϖ ⇐

2
ϖ →

1
2
⇐◁v⇐

2
ϖ. (A.4)

Note that, because v ↑ L
2(ω),

⇐◁v⇐
2
ϖ = O(◁2)

and

⇐(Id + ◁v)→ T
p
ϖ ⇐

2
ϖ =

∫

Rd

⇐(Id + ◁v)(x)→ T
p
ϖ (x)⇐2ω(x)dx

↙W2((Id + ◁v)#ω, p)2.

Putting together, this gives that the r.h.s. of (A.4) is greater
than or equal to

1
2
W2((Id + ◁v)#ω, p)2 + O(◁2)

which implies (A.3). ↫
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B. Proofs of Lemmas

Proof: [Proof of Lemma 5] It suffices to show that for
any A s.t. Leb(A) = 0, T#P (A) = 0. By the definition of
push-forward, T#P (A) = P (T→1(A)), which is zero because
Leb(T→1(A)) = 0 (since T is non-degenerate) and P ⇑ Leb.

↫
Proof: [Proof of Lemma 6] First, the minimizer makes

the r.h.s. finite because T = Id makes it finite: When T is
identity, the r.h.s. equals G(pn) < ⇒. As a result, p̃ := T#pn

needs to have density because otherwise the KL divergence
G(p̃) = +⇒.

It remains to show that M2(p̃) < ⇒. By definition,

M2(p̃) =
∫

Rd

⇐x⇐
2
p̃(x)dx

= Ex↘pn⇐T (x)⇐2

′ 2(Ex↘pn⇐x⇐
2 + Ex↘pn⇐x→T (x)⇐2),

where Ex↘pn⇐x⇐
2 = M2(pn) < ⇒, and, at the minimizer T ,

Ex↘pn⇐x→T (x)⇐2 also needs to be finite due to that it is in
the 2nd term of (25). ↫

Proof: [Proof of Lemma 7] We first show that T ↑ L
2(p)

iff T#p ↑ P2. This is because M2(T#p) = Ex↘p⇐T (x)⇐2, and
thus is finite iff. T is in L

2(p).
As a result, when T ↑ L

2(p), T#p ↑ P2. If T is also non-
degenerate, Lemma 5 implies that T#p also has density. This
proves that T#p ↑ P

r
2 . ↫

APPENDIX B
PROOFS AND LEMMAS IN SECTION IV

A. Technical Lemmas in Section IV-A

Lemma 17: H(ω) is convex a.g.g. in P2.
Proof: The a.g.g.-convexity of functional in the form

of F(ω) =
∫

F (ω(x))dx in P2 is established in Proposition
9.3.9 of [7] when F : [0,+⇒) ↘ (→⇒,⇒] is a proper,
lower semi-continuous convex function satisfying that s ↗↘

s
d
F (s→d) is convex and non-increasing on (0,+⇒). The

entropy H(ω) = F(ω) with F (s) = s log s, and this F satisfies
the above conditions. ↫

Lemma 18: Under Assumption 4, E(ω) is λ-convex a.g.g.
in P2.

Proof: This is a direct result of Proposition 9.3.2(i)
of [7], noting that assuming the boundedness of V

→ implies
the growth condition needed in Section 9.3 therein. The proof
of Proposition 9.3.2(i) shows that E(ω) is λ-convex along any
interpolation curve which implies λ-convexity a.g.g. ↫

Lemma 19: Under Assumptions 4, the KL divergence G(ω)
defined in (16) satisfies Assumption 3.

Proof: The lower semi-continuity follows from that of
H(ω) and the condition on V in Assumption 4. The domain
of G is restricted to ω with density because H(ω) diverges
otherwise. The a.g.g. λ-convexity of G directly follows from
Lemma 17 and Lemma 18. ↫

B. Proofs in Section IV-B

Proof: [Proof of Lemma 8] The unique existences of T
ϖ
p

and T
ε
p are by Brenier Theorem. Since ω ↑ P

r
2 , the map T

ϖ
p

has an inverse denoted by T
p
ϖ which is defined ω-a.e. Under

Assumption 3 first part, the strong subdifferential of ϖW2G(ω)
is well-defined, and we assume ▷ is one of them.

Let v := T
ε
p ↖T

p
ϖ → Id. One can verify that v ↑ L

2(ω), since
⇐T

ε
p ↖ T

p
ϖ ⇐

2
ϖ = M2(↼), ⇐Id⇐2ϖ = M2(ω), and both are finite.

By definition, for ◁ ↑ [0, 1],

(Id + ◁v)# ω = (Id + ◁(Tε
p ↖ T

p
ϖ → Id))#ω

= (T ϖ
p + ◁(Tε

p → T
ϖ
p ))#p. (A.5)

We also have

⇓▷, v⇔ϖ =
〈
▷ ↖ T

ϖ
p , T

ε
p → T

ϖ
p

〉
p
. (A.6)

Since v ↑ L
2(ω), by that ▷ ↑ ϖW2G(ω) and the definition

of strong subdifferential (Definition 2), with ◁ ↘ 0+ we have

G

(
(Id + ◁v)# ω

)
↙ G(ω) + ◁ ⇓▷, v⇔ϖ + o(◁). (A.7)

Combined with (A.5)(A.6), this gives

G
(
(T ϖ

p + ◁(Tε
p → T

ϖ
p ))#p

)
→G(ω)

↙ ◁
〈
▷ ↖ T

ϖ
p , T

ε
p → T

ϖ
p

〉
p

+ o(◁). (A.8)

Meanwhile, by the λ-convexity of G a.g.g. (Definition 3),
and specifically (14), we have

G
(
(T ϖ

p + ◁(Tε
p → T

ϖ
p ))#p

)

′ (1→ ◁)G(ω) + ◁G(↼)→
λ

2
◁(1→ ◁)W2(ω, ↼)2. (A.9)

Comparing (A.8) and (A.9), we have

G(↼)→G(ω) ↙
〈
▷ ↖ T

ϖ
p , T

ε
p → T

ϖ
p

〉
p

+
λ

2
(1→ ◁)W2(ω, ↼)2 + o(1).

We get the conclusion by letting ◁ ↘ 0+. ↫
Proof: [Proof of Lemma 9] In the n-th step, Tn+1 is in

L
2(pn) and is non-degenerate under Assumption 1, thus from

pn ↑ P
r
2 , pn+1 = (Tn+1)#pn is also in P

r
2 by Lemma 7.

This holds for n = 0, · · · , N → 1, and thus all pn are in P
r
2 ,

where p0 ↑ P
r
2 is by the lemma assumption. By the Brenier

Theorem, the OT map from pn to pn+1 is denoted as T
n+1
n ,

which is uniquely defined pn-a.e. Let T
n
n+1 be the OT map

from pn+1 to pn, and it is also the pn+1-a.e. inverse of T
n+1
n .

We use the short-hand notation

Xn+1 := T
n+1
n .

Under the assumption on G, Lemma 16 applies which gives
the relationship between ϖW2Fn+1 and ϖW2G. Together with
the assumption on ⇁n+1 by Assumption 1, we have that for
each n, ▽▷n+1 ↑ ϖW2G(pn+1) s.t.

γ⇁n+1 → γ▷n+1 = Id → T
n
n+1, pn+1-a.e.

and equivalently,

Id →Xn+1 = γ(▷n+1 → ⇁n+1) ↖Xn+1. pn-a.e. (A.10)

Denote by T
ε
n the unique OT map from pn to ↼. Expanding

⇐Xn+1 → T
ε
n ⇐

2
pn

as

⇐Xn+1 → T
ε
n ⇐

2
pn
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= ⇐(Id →Xn+1)→ (Id → T
ε
n )⇐2pn

= ⇐Id → T
ε
n ⇐

2
pn
→ 2⇓Id → T

ε
n , Id →Xn+1⇔pn

+ ⇐Id →Xn+1⇐
2
pn

= ⇐Id → T
ε
n ⇐

2
pn
→ 2⇓Xn+1 → T

ε
n , Id →Xn+1⇔pn

→ ⇐Id →Xn+1⇐
2
pn

′ ⇐Id → T
ε
n ⇐

2
pn
→ 2⇓Xn+1 → T

ε
n , Id →Xn+1⇔pn ,

where in the last inequality we use that ⇐Id →Xn+1⇐
2
pn
↙ 0.

By that

⇐Id → T
ε
n ⇐

2
pn

= W2(pn, ↼)2,

and together with (A.10), we have

⇐Xn+1 → T
ε
n ⇐

2
pn
′W2(pn, ↼)2

→ 2γ⇓Xn+1 → T
ε
n , (▷n+1 → ⇁n+1) ↖Xn+1⇔pn . (A.11)

Applying Lemma 8 with p = pn and ω = pn+1, we have

G(↼)→G(pn+1)

↙ ⇓T
ε
n →Xn+1, ▷n+1 ↖Xn+1⇔pn +

λ

2
W2(pn+1, ↼)2.

(A.12)

Meanwhile, by Cauchy Schwartz,

|⇓Xn+1 → T
ε
n , ⇁n+1 ↖Xn+1⇔pn |

′ ⇐Xn+1 → T
ε
n ⇐pn⇐⇁n+1 ↖Xn+1⇐pn

′ ε⇐Xn+1 → T
ε
n ⇐pn

where the 2nd inequality is by that ⇐⇁n+1 ↖ Xn+1⇐pn =
⇐⇁n+1⇐pn+1 ′ ε (Assumption 1). Since λ > 0, we have

ε⇐Xn+1 → T
ε
n ⇐pn ′

ε
2

λ
+

λ

4
⇐Xn+1 → T

ε
n ⇐

2
pn

. (A.13)

Putting together, this gives

|⇓Xn+1 → T
ε
n , ⇁n+1 ↖Xn+1⇔pn | ′

ε
2

λ
+

λ

4
⇐Xn+1 → T

ε
n ⇐

2
pn

.

(A.14)

Inserting (A.12)(A.14) into (A.11) gives

(1→
γλ

2
)⇐Xn+1 → T

ε
n ⇐

2
pn

′W2(pn, ↼)2 + 2γ

(
G(↼)→G(pn+1)→

λ

2
W2(pn+1, ↼)2

)

+
2γ

λ
ε
2
. (A.15)

Because (Xn+1, T
ε
n )#pn is a coupling between pn+1 and ↼,

we have

W2(pn+1, ↼)2 ′ ⇐Xn+1 → T
ε
n ⇐

2
pn

. (A.16)

Under the condition of the lemma, 0 < γλ < 2, and thus 1→
ϱφ
2 > 0 and then the l.h.s. of (A.15) ↙ (1→ ϱφ

2 )W2(pn+1, ↼)2.
This proves (34). ↫

Proof: [Proof of Theorem 10] Taking ↼ = q and apply
Lemma 9, by that 2γ (G(pn+1)→G(↼)) ↙ 0, (34) gives that
for all n,

(
1 +

γλ

2

)
W

2
2 (pn+1, q) ′W

2
2 (pn, q) +

2γ

λ
ε
2
. (A.17)

Define the numbers ω and ϑ as

ω :=
(

1 +
γλ

2

)→1

, 0 < ω < 1, ϑ :=
√

2γ

λ
ε,

and define

En := W2(pn, q)2,

then (A.17) can be written as

En+1 ′ ω(En + ϑ).

Recursively applying from 0 to n→ 1 gives that

En ′ ω
n
E0 + ϑ

ω(1→ ω
n)

1→ ω
′ ω

n
E0 + ϑ

ω

1→ ω
,

which by definition is equivalent to (35).
By (35), one will have W2(pn, q)2 ′ 5ε

2
/λ

2 if
(

1 +
γλ

2

)→n

W
2
2 (p0, q) ′

ε
2

λ2
,

which is fulfilled as long as

n ↙
2 (logW2(p0, q) + log(λ/ε))

log(1 + γλ/2)
.

This requirement of n is satisfied under (36) by that 0 <

γλ < 2 and the elementary relation that log(1+x) ↙ x/2 for
x ↑ (0, 1). We have proved the W2-error bound.

To show the smallness of the objective gap G(pn)→G(q),
we use (34) again, and by that W2

2 (pn+1, q) ↙ 0,

2γ (G(pn+1)→G(q)) ′W
2
2 (pn, q) +

2γ

λ
ε
2
. (A.18)

When n already makes W2(pn, q)2 ′ 5ε
2
/λ

2, we have

2γ (G(pn+1)→G(q)) ′ (5 + 2γλ)
ε
2

λ2
′ 9

ε
2

λ2
, (A.19)

where in the 2nd inequality we use that γλ < 2 because 0 <

λ ′ 1 and 0 < γ < 2. This proves the bound of G(pn)→G(q)
in (37). ↫

APPENDIX C
PROOFS IN SECTION V

A. Proofs in Section V-A.1

Proof: [Proof of Lemma 11] Let X1 ↓ p, X2 ↓ q, and

Y1 = T (X1), Y2 = T (X2).

Then Y1 and Y2 also have densities, Y1 ↓ p̃ := T#p

and Y2 ↓ q̃ := T#q. By the data processing inequality
concerning two probability distributions through the same
stochastic transformation for the KL divergence (see, e.g., the
introduction of [61]),

KL(p̃||q̃) ′ KL(p||q).

In the other direction, Xi = T
→1(Yi), i = 1, 2, then data

processing inequality also implies

KL(p||q) ′ KL(p̃||q̃).

↫
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Proof: [Proof of Corollary 12] Under Assumption 4, the
KL divergence G(ω) satisfies Assumption 3 (Lemma 19), also
q ↑ P

r
2 and G(q) = 0 is the global minimum of G. The

needed assumptions of Theorem 10 are all satisfied, by which
we have that for the N defined in the corollary,

KL(pN ||q) = G(pN ) ′
9
2γ

(
ε

λ

)2
. (A.20)

Under Assumption 1, Tn are all invertible, and thus T
N
1

as defined in (38) is invertible. In addition, by Definition 4,
one can verify that if T1 and T2 are non-degenerate, then so
is T2 ↖ T1. Using the arguments for N → 1 times, we have
that T

N
1 is non-degenerate. Similarly, since each T

→1
n is non-

degenerate, we have that (TN
1 )→1 is also non-degenerate. Now,

p0 = p has density, and then pN = (TN
1 )#p0 also has density

(Lemma 5). Meanwhile, qN = q has density (Assumption 4),
then q0 = ((TN

1 )→1)#qN also has density. We now have that
p0, q0, pN = (TN

1 )#p0 and qN = (TN
1 )#q0 all have densities.

Then Lemma 11 gives that

KL(p0||q0) = KL(pN ||qN ) = KL(pN ||q),

which, by (A.20), is bounded as stated in the corollary. The
TV bound is followed by Pinsker’s inequality. ↫

B. Proofs in Section V-A.2

Lemma 20 (ως and W2 Closeness): Suppose P ↑ P2, and
ωt is the density of Xt in an OU process as in (6), then

(i) ωt ↑ P
r
2 for any t > 0,

(ii) ∝ε > 0, ▽◁ > 0 s.t. W2(ως, P ) < ε. In this case, one
can choose ◁ ↓ ε

2.
Proof: [Proof of Lemma 20] For the OU process, we have

V (x) = ⇐x⇐
2
/2 in (7). Then for any t > 0, ωt = Lt(P ) has

the expression as, with 0
2
t := 1→ e

→2t,

ωt(x) =
∫

Rd

1
(2↼02

t )d/2
e
→⇒x→e→ty⇒2/(2↼2

t )
dP (y). (A.21)

Equivalently, ωt is the probability density of the random vector

Zt := e
→t

X0 + 0tZ, Z ↓ N (0, Id),

where Z is independent from X0. Since E⇐Zt⇐
2 =

e
→2t

M2(P )+0
2
t d < ⇒, we have ωt ↑ P2 and this proves (i).

To prove (ii): Because the law of (Zt, X0) is a coupling of
ωt and P ,

W2(ωt, P )2 ′ E⇐Zt →X0⇐
2

= E⇐(e→t
→ 1)X0 + 0tZ⇐

2

= (1→ e
→t)2M2(P ) + (1→ e

→2t)d
′ t

2
M2(P ) + 2td,

where in the last inequality we used that 1→e
→x
′ x, ∝x ↙ 0.

Since M2(P ) < ⇒, we have bounded W2(ωt, P )2 to be O(t).
↫

Proof: [Proof of Corollary 13] For the ε in Assumption 1,
the existence of ◁ to make W2(ως, P ) < ε is by Lemma 20,
and we also have ως ↑ P

r
2 . The rest of the proof is the same

as in Corollary 12 by starting from p0 = ως . ↫

C. Proofs and Lemmas in Section V-B

Lemma 21 (Lipschitz Bound of ODE Solution Map):

Suppose for γ > 0, v̂(x, t) is C
1 in (x, t) and Lipschitz in x

uniformly on Rd
̸ [0, γ] with Lipschitz constant K ↙ 0. Let

x(t) be the solution to the ODE

ẋ(t) = v̂(x(t), t), t ↑ [0, γ], (A.22)

and define the solution map from 0 to γ as T : Rd
↘ Rd, that

is,

T (x0) = x0 +
∫ ϱ

0
v̂(x(t), t)dt, x(0) = x0. (A.23)

Then T is invertible on Rd, and both T and T
→1 are Lipschitz

on Rd with Lipschitz constant e
ϱK .

Proof: [Proof of Lemma 21] Let x1(t) and x2(t) be the
solution to the ODE (A.22) from x1(0) = y, and x2(0) = z

respectively. By definition,

T (y) = x1(γ), T (z) = x2(γ).

Under the condition of v̂, the ODE is well-posed [64]. This
implies the invertibility of T , and T

→1 is the solution map of
the reverse time ODE from t = γ to t = 0.

We now prove the Lipschitz constant of T on Rd, and that
of T

→1 can be proved similarly by considering the reverse
time ODE. We want to show that

⇐T (y)→ T (z)⇐ ′ e
ϱK
⇐y→z⇐, ∝y, z ↑ Rd

,

and this is equivalent to that for any x1(0), x2(0) ↑ Rd,

⇐x1(γ)→ x2(γ)⇐ ′ e
ϱK
⇐x1(0)→ x2(0)⇐. (A.24)

For fixed x1(0), x2(0), define

E(t) :=
1
2
⇐x1(t)→ x2(t)⇐2,

then E(0) = ⇐x1(0)→ x2(0)⇐2/2, and

Ė(t) = (x1(t)→ x2(t))T (ẋ1(t)→ ẋ2(t))
= (x1(t)→ x2(t))T (v̂(x1(t), t)→ v̂(x2(t), t)).

Thus, by that ⇐v̂(x1(t), t)→ v̂(x2(t), t)⇐ ′ K⇐x1(t)→x2(t)⇐,
we have

Ė(t) ′ K⇐x1(t)→ x2(t)⇐2 = 2KE(t).

By Grönwall’s inequality, E(t) ′ E(0)e2Kt, and this gives

⇐x1(t)→ x2(t)⇐2 ′ e
2Kt
⇐x1(0)→ x2(0)⇐2, t ↑ [0, γ].

Setting t = γ proves (A.24). ↫
Lemma 22: Suppose p ↑ P

r
2 , and T : Rd

↘ Rd is Lipschitz
on Rd, then T ↑ L

2(p).
Proof: We are to show that

Ex↘p⇐T (x)⇐2 < ⇒.

Suppose T is L-Lipschitz on Rd, then ∝x ↑ Rd,

⇐T (x)⇐ ′ ⇐T (0)⇐+ ⇐T (x)→ T (0)⇐ ′ ⇐T (0)⇐+ L⇐x⇐.

Thus,

Ex↘p⇐T (x)⇐2 ′ 2(⇐T (0)⇐2 + L
2Ex↘p⇐x⇐

2)
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= 2(⇐T (0)⇐2 + L
2
M2(p)) < ⇒,

because M2(p) < ⇒. ↫
Proof: [Proof of Proposition 14] By construction, for n =

1, · · · , N ,

qn→1 = (T→1
n )#qn, q̃n→1 = (Sn)#q̃n.

We also have that qN = q̃N = q ↑ P
r
2 by assumption.

For the sequence of qn, we know that T
→1
n is non-degenerate

(Assumption 1). Meanwhile, for qn ↑ P
r
2 , T

→1
n being globally

Lipschitz on Rd also implies that it is in L
2(qn) (Lemma 22).

Then by Lemma 7, qn→1 = (T→1
n )#qn is also in P

r
2 . For the

sequence of q̃n, by Assumption 2, Sn is non-degenerate and
in L

2(q̃n), thus from q̃n ↑ P
r
2 , q̃n→1 = (Sn)#q̃n is also in Pr

2

by Lemma 7 again. Thus by induction, we have that qn and
q̃n are all in P

r
2 .

For each n, we have

W2(q̃n→1, qn→1) = W2((Sn)#q̃n, (T→1
n )#qn)

′W2((Sn)#q̃n, (T→1
n )#q̃n)

  
1©

+W2((T→1
n )#q̃n, (T→1

n )#qn)
  

2©

.

To bound 1©, we use Assumption 2 and the Lipschitzness of
T
→1
n . Define L := e

ϱK . Using (Sn, T
→1
n )#q̃n as the coupling,

we have

W
2
2 ((Sn)#q̃n, (T→1

n )#q̃n)

′

∫

Rd

⇐Sn(x)→ T
→1
n (x)⇐2q̃n(x)dx

′

∫

Rd

L
2
⇐Tn ↖ Sn(x)→ x⇐

2
q̃n(x)dx

= L
2
⇐Tn ↖ Sn → Id⇐2q̃n

,

where for the second inequality, we use the fact that T
→1
n is

L-Lipschitz. Thus,

1© ′ Lεinv. (A.25)

To bound 2©, we use that T
→1
n is L-Lipschitz on Rd again.

Specifically, let Yn be the unique OT map from qn to q̃n

which is well-defined by the Brenier Theorem, then (T→1
n ↖

Yn, T
→1
n )#qn is a coupling of (T→1

n )#q̃n and (T→1
n )#qn.

We have that

W
2
2 ((T→1

n )#q̃n, (T→1
n )#qn)

′

∫

Rd

⇐T
→1
n ↖ Yn(x)→ T

→1
n (x)⇐2qn(x)dx

′

∫

Rd

L
2
⇐Yn(x)→x⇐

2
qn(x)dx

= L
2
W

2
2 (q̃n, qn).

Thus

2© ′ LW2(q̃n, qn). (A.26)

Putting together, we have

W2(q̃n→1, qn→1) ′ e
ϱK(εinv +W2(q̃n, qn)).

Fig. 3. Computed values of →↑W2Fn+1(pn+1)→2pn+1
from

N = 2000 samples, where pn+1 is pushforwarded by a trained
neural network transport T from a Gaussian initial pn in R2, n = 0. The
blue line shows the value as the training progresses, and the dashed line
is a base value computed from the analytical solution ptrue

n+1 (where the
Wasserstein gradient vanishes).

Note that W2(q̃N , qN ) = 0 by that q̃N = qN = q. Applying
recursively from n = N to n = 1 gives that

W2(q̃0, q0) ′ εinv
e
ϱK(eϱKN

→ 1)
eϱK → 1

, (A.27)

which proves (41) by that e
x
→ 1 ↙ x for any x ↑ R. ↫

Proof: [Proof of Corollary 15] Under the condition of
the corollary, Corollary 12 applies to bound KL(p||q0) and
TV (p, q0) as in (40), and Proposition 14 applies to bound
W2(q̃0, q0) as in (41). It suffices to show that the r.h.s. of (41)
is less than or equal to that of (42).

By the choice of N in (39),

N ′
8
γλ

(logW2(p0, q) + log(λ/ε)) + 1,

and thus

e
ϱK(N+1)

′ e
2ϱK

(
W2(p0, q)

λ

ε

)8K/φ

,

which proves the needed inequality. ↫

APPENDIX D
NUMERICAL EVIDENCE TO SUPPORT ASSUMPTION 1

We conduct training of one JKO block to ver-
ify (30) in Assumption 1. The code is available at
https://github.com/yixintan-zeta/jko_wass_grad.

Data is in R2. Let n = 0, p0 = N ([3, 3]T , I), q = N (0, I),
and G(ω) = KL(ω||q). The step size γ = 0.5. We train a JKO
flow network block to minimize Fn+1 in (24) via the training
objective (25), where T is parametrized by a neural ODE block
consisting of two hidden layers with 128 hidden dimensions
and using the softplus activation (ς = 20). We use 10,000
training samples, batch size 2000, and 200 total iterations,
with learning rate 10→4. The implementation of the JKO flow
network follows the setup in [74].

Authorized licensed use limited to: Duke University. Downloaded on October 29,2024 at 17:51:45 UTC from IEEE Xplore.  Restrictions apply. 



8104 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

Fig. 4. The Wasserstein gradient vector field ϑ at samples x
(1)
i = T (xi) (shown by green arrows), where T is the trained neural network transport map,

plotted as the training progresses. The yellow dots are samples x
(1)
i . The length of the arrow is proportional to the magnitude of →ϑ(x(1)

i )→.

Making use of the explicit expression of ↔W2G(ω), let ⇁

be ⇁1, then (27) gives that

⇁ = (↔V +↔ log p1)→
T

p0
p1
→ Id
γ

,

where V (x) = ⇐x⇐
2
/2. To compute ⇁ as a vector field,

we used N = 2000 samples xi ↓ p0, and then the
neural-network trained T will push-forward xi to T (xi) ↓ p1.
Let X0 = {x

(0)
i := xi}

N
i=1 and X1 = {x

(1)
i := T (xi)}N

i=1 be
two data clouds. We approximate the OT map T

p0
p1

evaluated
on x

(i)
i by the solution of a discrete OT problem, computed by

the Python POT package [1]. The score function ↔ log p1 is
approximately computed by a kernel approach, where we
used a Gaussian kernel with a properly chosen bandwidth
parameter. Once ⇁(x(1)

i ) is computed at every sample, we can
approximately compute the squared L

2 norm ⇐⇁⇐
2
p1

by a
sample average.

We compute ⇁ at p1 induced by trained T not only at the
end of training but also during intermediate iterations. This
will show the change in the Wasserstein gradient as the neural
network training progresses. At 0, 20, . . . , 200 batches, the
estimated L

2 norm is shown in Figure 3. The dash-line shows
the computed value of the Wasserstein gradient at the true
solution p

true
1 = N ([2, 2]T , I), since the JKO step is from

a Gaussian p0 and thus the true population minimizer p1 is
analytically available. The numerical value is not exactly zero
because it is also computed on N = 2000 finite samples. The
dash-line shows a baseline of the numerical L

2 norm, and it
can be seen that at the end of training, the neural network
learned p1 archives a comparable value.

We further illustrate the vector field ⇁ on x
(1)
i ’s in Figure 4,

which shows the evolution of the Wasserstein gradient over

training iterations. It can be seen that the magnitude of the
vector field decreases, and the values are getting small at least
within the region where the distribution density p1 has a large
value. In the outskirts, the vector field ⇁ does not numerically
get small because it is at the tail of the Gaussian distribution,
where a small L

2 norm does not imply pointwise smallness of
⇁ in these regions and the estimation of the vector field may
also be of lower accuracy.
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