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Counting plant flowers is a common task with applications for estimating crop yields and selecting favorable
genotypes. Typically, this requires a laborious manual process, rendering it impractical to obtain accurate flower
counts throughout the growing season. The model proposed in this study uses weak supervision, based on
Convolutional Neural Networks (CNNs), which automates such a counting task for cotton flowers using imagery
collected from an unmanned aerial vehicle (UAV). Furthermore, the model is trained using Multiple Instance
Learning (MIL) in order to reduce the required amount of annotated data. MIL is a binary classification task in
which any image with at least one flower falls into the positive class, and all others are negative. In the process, a
novel loss function was developed that is designed to improve the performance of image-processing models that
use MIL. The model is trained on a large dataset of cotton plant imagery which was collected over several years
and will be made publicly available. Additionally, an active-learning-based approach is employed in order to
generate the annotations for the dataset while minimizing the required amount of human intervention. Despite
having minimal supervision, the model still demonstrates good performance on the testing dataset. Multiple
models were tested with different numbers of parameters and input sizes, achieving a minimum average absolute
count error of 2.43. Overall, this study demonstrates that a weakly-supervised model is a promising method for
solving the flower counting problem while minimizing the human labeling effort.

1. Introduction this task. Many of these approaches adapt existing object detection

frameworks, such as Faster RCNN (Ren et al., 2015), to count plant or-

Counting plant organs is a common problem within the broader field
of high-throughput phenotyping (HTP) (Chawade et al., 2019). This
technique is frequently used for generating yield estimates. Specifically,
counts of flowers are useful both for yield estimation, and for assessing
flowering patterns over the course of the growing season. This is critical
to deriving flowering time, an important phenotypic trait reflecting the
transition from vegetative growth to reproductive growth in plants
(Oosterhuis, 1990). Traditional plant organ counting is done by human
visual evaluation, which is time-consuming, tedious, and infeasible for
large fields.

Plant organ counting using imaging methods has been explored
within a wide range of prior works. The simplest approaches often rely
entirely on classical computer vision techniques such as color thresh-
olding, but can still achieve acceptable performance within limited do-
mains (Guo et al., 2018; Thorp et al., 2016; Adamsen et al., 2000). More
recently, Convolutional Neural Networks (CNNs) have been adopted for

gans. One successful CNN-based plant organ counting system is Tassel-
Net (Lu et al., 2017), which is designed to count maize tassels in images
taken from cameras mounted on poles. TasselNet is a counting-by-
regression approach that takes inspiration from the redundant, patch-
wise counting pioneered by Cohen et al. (2017). This allows for the
averaging out of errors and even the production of primitive density
maps, all with a relatively simplistic architecture that merely regresses a
count value for each image patch. TasselNet is versatile, and it has been
used to count other plant organs besides maize tassels. Xiong et al.
(2019a) not only adapted TasselNet to count wheat spikes, but also
improved the performance by enlarging the receptive field of the model
in order to handle truncated instances better. Madec et al. (2019) also
applied TasselNet to a large and diverse dataset of wheat spike images,
but found that a simple counting-by-detection approach using Faster
RCNN (Ren et al., 2015) worked better in certain cases. Rahnemoonfar
and Sheppard (2017) adapted the counting-by-regression approach to
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Fig. 1. An overview of the multi-instance learning approach for cotton bloom counting from aerial imagery. The same-colored bounding boxes represent the same
patch from the input and output images. The model then computes the areas of the output density map corresponding to each patch.

fruit counting, proving that a CNN can accurately count tomatoes in the
field even when trained on a purely synthetic dataset. An alternative
approach to a similar problem is leveraged by Chen et al. (2017). In this
case, the authors divided the problem into a semantic segmentation task
for localizing overlapping fruit clusters, along with a separate counting
task that regresses the number of fruits in each cluster.

Flower counting has been investigated by prior work using classical
image processing methods—such as thresholding segmentation—for
certain species with conspicuous blooms, leveraging their distinct colors
in order to distinguish them from the surrounding canopy (Thorp et al.,
2016; Adamsen et al., 2000). Such approaches, however, are limited in
their accuracy and generalization ability. Jiang et al. (2020) proposed a
counting-by-detection approach based on Faster RCNN to detect and
count flowers in images taken from a ground vehicle. Compared to aerial
counting, this approach suffers less from occlusion and low resolution,
and thus can yield higher count accuracy at the expense of lower
throughput. In contrast, the approach proposed by Xu et al. (2018) uses
imagery collected from a drone and performs the counting using simple
thresholding, with a CNN employed to reduce the false-positive rate. By
applying the structure-from-motion 3D reconstruction technique, the
researchers were able to recover an approximate 3D position for the
detected flowers. One drawback of this approach is that it still relies on
thresholding in order to propose candidate flowers, which has limited
reliability in practice. Recently, Sun et al. (2021) attempted to couple a
CNN trained to segment blossoms on fruit trees with an active contour
refinement step to improve the quality of the segmentation results.

One major challenge for plant organ counting is that traditional su-
pervised learning approaches tend to be limited by a relative paucity of
annotated data. Weakly-supervised learning has been proposed as a
general approach to overcome this issue, encompassing a broad category
of techniques that require less supervision than standard fully-
supervised learning. These approaches include ranking the density of
image crops (Liu et al., 2018), and using unlabeled images to train an
autoencoder (Sam et al., 2019). Some researchers employ a Generative
Adversarial Network (GAN) as part of an auxiliary task to generate
artificial training images or sharpen density maps (Olmschenk et al.,
2019; Shen et al., 2018; Giuffrida et al., 2019). Alternatively, Akiva et al.
(2020) use a novel combinatorial loss function with clever shape priors
in order to segment cranberries with only point supervision, an
approach that is similar conceptually to Laradji et al. (2018). Bellocchio
et al. (2019) propose a weakly-supervised counting method to count
several varieties of fruit. Their approach uses two separate CNN models,
one of which performs binary classification of images depending on
whether they contain fruit or not. Their final count is regressed by a
secondary model that uses cross-scale consistency priors to provide a

weak supervision signal, similar to the loss function proposed in this
work.

Multiple instance learning (MIL) is one approach used in weakly-
supervised learning, and can be thought of as a special case of a
counting-by-classification problem in which there are only two classes:
positive or negative (Foulds and Frank, 2010). As a framework for
detection, MIL provides the distinct advantage of simplifying annota-
tions: the annotator simply needs to select the positive or negative class
for an image based on whether any object is visible. MIL has not been
applied widely to counting problems, even less so for plant organ
counting. Bollis et al. (2020), however, did employ MIL in order to
detect citrus mites in magnified photographs, which is somewhat similar
to plant organ counting. Compared to counting-by-regression, all
counting-by-classification approaches have the drawback of introducing
quantization errors into counts. In the case of MIL, this effect is espe-
cially severe, because any image with one or more examples will be
lumped into the same positive class. Despite this, most prior work has
found that the improved ability to handle unbalanced datasets that
counting-by-classification affords generally outweighs any performance
decrease from quantization error (Liu et al., 2019). Xiong et al. (2019b)
also evaluated counting-by-classification in conjunction with a novel
Spatial Divide-and-Conquer approach, producing state-of-the-art
results.

Many existing plant organ counting approaches have significant
disadvantages when naively applied to the problem of counting cotton
blossoms. The patch-wise regression approach developed by Lu et al.
(2017), for example, works best with plant organs that cluster densely,
but cotton blossoms tend to be sparse. The object detection approach
from Ghosal et al. (2019), in contrast, works well for these kinds of data,
but requires detailed bounding-box annotations around each instance.
Weekly-supervised approaches can help avoid the need for such
cumbersome annotations, but come with their own trade-offs. The
approach proposed by Bellocchio et al. (2019), for example, requires the
training of two separate models, which increases the computational
burden. Though the use of shape priors (Akiva et al., 2020) is conve-
nient, it requires a target organ with a consistent and easily-described
shape. Ubbens et al. (2020) proposed a completely unsupervised
approach, but it is limited in its ability to detect plant organs in cases
with heavy occlusion and low background contrast.

To address these issues, the weakly-supervised multi-instance
learning (MIL) task (Foulds and Frank, 2010) is adapted for use in
counting cotton blossoms in aerial images. This allows for the avoidance
of expensive point annotations on much of the dataset, substituting
simpler image-level annotations. Furthermore, unlike the two-model
approach proposed by Bellocchio et al. (2019), the approach proposed



D. Petti and C. Li

Computers and Electronics in Agriculture 194 (2022) 106734

(a)

Fig. 2. Example images from the cotton blossom dataset, cropped and zoomed to show details. (a) shows an example image taken with a Panasonic Lumix G6 from
15 m. (b) shows an example image taken with a DJI Phantom 4 Pro from 10 m. (c) shows an example frame from a video taken by the same drone flying at 4 m. The

top row shows the full images, and the bottom row shows zoomed regions.

here employs a single model with a fully-convolutional architecture
which minimizes the computational burden. Inspired by Ghosal et al.
(2019), a technique similar to active learning (Settles, 2009) is also
adopted in order to accelerate the annotation of the data. A novel variant
of the cross-scale consistency loss technique described by Shen et al.
(2018) is employed as well in order to provide stronger supervision. The
formulation of this loss is specifically adapted to the MIL task. Finally,
this work makes use of a large dataset of annotated images—as collected
by a drone from actual cotton fields—which will be made publicly
available for the benefit of future researchers. The overall goal of this
study was to investigate the feasibility of applying MIL to counting
cotton blooms from aerial imagery. Our paper contains three main
contributions:

1. We create a dataset of aerial cotton plant imagery using pseudo-
active learning;

2. We develop and train a weakly-supervised learning framework that
leverages the MIL problem formulation for counting cotton blooms;

3. We examine the key factors—such as model architecture, model
depth, and patch size/stride—that impact the performance of MIL-
based counting approaches.

2. Materials and methods
2.1. Overview of methodology

Broadly, the heart of the proposed method consists of a CNN that is
trained on annotated aerial images of cotton plants to count visible
blossoms (Fig. 1). It is common that attempts to count sparsely-
distributed plant organs use a counting-by-detection approach (Ghosal
etal., 2019; Jiang et al., 2020). This is a simple, intuitive paradigm that
allows for the re-use of state-of-the-art object detection models.
Counting-by-detection, however, is not very suitable for weakly-
supervised learning. Most detectors are trained in a fully-supervised
manner, using bounding-box annotations on the training images.

Instead, we use a MIL approach in which images are classified simply
as containing at least one flower or not. A rough count can be computed
with this model by dividing the input image into many small, over-
lapping patches, and applying the model to each patch individually.
Assuming that the flowers are sparse enough and the patches are small
enough that there are few cases where multiple flowers appear in one
patch, this can be sufficient for accurate counting. Our counting model is

based on DenseNet (Huang et al., 2017), which is a CNN that leverages
dense connections in between its layers in order to encourage filter
reuse. DenseNet therefore has high parameter efficiency compared to
other approaches, making it useful for a counting problem with limited
training data. Our DenseNet is configured as a simple binary classifier
that takes image patches as input. Each component of the data pro-
cessing pipeline is described in detail in the following sections.

2.2. Cotton blossom dataset

The dataset comprises images collected using various platforms
flying at different altitudes. Data were collected at UGA’s Iron Horse
Farm research site (33°43°40.6”N, 83°18°15.2”W) during multiple ses-
sions in 2016, 2018 and 2020, throughout the months from August to
September. The fields used for data collection have a sandy soil type.
The cotton was planted in rows with 6-foot spacing, and four plants per
plot. A linear irrigation system was used to provide additional water
when needed. The dataset includes data from a total of 6 of these ses-
sions, two of which are used exclusively for testing (see below). Example
images are shown in Fig. 2. See Appendix A for details about how the
dataset was constructed.

The dataset is divided into two parts, A and B, each with different
types of annotations. Part A is derived from 148 images with the point
location of every single blossom annotated. Part B consists of 18,400
image patches, extracted from images not in part A. Most patches are 1/
64 the size of an image in part A. However, since the original data
contain some video, which is shot at a lower resolution and altitude,
each patch extracted from these video frames is only 1/4 the size of the
original frame. It was found empirically that this produces results that
resemble the patches extracted from still images. Instead of annotations
for every blossom, part B simply contains patch-wide annotations indi-
cating whether or not at least one blossom is present in that patch.
Though annotations for pollinated (pink) flowers are included in parts of
the dataset, in practice, these are ignored during training and evalua-
tion. That is, the model is trained using only un-pollinated (white)
flowers as positive examples. This decision was made because knowing
the number of pollinated flowers is less important to breeders. Addi-
tionally, a small external validation set of images—which we refer to as
part C in Table 1—is used to explore the limits of the model’s general-
ization ability. It contains 17 images collected and annotated in the same
manner as part A, and is used later on to evaluate inference hyper-
parameters (see Section 3.2).
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Table 1

Comparison of the three parts of the cotton blossom dataset. Note that part A is
split between training, testing, and validation (Al and A2), and has point an-
notations. Part B is used entirely for training, and has binary annotations. Part C
is used to evaluate hyperparameters.

Part # of Examples % Negative Image Size (px)
Al (training) 108 images 78% 4608 x 3456
B (training) 19,180 patches 68% 576 x 432
A2 (testing) 21 images 91% 4608 x 3456
A2 (validation) 19 images 91% 4608 x 3456
C (validation) 17 images 80% 4608 x 3456

The dataset as a whole is relatively unbalanced, with roughly 78% of
the patches in the part A training set containing no flowers. Part B is a
little more balanced, with roughly 68% of images containing no flowers.
Consequently, when training the models, deliberate steps are taken to
alleviate the imbalance. For the initial investigations, part A of the data
is divided into training and test/validation sets, which are denoted as
“A1” and “A2”, respectively (Table 1). Since the data was collected in
multiple sessions, A2 is derived from a single session that is split into
testing and validation sets, while the rest of the data from part A is used
for training (A1). Since there are no sessions split between Al and A2,
the testing and validation sets should represent a “worst case” scenario
in terms of performance. Most results are reported on the validation set,
which is made up of 19 raw images. Part B is for training exclusively,
since it contains no point-wise annotations, and therefore provides no
ground-truth count estimates that can be used for evaluation.

2.3. Pseudo-active learning

Part B of the cotton blossom dataset is generated using an approach
similar to active learning, but more simplistic. Inspired by Ghosal et al.
(2019), a model is initially trained using only patches from part Al. 640
unannotated patches from part B are then selected, and the trained
model is used to generate approximate annotations. In contrast to
“standard” active learning approaches, random selection is employed in
order to select new images to annotate, as opposed to any sort of heu-
ristic. These annotations are then verified and corrected by a human
using the open-source CVAT application. Finally, the corrected data are
used to re-train the model. The process is then repeated, doubling the
number of images that are annotated each cycle. In this way, all the
images in part B are annotated with minimal human intervention.

2.4. Counting model

The proposed model adheres to the MIL task. MIL is a binary clas-
sification task with negative and positive classes. An example image falls
into the positive class if it contains at least one blossom, and the negative
class otherwise (Foulds and Frank, 2010).

Specifically, the model uses a fully-convolutional architecture based
on DenseNet-121 (Huang et al., 2017). The model is trained using inputs
of size 576 x 432. These inputs consist of patches that are extracted from
the raw input images, as described in Section 2.2. Some slight modifi-
cations are made to the DenseNet architecture, including replacing the

Coome [\ oo [l
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initial 7x7 convolution with 2 consecutive 3x3 convolutions (Fig. 3).
This reduces the parameter count and experimental evidence suggests
that it improves performance on the small dataset used in this study.
Huang et al. (2017) define the concept of a “growth rate”, which mea-
sures how many additional filters are added at each layer. Though the
original DenseNet work used a growth rate of 32, a growth rate of only 4
was determined empirically to work well in this application. The
detailed architecture is shown in Table 2. Additionally, several model
variations are tested which differ only in depth. Table 2 shows the
deepest model, with 58 layers in the dense blocks, distributed in a
pattern of 6, 12, 24, and 16 per block. Versions with 29 layers (3, 6, 12
and 8 per block), and 15 layers (2, 3, 6, and 4 per block) are also
explored.

Periodic batch normalization (Ioffe and Szegedy, 2015) layers are
used in order to improve convergence speed, as specified in Huang et al.
(2017). There are a total of four max pooling layers which down-sample
the input by a factor of 16. The resulting features then undergo global
average pooling and sigmoid activation in order to generate logits for
each class.

2.4.1. Training

The model is trained using both parts A1 and B of the cotton blossom
dataset. For part Al, random patches are extracted from the input im-
ages that are the same size as the images in part B. A positive or negative
label is then generated for the extracted patch based on whether or not
point annotations are present within it. For part B, no such manipulation
is necessary. However, the positive class is oversampled when con-
structing minibatches in order to help alleviate the class imbalance.

In all the experiments, the model is trained for a total of 35 epochs,
employing momentum stochastic gradient descent (SGD) with warm
restarts (Loshchilov and Hutter, 2016). The initial learning rate is 0.01,

Table 2
Detailed 58-layer model architecture, based on DenseNet-121 (Huang et al.,
2017), with k = 4.

Layer Output Size Details
Convolution 432 x 576 x 48 3 x 3 conv
Convolution 432 x 576 x 48 3 x 3 conv

Pooling 216 x 288 x 48 2 x 2 max pool

Dense Block (1)

Transition Layer (1)

Dense Block (2)

Transition Layer (2)

Dense Block (3)

Transition Layer (3)

Dense Block (4)

Classification

216 x 288 x 4

216 x 288 x 2
108 x 144 x 2
108 x 144 x 4

108 x 144 x 2
54x 72x 2
54x 72x 4

54x 72x 2
27 x 36 x 2
27 x 36 x 4

27x36x 1
Ix1x1

3 x 3 conv

[1><1c0nv] 6
1 x 1 conv

2 x 2 max pool

1 x 1 conv
{3 x 3 conv] x 12

1 x 1 conv
2 x 2 max pool

1 x 1 conv
{3 x 3 conv] x 24
1 x 1 conv

2 x 2 max pool

1 x 1 conv
{3 x 3 conv] x 16

1 x 1 conv

27 x 36 average pool + sigmoid

Dense Dense
=) O {E ==

1x1 Conv

Fig. 3. The model contains 4 dense blocks, with transition layers (TL) between them, as described by Huang et al. (2017).
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Fig. 4. Inference is conducted by extracting overlapping patches (bottom left) from the entire input image (top left). (The extraction process is only shown on a
subset of the image here.) These are then fed through the model (center), producing patch-wise predictions (center right). Uniform density is assumed for each patch,
and density values for the overlapping pixels in each patch are averaged to produce a pseudo-density map (bottom right). Best viewed in color.

which is decreased to le-7 over the course of each restart period.
Training is initialized with a period of 5 epochs between restarts, which
is doubled after every restart. This process takes approximately 5 h on an
Nvidia V100 GPU with a batch size of 16.

2.4.2. Inference

Because MIL introduces severe quantization error, the best counting
accuracy can be achieved by dividing an input image up into small
patches and predicting each individually. Inspired by Cohen et al.
(2017), patches are chosen such that they overlap slightly in order to
average out errors and eliminate issues with detecting blossoms that
appear right on patch boundaries.

During inference, all such patches are extracted from an input. If the
model classifies a particular patch as the positive class, each pixel in the
patch is assigned a density of 1.0 divided by the number of pixels in the
patch, such that the summation of all pixel values in the patch is one.
The density value for each pixel is then divided by the number of patches
that overlap at that pixel to eliminate the redundant counts. This process
is illustrated in Fig. 4. Even though the model does not directly produce
a density map as its output—as is the case with counting-by-density-
regression approaches—this patch-wise inference process enables the
production of a pseudo-density map for an entire input image. As with a

Full Prediction

Output Feature Map

. Positive - Negative

normal density map, the full count can be estimated by summing the
density values for every pixel.

Though applying the model individually to every overlapping patch
can be slow, the fully-convolutional nature of the model can be lever-
aged in order to optimize this process. Specifically, inference is per-
formed on the entire input image, and the resulting activation map is
extracted right before performing global average pooling. The patch
extraction and global average pooling for each patch are then performed
directly on the activation map. This dramatically speeds up the inference
process without changing the result, although note that, in practice, the
memory usage will increase also due to inference being performed on a
substantially larger input.

2.5. Cross-scale consistency loss

Since the model works on image patches, it is always possible to
divide each patch up into smaller sub-patches and apply the model to
each sub-patch individually. Indeed, since the model is fully convolu-
tional, this can essentially be done for free: applying the model sepa-
rately to each sub-patch is equivalent to applying the model once to the
entire patch and then extracting equivalent sub-patches from the final
feature map (Fig. 5). This section explains how to leverage this property

Fig. 5. When calculating the cross-
scale consistency loss, the model is
initially run on an input image patch
(576 x 432) in order to obtain the
output feature map (left). The loss
works on the principle that the binary
class predictions for subsets of this
feature map (right) are not necessarily
the same as the binary class prediction
for the entire feature map (center). In
the illustrated case, although the
entire patch is predicted as positive, 2
sub-patches are actually predicted as
negative. Best viewed in color.

Sub-Patch
Predictions
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to provide additional supervision when training the model.

One possible way to accomplish this is through a variant of the
“cross-scale consistency loss” proposed by Shen et al. (2018), which is
tweaked slightly in order to adapt it to the MIL task. Specifically, the
cross-scale consistency loss takes the following as input: the output
feature map for the complete image patch (which is the output of the
final 1 x 1 convolution shown in Fig. 3), the output feature maps for a
corresponding series of evenly-spaced crops of this input patch (“sub-
patches™), and the corresponding ground-truth class. The sub-patches
can be any size, with or without overlap, but in these experiments, we
divide the input evenly into quadrants. For speed, we acquire the sub-
patch activation maps by simply extracting sub-patches from the
output feature map for the full patch, as opposed to applying the model
multiple times.

The loss is then calculated as

P
(1=9)> p(y,3"") if <z
i=1

Lee = (€9)

0 otherwise

where y denotes the ground-truth class, y denotes the output probability

for the full input patch, %" denotes the output probability for sub-
patch i,P is the number of sub-patches, and ¢ denotes the binary
cross-entropy function. In (1), we make the assumption that the model
outputs the probability of an example belonging to the positive class, e.g.
a probability of zero indicates the negative class, and a probability of
one indicates the positive class.

7 is a threshold that exists to prevent the loss from penalizing the
model in cases where the full input patch is predicted as the positive
class. For these experiments, we set it to 0.5. Intuitively, when the full
input is predicted as negative, any sub-patches that are predicted as
positive increase the loss, encouraging the model not to do this. The
complete loss for the model is constructed as a weighted sum between
standard binary cross-entropy loss and the cross-scale consistency loss

L = Lyce + ALy (2)

where 1 is a weighting factor for the loss, which we determine experi-
mentally. The standard binary cross-entropy loss is defined as follows
with y and ¥ being the ground truth and model prediction, respectively:

Lyee(y,5) = — (ylog(y) + (1 —y)log(1 - ¥)) &)

2.6. Implementation details

All of the code for training and data preparation is written in Python.
We implement the models with TensorFlow 2.4 (Abadi et al., 2015),
specifically using the Keras (Chollet, 2020) frontend. We train on a
Nvidia V100 GPU with 16 GB of VRAM. We also use the Kedro (Balan
et al., 2020) library for managing the training and data engineering
pipeline. We plan to release the code publicly as soon as any relevant
materials are published. Finally, we use the open-source Computer
Vision Annotation Tool (CVAT) (Sekachev et al., 3 2019.) for performing
manual labeling.

2.7. Evaluation metrics

Initially, we wish to evaluate the binary classification accuracy of the
models. We use the validation dataset for comparison between models.
This dataset is massively unbalanced, with around 91% of the extracted
patches falling into the negative class, i.e. not containing any flowers.
Consequently, raw binary accuracy is not a useful metric, so we instead
report the Area Under the (Receiver Operating) Curve (AUC). When
calculating this specific metric, we extract a grid of non-overlapping
patches, each Zth the size of the image, and apply the model to each
of them. This closely approximates the data that was used to train the
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Table 3
Comparison of models of different depths. All models use a growth rate of 4, and
differ only in the number of layers in each dense block.

# of Layers Count MAE AUC Precision Recall
15 3.34 0.84 0.93 0.96
29 2.43 0.87 0.94 0.99
58 2.97 0.82 0.93 0.97
1.0
0.8
9
$ 0.6
=
=l
‘©
o
2 04
]
2
'_
0.2 model
—— 15 layers
—— 29 layers
0.0 —— 58 layers
0.0 0.2 0.4 0.6 0.8 1.0
False Positives [%]
Fig. 6. ROC curves for the models shown in Table 3.
model.
1 n
MAE = — -y 4
- Z ly—3l )

1

In addition to the MIL task AUC, we also evaluate and report the
mean absolute count error computed on the validation set images, ac-
cording to Eq. 4. In contrast to the AUC calculation, inference is done as
described in Section 2.4.2, with overlapping patches, similar to Cohen
et al. (2017). Nominally, we use a patch size that is around 0.09 times
the size of the input image, with a 66% overlap between patches in both
the vertical and horizontal directions (see below for exact numbers).

Number of Images

-2 0 2 4 6
Count Error

Fig. 7. Histogram of the counting error on the validation set. It can be seen that
the model has a tendency towards undercounting.
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Table 4
Comparison of the best-performing model trained with different values for 4,
the cross-scale consistency loss weight.

y Count MAE AUC
0.0 3.35 0.85
0.25 2.68 0.78
0.5 2.43 0.87
0.75 3.10 0.82
1.0 3.69 0.79

3. Results

3.1. Quantitative results

Several different DenseNet models with varying depths (Table 3)
were tested. The best AUC achieved by any model is 0.87 over the
validation dataset. ROC curves are shown in Fig. 6. Overall, performance
is generally found to be better with increased model depth. However, at
58 layers, the model seems to start overfitting, resulting in the 29-layer
model providing the best performance overall. All models deviated
somewhat from what was proposed by Huang et al. (2017), including in
the use of smaller convolutional layers at the bottom and in the selection
of a much smaller growth rate. These changes all serve to reduce the
parameter count of the models, and were determined empirically to
perform well.

Across all experiments, the best mean absolute count error achieved
by the model is 2.43. Though a variety of different hyperparameter
configurations were tested, none produced better results. Fig. 7 shows
the distribution of count errors over the validation dataset (part A2 in
Table 1).

As shown in Table 4, higher and lower values of the weighting
hyperparameter 1 (Eqn. 2) both lead to a degradation in performance,
with all else being equal. Setting too small a value for 1 lowers the
contribution to the overall loss of the cross-scale consistency term to the
point that it becomes negligible. Setting too large a value will cause
learning to focus on optimizing the consistency task to the detriment of
the counting task. The value of A is chosen empirically. Through
experimentation, it was found that a value of 0.5 for 4 works best.

3.2. Effects of inference hyperparameters

The patch-wise inference process used in this study has several
hyperparameters that can be adjusted, including the size of the over-
lapping patches and the amount of overlap. In order to evaluate the
influence of these settings on performance, 17 additional images with
point annotations (part C in Table 1) were used to evaluate the model.
Though they were collected using the same equipment and setup as the
images in part A of the dataset, they were taken on August 19, 2016.
Furthermore, and crucially, the density of flowers within these images is
significantly higher, with a total of 353 annotated flowers over 17
frames.

(b)
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The trained model was evaluated on these data with the same
hyperparameters as we used before, and a counting MAE of 10.21 (Fig. 8
(b)) was achieved. In this case, the model appears to be grossly under-
counting, often by as much as 50%. However, the reported AUC on these
data is 0.95, which suggests that the poor counting performance is an
artifact of the inference hyperparameters. Indeed, when a patch scale of
0.0625 and stride of 0.03125 are selected, the same configuration as is
depicted in the penultimate row of Table 5, the overall counting MAE
decreases to a much more respectable 4.12 (Fig. 8(c)).

3.3. Qualitative results

Qualitative results include some example density maps produced
from four validation set images (Fig. 9). The left two columns show the
two images with the lowest MAE, and the right two show the images
with the highest MAE. Additionally, because the model is fully-
convolutional, it is possible to visualize the activation maps directly
(Fig. 10). Activation maps are extracted from the final layer of the
model, just before global average pooling and sigmoid activation are
applied. Sigmoid is then applied manually in order to normalize the
values between 0 and 1, before overlaying the result on the input as a
heatmap. The results shown in Fig. 10 indicate that the model indeed
learns to recognize flowers, despite the weak supervision (e.g. image-
level binary classification).

3.4. Model architecture comparison

Multiple experiments were performed with alternative model ar-
chitectures, in an effort to determine the effect of the chosen architec-
ture on model performance. The procedures for these experiments are
exactly as described above, but with different model architectures.
Crucially, no changes are made to any hyperparameters. Specifically,
fully-convolutional extensions of the classic LeNet, AlexNet, and VGG-
16 architectures are tested. These architectures were selected because
they have been proven to work on a similar plant-organ-counting
problem by Lu et al. (2017). Furthermore, because the data have a
much larger patch size than that used by Lu et al. (2017), the fully
convolutional nature of these models is advantageous, because it allows
them to be applied to the cotton image dataset without modification.

Table 5

Comparison of different inference hyperparameters on the counting perfor-
mance of a 29-layer model. Patch scale and patch stride are both provided in
fractions of the input frame size.

Patch Scale Patch Stride Count MAE
0.09 0.01 2.43
0.09 0.03 2.43
0.125 0.03125 4.53
0.125 0.0625 4.49

0.0625 0.03125 4.26
0.0625 0.0625 4.21

(c)

Fig. 8. Example density maps generated from the 2016 data. The version with tuned hyperparameters achieves much higher counting accuracy. (a) shows the ground
truth annotations, (b) shows the density map made with default hyperparameters, and (c) shows the density map made with tuned hyperparameters.
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(a) (b)

() (d)

Fig. 9. Four examples of qualitative results of one of the counting models on validation data from the cotton blossom dataset. These are generated with a patch size of
0.09 times the width and height of the input, with an overlap of 0.03 times the width and height of the input. Two images in (a) show the two best-predicted examples
while two images in (c) show the two worst-predicted examples. Four images in (b) and (d) are the corresponding ground truth for images in (a) and (c), respectively,

with flowers marked as red dots.

Fig. 10. Two examples of visualizations of the final activation layer of the model.

Table 6
Comparison of models with different architectures.

Architecture Count MAE AUC # of Parameters
LeNet 4.60 0.76 141,153
AlexNet 3.84 0.79 247,265
VGG-16 2.90 0.82 2,357,969
DenseNet (Ours) 2.43 0.87 54,423

As indicated in Table 6, none of the models out-performs the best
DenseNet-based model, even though the larger models do steadily bet-
ter. It is interesting that the VGG-16 model is still outperformed by the
DenseNet model, despite having more than 40x the number of param-
eters. Overall, these results are not unexpected, given the results re-
ported by Huang et al. (2017). As explained in that paper, DenseNet
derives its efficiency from re-using existing features from shallower
layers in deeper layers as opposed to learning new ones from scratch.
However, the proposed models are significantly smaller than even the
smallest model proposed by Huang et al. (2017) (800,000 parameters),
indicating that the DenseNet architecture remains powerful even when
scaled down to extreme levels.

Note that these comparisons may not be entirely fair, because no
optimization of hyperparameters is performed for individual architec-
tures. Instead, sane hyperparameters are derived empirically for

DenseNet, and subsequently fixed for all further experiments. Poten-
tially, other architectures could yield improved results with better
optimization.

4. Discussion

The model contains only ~ 54,000 parameters, and yet there re-
mains a notable discrepancy in the MIL task AUC between the training
and validation sets, which suggests some mild overfitting. Though the
model is relatively small, this suggests that the approach could benefit
from a larger dataset. It could be that this phenomenon is partially an
effect of pulling the testing and validation data from an entirely separate
session that isn’t represented in the training data, as explained above.
Since it is collected from various different cameras from plants in
various growth stages, with a variety of settings and altitudes, the
dataset exhibits a lot of inter-session variation, which makes it para-
mount to include data from as many sessions as possible. Dropout and
regularization were also explored, but were found to not improve the
performance of this model. Future experiments could include different
model architectures and additional data. Additionally, the model seems
to be much more prone to undercounting than overcounting, which
could also be caused by the dataset, but is more likely to be the result of
the quantization error caused by the MIL formulation. Any counting-by-
classification approach has this problem to some degree (Liu et al.,
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Fig. 11. A number of false positives (outlined in pink rectangles) can be seen when predicting with a smaller patch size (left) which disappear when predicting with a

larger patch size (right).

2018).

It is also worth noting that our method has two important limita-
tions. The most glaring issue is that our dataset lacks any sort of ground-
truth flower count. All our metrics are derived instead by comparing the
predicted count with the annotated count. The single aerial vantage
point of our data, however, means that some flowers will inevitably
remain occluded beneath the canopy, implying that the annotated count
will not necessarily match the true count. Further, our data are divided
into individual images, each of which shows multiple (partial) plots.
This makes it fairly impractical for us to provide a per-plot counting
accuracy metric, which is a particularly useful number for plant
breeders. Addressing both of these limitations is a goal for future work.

For these reasons, it is hard to definitively assess whether our method
performs “well enough”. Xu et al. (2018) do not directly report counting
errors for their method. However, their reported per-plot error range is
similar to our per-image error range, suggesting that our approach
matches or possibly even exceeds their performance. This is a good
sanity-check seeing as their approach shares some training data with this
one. Similarly, Jiang et al. (2020) report their best counting RMSE from
their fully-supervised multi-camera ground-based method as 0.88,
which is substantially better than the method proposed here, given that
the latter has counting RMSE of 3.03. Since their approach is based on
proximal ground imagery, however, this mainly validates the assumed
trade-off between accuracy and throughput from ground and aerial
systems.

4.1. Analysis of cross-scale consistency loss

With regards to the MIL task, there are two conditions that should be
met for every prediction:

(a

) (b)

1. If the entire image is predicted as the positive class, there should exist
at least one sub-patch that is also predicted as positive.

2. If the entire image is predicted as the negative class, then no sub-
patches should be predicted as positive.

Since the model is fully convolutional, the output class is determined
by taking the global average of the final feature maps and applying the
sigmoid activation to the results. When considering global average
pooling, it is easy to see that condition (1) is mathematically guaranteed
(see appendix B for proof). However, condition (2) is not, and it is easy to
find representative cases where it does not hold (Fig. 11). This phe-
nomenon provides the opportunity to add some additional supervision
without changing the annotations.

To understand intuitively why this discrepancy arises, consider that
the model outputs pixel-wise predictions, which are then averaged
across the entire input. If, for a given input, positive pixels are concen-
trated in a relatively small area, then it is possible that they will be
“drowned out” by the vast preponderance of negative pixels. This could
cause the entire input to be predicted as negative, even when it contains
a flower. Conversely, this can also result in false-positive predictions
when the input size is decreased (Fig. 11).

The cross-scale consistency loss used during training functions by
penalizing violations of condition (2) above. If the entire patch is pre-
dicted as negative, the proposed loss will penalize positive predictions
for any sub-patches. In this manner, it was found that cross-scale con-
sistency loss is able to improve the performance of the model without the
need for more precisely-annotated data simply by leveraging spatial
intuition. This conclusion aligns well with the results of similar ap-
proaches (Bellocchio et al., 2019; Shen et al., 2018).

Fig. 12. Common failure cases for the model. (a) Example of the model failing to detect flowers that are growing at the edges of the plot, outside the canopy. (b)

Example of the model falsely counting a partially-opened boll as a flower.
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4.2. Analysis of inference hyperparameters

One disadvantage of the MIL-based approach to counting is that it
introduces additional hyperparameters in the form of the patch size and
amount of overlap to use during inference. As shown in Table 5, the
selection of these hyperparameters does have an effect on the counting
performance. There is also an effect on the inference speed, as increasing
the amount of overlap significantly increases the computational cost.

Overall, these hyperparameters need to be set empirically based on
data representative of the specific problem domain. Theoretically, the
main limitation on patch size is that the patches should be large enough
to encompass the largest flowers in the dataset. At the other end of the
patch-size scale, quantization error can be mitigated through the use of
larger overlaps (Cohen et al., 2017). For the experiments in this paper, a
patch scale of 0.09 and stride of 0.03 times the image size were chosen,
as this afforded a good balance between accuracy and performance.

In summary, it seems that to get ideal results, the inference hyper-
parameters must be tuned based upon the expected density of flowers in
the analyzed data. Given that the flower density can vary over the course
of the growing season, or even over different parts of a single field, this
could cause difficulties deploying the proposed method. Needless to say,
this is sub-optimal, and an indication that the overall method would
likely benefit from finding a more reliable way to conduct inference.

4.3. Analysis of failure cases

Overall, the model has more of a predilection towards undercounting
than overcounting. As can be seen in Fig. 12(a), it is common for the
model to under-count flowers that grow outside the canopy. One theory
is that this is due to the relative lack of examples of this phenomenon
that exist in the training data. This problem could likely be resolved by
augmenting the training set with new data that have this property.
Conversely, Fig. 12(b) shows a case where the model has significantly
over-counted the number of flowers. Some of these false positives appear
to be triggered by partially or fully-opened bolls. In low-resolution im-
ages, bolls and flowers can sometimes be difficult to distinguish from
one another, even for a human, so this behavior is not extremely sur-
prising. Nonetheless, a significant portion of the cotton image dataset
was collected earlier in the growing season and thus does not include
bolls at all. It is likely that the rate of these misclassifications can be
reduced by including more data from later sessions, which do contain
bolls. Both of these failure cases can also be seen quite clearly in Fig. 9.

4.4. Comparison to similar work

As stated above, the proposed approach employs the redundant
counting technique first proposed by Cohen et al. (2017). TasselNet (Lu
et al., 2017) was possibly the first work to employ this technique in the
domain of plant-organ counting, specifically applying it to maize tassels.
TasselNet, however, worked by directly regressing count values, in
contrast to the proposed approach, which employs the MIL task in what
could be considered an extreme form of counting-by-classification. Even
so, TasselNet, and the later TasselNetv2 (Xiong et al., 2019a), provide
good evidence for the efficacy of the redundant counting method when
applied to plant organs.

Image-based counting approaches that focus specifically on flowers
have been around for decades (Adamsen et al., 2000), but even some
recent approaches (Thorp et al.,, 2016) have stuck to classical image
processing methods as opposed to applying more modern Deep Learning
techniques. Very recently, Xu et al. (2018) were able to demonstrate a
CNN-based system for counting cotton blooms, but the proposed model
uses a relatively simplistic architecture, and relies heavily on a
thresholding-based pre-segmentation step that is not always reliable.
Jiang et al. (2020) also demonstrate that accurate cotton flower counts
can be obtained through CNN-based detection from ground imagery, but
this method has a lower throughput compared to aerial imaging and the
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ground vehicle may cause damage to plants. Additionally, weakly-
supervised counting has been applied successfully by Bellocchio et al.
(2019) within the domain of fruit counting. Their approach has many of
the advantages of ours, namely reduced need for training data with
complex annotations. However, the authors do not attempt to apply
their approach to aerial imagery, they do not explore active learning as a
means to further reduce the data annotation burden, and their approach
relies on multiple models that cannot be trained end-to-end. This, along
with the proposed approach, provides evidence that weakly-supervised
counting is a viable strategy for a diverse set of HTP problems.

4.5. Further work

There are a variety of changes that could be made to the proposed
model and training procedure which might yield better results. The
accuracy and robustness of the model could doubtlessly be improved by
the addition of more annotated data. Since the annotation process is
relatively quick, this should be straightforward to do as more raw data
are collected. This is especially true given that, although the cotton
blossom dataset is large and diverse, there are many possible appearance
variations that are not covered in the existing data. Breeders grow a
variety of cotton cultivars, some of which have different leaf shapes and
colors, as well as flowers that range in hue from white to yellow. Fields
can contain a significant amount of weeds, which could confuse the
detector. Also, the experiments have indicated that model performance
is highly dependent on the exact architecture. Consequently, Neural
Architecture Search (Elsken et al., 2019) could conceivably be expored
as a method for improving the model architecture further.

In addition, there is the possibility of integrating the proposed model
into a full, drone-based system for cotton flower counting throughout a
growing season that encompasses data acquisition and post-processing.
Xu et al. (2018) proposed the core components of such a system, and
indeed, the model proposed in the current work could be used as a drop-
in replacement for their original counting approach. The model can be
leveraged to derive flowering progression over time and compare it with
the counting results from a ground imaging system. Another caveat of
this study is that most of the results are reported on a per-image or per-
frame level instead of a per-plot level, as this work is mainly focused on
investigating the underlying method. Nevertheless, future work should
likely verify the method’s ability to produce counts on a plot-by-plot
level, as any practical counting system would require this feature.

5. Conclusions

This paper introduces a weakly-supervised-learning approach for
counting cotton blossoms from aerial imagery, which requires simpler,
less expensive annotations compared to previous approaches. Specif-
ically, this method shows that it is possible to count sparsely-distributed
objects by adapting a simple presence/absence classifier, a method
which only requires weak supervision. It is also shown that this method
is particularly amenable to active learning, which further facilitates the
annotation process. This approach has the potential to form the basis of
an efficient, practical system for counting cotton flowers in field con-
ditions. Such a system could require nothing more than an inexpensive
drone and a laptop on which to analyze data. The underlying method is
also general enough to be applied to count other plant organs, particu-
larly on other species with a similar canopy structure to cotton. The
method developed in this study could help solve the flower counting
problem while minimizing the data acquisition and human labeling ef-
forts, facilitating genetic studies and contributing to crop improvement.
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Table 7

Parameters for the imagery sources used in this dataset. Note that the fifth
column is the number of raw images, not the number of extracted patches.
Ground Sample Distance (GSD) is calculated with an online tool (https://www.
propelleraero.com/gsd-calculator/) using known camera parameters.

Camera Img. Size Alt. GSD No. of Year
(px) (mAGL) (cm/px) Images
Panasonic Lumix 4608 x 32 0.23 328 2016 &

G6 3456 2018

DJI Phantom 4 5472 x 10 0.27 70 2020
Pro (Image) 3648

DJI Phantom 4 2704 x 4 0.24 795 2018
Pro (Video) 1520

acquisition.

Appendix A. Additional information about the dataset
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The cotton image dataset was collected using a Panasonic Lumix G6 mirrorless camera mounted on a DJI Matrice 600 flying at 15 m, as well as a
DJI Phantom 4 Pro, with its own built-in camera, flying at two different altitudes (see Table 7). Images were collected once every second, except for
several sessions that were collected using video mode on the Phantom 4 at 30 frames per second (fps). Both drones were programmed with an
automated flight path that allows for coverage of the entire field while simultaneously allowing for a small amount of overlap between adjacent

images.

Appendix B. Proof of condition (1) for cross-scale consistency loss

Theorem 1. Let S be a set where |S| = n. Let P;_4 define d arbitrary disjoint subsets of S, where |P;| = r; and Py UP, U ... UP4 = S. Let 7 be an arbitrary

threshold.
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