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Abstract

Background Plant architecture can influence crop yield and quality. Manual extraction of architectural traits is,
however, time-consuming, tedious, and error prone. The trait estimation from 3D data addresses occlusion issues with
the availability of depth information while deep learning approaches enable learning features without manual design.
The goal of this study was to develop a data processing workflow by leveraging 3D deep learning models and a novel
3D data annotation tool to segment cotton plant parts and derive important architectural traits.

Results The Point Voxel Convolutional Neural Network (PVCNN) combining both point- and voxel-based representa-
tions of 3D data shows less time consumption and better segmentation performance than point-based networks.
Results indicate that the best mloU (89.12%) and accuracy (96.19%) with average inference time of 0.88 s were
achieved through PVCNN, compared to Pointnet and Pointnet++. On the seven derived architectural traits from
segmented parts, an R? value of more than 0.8 and mean absolute percentage error of less than 10% were attained.

Conclusion This plant part segmentation method based on 3D deep learning enables effective and efficient
architectural trait measurement from point clouds, which could be useful to advance plant breeding programs and
characterization of in-season developmental traits. The plant part segmentation code is available at https://github.
com/UGA-BSAIL/plant_3d_deep_learning.
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Background

Plant architecture is an important factor for enhanced
crop yield and quality. It influences light interception,
planting patterns, the efficiency of harvest mechaniza-
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traits of different crops are studied by plant breeders and
geneticists to optimize plant architecture and generate
high-yielding varieties [6]. Moreover, plant architectural
traits may reveal symptoms of plant diseases and help
growers take remedial actions. For instance, significant
compression of internodes near the terminal, little-to-no-
fruit production, excessive vegetative branching in the
bottom of the plant, and abnormal boll size and shape are
some symptoms of diseased cotton plants [4]. Although
plant architectural traits are important, manual meas-
urements are time-consuming, tedious, and error-prone.
Therefore, the ability to measure architectural traits with
remote sensing technologies such as automated high-
throughput phenotyping is beneficial for crop improve-
ment and management.

To extract plant architectural traits, relevant plant parts
need to be segmented from the digital imagery first. Both
two-dimensional (2D) and three-dimensional (3D) data
have been leveraged to segment plant parts and to derive
traits using computer vision techniques in the past. With
regard to cotton, one study used 2D RGB images to detect
cotton bolls with region-based semantic image segmen-
tation [7]. Later fully convolutional network DeepCot-
ton was designed to perform the same task using deep
learning [8]. Another study used ground sensing and
performed bloom detection using Faster RCNN [9] and
weakly supervised deep learning was used to detect cot-
ton bolls from single plant images [10]. Although aerial
imagery methods have been explored extensively in the
past, most of them focused on plot level traits estimation,
such as yield [11, 12], canopy cover [13], and flowering
[13, 14]. Studies based on 2D images have utilized both
traditional image processing [15-17] and deep learning-
based methods [18—-21]. The main disadvantage of the 2D
approach is that 2D images can only reveal plant archi-
tecture from a single view, leading to challenges such as
occlusion and depth ambiguity.

To address these issues, 3D vision offers depth infor-
mation and includes information from all views, making
it possible to accurately estimate plant structural char-
acteristics. Owing to these advantages, researchers have
reconstructed 3D data using techniques such as struc-
ture-from-motion and shape-from-silhouette methods
using RGB imagery [22-24]. Other studies have directly
collected 3D data using terrestrial LiDAR scanners
[25-28].

Plant part segmentation and trait extraction from 3D
data have been studied using traditional point cloud
data processing techniques and machine learning meth-
ods. Approaches involving region growth and skeleton
extraction were used to estimate leaf attributes in sor-
ghum and maize plants [29-33]. In one study, shape fit-
ting and symmetry-based fitting was used to segment
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branches and leaves to estimate the stem length and
leaf area of cotton [34]. Color-based region growth seg-
mentation (CRGS) and voxel cloud connectivity seg-
mentation (VCCS) were used to segment cotton bolls
in plot-level data [26]. Various studies used machine
learning classifiers such as support vector machine
(SVM), K-nearest neighbor (KNN), and Random For-
est to segment parts of wheat, barley, sorghum, and
tomato plants [35-38]. These methods use handcrafted
features (such as fast point feature histogram (FPFH),
surface normal, eigenvalues of the covariance matrix)
that can successfully distinguish between differently
shaped plant parts (such as stems and leaves) in most
cases, but these features have not performed well in
segmenting similarly shaped plant parts (such as stems
and branches both with tubular shapes). In these cases,
the identification and utilization of hidden features can
significantly improve segmentation performance.

In contrast to traditional machine learning meth-
ods, deep learning methods automatically learn fea-
tures from the data without human design, which can
improve the segmentation performance of similarly
shaped plant parts. Until recently, the remote sensing
and plant phenomics community have begun to inves-
tigate 3D deep learning methods for plant part seg-
mentation. For example, a voxel-based deep learning
model (3D Unet) was utilized to segment plant parts
of the rose bush plant [39]. Other studies used point-
based representation for segmentation of wheat, maize,
rice panicle and other plant species [40—44]. In other
studies, structural traits of rose bush and cucumber
plants were extracted by segmenting flower leaves and
stems directly from 3D deep learning networks includ-
ing Pointnet, Pointnet++, DGCNN, and PointCNN
[45, 46]. These studies involved dividing the point cloud
into blocks and training with them as individual point
clouds. Each block was considered as an independent
sample while training, but the relation between dif-
ferent blocks was not considered. In some plants, the
stems and branches resemble the tubular shape and
they are difficult to differentiate in local blocks. Hence,
global information of the whole point cloud is useful to
distinguish between the main stem and branches. Most
of the previous studies have either segmented differ-
ently shaped plant parts or showed high time consump-
tion in the segmentation of similarly shaped plant parts
(stem and branch). Moreover, they have used either
point or voxel data representation. To fill the gaps,
this study aims to utilize both point and voxel repre-
sentations and use point voxel CNN (PVCNN) [47] to
achieve efficient segmentation of two similarly shaped
parts (main stem and branch) and one differently
shaped part (cotton bolls) in an end-to-end manner.
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The PVCNN leverages point-based representation to
perform global feature extraction and voxel-based rep-
resentation to achieve local feature extraction.

In applying deep learning for plant part segmentation,
the annotation of point clouds is an important step to
label the data for effective model training. Existing web-
based 3D annotation tools such as ‘Semantic segmen-
tation editor’ [48] and ‘Scalabel’ [49] allow pointwise
labeling, but the performance is degraded in the case
of high-resolution data with millions of points. A light-
weight portable software ‘Sustech’ [50] allows loading
high-resolution data but it only enables labeling bound-
ing boxes while a pointwise annotation is not possible.
Another desktop application ‘Rviz point cloud annotation
tool’ [51] leverages the robot operating system (ROS) and
allows pointwise annotation using Rviz interface. How-
ever, due to intermediate steps, the annotation software
based on ROS is less efficient and only limited to Unix-
based systems. Therefore, we aim to design a 3D data
annotation tool ‘PlantCloud’ to allow efficient annotation
and to further optimize the annotation functionality by
including both pointwise and bounding box annotations.

The overall goal of this study was to develop a 3D
data annotation tool and to perform part segmentation
of the main stem, branches, and bolls of cotton plants
from point clouds using 3D deep learning models. The
specific objectives of this paper were to: (1) design a 3D
point cloud data annotation tool PlantCloud for seman-
tic segmentation, (2) segment parts of the cotton plant
using both point-based and voxel-based 3D deep learning
models and benchmark their performances, (3) develop
postprocessing algorithms to correct main stem and
branch segmentation errors, and (4) derive seven archi-
tectural traits of cotton plants from segmentation results
and compare the results with ground truth.

Results

3D annotation software performance evaluation

In contrast to the 3D data annotation tools developed
in other studies, PlantCloud software does not require
an intermediate desktop application (Table 1). It pro-
vides both bounding box annotation and pointwise
labeling support whereas other tools cover only one
of those features. In terms of user interface features,
PlantCloud software consists of property panels and
tools for selecting customized label and background
color, which is unavailable in other software. Com-
pared to Desktop based Rviz tool, PlantCloud supports
both Windows and Unix based systems. In addition, it
includes the pan function and point cloud input/out-
put using a file dialog. While web-based tools consist
of cross platform support, they require running a web
browser and are less efficient. Moreover, the support
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Table 1 Comparison between different 3D annotation tools

Attributes (@ (b) () (d) (e)
Desktop app v v
Cross platform support v v /v /
Bounding box annotation support v v o/
Pointwise annotation support v / v
Independent of additional desktop applica- v
tion

Properties panel v
File input and save dialog v v
Background color adjustment v
Customized label colors v
Pan functionality v v 7/ /
Support point cloud rgb values v / v

(a) Sustech [50], (b) Rviz point cloud annotation [51], (c) Semantic segmentation
editor [48], (d) Scalabel [49], and (e) our PlantCloud

for displaying RGB values in LiDAR data and file input/
output using dialog boxes is only available in one web-
based tool.

The performance of different annotation software
was evaluated by measuring the memory consump-
tion when using the software with point clouds of dif-
ferent resolutions. All software was evaluated on an
Ubuntu 20.04 operating system with 16 GB RAM. To
estimate the memory consumed by the software for a
point cloud of a particular resolution, the RAM usage
was recorded before launching the annotation soft-
ware (stage 1) as well as after launching the software
when the point cloud was fully loaded and adjusted
(stage 2). We observed that adjusting the point cloud
like rotating, translating and zooming impacts mem-
ory consumption. We zoomed in on the point cloud so
that it was clearly visible. Differences in RAM usage at
two stages were considered to be memory consumed
by the annotation software. Results indicate that the
web-based software consume more memory than the
PlantCloud software because of the intermediate web
browser application. With the PlantCloud software,
memory consumption for high-resolution point cloud
with 2 million points was reduced to less than half of
the memory consumption by other software (Fig. 1).
Specifically, memory consumption by PlantCloud
remained less than 250 MB compared to other software
that exceeded 800 MB at high-resolution because the
PlantCloud software interacts directly with the system’s
graphics card using OpenGL specification without
an intermediate desktop application. The PlantCloud
software also uses less memory than the Rviz point
cloud annotation tool. This is because the Rviz annota-
tion tool is based on ROS which requires intermediate
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Fig. 1 Memory consumption of different annotation tools at
different point cloud resolutions

execution steps. It is observed that after loading a high-
resolution point cloud (>1 M points) the tools show a
decline in performance whereas the PlantCloud soft-
ware operate smoothly.

Segmentation results

To assess the performance of the networks, the loss func-
tion values during the training of the networks were ana-
lyzed. In training, it was observed that the loss function
value was highly unstable in case of Pointnet as shown in
Fig. 2. Moreover, the fluctuation in loss for PVCNN was
higher than the loss for Pointnet++. The moving aver-
age of loss was initially higher for PVCNN compared
on Pointnet++. Near the end of training, the actual
loss value for Pointnet++ dropped below 0.05 whereas
the loss for PVCNN dropped even lower to below 0.03.
The moving average of loss for PVCNN was around 0.08
while it was around 0.14 for Pointnet++at the end of the
training.

The trained networks were used to segment parts of
the cotton plants in the test set, and to analyze and com-
pare overall and class-wise segmentation performance
(Table 2). In overall performance, PVCNN achieved
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Table 2 Segmentation results from three deep learning
networks on the test set
Metric Pointnet  Pointnet++ PVCNN
Mean loU (%) 39.68 87.09 89.12
Accuracy (%) 70.28 95.57 96.19
loU (%) Main stem 4143 84.43 89.84
Branch 742 80.42 81.35
Bolls 70.18 96.44 96.16
Precision (%) Main stem  58.16 90.38 91.82
Branch 31.21 91.17 94.47
Bolls 76.27 98.02 97.62
Recall (%) Main stem 64.75 92.24 97.69
Branch 9.24 87.33 85.82
Bolls 90.73 98.32 98.45
F1 score (%) Main stem 61.28 913 94.66
Branch 14.26 89.21 89.94
Bolls 82.87 98.17 98.03

Bold numbers indicate the best results in the respective category

the highest mean IoU and accuracy. Both PVCNN and
Pointnet++ showed performance superior to Pointnet.
PVCNN and Pointnet++ utilize both local and global
features of points while Pointnet relies only on global fea-
tures. Therefore, its mean IoU dropped to less than half
of the mean IoU of Pointnet++and PVCNN. The over-
all performance of PVCNN was better than Pointnet+-+
by more than 2% in mean IoU and 0.5% in accuracy. This
indicates that PVCNN excels in neighborhood feature
aggregation using voxel-based representation compared
to Pointnet++ which uses point-based representation.
The class-wise performance of the three trained net-
works indicates that PVCNN outperformed the other
networks in most classes (Table 2). PVCNN showed the
highest improvement in the main stem class. It attained
a margin of more than 5% IoU and 3% F1 score from the
second-best performing network (Pointnet++). While
PVCNN achieved the highest IoU and F1 score in both
main stem and branch class, the IoU and F1 score of the
boll class is slightly lower than that from Pointnet++.
Pointnet++ exceeded PVCNN in boll class performance
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Fig. 2 Loss curves for a Pointnet, b Pointnet++ and ¢ PVCNN across training steps. The curve in light orange represents the actual loss values. The

curve in bright orange represents moving average of loss values



Saeed et al. Plant Methods (2023) 19:33

with a small margin of less than 0.5% in both IoU and F1
score. In terms of all classes, Pointnet showed the low-
est performance compared to the other networks. Its IoU
and F1 score for both the main stem and branch classes
was less than half of the other networks. As most of the
points in the point cloud belong to the boll class, Pointnet
classified most of the branch points as bolls. It showed
the lowest IoU for branch class but comparatively higher

(ii)

(ii)

0] (i)

(a) PVCNN

(b) Pointnet++

(c) Pointnet
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IoU (70%) for the boll class. Overall, the IoU, precision,
recall and F1 score of the boll class from all the networks
was higher than that of the main stem and branch classes.
This is because both the main stem and branch have sim-
ilar tube-like shapes whereas cotton bolls have a spherical
shape that is distinct from the main stem and branches.
Visualization of inference results show that PVCNN
(Fig. 3a) performed better in segmenting main stems,
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Fig. 3 Comparison of segmented point cloud from the three deep learning models with the ground truth. Predicted segments from PVCNN a,
Pointnet++ b, and Pointnet ¢ and the ground truth d for main stem, branches, cotton bolls in red, green, and blue. Sub-figures (i-iv) represent four
representative samples from the test set. Scalebars represent distance in meters
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branches, and cotton bolls than Pointnet++and Point-
net (Fig. 3b, c). While PVCNN and Pointnet++ achieved
more than 85% mean IoU, the inference results indicate
several mispredictions in both networks. In some cases,
PVCNN misclassified part of the main stem as a branch
(Fig. 3a-i and a-iv). However, this misprediction is more
prominent in the Pointnet++ inference (Fig. 3b-i and
b-ii). In other cases, parts of branches were mispredicted
as the main stems (Fig. 3a-iii and a-iv). We noticed that
these mispredicted branch regions resembled the main
stem since they are nearly vertical and show third-order
branch attachment. However, this misclassification is less
prominent in the PVCNN inference (Fig. 3a-iii and a-iv)
than in Pointnet++ inference (Fig. 3b-ii b-iv). Moreo-
ver, PVCNN successfully segmented the curved main
stem (Fig. 3a-iii) which was not achieved in the other two
models (Fig. 3b-ii and c-ii).

Another source of misprediction came from errone-
ous manual annotation. Because of manual annotation,
many peduncles attached to cotton bolls were annotated
as bolls and networks learnt to segment them as cotton
bolls. As a result, the part of the branch attached to the
cotton bolls was mis-segmented in some cases (Fig. 3a-
iv). Similarly, networks learnt to classify small floral buds
(termed “squares”) at the end of branches as cotton bolls
(Fig. 3a-ii). This is because their shape resembles cotton
bolls. However, because of their minute size, they are
annotated manually as part of the branch in the ground
truth.

The inference results of Pointnet (Fig. 3c) validated the
quantitative segmentation results in Table 2. As Pointnet
had a lower mean IoU, most points were misclassified in
Fig. 3c. Among the visualized samples, the main stem was
fully segmented in only one plant (Fig. 3c-iii). As Point-
net only utilizes global features, the main stem, branches,
and bolls were incorrectly segmented, and most points
are classified as boll. The visualization of Pointnet results
suggest that cotton bolls were successfully segmented

-
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in most cases (Fig. 3c). However, as Pointnet does not
include local features it was not able to differentiate
between the branch and boll class and most branch parts
were mis-segmented as bolls (Fig. 3c-iii).

Further post processing was performed on the seg-
mented results to correct small mis-predicted regions
of the main stem and branches. As a result, the branch
regions that were mis-predicted as the main stem were
corrected (Fig. 4b and d)). This also corrected the small
parts in the middle of the main stem that were mis-pre-
dicted as branches (Fig. 4a and d).

Architectural traits extraction results

Given its superior performance, PVCNN was used to
segment plant parts from the test set. Afterwards, seven
architectural traits were extracted including main stem
diameter, main stem height, number of nodes, number
of branches, branch inclination angle, branch diameter,
and number of bolls. The ground truth values of the traits
were extracted from manually annotated segments and
compared with the traits extracted from predicted seg-
ments. Figure 5a shows the part segments for a sample
after applying post processing. We use this example to
illustrate the derived architectural traits.

Main stem height and diameter

The main stem trait extraction and its procedure in a
sample plant are demonstrated in Fig. 5. Because of the
accurate prediction of the bottom 1 cm region of main
stems in all test cases, the circle fitting was consistent as
shown for a sample (Fig. 5b and c). In the overall test set,
the main stem traits estimated from the predicted seg-
ments showed high correlation with the ground truth
with an R? value of more than 0.98 (Fig. 5d and e). In
main stem height, low mean absolute percentage error
(MAPE) and root mean square error (RMSE) imply that
the lowest and highest point in the main stem are accu-
rately classified in most cases. Comparison of the ground
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Fig. 4 Visualization of PVCNN predictions after postprocessing. The segments for the main stem, branches and bolls are represented in red, green,

and blue. Figures (a—d) represent four random samples from the test set
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Fig. 5 Main stem trait extraction and correlation with the ground truth. a Post processed sample from test set. The main stem, branch and bolls are
segmented in red, green, and blue, respectively. b Main stem height estimation and selection of the bottom 1 cm region. ¢ Circle fitting on points
projected on the xy plane. d, e Correlation of main stem diameter and height extracted from predicted and ground truth segments

truth and predicted values suggest that the main stem
height was estimated to be either less than or equal to the
ground truth value but did not exceed the ground truth
(Fig. 5e). Because the test set covered samples including
straight, curved, and tilted main stem, the linear regres-
sion results show height extraction of main stems of dif-
ferent orientations with a high correlation (Fig. 5e). As
main stem height estimation is based on highest and low-
est points, the correct prediction of these points is vital
while, other rare mis-segmentations in the middle of the
main stem have no effect on the resulting height.

Similar to the main stem height, diameter extraction
shows a strong correlation with ground truth (R*>=0.99)
and negligible MAPE and RMSE (Fig. 5d). The main stem
diameter is estimated using bottom-most 1 cm slice.
Therefore, a high correlation of main stem diameters
with ground truth values suggests that most points in
the bottom region were classified accurately. Moreover,
the Pratt method shows consistent results in circle fit-
ting for all plants in the test set. As the Pratt method fits
a circle on the main stem predictions in the bottom 1 cm
regions of the plant, a few mis-predictions are acceptable
because the fitted circle is not affected. However, major
mispredictions in the bottom 1 cm regions would lead to
an inconsistently fitted circle and inaccurate estimation
of the diameter.

Number of branches and nodes

The detected branches and nodes in the postprocessed
plant are illustrated in Fig. 6. Each detected branch was
identified by the cluster of green points at branch region
adjacent to the main stem and each detected branch
location was considered as the average of cluster points
within 1 ¢cm from the main stem. Therefore, the circu-
lar marks for detected branches do not lie on the main
stem but on the branch region adjacent to the main
stem (Fig. 6a). For node detection, the circular marks
are indicated on the main stem since it was computed by
taking an average of points on the main stem slice cor-
responding to each detected branch cluster. For nearby
branches belonging to the same node, the circular mark
was computed as the average of the corresponding main
stem slices of the nearby branches. As shown in Fig. 6b,
the bottom-most two branches belong to the same node,
while all other branches each correspond to a distinct
node. As the small branches at the top were not con-
sidered, the nodes and branches in that region were not
detected. The linear regression between the number of
branches and nodes estimated from the ground truth
and the predicted segments indicates that the branches
were correctly detected in most cases (Fig. 6¢). The esti-
mated number of branches from the predicted segments
differed from the ground truth value by only a couple of
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Fig. 6 Branch and node trait extraction and correlation with the ground truth. a Branch detection. The detected branches shown in black dots.
b Node detection. The detected nodes are shown in black dots. ¢, d Correlation of number of branches and number of nodes extracted from
predicted and ground truth segments. Plot represents results for 9 samples (The samples with duplicate ground truth and prediction values are

represented as a single data point in the plot)

branches as indicated by the high correlation (R*=0.91,
RMSE ~ 1 and MAPE <5%).

The branch detection results affected the node detec-
tion and the estimated number of nodes on a plant.
Because of correctly detected branches in most cases,
the linear regression between the number of nodes from
the ground truth and the predicted segments show a
high correlation (R*=0.88, RMSE<1 and MAPE <6%)
(Fig. 6d). Similar to the number of branches, the accu-
rate estimation of the number of nodes is highly depend-
ent on the correct prediction of points adjacent to the
main stem. As the points far from the main stem do not
impact the branch detection, the number of nodes can
withstand any misclassification in the region not adja-
cent to the main stem. Furthermore, the node detection
requires only one correctly detected branch at a node and
is robust to other missed branches at the same node. As a
result, the node detection is not affected by the presence
of multiple nearby branches since this was detected as a
single node.

Branch inclination angle and diameter

The branch inclination angle and branch diameter were
estimated for each detected branch in all plants from
the testing set. (Fig. 7a). As the bottom most 3 branches
were flatter, they typically showed an inclination of less
than 25 degrees. On the other hand, the remaining upper

branches showed inclination greater than 35 degrees.
The branch inclination and diameter estimation were
impacted by the branch detection. The linear regression
between estimated traits from the ground truth and the
predicted segments show a high correlation (R*>0.9) for
branch inclination angle and branch diameter (Fig. 7b
and c). The correlation results of the branch diameter
between the ground truth and the predicted segments
showed higher MAPE (8.1%) than that of branch inclina-
tion (6.9%). This is because branch inclination is robust
to the small misclassification in the branch attachment
region as the principal component indicating the direc-
tion of the branch remains almost the same. In contrast,
the branch diameter was prone to misclassification in
branch attachment region when some branch points are
mispredicted as the main stem.

Boll number

One example of boll semantic segmentation from
PVCNN and boll counting using clustering is illustrated
in Fig. 8. In the DBSCAN results, the clusters having
height less than 3 c¢cm are not included (Fig. 8b) which
were originally present (Fig. 8a). Each detected cluster
corresponds to one cotton boll in most cases (Fig. 8b).
However, one outlier cluster representing two connected
bolls is detected. The counting for the outlier cluster was
performed separately where the size of outlier cluster
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Fig. 7 Branch inclination angle (degree) and diameter (cm) estimation, and correlation with the ground truth. a represents branch inclination angle
and diameter specification for each branch. b, ¢ represents correlation of branch inclination angle and diameter extracted from ground truth and

predicted segments. (Each branch is taken as a separate sample)

in number of points was divided by the mean size of all
clusters. In most samples, the cotton bolls are far apart
and only a few cases of connected bolls exist. Therefore,
the outlier clusters were identified successfully in most
samples.

The number of cotton bolls shows a high correlation
(R*=0.9) between the ground truth and the predicted
segments for applying linear regression (Fig. 8c).
Among our samples, three plants with more than 35
cotton bolls were from single-plant plots while the
remaining were from regular plant plots (with 10 — 15
plants). In single-plant plots, plants have more space
and have more cotton bolls per plant exceeding 100
in some cases, whereas in regular plots, the plants are
spaced closely together and produce fewer bolls (<35
in most cases). As the number of bolls is computed by
applying the clustering on boll points, a slight misclas-
sification of branch part near the cotton bolls does not
affect the size of clusters significantly and the number
of clusters remains the same.

We observed that our algorithm is robust to most
outlier clusters and it correctly estimates the boll

counts in them. To analyze the sensitivity towards the
outlier clusters, we selected all outlier clusters from
the test samples and compared the estimated and
actual (manually counted) boll count value for them.
Linear regression applied to explore the correlation
between the two values shows a high R2 value of more
than 0.9 and RMSE of less than 0.5 as shown in Fig. 8d.

Discussion

In terms of data collection, we ensured several condi-
tions to achieve high-quality LiDAR data. Firstly, LIDAR
scanning was performed on single plants without nearby
plants so that the scan was not affected by occlusion
from neighboring plants and shadowing. Moreover, the
scan quality could be affected by the wind which causes
the same parts to be recorded at slightly different loca-
tions. To mitigate the wind effect, the data were collected
in calm weather for samples scanned in an outdoor
environment. To address the uneven and uncontrolled
illumination conditions, only coordinate values exclud-
ing the RGB values were utilized in the method. As the
movement causes vibrations and affects the quality of
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Fig. 8 Boll count extraction and correlation with the ground truth. a Segmented cotton bolls are represented in blue. b Clustering results of cotton
boll prediction. Each color represents a cluster. ¢ Correlation of number of bolls extracted from ground truth and predicted segments. d Correlation
of estimated boll count and actual boll count (manually counted) in outlier clusters

collected scans, we set the instrument in a stationary
position in both indoor and outdoor environments to
achieve the highest data quality. As the FARO LiDAR
sensor is limited in its ability to capture very thin parts, it
showed missing data in the case of rarely occurring very
thin branches. We observed that all cotton bolls due to
their spherical shape were captured including smaller
bolls from single-plant plots and bigger bolls from plants
selected from multi-plant plots. Due to defoliated plants,
we observed that cotton bolls had very little to no occlu-
sion in point cloud samples. The plants were scanned
from multiple overlapping views so that part of the cot-
ton boll occluded from one view may be captured in
another view. The FARO LiDAR scanner device was able
to preserve the scale of the object when placed at differ-
ent distances from the plant. In this study, we measured
the distance among the points in the configured meas-
urement unit which was set to ‘meters. For this study,
annotated and preprocessed point clouds along with raw
scans were generated and the digitization footprint [52]
is around 5.1 gigabytes.

100
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;\3 80
o 70
o
g 60
2
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0 0.5 1 1.5 2 25 3 35
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Fig. 9 Mean loU vs measured latency of three 3D deep learning
models

We have demonstrated that PVCNN achieved opti-
mal performance in terms of inference accuracy and
efficiency: with an mloU of more than 89% while con-
suming the least amount of time (less than 1 s) (Fig. 9).
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The point-based 3D deep learning models took permu-
tation invariant point clouds as input, which occupied
less memory but take more time to compute since data
are not saved in adjacent memory locations. Point-
net++ consumed the most time because it applies mul-
tiple set abstraction layers in a sequence and aggregates
neighborhood information from point-based represen-
tation. In comparison, voxel-based 3D models take grid
representation (i.e., pixels in 3D) as input and 2D con-
volution operations can be readily extended to 3D and
applied on the voxels. PVCNN not only utilizes point-
based representation to extract global features, but also
uses voxel-based representation for neighborhood aggre-
gation in which data are organized in memory; therefore
the PVCNN is less time-consuming with a speed up of
3.5 times from Pointnet++. However, Pointnet showed
the least time consumption but had the lowest mIoU
because of the absence of local feature extraction.

3D deep neural network architecture plays a critical
role in the segmentation results. In our approach, vari-
ous network architectures for Pointnet++and PVCNN
were manually tried and tested to observe the segmen-
tation results and the neural network architecture that
showed the best results in our experiments was finalized.
However, the task of finding the best-performing archi-
tecture is an optimization problem that can be achieved
through a neural architecture search, and it is planned for
future research to further improve the results. The data
set used in this study consists of point clouds from 30
plants which are annotated manually. The performance
of transfer learning was observed by first training the
network on the Shapenet dataset and using the learned
weights to perform further training on our plant dataset.
However, because of the difference in the scale of parts
in the two datasets, transfer learning reduced the overall
performance. The plant dataset includes a variety of plant

(a)

Fig. 10 A few erroneous cases in branch detection. Circular marks represent detected branches. a Incorrectly detected branch (bottom circular
mark) due to mispredicted boll region. b Multiple nearby branches detected as a single branch. ¢ Missed branch detection due to mispredicted
branch region
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architectures from different genotypes including curved,
tilted and straight main stems. To introduce more vari-
ety in the dataset, data augmentation was applied in
every training iteration to rotate the plants along the x
and y axes. We notice that data augmentation achieved
an improvement of around 1% mIOU and the network
could identify all straight, curved and tilted main stem
types. Due to the time-consuming and labor-intensive
task of data collection and point-wise annotation of point
clouds, the size of the current data set is limited. The
expansion of dataset leveraging geometrical shapes for
fake data generation and for labeled plant parts is another
research area which may further improve the segmenta-
tion results.

In terms of all extracted architecture traits, this study
demonstrates a mean absolute percentage error of less
than 10%. The architecture traits were computed for
plants from both single and multi-plant plots. The boll
number was estimated with the highest R? value (0.995)
and shows potential to be utilized by cotton growers
and breeders in plant physiology studies. The proce-
dure correctly detected the disjointed (far apart) bolls
in most cases but misclassified small floral buds (termed
“squares”) as bolls. Because of this, our method removes
all detections with a height of less than 3 cm including
both very small cotton bolls and squares. To differenti-
ate between very small cotton bolls and squares, the
RGB information can be leveraged. Our current method
utilized only the x, y, and z coordinates without RGB
information. Therefore, it is invariant to illumination
conditions and can be performed in both indoor and out-
door settings.

Architectural traits related to the branches (including
the number of nodes, branch diameter, branch angle,
and branch count) were estimated with high accuracy
because of correctly detected branches in most cases. The

(b)
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few cases of missed and incorrectly detected branches
resulted in small errors in branch-related traits (Fig. 10).
Incorrect branches were detected in cases where the
method incorrectly segmented the branch region near
the main stem (Fig. 10a). In some scenarios, the method
detected multiple nearby branches at the attachment
point as a single branch and resulted in underestima-
tion of the branch and the node count (Fig. 10b). In other
cases the method did not correctly identify the branch
points near the main stem and failed to detect the branch
(Fig. 10c). Overall, due to the low error in the detected
branches, the method showed a high correlation (R*>0.8)
between the ground truth and the predicted values of the
branch related traits.

Most previous studies used 2D images to estimate boll
counts [41]. As 2D images only capture a single view
at a time, the hidden and highly occluded bolls can-
not be detected. In contrast, the 3D point cloud sample
of the cotton plant in our study captures views from all
angles and has less occlusion and bolls can be captured
from all angles. While 2D-image-based boll detection
using fully and weekly supervised segmentation shows
a strong correlation (R*<0.91) on the dataset studied
by researchers, the 3D imaging approach significantly
outperforms the 2D imaging approach qualitatively and
shows a strong correlation on our dataset with the ground
truth (R>=0.99). The presented method using 3D point
clouds was more robust for architecture trait extraction
than other studies based on 2D images for fruit and leaf
counting [16, 17, 53]. The presented approach is also
robust for cases where the branch is oriented towards
or away from the camera while 2D image-based studies
for automated stem angle determination are more error-
prone in this case [15]. In cotton plants, this is illustrated
by estimating branch inclination angles from different 2D
views of the plant. 2D images of point clouds from differ-
ent views including the front-facing view were captured.
The estimated value of the branch inclination angle var-
ied across different views of the same plant as illustrated
in Fig. 11. The branch inclination angle estimated from
the front view was lower than the angle estimated from
the views where the branch lodges towards or away from

(a)
Fig. 11 Branch inclination angle estimation from 2D views. a Front facing view of the plant. b Branch lodging away from the camera. ¢ Branch
lodging towards the camera

Page 12 of 23

the cameras. In comparison, our method based on 3D
point clouds estimated the same values for the inclina-
tion angles of a branch for any view.

In comparison to other 3D point cloud-based
approaches for main stem height estimation utilizing
point coordinates and local surface features [29, 54] in
cotton, corn, wheat, and tomato, our approach dem-
onstrates a higher correlation between the predicted
value and the ground truth. Our approach also estimates
height in the curved main stem cases in contrast to [36]
when a cylinder is approximated as the main stem of a
barley plant and cases with tilted and curved main stems
are not accounted for, resulting in less accurate main
stem height estimations. Our approach outperformed the
3D approach [26] based on voxel cloud connectivity seg-
mentation (VCCS) and color-based region segmentation
(CRGS) for boll number estimation. The approach based
on VCCS and CRGS utilized intensity and local surface
features compared with advanced features utilized in our
study. We employed a deep learning approach which is
used to automatically extract features from the data that
are useful for the segmentation and classification task.
Other studies [36-38, 45, 55, 56] segmented grapevines,
wheat, barley, sorghum, tomatoes and rose plants using
handcrafted features such as eigenvalues of the local
covariance matrix, fast point feature histogram (FPFH),
and principal curvature. In the cotton plants dataset, the
performance of handcrafted features on segmentation of
the main stems, branches and cotton bolls is evaluated to
compare with features extracted from 3D deep learning.
The eigenvalues of the covariance matrix, FPFH, prin-
cipal curvature and normal features are estimated on a
local region with a radius of 1 cm. A softmax classifier
is trained and performance is evaluated for each hand-
crafted feature. Among the handcrafted features, FPFH
achieved the highest segmentation accuracy (Fig. 12a).
The handcrafted features achieve less accurate results
than the deep learning approach. Analysis of mean
IoU and latency indicate that all deep learning-based
methods excelled in mean IoU (Fig. 12b). Moreover, all
handcrafted features with the exception of normal fea-
tures showed substantially higher latency than PVCNN,

(b) (c)
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Fig. 12 Comparison of hand-crafted features and the deep learning-based features for segmentation of main stems, branches and cotton bolls. a

Segmentation accuracy b Time consumption (in seconds) vs mean loU (%)

Fig. 13 Samples of inference results on unseen and unlabeled data

Pointnet++ and Pointnet. In our cotton plant dataset,
both the main stem and branches are tube-like shapes;
therefore, the local surface features in Fig. 12 showed
lower performance whereas the PVCNN utilized the
hidden features in the data to classify the points more
accurately.

To verify the claimed advantages of segmentation
method, we scanned 10 more plants in indoor environ-
ment and applied preprocessing including cropping,
denoising, normalization, and down-sampling. We used
the trained point-voxel convolutional neural network to
perform inference on this unseen and unlabeled dataset.
The inference results showed that most regions were cor-
rectly segmented with the exception of a few mispredic-
tions as represented in a sample in Fig. 13.

To evaluate the practicality of the presented method,
we assessed the time consumed in each stage for obtain-
ing estimates of the architectural traits. In this study, the

I A: Preprocessing (3%)
(o} B [ B: Inference (< 1%)

A 71 C: Postprocessing (< 1%)
[1D: Trait extraction (96%)

Fig. 14 Inference time consumption of each stage for PVCNN (in
seconds and the percentage to the total time consumption)
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denoising step was performed manually using Cloud-
Compare software. For the purpose of measuring the
time consumption in denoising, the statistical outlier
removal of points was automated. The time consumption
was recorded for the preprocessing stage which included
denoising, normalizing, and down-sampling steps. Based
on the results, the trait extraction stage accounted for
more than 90% of the time while the preprocessing, infer-
ence and post processing stage took less than 5% of the
total time (Fig. 14). The future plan is to optimize the
architectural trait extraction stage to reduce its time con-
sumption and combine and automate all steps in the pro-
cessing pipeline.

In this method, part segmentation and trait extrac-
tion were performed on the single plant point clouds. To
achieve our goal of cotton plant architecture characteri-
zation and part segmentation, we used ground sensing
given its ability to capture finer details at the lower part
of a plant. In outdoor data collection, ground sensing can
easily assist in the estimation of plant-level traits includ-
ing stem diameter, branch angle, branch height, num-
ber of nodes, number of branches and others. Given the
flight altitude and limited resolution, the aerial imagery
approach would not be feasible to capture the same level
of details as our terrestrial LIDAR to characterize cotton
plant architectural traits. Ground sensing may require
more manual handling to fully capture the data for the
entire field while the UAV can be handled remotely for
capturing field-level data. Although the annotation tool
developed in this study uses pointwise labeling for seg-
mentation in a single plant, the bounding box labeling
utility can be used to annotate each plant in plot-level
data. Hence, this segmentation method could be modi-
fied and extended to plot-level data captured using air-
borne LiDAR scanners and mobile platforms. Therefore,
the estimation of plot-level traits such as the number
of cotton bolls per plot is planned to be investigated in
future research.
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Conclusions

This study applied three 3D deep learning models to
segment the main stem, branches, and bolls of cotton
plants and extract architectural traits. This is particularly
important in cotton, which has a more complex growth
habit than most major row crop species. The custom-
made PlantCloud annotation tool demonstrated more
functionality with the lowest memory consumption. 3D
deep learning automatically obtained useful features
based on the labeled dataset which avoided the need to
manually select handcrafted features. Using both point
and voxel representation of 3D data, the optimal perfor-
mance in terms of segmentation accuracy and efficient
inference time was achieved through PVCNN among
the three models. The architectural traits derived from
the post-processed segmentation results showed a strong
correlation with the ground truth. Overall, the plant part
segmentation and architectural trait extraction results
are promising and could be used for automated plant
phenotyping and physiological studies.

Materials and methods

There were five major components in the data process-
ing pipeline for plant part segmentation and trait extrac-
tion (Fig. 15. First, 3D data collection was performed and
the input point clouds were passed through the preproc-
essing stage. After preprocessing, 3D deep learning was
applied for segmenting the plant parts. The predicted
segments were then passed through the post processing
stage. The results obtained from the post processing were
used in extraction of seven architectural traits. The fol-
lowing sections introduce these procedures in detail.

Data collection

The raw data comprising 3D point clouds of the cot-
ton plant were collected in three sessions at the Plant
Research Farm of the University of Georgia, Athens GA,
USA. The first session was held in December 2018 where
the data were collected in an outdoor field setting and the
plants were scanned from single-plant plots. The next
two sessions were held in December 2020 and February

DATA COLLECTION PREPROCESSING
3 w e
. [EBeeEna] .
a3

Normalization

3D DEEP SEGMENTATION

POSTPROCESSING ARCHITECTURE TRAITS EXTRACTION

Main stem correction _

&

Fig. 15 Segmentation and trait extraction workflow. Five phases including data collection, preprocessing, deep segmentation, post processing and

trait extraction are carried out sequentially
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Fig. 16 Examples of collected cotton plant point clouds. The top row represents plant data collected in-situ in an outdoor field setting in session 1.
The bottom row represents data collected in an indoor setting in session 2 and 3

2021 for plants from regular plots (10 — 15 plants per
plot). In these sessions, the plants were cut from their
base and brought to an indoor setting for data collec-
tion. Each plant was fixed to a wooden base to arrange
in a standing position. FARO Lidar Scanner was used
for 3D data collection in all sessions. The measurement
unit in the FARO LiDAR device was set to ‘meters’ and
accordingly the distance between any two points in the
scans was set in meters. Spherical targets were used in
data collection for registering scans from different angles.
The recorded LiDAR scans were registered using SCENE
software [57] and point clouds for individual plants were
obtained. An illustration of point clouds for a sample
of plants shows that plants from session 1 are wider in
structure compared to plants from the other two sessions
(Fig. 16). Moreover, some plant parts in the point cloud
data are brighter than others because of differences in
illumination. The overall dataset covers point clouds of
30 individual cotton plants. There are on average more
than 450,000 points per point cloud. More than 70% of
the points in all datasets belong to the cotton boll class,
whereas the main stem and branches combined cover
less than 30% of the total points. Each point consists of x,
Y, Z, R,G, and B as a six-vector.

3D annotation software

To prepare the annotated dataset of plant point clouds,
we developed the 3D annotation software PlantCloud.
The main purpose of the annotation software is to allow

pointwise labeling and bounding box annotation of plant
parts.

We developed the annotation software in C++and
OpenGL to achieve efficient annotation, manipulation
and rendering of high-resolution plant point clouds.
Using C++and OpenGL, the plant annotation software
directly interacts with the system’s graphics card with-
out any intermediate applications (such as web browser
or ROS). The overall development of the software was
divided into two parts. The first part consisted of devel-
oping a module to render the point clouds from different
angles and positions. The second part included the user
interface design and development of a module to allow
pointwise labeling and bounding box annotation.

To render the plant point clouds in each frame, a series
of transformations were applied on input point cloud to
transform through multiple coordinate systems (Fig. 17)
and to finally achieve coordinates in the screen space.
The input point cloud was initially in object coordinate
system which was relative to local origin. Using the
‘model matrix; these local coordinates were transformed
through rotation and translation to world space coordi-
nates which were relative to global origin in the world.
The world coordinates were transformed to camera space
coordinates using the ‘view matrix’ in such a way that
each coordinate was as seen from the camera. The cam-
era space coordinates were then projected to 2D space
as image plane coordinates using the ‘projection matrix’
These coordinates were normalized in the -1 to 1 range.
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Fig. 17 Coordinate system representation for rendering plant point cloud on screen. O, W, C, | represent object, world, camera, and image

coordinate systems, respectively
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Fig. 18 User interface of PlantCloud software for plant 3D point cloud annotation

Lastly, the image plane coordinates were transformed to
screen coordinates using the ‘viewport transformation’
which transformed the normalized coordinates to coordi-
nate range defined by the device screen (for example, the
coordinate range is (0,0) to (1920,1080) for a 1920 x 1080
dimension screen).

To design the user interface with cross platform sup-
port, the open source library ‘ImGui’ was leveraged in
C++. The overall interface (as shown in Fig. 18) was
designed to enable the user to perform both pointwise
labeling and bounding box annotations. The user inter-
face enables users to adjust point cloud position through
rotation and translation using mouse drag and drop as
well as the transform widget. The software enables point-
wise labeling through the paint brush, the label color
selected by users and the labels panel. For bounding box
annotation, the software allows for the addition of a new

box with associated transform widget in the bounding
box panel, for adjusting the box size and position. Along
with annotation support, the software displays the point
cloud dimensions in the properties panel. After a plant is
fully annotated, the software saves the annotated point
cloud at a desired location using a file dialog.

Data preprocessing
Data preprocessing was applied on input point clouds for
denoising, annotation, normalization, and down sam-
pling before segmenting the plant parts (Fig. 19).
Denoising: The input point clouds acquired from the
registered LiDAR scans contain noise. For denoising,
the statistical outlier removal method in CloudCompare
software [58] was used. Using this method, the aver-
age distance of each point from 6 nearest neighbors was
estimated and points exceeding a distance of 1 standard
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deviation were removed to obtain a denoised point cloud
(Fig. 19b).

Annotation: On the input point clouds, point-wise
annotation of cotton plants was performed to prepare a
labeled dataset of cotton plant part segmentation. Using
annotation software, the main stem, branches, and cotton
bolls of the dataset were manually labeled in red, green,
and blue color respectively as illustrated in Fig. 19c.

Normalization: As the point clouds can be at vary-
ing scales, they were normalized to unit sphere so that
all point clouds were at a common scale (Fig. 19d). For
normalization, first the point cloud center needs to be
shifted to zero. To achieve this, the average of all point
coordinates, p = (*,7,z) was estimated using Eq. 1. It
was subtracted from each point p; = (xi, yi,zi) in the
sample to achieve a mean of 0. Afterwards all point coor-
dinates were divided by the maximum norm of all points
in the sample to result in normalized point coordinates
(Eq. 2). The radius of the resulting point cloud was 1.

SN -
p= (%72 = - >~ [xi 70, (1)
1=1

where n represents the total number of points in the
sample.
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(d)
Fig. 19 Data preprocessing steps on a sample input point cloud. a Input point cloud. b Denoised point cloud. ¢ Labeled point cloud. d Normalized
point cloud. e Down sampled point cloud
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where norm is calculated as the Euclidean distance from
the origin (0,0,0).

norm(p;) = \/x% + y* + 22 (3)

In inference, each point cloud was denormalized back
to its original state so that architectural traits such as
stem height, stem, and branch diameter can be extracted
in meters.

Down sampling: The point cloud for each cotton plant
have more than 400,000 points on average. Because of
hardware limitations, applying 3D deep learning on the
entire point cloud is unfeasible. When using a Tesla V100
GPU card, the method exceeds memory limitations after
the number of points exceeds 110,000. To leverage maxi-
mum information, each point cloud was randomly down-
sampled to 100,000 points which did not exceed memory
limitations (Fig. 19e).

3D deep learning approaches

This section first gives an overview of Pointnet and Point-
net++ networks and then describes the Point Voxel
Convolutional Neural Network (PVCNN) for achieving
better performance.
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Pointnet

Pointnet is among the pioneering 3D deep learning archi-
tectures that directly consumes point clouds for per-
forming 3D tasks of segmentation and classification. The
network is invariant to the order of points in the input
point cloud and works by extracting features from indi-
vidual points. It then aggregates the global information by
applying pointwise max pooling operation on extracted
features. The aggregated global feature is concatenated
with individual point features. Afterwards, a multi-layer
perceptron classifier is trained to output scores per point
for each part. In the network architecture adopted in our
study, the skip connections are used to combine individ-
ual point features from all previous layers (Fig. 20). The
combined feature for each point is concatenated with the
global feature and fed to the multilayer perceptron net-
work for classification into the main stem, branch, and
cotton boll classes.

Pointnet++
The Pointnet network operates on each point individu-
ally and aggregates the global information. As a result, it
does not consider the local neighborhood information of
a point thus limiting its ability to recognize fine-grained
patterns. To address this issue, Pointnet++architecture
was adopted since it considers the information from the
surrounding neighborhood of a point within a certain
radius. Pointnet++ architecture achieves this purpose by
using the set abstraction and feature propagation layers.
The set abstraction layer involves sampling, grouping
and aggregation step. The sampling step selects k num-
ber of points using the farthest point sampling method.
The selected points define the centroid of local regions.
The grouping step is then performed to gather the neigh-
boring points around each centroid within a certain
radius. Finally, the set abstraction layer aggregates the
neighborhood of each centroid using MLP layers. The set

abstraction layer can form groups of a point at single or
multiple radius levels. The information of groups from
each radius level is aggregated and concatenated to form
a final aggregated feature vector of centroids.

The feature propagation layer interpolates the esti-
mated features for all points. As the Pointnet++ applies a
series of set abstraction on a sample of points, features for
the remaining points in the original point cloud need to
be interpolated to achieve pointwise scores. For this pur-
pose, feature propagation layers are applied correspond-
ing to each set abstraction layer. The sampled points of
each set abstraction layer are used to interpolate features
for points in the input set of that layer. In addition to
performing interpolation, the feature propagation layer
also uses skip connections with the corresponding set
abstraction and MLP network for richer information as
shown in the architecture of Pointnet++ adopted in our
study (Fig. 21). In our customized network architecture,
we employed 3 set abstraction layers with the sample val-
ues of 10,240, 5120, and 1240. Further we leveraged mul-
tiscale grouping. In this way local features of a point are
extracted at different radius levels. The features extracted
at all radius levels are concatenated for a point.

Point voxel convolutional neural network (PVCNN)

The Pointnet and Pointnet++ architectures utilize the
point-based representation of 3D data. Liu, Tang [47]
showed performance enhancement by using both point-
and voxel-based representation through Point Voxel
Convolution Neural Network (PVCNN). The PVConv
module is employed to combine both point- and voxel-
based representations. The PVConv module comprises
two branches for computing features from both voxel-
and point-based representation of the input point cloud
(Fig. 22). The features from the two branches are fused
using an addition operation to form the output for
PVConv module. The PVCNN architecture adopted in
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Fig. 22 Point Voxel Convolutional Neural Network. a The PVConv layer applies 3D Convolution on voxelized input. It devoxelises the aggregated
features back to map the points. The point-based and voxel-based features are fused to form the output. b The PVCNN network takes n points as
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our experiment is formed by replacing initial fully con-
nected layers of Pointnet with PVConv module (Fig. 22b).
In our customized network architecture, we use four
consecutive PVConv layers followed by MLP layers. The
voxel resolution is set to 128 and 100 for the first and
next two PVConv layers, respectively.

Experiment settings

In the experiment phase, the dataset was divided into
training and testing set with the ratio of 70% to 30%. The
RGB information was excluded due to differences in illu-
mination and only point coordinates were considered in
segmentation. In the training phase, the data augmen-
tation was performed on the point clouds in each itera-
tion. The point clouds in the training set were randomly
rotated along x and y axis with the probability of 0.5 and
0.3 respectively. Afterwards, all networks were trained
for 300 epochs with the initial learning rate of 0.001. A
Tesla V100 GPU card was used in the entire process of
training and testing.

Evaluation metrics
The overall segmentation performance was evaluated
through mean Intersection over Union (mIOU) and

accuracy. For mloU estimation, the IoU for all classes per
point cloud was first averaged. These averaged IoUs for
each point cloud were used to calculate the final mIoU
by taking their mean over all point clouds. The accuracy
was calculated as the percentage of correctly classified
points from the total number of points. The efficiency of
the method was evaluated in terms of average inference
time per point cloud.

The segmentation performance of each class was evalu-
ated in terms of Intersection over Union (IoU), Recall
and Precision. The Precision (Eq. 4) of a class is defined
as the proportion of correct detections from all detec-
tions of that class, while Recall (Eq. 5) as the propor-
tion of detected points from all the points belonging to a
class. The IoU (Eq. 6) of a class is evaluated as the ratio of
the common region to the overall region of ground truth
and predicted segments belonging to that class.

TP

Precision = ————
TP; + FPy

(4)
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TPy
Recall = ————— (5)
TP + ENy.
TPy
ou = (6)
TP + FP; + FNy,

where TPy, FPy, FN represent true positives, false posi-
tives, and false negatives for a class k respectively.

Postprocessing

On the predicted segments of plants, further post pro-
cessing was applied before proceeding for architectural
trait extraction. Firstly, the point clouds were denormal-
ized back to the original state so that distance between
any two points can be estimated in meters. Next, it was
observed in segmentation results (discussed in “Segmen-
tation results” Section) that small parts of the main stem
were incorrectly predicted as branch points whereas
small parts of branches were mis-segmented as the main
stem. Main stem and branch corrections were applied
to address this issue. In all point clouds, the bottom-
most points of the main stem were predicted correctly.
Therefore, to apply main stem correction, the bottom-
most 1 cm slice of the main stem was selected and its
bounds along x and y axes were noted. Afterwards, the
1 cm slices along the z axis were iteratively selected up to
the slice with highest main stem prediction to apply the
branch and main stem correction. In each slice selection,
the non-main stem points lying within the noted bounds
(i.e. the maximum and minimum value along x and y axes
of main stem predictions in the previous slice) after keep-
ing a margin of 1 cm, were corrected as main stems while
those lying outside were corrected as branches. From the
main stem points in the selected slice, the bounds along
the x and y axes were noted to be used in the next itera-
tion for main stem and branch correction. This proce-
dure is outlined in Algorithm 1. This method filled the
parts in the middle of the main stem containing incorrect
branch predictions. Because we checked the bounds in
every iteration, we have considered the assumption that
the main stem cannot change growing direction abruptly.
This process was repeated for two rounds with slightly
different margins.
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Algorithm 1: Postprocessing for main stem and branch correction

Input: red points, green points
Output: corrected points

//Initialization

set margin = lcm

set slice = bottom-most 1cm slice of red points

set bounds = slice bounds along x and y axis + margin
set corrected_points = [slice]

//Individual slice correction
while nor at top-most slice do
select next Icm slice of red and green points

//Main stem correction
set error_green = slice.green_points in bounds
update error_green.color = red

//Branch correction
set error_red = slice.red_points not in bounds
update error_red.color = green

//Update slice points and add to result set
update slice points € {error_red, error_green}
corrected_points.add(slice)

//Note slice bounds of red points
set bounds = bounds of slice.red_points along x and y axis + margin

Architectural traits extraction

Seven architectural traits of cotton plants were extracted
from the segmented parts and the traits include main
stem diameter, main stem height, number of nodes,
number of branches, number of bolls, branch inclina-
tion angle and branch diameter. The predicted traits
were compared with the ground truth estimated from
manual measurements. For node and branch detection,
crop physiologists typically do not consider the top part
of the plant above the uppermost harvestable boll. This
is because cotton is an indeterminate plant, in which the
regrowth of new vegetative tissue begins after the crop
has reached physiological maturity. This new growth
does not contribute appreciably to yield [59]. Therefore,
the branches and nodes in the part of the plant above the
uppermost boll were not detected.

For main stem diameter estimation, we selected
points belonging to the main stem in the lowest 1 cm
region. The selected points were projected on the xy
plane and a circle was fit on the projected points using
the Pratt method [60]. The radius and diameter were
estimated from the fitted circle. The main stem height
was defined as the vertical height of a segmented main
stem which may be straight, curved, or tilted. It should
be noted that the height of the main stem cannot be esti-
mated as the height of the entire plant because in some
cases the branches of the plant exceeded the main stem
along the z-axis. Therefore, the main stem height was
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(a) (b) (c)

Page 21 of 23

(d) (e)

Fig. 23 Branch traits extraction. a Segmented main stem and branch points within 6 cm from main stem. b Clustering of selected branch points.
Each color represents a detected branch. ¢ Principal component analysis applied on selected branch. Vector in red represents the principal
component in the direction of branch d Vertical alignment of selected branch e Projection of points on xy plane and circle fitting

calculated by taking a difference between the highest and
the lowest points belonging to the main stem class.

The branches were detected by applying DBSCAN (Den-
sity-Based Spatial Clustering of Applications with Noise)
Clustering. In the plant point clouds, there were a few
small branches with less than 100 points. These small
branches were filtered by clustering all branch and cotton
boll predictions together and removing the smaller clus-
ters. During clustering, the ‘minPoints’ parameter was
set as 100. Moreover, some gaps were observed in the
branches in a few cases because of missing data there-
fore the ‘eps’ parameter in DBSCAN was set as 2 cm.
This parameter ensured that branches with gaps less
than 2 cm were considered as single cluster. After apply-
ing DBSCAN, the clusters with less than 100 points were
removed and the branch predictions in retained clusters
were considered for branch detection. For this purpose,
the branch predictions within 2 ¢cm radius of main stem
predictions were selected. This radius was increased
to 6 cm for branch inclination angle estimation, which
allowed enough branch part to be selected for more pre-
cise estimation of branch inclination angle (Fig. 23a). For
detecting each individual branch, clustering was applied
on selected branch points with ‘eps’ value of 2 cm. The
initial clustering (applied for filtering small branches) was
not utilized here to detect each branch as it was applied
on all branch points and multiple branches were identi-
fied as a single cluster due to small distance between
them. However, branches were far apart from each other
at their point of attachment of the main stem (within
2 cm distance from the main stem) and there were rare
cases of nearby branches at the attachment point. As a
result, the branch points lying within 2 cm from the main
stem were selected and DBSCAN was applied (Fig. 23b).
The resulting clusters were considered as detected
branches. The number of clusters was considered as the
number of branches and the points in each cluster within

1 ¢cm from the main stem were averaged and considered
as a detected branch location. For each detected branch,
branch inclination angle and branch diameter were esti-
mated. The principal component analysis (PCA) was
applied on a cluster for the selected branch to estimate
the branch inclination angle, which allowed us to find
the most dominant component in a branch as shown in
Fig. 23c. Branch inclination angle was then computed as
the angle of the dominant principal component from its
projection on the xy plane. For the branch diameter esti-
mation, the selected branch cluster was rotated to align
vertically. This was achieved by first rotating the domi-
nant principal component to align it along the z-axis. The
rotation matrix for this purpose was computed as fol-
lows. Let A be the dominant principal component along
the branch and B be the z-axis, then rotation matrix to
rotate A to B on a plane with a normal A x B is given as,

cosf —sinf 0
sinf cosf 0 (7)
0 0 1

G =

where 6 is the angle between A and B.

Using the rotation matrix in Eq. (7), the transformation
was applied on selected branch points so that the branch
is vertically aligned along the z-axis (Fig. 23d). From the
vertically aligned branch part, the diameter was com-
puted using the procedure similar to main stem diam-
eter estimation method. The bottom-most 1 cm slice of
branch was selected and projected on the xy plane. The
fitted circle was used in diameter estimation (Fig. 23e).

The clusters for detected branches were also used in
detecting the node positions in the main stem. For the
node detection, minimum value along the z-axis for
each cluster was retrieved. Afterwards, the clusters were
sorted in the ascending order of their retrieved mini-
mum values. Among the list of sorted clusters, if a clus-
ters minimum was within 1 cm of the previous cluster’s
minimum, both clusters were considered to belong to a
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single node otherwise the clusters were connected to two
different nodes. For computing the node’s location, the
branch clusters belonging to that node were considered.
Afterwards the main stem slice corresponding to the
associated branch clusters were selected. The points in
the selected main stem slice were averaged to represent
the detected node location.

For estimating the number of cotton bolls, DBSCAN
was used to cluster the cotton boll segments. It was
observed that there were many nearby bolls with less
than 1 cm of distance between them. Hence, the ‘eps’
parameter value was set as 5 mm. The ‘minPoints’ param-
eter value was set as 100. The small clusters with less than
3 cm of height were removed to retain the mature bolls.
The number of clusters represent the number of cotton
bolls. However, in a few cases, some cotton bolls were
connected with less than 5 mm distance between each
other. These bolls were clustered as a single boll, which
resulted in the number of clusters to be less than the
number of cotton bolls. The problem of frequently occur-
ring connected cotton bolls was previously addressed
in multi plant point cloud [26]. To address the problem
of a few cases of connected cotton bolls in single plant
point clouds, the size of each cluster was estimated in
terms of the number of points. From all the clusters, an
outlier cluster was determined if it has a size more than
1.5 interquartile ranges above the upper quartile. As each
cluster in most cases represents a single cotton boll, the
approximate number of cotton bolls in the outlier cluster
was estimated by dividing the size of that cluster by the
average size of all clusters and rounding off in the end.
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