2023 IEEE 23rd International Working Conference on Source Code Analysis and Manipulation (SCAM) | 979-8-3503-0506-7/23/$31.00 ©2023 IEEE | DOI: 10.1109/SCAM59687.2023.00012

2023 IEEE 23rd International Working Conference on Source Code Analysis and Manipulation (SCAM)

Applying the Universal Version History Concept to
Help De-Risk Copy-Based Code Reuse

David Reid
University of Tennessee
Knoxville, TN, USA
dreid6 @vols.utk.edu

Abstract—The ability to easily copy code among open source
projects makes it difficult to comply with the need to determine
the provenance of code essential for cybersecurity and for com-
plying with the licensing terms. Such provenance encompasses
the exact origin of each component and its license, and various
qualities of the component, such as absence of vulnerabilities and
high likelihood of future maintenance. With the aim to address
these challenges, we created an approach supported by a tool
prototype, UVHistory, that links each piece of source code to
all projects where it resides and, also, to its version histories
in all these projects. This combined version history of a file
from all open source projects we refer to as universal version
history. We exemplify UVHistory via scenarios illustrating how it
can help developers identify bugs and vulnerabilities and verify
that license terms are not violated. Specifically, using UVHistory,
developers can find the origin of a file including the open source
repository where it originated, follow the evolution of the file over
time and across different repositories, identify which authors
have worked on a file, and read all the log messages for any
modifications to that file in any repository. We also evaluate
UVHistory in two contexts: to identify license non-compliance
and to find instances of unfixed vulnerabilities. We find that
in active and popular projects both problems are common and
anyone can easily identify them using our approach.

I. INTRODUCTION

Version control systems were a major advance in software
engineering by automating storing and making accessible
a complete history of the source code within a repository.
The rapid growth in open source software (OSS) and its
widespread use made obvious the need to create Universal
Version History (UVH) (a full version history of a file across
all repositories and revision histories where either parents or
descendants of that file reside). More recently, the concept
of a UVH appears to be articulated in the “Improving the
Nation’s Cybersecurity” [1] U.S. Presidential order with the
key component of “Enhancing Software Supply Chain Se-
curity.” Specifically, “maintaining accurate provenance (i.e.,
origin) of software, providing a Software Bill of Materials, and
ensuring and attesting to the integrity and provenance of open
source software used within any portion of a product.” This
recent presidential order highlights an issue, software supply
chain security, that has long been known to be important for
various reasons but which is often overlooked. In addition
to the security implications explicit in the presidential order,
knowing the software provenance and providing a software bill
of materials is also vital for ensuring compliance with license

Audris Mockus
University of Tennessee
Knoxville, TN, USA
audris@utk.edu

requirements, finding additional useful features that may be
available in different versions of the software, improving
code quality problems, and addressing aspects of developer
reputation. The realization of this idea, however, depends on
the ability to collect, clean, curate, and integrate VCS data
from over 100 million open source repositories, and remained
out of reach for many years.

In this paper, we present an approach to produce a universal
version history which links files across multiple reposito-
ries and multiple repository hosting platforms to construct a
single history by tracing the version of a single file across
all repositories and revision histories where either parents
or descendants of that file reside. We then show how this
approach can reduce the risks of copy-based code reuse.

Copying code for reuse in other projects is widespread [2],
[3], [4], [5]. Much of the work on software supply chain issues,
such as security and license management, focuses on software
dependencies. A software dependency is generally considered
an external component (such as a library or package) that is
used within a project. When the external component is copied
and committed into a project’s repository, it is no longer an
external component but rather is now part of the project. This
approach is sometimes called clone-and-own [6], [7], [8] or
vendoring [9], [10]. The cloned component is clearly part
of the supply chain, but is often overlooked because it is
considered part of the core project rather than a dependency
once it is committed into the project’s repository. This clone-
and-own method can cause problems with code maintenance
because of the lack of information about the connection
between the clone and the original. In fact, as we show below,
even the originating projects sometimes do not contain public
security vulnerability fixes implemented in projects that copied
the code.

Much of our work focuses on projects in languages like
C and C++ because they do not have a standard package
manager system. When using a package manager, it is easier
to find the origin of the code and any known vulnerabilities
or license issues. However, many projects using languages
with good package managers don’t take advantage of the
package manager. Therefore, we also look at languages like
Java, JavaScript, Python, etc, that do have standard package
manager systems.

In order to understand and address the risks associated with

979-8-3503-0506-7/23/$31.00 ©2023 IEEE 1

DOI 10.1109/SCAMS59687.2023.00012
Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

unknown provenance in open source software, we would first
like to create a tool that is able to automate the process of
producing a universal version history of a file across reposito-
ries and even across repository hosting platforms. Such a tool,
if widely deployed, would inform developers about potential
problems that might exist in code that they would like to reuse.
Second, we want to determine if unknown provenance causes
problems in real-world open source projects. For example, are
there potential license violations or security vulnerabilities that
are unknown to developers wishing to reuse code from another
project? We find a large class of instances where even the most
advanced licence violation detection tools can not (and do not)
work because it is not possible to find such violations without
knowing the complete history. Third, we would like to see
if constructing a universal version history can help mitigate
some of the problems caused by unknown provenance. Forth,
we want to determine if our proposed tool detects different
problems than popular dependency management products and
software composition analysis tools. Fifth, we would like to
see if our tool can produce useful results in a reasonable
amount of time.

To establish the feasibility of producing the universal ver-
sion history in general and in being able to address the issues
related to code copying, we introduce a prototype tool, UVHis-
tory, which automates the process of finding the universal
version history of a file across all open source repositories.
We build on the World of Code [11] infrastructure to discover
and report the complete history of code in any language from
a nearly complete collection of open source software. The
results can be used to look for new features or functionality
available in other revisions, look for security vulnerabilities
reported in other revisions, find which developers have worked
on the code throughout its evolution, look for license re-
quirements that may have been lost as the code propagated,
and more. Also, different revisions can be compared with
public sources, such as the National Vulnerability Database,
for known vulnerabilities or other bugs. This version history
tracks changes to a specific file even when the file is copied to
a new and possibly unrelated repository, allowing a developer
to trace changes over time and across different repositories
and different repository hosting platforms.

Our work makes the following contributions:

« We propose a computationally feasible approach to pro-
duce a universal version history which links source code
by content and its modification history across multiple
repositories and hosting platforms.

o We present a prototype tool, UVHistory, that implements
our proposed approach efficiently over the nearly com-
plete collection of open source software in World of
Code.

o We evaluate the application of the universal version
history concept to address two specific software engi-
neering problems identified in this paper. We show that
producing a universal version history can help mitigate
problems with potential license violations and security
vulnerabilities caused by copy-based code reuse.

2

o We show that the declared license of a project cannot
always be trusted, and we show how our tool can help
identify those projects with incorrect copyright and li-
cense information.

II. APPLICATION SCENARIOS

Source code with unknown history introduces risks such
as the possibility that the code could have been modified in
ways that unintentionally introduce security vulnerabilities or
other bugs, that intentionally include malware, or that violate
license terms. In this section, we describe in more detail
specific scenarios where the universal version history concept
and associated tools help de-risk copy-based code reuse.

A. Security Vulnerabilities

When a security vulnerability is discovered in open source
software, it is typically documented in the Common Vulner-
abilities and Exposures (CVE) system [12] maintained by
The Mitre Corporation. Developers know to look at the CVE
system for possible security vulnerabilities. However, when a
vulnerable file has been copied to other projects, those other
projects may not be listed in the CVE entry. When code with
security vulnerabilities is cloned, the target project may inherit
the vulnerability. When the vulnerability is found and fixed
in the original project, the fix may not be propagated to the
clone, especially when the target project does not maintain a
link to the parent. Reid et al. [13] coined the term “Orphan
Vulnerability” to refer to these kinds vulnerabilities that exist
in copied code even after they are fixed in another project. Our
proposed tool would aid developers in knowing the origin and
history of the code, which would allow them to learn about
the reported vulnerabilities in the original project.

It is also possible that a vulnerability is found and fixed in
a file copied from an original project, but the fix is not back
patched into the original project. Woo et al. [14] reported an
example of this in the jpeg-compressor project [15]. CVE-
2017-0700 [16] describes a vulnerability in the Android Sys-
tem UI that allows remote code execution. The file jpgd.cpp,
which is the source of the vulnerability, was copied from the
jpeg-compressor project. The vulnerability was discovered and
reported in the Android source code [17], and a CVE was
created. However, the vulnerability was not reported and not
fixed in the jpeg-compressor project, which is the original
source of the vulnerable file in Android. Therefore, developers
who copy and reuse the Android code can easily find the
vulnerability and the patch. However, developers who copy the
jpeg-compressor project are not easily able to find out about
that vulnerability, which was found and fixed in a derivative
work. Clearly, it is not safe to assume that the original source
is the best or most secure version. Our research aims to aid
developers in finding not only the origin, but all revisions of
a file across all open source repositories.

B. License Compliance

Another concern about copied code is license requirements.
If a developer wishes to reuse software, it is important to

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

understand the license terms of the original code. Trusting
the declared license terms is not always safe. In some cases,
the complete license information is not copied with the code.
We found many such cases. As just one example, libofa [18]
contains license information in a file named COPYING in
the top level directory. But the license information is not
included in every source code file. Our UVHistory tool found
several cases where projects copied the source files from libofa
without copying the file that contains the license information.
The result is that a developer who copies the copied code
without knowing the origin will not have the license informa-
tion, resulting in a potential license violation. It is important
to understand the origin of the code being copied in order to
comply with the license terms.

The 2021 Open Source Security and Risk Analysis report
(OSSRA) [19] indicates that 65% of the codebases audited
in 2020 have license conflicts with open source software.
Knowing the license requirements can be complicated when
a developer reuses an open source project which itself reuses
components from other projects. In some cases, the original
license information is not propagated with the code, which
means that the necessary knowledge required to answer the
license question is not available to the developer, making it
practically impossible to comply with the license requirements.
Therefore, finding the history of open source code is critical
to understanding and complying with license requirements
of reused code. The tool we present later in this paper,
UVHistory, traces a file to its origins which helps identify
missing license information.

C. Additional Scenarios

Our paper focuses on addressing security and licensing con-
cerns. The universal version history concept can be valuable
in other areas as well, including identifying other code flaws,
such as defects, incompatibilities, or even missing functional-
ity. It may even support better author attribution considered
an important motivation for open source developers [20].
We briefly describe those scenarios here, but leave in-depth
study of these areas for future work. Finding the complete
file history, including all ancestor and descendant code, can
be valuable for finding additional useful features available
for a piece of software. Source code is often copied into
different projects and then improved for use in that project.
These useful enhancements or fixed bugs would often be
valuable to other projects, but maintainers of other projects
are often unaware of them. An old clone may be missing
the latest enhancements/fixes that could add improved quality,
functionality, performance, or other benefits.

Widely copied code may indicate its high utility or other
aspects of quality. Knowing which developers have worked
on the specific code in question can help build trust in that
code. It may also serve as an indicator of popularity for other
developers who may benefit from the widely used functionality
implemented in such code. As such, a tool such as the one
we propose here could serve as a component of a code
recommender system. The tool could also be used to identify

3

the developers who create such widely used code and help
increase their reputation, direct support, or other resources, to
motivate such production.

III. UNIVERSAL VERSION HISTORY CONCEPT

The concept of a universal version history(UVH) is to
track the evolution of a source code file across multiple
repositories. It is the documented history of a file that has been
modified and potentially copied across different repositories
which may be hosted on different repository hosting platforms.
This documented history includes verifiable information about
revisions to the file, dates of those revisions, log messages for
every revision, and the chain of custody (who wrote the code,
who revised the code, and what projects included the code).

It is worth defining UVH more precisely and comparing to
a common version control system such as git. The essential
entities are versions of the source code (blobs). In git, each
blob can be associated with all versions (commits) of the
repository where it is present, and each version may be
associated with one or more filenames (including the full path
from the root of the repository). The blobs associated with
such file with a pathname can be used to determine a version
history of a file (and git provides several heuristics methods
on how to do that: the lack of determinism of file history
arises with merges). A particular commit “creates” a blob if
either there was no such file in the previous version (parent
commit(s)) or if the previous blob was different. We can thus
use the time of the first commit creating a blob (the same
blob can be created multiple times in different folders or even
in the same folder) to obtain the time when the blob was
introduced to a repository. Furthermore, each time a blob is
created by a commit, we link it to an old blob: a blob (if
any) that exists in the parent commit for the same filename.
Hence within a repository is simply a graph linking each blob
to the “old blob” and to commits that created it (including all
commit attributes such as time, author, commit message, and
the pathname of blob-associated file). Notice that it is a bit
different from version control systems such as CVS or SVN,
where versions of individual files are tracked. Notice that the
resulting graph has several distinct kinds of nodes (e.g., blobs
and commits), and multiples types of links (e.g., blob to old
blob, commit to parent commit, and blob to creating commit).
In UVH, we simply add one more type of node: a repository.
Each repository is linked to all commits within that repository
and, transitively, to all blobs contained therein. Blobs, on the
other hand, are linked to all commits in all repositories. The
first creation time for a blob is defined the same way. We thus
can identify the original commit and original author for every
version of the source code in World of Code. In addition to the
time of the commit, a partial temporal order based on the old-
new blob relation is available. Section VIII discusses in more
detail how we handle potentially inaccurate time recorded in
git commits. Notably, as we expand the scope of UVH across
repositories we lose some aspects of a sequence. For example,
let blob a be first created in repository A, then in B, and lastly
in C. In such case, without additional information (who did

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

the commit and what other blobs were created) it would be
impossible to determine if repository C' got the blob from
repository A or from repository B. For some applications,
determining if the blob came from A or B is not as important
as identifying licenses, vulnerabilities, or other attributes of the
blob that may vary among these various repositories. In cases
where knowing the true origin is critical, the UVH reduces the
search space required so that manual inspection is feasible.
The tool cannot know the origin for sure, but can point to the
earliest commit into a public repository.

The universal version history (especially in combination
with techniques employed in Mining Software Repositories
field) can be used to find or infer other information about
the code such as copyright notices and license information,
the reputation of the authors, the quality of the code, what
coding standards were used, the use of (or lack of) secure
coding standards, what vulnerabilities have been reported,
what test methods were used, what security assessments were
done, the location where it was developed and modified, the
trustworthiness and reliability of the code, and the likelihood
that the project will continue to be maintained.

IV. THE UVHISTORY TOOL

UVHistory is our tool for automating the process of tracking
changes across all open source repositories and their version
histories by operationalizing the universal version history
concept introduced in section III. It supports the study of
issues concerning source code reuse in real-world open source
projects.

A. Infrastructure: World of Code

Before describing our tool, we need to introduce the infras-
tructure, World of Code(WoC), on which our tool is built.
World of Code [21] is a nearly complete collection of all
publicly available open source software. Software source code
is periodically collected from many sites including GitHub,
Bitbucket, SourceForge, and many others. The software is
then curated and stored using methods that allow for efficient
searching of the very large amount of source code collected.
World of Code, which aims to support research in software
engineering, currently contains over 20 billion Git objects
with over 100 million unique public repositories (not including
forks or empty repositories) [22].

This World of Code infrastructure, with its extensive collec-
tion of open source software, allows us to find code duplication
across projects where no link to the origin exists on a scale
that is not possible without this kind of infrastructure.

B. UVHistory

UVHistory takes as input the contents of a file and finds
all duplicate versions of that file or any revision of that file
across all of the open source software available in World of
Code.

UVHistory specifically looks for source code from open
source projects that is copied and committed into different
projects. This approach is different than most existing tools for

4

identifying vulnerabilities and licenses which look for external
libraries that are linked in or look at package management
systems for dependencies.

Some systems tie into the build process and detect any li-
braries or other third-party dependencies. But these approaches
miss code that is copied and committed into the source code
repository without any link to the original project. Our tool is
different than other tools in that it is specifically designed to
find these kind of file-level copy dependencies that have no
link to the original project and are therefore missed by existing
tools.

Since World of Code archives source code repositories over
time, we are able to trace the history even to projects which are
no longer available on public source code hosting platforms.

C. Algorithm

For simplicity we assume that our algorithm is provided one
or more shal hashes computed via the method used by Git. A
user of our tool may, instead, provide an entire repository or
a specific file name within a repository. In that case we have
simple scripts that collect either the complete set of blobs
in a repository or a complete set of blobs associated with a
particular filename. In any case, we start with one or more
shal hashes as input. These hashes correspond to one or more
blobs, which is our seed list from which to start finding more
files in the universal version history.

Next, we use WoC’s blob to old blob mapping recursively
to find all ancestor blobs. Similarly, we use WoC'’s old blob
to blob mapping recursively to find all descendant blobs. For
each blob, we use WoC’s blob to commit mapping to find all
commits containing any of the blobs that have been found. We
now have all commits for all revisions of the file across all
source code repositories. The commit gives us the time, author,
pathname, and log message for that revision of the file. From
the commit, using WoC’s commit to project mapping (c2P),
we find all projects which contain a revision of the given file.
Now we have the information needed to construct a link to that
revision of the file on the repository hosting platform (such as
GitHub, Bitbucket, SourceForge, etc). The final output of the
tool shows the complete history of the file with all ancestor
and descendant revisions across all repositories. The history
includes the author of each revision, the date it was committed,
the log message of the commit, the link to the original source
of the project of which that revision is a component if the
project is still publicly available and accessible, and a link
to the specific revision of the file on the hosting platform (if
available).

For each blob, we sort all of the commits for that blob in
date order. We then sort the blobs by the date of the earliest
commit of that blob. The date we use is the date in the Git
commit. It is possible that the date in the Git commit is
not correct. We look for obvious discrepancies; for example,
values of 0 or dates that are in the future are clearly not correct.
In addition, if we see a date that is before Git was released
in 2005, we flag it as suspicious. It is possible that the early
date is correct, as it may be a file that was migrated from a

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

different source code control system such as SVN or CVS. We
also flag any dates prior to 1990 when CVS was introduced, as
it is somewhat unlikely that any date prior to the introduction
of CVS is accurate. We cannot guarantee that the date in the
Git commit is correct, which we note in the limitations section.

When identifying projects in the universal version history,
we want to find distinct projects. GitHub projects often have
many forks, sometimes tens of thousands. Most of those forks
are not independent projects; many were only created for
the purpose of issuing pull requests to the original project.
Showing tens of thousands of related forks makes it far more
difficult to find the useful information. Using the community
detection algorithm described by Mockus et al. [23], WoC
maps each Git repository to a central repository which is
expected to represent the same project. This mapping in WoC
allows us to create a list of deforked projects. UVHistory
displays the deforked projects on the main page and then
includes a link to a secondary page that contains a list of
all projects, including (possibly irrelevant) forks.

D. Output
Our final output contains:

o A list of all blobs in the universal version history. The list
is sorted by date in reverse chronological order. The blobs
are named by the shal hash of the blob as computed by
Git.

o For each blob, a list of all commits of which this blob
is a part. The commits are named by the shal hash of
the commit as computed by Git. The commit information
includes the author, time of commit, and the commit log
message.

o For each commit, a list of all of the projects where this
commit was applied, the full pathname of the file, and
the URL linking to the file on the source code hosting
platform (note that the link may be dead if the project is
no longer publicly accessible).

V. RESEARCH QUESTIONS

In this section, we present four research questions and the
research methods used to address each of the questions. Our
study is designed to show the relevance of the problem pre-
sented and also to evaluate the effectiveness of our proposed
solution. The results are presented in section VI.

Our goal is to see if constructing a universal version history
across repositories and across hosting platforms can help solve
the class of problems presented earlier in this paper. We
specifically look at two of the problems mentioned earlier:
potential license violations and security vulnerabilities. The
other issues are similar and can likely be solved in a similar
way, but we leave those for future work.

RQ1: Can the declared license in an open source software
be trusted?

The aim of this question is to see if it is common in real-
world open source software projects for code to be copied
from other projects without the correct copyright and license
information being retained and without a clear link back to the

5

original project where the copyright and license information
can be found. When code is copied, is the correct license
information copied along with it, or if not, is the correct license
readily available. We are specifically looking for real-world
projects, not toy projects or student assignments.

If we can trust that the license information provided in
projects is correct, then finding the universal version history
is not necessary to be able to properly understand and comply
with the license terms. If, however, we find that there are
frequent license violations due to missing or incorrect license
information in popular open source projects, then we will
conclude that it is worth our effort to find ways to mitigate
the problem. The specific problem we want to mitigate is the
problem of copying code without knowing or without having
an easy way to find the correct license terms for that code.
We want to determine if there is real-world benefit in a tool
to help mitigate this problem.

Our research method to answer RQ1 was an exploratory
study designed to see the extent of the problem. We examined
open source projects which have copied code from popular
open source projects to see if the correct copyright and license
information was propagated along with the copied code. We
developed some tools to select a set of projects that are likely
to contain license problems. We then manually inspected that
subset.

RQ2: Can our UVHistory tool, by constructing a universal
version history, help identify projects with missing copyright
and license information and help find the correct information
for the given code?

It is important, when reusing software, to comply with
the license terms. One cannot comply with terms of which
one is not aware. Reusing software without knowing the
correct license terms can cause someone to infringe intellectual
property without being aware of the infringement. We want
to see if our tool can help developers identify when correct
license terms are missing and help them find the correct
license.

Most open source licenses require the copyright and license
information to be retained. Cases where projects copy code,
but omit the copyright and license information, is a clear
violation of the license.

We used a case study to answer RQ2. We studied two cases
where license information was not properly propagated. The
two case were selected from results of the study for RQ1. The
case study method allowed us to look in-depth at two specific
projects.

RQ3: Can our UVHistory tool, by constructing a universal
version history, help identify projects which are subject to
security vulnerabilities that have been found and fixed in
another project but which still persist unknowingly in other
projects?

Previous research [13] [14] [24] has identified this as a real
problem in popular real-world projects. Due to the seriousness
of this problem, a tool that could help mitigate this problem
would have value.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

We answered RQ3 with another case study. This case study
examined a case we introduced section II-A as one of the
motivating examples. Again, the case study method allowed
us to have an in-depth look at a project. This time, the project
studied contained a known security vulnerability propagated
through code reuse.

RQ4: Is the performance of UVHistory such that it can run
in reasonable time on commodity hardware for source code
files in typical open source projects?

In order to have practical value, the tool needs to be able
to produce results in reasonable time on reasonably affordable
hardware.

Our final RQ is addressed with a simple study to examine
the performance of our prototype tool on common projects
using specific hardware.

VI. EVALUATION

We evaluate our method and tool by answering each of
the four research questions, and we present the results in this
section.

A. RQI: Can the declared license be trusted?

To answer our first research question, we searched for cases
where code was copied from one project to another, but the
copyright and license information was not copied. We were
not looking for projects that used package managers or linked
to external libraries, but only cases of code cloned from one
project and committed into the repository of another project.

We selected a small subset of projects to investigate in more
detail. We randomly selected 100 source code projects from
GitHub which include a top-level file named LICENSE.txt
containing a license that requires copies to retain the copyright
notice, had no reference to copyright or license information in
the individual source code files, and had more than 1,000 stars.
We chose projects with a top-level LICENSE.txt file because
it is common for projects to put the license information in a
single file in the top-level directory of a repository and not
duplicate the license in every source code file. LICENSE.txt
is one common filename used for the license file. When the
license information is not included in every source code file, it
is easy for a developer to copy a copyrighted source code file
without copying the relevant license information. We limited
our selection to repositories with more than 1,000 stars so that
we would find popular projects [25] that are likely to have files
that are copied into other projects. The selected projects were
composed of projects in a variety of languages and using a
variety of licenses.

For each of the 100 projects, we used our UVHistory tool to
trace the history of one of the files in the project to find other
projects which had copied code from the original project. We
then checked those other projects to see if the copyright and
license information had been propagated to the new project.
In the few cases where there were more than 500 clones of a
project, we limited our search to the first 500. Because of the
manual work involved in investigating each license, we had to

6

limit the scope. We looked at 100 original projects and up to
500 clones of each of those 100 original projects.

Our procedure for finding out if the projects containing
cloned code also contained the proper license was as follows:
First, we used UVHistory to find projects containing copies of
the code in question. Next, we used a tool we developed (also
layered on top of World of Code) to find all licenses used in
a project. The tool used the winnowing algorithm [26] to find
the most similar license from among 1862 licenses provided
by spdx! for each blob in a project. The winnowing algorithm
relies on extracting a collection of signatures from text and
matching them among documents (blobs in the project and
blobs representing licenses). We compared the known license
in the original project to the licenses found by our tool to
see if there was a match. If there was an exact match, then
clearly the license information was correctly propagated with
the code. If there was not a match, we manually inspected
the project to make sure that, in fact, the correct license was
not included. We also checked to see if the project was still
publicly available, as World of Code will still have information
about removed projects but we only care about projects that
are currently publicly available. If neither our tool nor our
manual inspection found a match, then we conclude that the
correct license information is not properly included.

In 76 of the 100 projects, we found at least one case where
code from that project had been cloned to another project.
In 54 of the 100 projects, we found at least one case where
another project had copied the code but had not copied the
copyright and license information and did not include an
obvious link back to the original project where the copyright
and license information could be found. In total, we found
3,431 projects which had cloned code from one of the original
100 projects (Note that our 500 project limit reduced that
total). We found that 1,132 of those projects did not properly
retain the copyright and license information.

The answer to RQI1 is clearly no, the declared license
cannot always be trusted. License violations caused by license
omission are common in real world projects since we found
a high percentage of popular projects where code is copied
but the license and copyright information are not retained (as
required by the license) and there is no link from the copied
project back to the original project where the license can be
found. These non-compliant projects are publicly available,
which means that someone might very well copy and use the
code without being aware that they are violating the license
terms.

The answer to RQ1 suggests that future work involving a
large scale empirical study concerning license omissions in
cloned code would be valuable.

B. RQ2: Can UVHistory help with license compliance issues?

Based on the answer to RQ1, someone who wants to reuse
code from one of these non-compliant projects would have
no easy way to know the license terms that must be followed

"https://spdx.org/licenses

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

unless they obtained some additional information. Our second
research question considers whether our UVHistory tool can
provide the additional information necessary to ensure compli-
ance. To answer this question, we conduct a case study with
two cases looking in detail at specific projects chosen from
the ones identified in the section above.

The first project chosen was AIOHTTP?, an asynchronous
HTTP client/server framework. We chose AIOHTTP because
it has over 12,000 stars on GitHub, indicating it is a very
popular project likely to be copied, and because it has the
Apache license which is a very common license which requires
the copyright notice to be retained in all copies. We have
already discovered, in answering RQ1 above, that there are
projects which reuse AIOHTTP without following the license
terms that require attribution. To answer RQ2, we want to
find out if UVHistory can confirm that proper license terms
are followed or, if not followed, find the correct license for
the project. We start with projects that we know, from our
study of RQI, do not comply with the license requirement
to include the copyright notice and do not provide a clear
link to the original project that contains the correct license
terms. There are many cases of projects that use AIOHTTP
without retaining the copyright notice as required. We pick
just one, Hackathon-Torrent’, to show that UVHistory is able
to identify the correct license and copyright notice that should
be included with any reuse of this project. Running UVHistory
on a source code file in the Hackathon-Torrent project, we find
the AIOHTTP project as the project in the universal version
history with the earliest date. Following the link produced by
the tool takes us to the AIOHTTP project on GitHub where
the license and copyright information is very clearly available.
This means that someone wishing to reuse the Hackathon-
Torrent project could, by looking at the universal version
history produced by UVHistory, find the correct license and
copyright information that is missing from Hackathon-Torrent.

The second project chosen was VirtualXposed*. We chose
this project because it is widely copied and because it has
a commercial license. The commercial license is particularly
problematic when copied into open source projects, especially
when the license information is not propagated with the copy.
We traced the code from the VirtualXposed project to its
origin, which is VirtualApp®. VirtualApp’s README is very
clear that in order to use this software you must purchase a
license. However, VirtualXposed includes the GPL license in
its LICENSE.txt file, which would make it appear that it is
available under GPL, but that is not completely correct since
it also includes commercially licensed code. VirtualXposed
has more than 15,000 stars on GitHub and more than 2,000
forks, indicating that it is a widely used and copied project.
Following the history of the project produced by UVHistory,
we find several copies of this code that include an open source
license such as Apache or no license at all. Without a tool like

2github.com/aio-libs/aiohttp

3 github.com/AdoenLunnae/Hackathon-Torrent/
4github.com/android-hacker/Virtual Xposed

3 github.com/asLody/Virtual App

7

UVHistory, there would be no way to know that these copies
of VirtualApp are restricted by a commercial license. Some
examples of projects that do not propagate the commercial
license follow. We only list a few examples, there are many
more than what we have listed here. VirtualDump® contains
copies of some of the code that originated in VirtualApp, but
it does not include any license information or any link back to
the original VirtualApp project. YCVaHelpTool’, which also
uses code from Virtual App, includes the Apache license in a
file named LICENSE. There is no mention of the Virtal App or
the commercial license, leaving a developer wishing to reuse
the code assuming that it is available through the Apache
license. Following the universal version history to the origin
again leads to the correct license and copyright information.

The answer to RQ2 is yes, the universal version history
can help identify missing license information and find the
original project containing the correct license information. We
demonstrated that our UVHistory tool can effectively find the
original project, allowing developers wishing to reuse code to
be able to find the correct license information.

We contacted the project maintainers of these projects to
report license issues.

C. RQ3: Can UVHistory help identify projects with security
vulnerabilities ?

To answer RQ3, we follow a similar procedure as for RQ2,
except our case study for RQ3 looks at projects with known
security vulnerabilities rather than potential license violations.

In section II-A, we used a security vulnerability in a jpeg
compression library as a motivating example for this work.
That case was particularly challenging because the fix for
the vulnerability was not in the original project from where
the code came, but rather in a project that had reused the
vulnerable code and then fixed it. Thus finding the origin is not
enough, we also need to look at other projects in the history.
The specific example we look at, Entropia Engine++8, is a
cross-platform game and application development framework.
With recent commits and a number of stars it appears to
be a reasonably active and popular project. It reuses the
vulnerable file jpgd.cpp. The header comment in that file
references the jpeg-compressor project from where the code
was copied. A developer wishing to reuse Entropia Engine++
could easily know from where it was copied. However, the
CVE identifying the vulnerability lists the Android System
UI° where the vulnerability was fixed. Therefore, there is no
clear way for the developer reusing it to know that it in fact
contains the vulnerable version of jpgd.cpp. This is where
UVHistory proves its value. By finding the universal version
history using UVHistory, we are able to see not only the
original jpeg-compressor project, but also other projects which
reuse it, including Android. Searching the universal version
history for common strings like “CVE” or ‘“vulnerability”

6github.com/LiveSalton/Virtual Dump
7github.com/yangchong211/YCVaHelpTool

8 github.com/SpartanJ/eepp
9source.android.com/security/bulletin/2017-07-01#system-ui

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

finds hints about potential problems. In this example, we
find 2 hits when searching for “vulnerabil”: “38889eb Fix
series of JPEG vulnerabilities by xxxxx” and “890381c Fix
security vulnerability by xxxxx”!?, both from the Android
project. This allows a developer wishing to reuse Entropia
Engine++ to find the potential vulnerability CVE-2017-0700
by searching the universal version history. Commit 38889eb
fixes this vulnerability.

We contacted the project maintainers of the project with
the cloned vulnerability to let them know about the issue. The
issue was fixed on June 28, 2022 by updating to a new version
of jpeg-compressor, so the project is no longer vulnerable.

D. RQA4: Is the UVHistory prototype feasible?

Our final research question considers performance. We want
to understand if it is feasible to effectively identify code history
across repositories on such a large scale.

Our tests were performed on a machine with Intel(R)
Xeon(R) Gold 6148 CPUs running at 2.40GHz. We limited
our program to 16 threads running in parallel to limit the load
on the machine which is in heavy use by multiple users. As
a prototype tool, UVhistory is not optimized for performance.
Increased parallelism and other enhancements would improve
performance.

By leveraging the World of Code infrastructure, which has
already curated the data and stored useful information in a
database which can be efficiently searched, we are able to
produce results relatively quickly. We looked at the timing
on the 100 cases selected for RQ1. Our timing results varied
greatly based on how many different projects contain a cloned
version of the file in question. Most of the projects in our 100
cases had less than 500 clones. The elapsed time for a case
with 187 cloned projects was 9 minutes. The worst case, which
found clones in well over 10,000 projects, took just under 3
hours. Thus we conclude for RQ4 that, yes, UVHistory is able
to finish in practical time.

E. Evaluation of Existing Tools

The goal of our tool is similar to that of Software Compo-
sition Analysis (SCA) tools, but our methods are different and
therefore help developers find issues not found by SCA tools.
SCA tools identify the open source software in a codebase
in order to find security, license compliance, and code quality
issues. In this section, we identify existing tools, describe a
test case we set up to test those tools, and then present the
results of the test.

Current open source SCA tools that detect license compli-
ance issues look at licenses that are explicitly declared in a
project being reused through code clones or through a package
manager. They trust the declared license in a project or source
code file. What they fail to find are cases where code is
copied from project to project multiple times, and sometimes
modified, without the license information also being copied.
The history is lost, making it impossible to find the original

10 Author names redacted for privacy

8

license. Commercial tools are harder to evaluate. Some tools
claim to find clones from a large collection of open source
software, but we do not have access to that collection and
cannot evaluate its completeness. Most tools appear to trust
the declared license without searching for the origin of the
cloned code. We tested some of those tools, both open source
and commercial, and present the results below.

Similarly, with vulnerabilities, current open source tools
fail to trace the history as a file is modified and copied
across repositories, and therefore often miss vulnerable code
that has been copied from a known vulnerable project to
a different project. Our research shows that cases like this
are common, and that our tool can help identify these cases.
Again, commercial tools are harder to evaluate. Most appear to
have the same limitations. We tested several using our example
project containing a cloned vulnerability.

We created a small test case example project where we
built a very simple HTTP client and server using code cloned
code from a vulnerable version of aiohttp!! (a project which
we identified when we collected data for RQ1). We cloned
only the directory that contains the source code, but we
did not clone the top-level directory, which contains the
License.txt file. We added an MIT license for our example
project. Our project cloned v3.7.3 of aiohttp, which is subject
to the vulnerability described in CVE-2021-21330. Anyone
wanting to reuse our project would assume everything in
the repository is available under the MIT license. It is not
immediately clear that parts of the project are actually subject
to a different license. Additionally, the project contains a
known vulnerability, but our project is not listed in any CVE
entry. This example project mimics real-world cases that we
found in many open source repositories.

Popular free dependency checker tools such as GitHub De-
pendency Graph [27], Dependabot [28], Google Open Source
Insights [29], and OWASP Dependency-Check [30] rely on
supported package ecosystems that use a supported file format
because they rely on the packaging information to find the
dependencies. This means that languages like C and C++,
which don’t have a standard package management system,
are not well supported by these kinds of tools. Even projects
using languages that have popular package management sys-
tems sometimes copy and commit the code into their own
repositories rather than using the package management system.
In our tests using our example project, none of these 4 tools
detected the license or security issue. This is as expected since
our example uses cloned code rather than a package manager.

We next tested two commercial SCA tools, which we refer
to as Tool A and Tool B. We chose those two because they
were listed in *The Forrester Wave”!? 2021 Q3 Report as hav-
ing strong market presence, and they have free downloadable
trials available. We did not look at commercial tools that do not
provide a free download of a trial version. While it is harder to

! github.com/aio-libs/aiohttp
12forrester.com/policies/forrester-wave-methodology/

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

know the exact capabilities of closed source tools, the public
documentation and trial versions give us good insight.

Tool A traditionally relied on package manager information
to find license compliance issues. They recently announced
support for “vendored code” (what we in our introduction call
“clone-and-own or vendoring”). We tried out their free version
(which supports license compliance but not vulnerability man-
agement) on our example project. Tool A did not detect the
missing license information from the cloned file we inserted.

Tool B provides tools which address both security vulner-
abilities and license issues. Tool B’s free version does not
support license compliance, so we signed up for their 14 day
free trial, which supports both vulnerability management and
license compliance. We ran the test with our example project
described above and Tool B did not report the license violation
or the security vulnerability.

Our tool’s purpose is to help developers find the provenance
(history and chain of custody) of a file, which can help them
find security and license issues. We make no claim that our
tool competes with these very impressive SCA tools. We only
claim that it can, in some specific cases, help a developer find
an issue that SCA tools miss.

VII. RELATED WORK
A. Universal History

Early work on finding a complete version history was
conducted by Chang and Mockus [31]. They looked for cases
where directories of source code contain many files with the
same names and then compared those files to find clones.
The matching files and their version histories were used
to construct the file history. In follow-up work [32], they
proposed a large-scale copy detection and validation process
and improved reuse detection. Mockus [33], using the same
algorithm, found significant large scale code reuse where many
files were copied. At the time of their work, there were no
complete collections of open source code like World of Code,
which limited their work to a small number of repositories and
only worked when multiple files in a directory were duplicated
and the filenames did not change. They concluded that there
was still a challenge to scale the work to very large numbers
of open source repositories [32]. World of Code provides the
infrastructure to meet that challenge, which is the goal of this
work.

B. Large Scale Software Archives

World of Code [22] and Software Heritage [34] provide
large scale code archives. Our tool is built on World of Code,
which we described earlier. In this section, we look at related
work that uses Software Heritage.

Software Heritage Graph Dataset [35] links together source
code file contents, which allows duplicate code to be found
across projects, much like what is provided by the World of
Code data maps that we use. What they do not include is the
linkage of the history of each file within a project to all other
projects containing any version of the file. This linkage is what
UVHistory provides.

9

Provenance work by Rousseau et al. [36] using Software
Heritage looks at occurrences of the “exact same file content.”
They specifically state that they do not look at “predecessors
or successors in a given development history” and that that is
“outside the scope of the present work”. The strength of our
work, and much of the effort to produce it, comes from tracing
the full history by following the predecessors and successors,
thus giving us a complete history that follows the evolution
of a file as it changes over time, not just instances of exact
copies.

C. Tracking Code Changes

Kawamitsu et al. [4] proposed a technique to find which file
revision a copied file comes from in another project for the
purpose of keeping copies up-to-date. They aimed to identify
which revision of a file was reused and how that file was
modified over time. Their method only looked at project pairs
to find files that were copied from one project to the other,
but it cannot handle a large number of projects. Ishio et al. [5]
expanded on the idea of tracking code changes by taking a
set of source files in C/C++ and Java and finding files that
are likely to include the original version of the file. They
look at a relatively small subset of projects compared to what
is available in World of Code. They note that tracking file
changes across repositories is tedious. We further expand code
change tracking by using World of Code’s massive collection
of projects to track modifications to files in any language
across a nearly complete collection of open source software.

D. Finding File Origin

Xia et al. [37] looked at reuse of third-party code and found
that 18.7% of the projects studied copied only the source
file but no companion files like readme or changelog files;
therefore, the version information and links back to the original
project are lost. This is particularly relevant to our study of
license terms as the license and copyright information is often
only in the companion files. They also discovered that third-
party code is sometimes mixed with other third-party code,
making it even harder to trace each file back to its original
project.

Inoue et al. [38] designed and implemented a tool that used
source code search engines to take source code fragments and
find sets of cloned code fragments in order to track the history
of the code. Limitations of those search engines, such as only
allowing keywords and/or code attributes as their inputs or
not allowing automated queries, posed challenges to the tool.
The source code search engines they used (Koders, Google
Codesearch, and SPARS/R) are no longer available. We use
World of Code, which is currently actively maintained.

Davies et al. [39] introduced a method to reduce the search
space when looking for the origin of a piece of code in
cases where a direct link to the origin is not clearly available.
Once the search space is reduced, manual inspection or other
expensive methods can be used to identify the origin from the
reduced set. They demonstrated their method on a collection
of Java files.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

Godfrey et al. [40] pointed out that it is becoming increas-
ingly important to determine the origin of software in cases
where code is cloned into a new project with no clear link to
the origin, but that effective techniques for finding such code
provenance do not yet exist. We aim to help fill the gap that
they identified.

Woo et al. [14] proposed an approach to find the original
software where a vulnerability originated. They noted that
many CVE [12] reports do not give the correct origin of the
vulnerability. Finding the true origin can help mitigate further
propagation of the security risk. Their method uses function-
level clone detection methods, which can be more precise, but
not as efficient at large scale as the file-level clone detection
we use. They only used about 10,000 projects, and only from
GitHub, for their evaluation.

E. Security Issues

Davies et al. [24] performed manual license and security
audits in real-world applications and found potential legal and
security issues in some of the studied applications.

Kula et al. [41] looked at Java projects that use a dependency
management tool and found that 81.5% of projects in their
study still have outdated dependencies, many with security
vulnerabilities. They also, through surveys, found that 69%
of the developers were not aware of the vulnerability. We
hypothesize that the number of outdated cloned copies of files
that have no link back to the origin would be even higher.

Chen et al. [42] designed and implemented a machine
learning system to help identify which libraries in open source
dependencies contain vulnerabilities listed in the National
Vulnerability Database (NVD) [43]. It relies on package
management systems.

F. License Compliance Issues

German et al. [44], through an empirical study of license
issues in open source projects, show instances of incompatible
licenses when open source code is reused in different projects.
They found that there are often mismatches between the
declared license of a package and the license of the source
code within the package, and also incompatibilities between
packages contained within one project. They note that auditing
of license issues is “quite complex” and suggest that improving
automation is this area would be beneficial. This kind of
automation improvement is exactly the aim of our work.

Wau et al. [45] looked at license inconsistencies within large
projects. In their conclusion and future work section, they say
“These problems highlight the need for a method to find and
maintain provenance between applications”. Our work, using
World of Code, looks for inconsistencies across all open source
projects as they suggest.

Wolter et al. [46] found that the license declared at the top-
level of the repository does not always match the license found
in source code files.

Qiu et al. [47] looked at dependency-related license vio-
lation and report a relatively small number of dependency-
related violation in npm. The small number is in part because

10

permissive licenses are more common in npm. Our work looks
at code clones rather than dependencies.

The work cited in this section finds license inconsistencies.
Our work looks at cases where the license information is not
retained when code is cloned from one project to another,
possibly multiple times, and there is no clear link back to the
original project. Without being able to trace the history of the
file across repositories, someone reusing one of these projects
with missing license information would have no way to know
that they are violating the license when they reuse the code.

VIII. LIMITATIONS

Our UVHistory tool uses the vast source code archive in
World of Code to find clones of open source code. The tool
will not find clones of code that are not included in the World
of Code data.

If a source code file has been identified as containing a
security vulnerability, the project using that file might be
subject to the vulnerability. However, the project might not
be using the vulnerable file in a vulnerable way. Our tool can
help identify if a vulnerable file is included in a project, but
cannot identify whether it is used in a vulnerable way.

The tool trusts the timestamp and author information in the
Git commit. There are occasional cases where that information
is not correct. Flint et al. [48] demonstrated that while times-
tamps are usually accurate, there are unusual cases where the
timestamp is not correct.

The tool only looks at file-level copying. It will not detect
snippets of code that are included in a file. It will also not
detect a copy if a developer copies a file and modifies it before
committing to the new repository.

IX. CONCLUSION

In this paper, we articulate the concept of universal version
history and argue for its usefulness in the context of the en-
tirety of open source software. We introduce a prototype tool,
UVHistory, that leverages the World of Code infrastructure to
collect information about the source code and other artifacts
to help better understand and manage widespread copying
of source code. We demonstrate the value of the universal
version history concept by finding evidence of negative effects
of reuse, including reuse of outdated code that contains known
vulnerabilities or other bugs, is missing useful features, or
has different license restrictions. Our UVHistory tool helps
automate the production of the universal version history of
source code by tracing code among repositories and enables
finding the origins and version history for any source code file.
We have shown the potential of our approach by demonstrating
a solution in two different contexts which have practical
relevance: license compliance and security vulnerabilities.

ACKNOWLEDGMENT

This work was partially supported by NSF awards 1633437,
1901102, 1925615, and 2120429.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

(1]

2

—

=
=

(41

[5

[y

[6

—

(71

[8

[t

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]
[18]

[19]

[20]

[21]

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

The White House. (2021) Executive order 14028
on improving the nation’s cybersecurity. [Online].
Available: https://www.whitehouse.gov/briefing-room/presidential-

actions/2021/05/12/executive-order-on-improving-the-nations-
cybersecurity

J. Ossher, H. Sajnani, and C. Lopes, “File cloning in open source
java projects: The good, the bad, and the ugly,” in 2011 27th IEEE
International Conference on Software Maintenance (ICSM), 2011, pp.
283-292.

M. Gharehyazie, B. Ray, and V. Filkov, “Some from here, some from
there: Cross-project code reuse in github,” in 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR), 2017,
pp. 291-301.

N. Kawamitsu, T. Ishio, T. Kanda, R. G. Kula, C. De Roover, and
K. Inoue, “Identifying source code reuse across repositories using Ics-
based source code similarity,” in 2014 IEEE 14th International Working
Conference on Source Code Analysis and Manipulation, 2014, pp. 305—
314.

T. Ishio, Y. Sakaguchi, K. Ito, and K. Inoue, “Source file set search for
clone-and-own reuse analysis,” in 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR), 2017, pp. 257-268.
S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “En-
hancing clone-and-own with systematic reuse for developing software
variants,” in 2014 IEEE International Conference on Software Mainte-
nance and Evolution, 2014, pp. 391-400.

, “The ecco tool: Extraction and composition for clone-and-own,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 2, 2015, pp. 665-668.

F. Pérez, M. Ballarin, R. Lapefia, and C. Cetina, “Locating clone-
and-own relationships in model-based industrial families of software
products to encourage reuse,” IEEE Access, vol. 6, pp. 56 815-56 827,
2018.

T. Zimmermann, A First Look at an Emerging Model of Community
Organizations for the Long-Term Maintenance of Ecosystems’ Packages.
New York, NY, USA: Association for Computing Machinery, 2020, p.
711-718. [Online]. Available: https://doi.org/10.1145/3387940.3392209
C. Bogart, C. Kistner, J. Herbsleb, and F. Thung, “When and how
to make breaking changes: Policies and practices in 18 open source
software ecosystems,” ACM Trans. Softw. Eng. Methodol., vol. 30,
no. 4, jul 2021. [Online]. Available: https://doi.org/10.1145/3447245

Y. Ma, C. Bogart, S. Amreen, R. Zaretzki, and A. Mockus, “World of
code: An infrastructure for mining the universe of open source vcs data,”
in 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR), 2019, pp. 143-154.

The MITRE Corporation. (2021) Common vulnerabilities and exposures
(cve). [Online]. Available: https://cve.mitre.org/

D. Reid, M. Jahanshahi, and A. Mockus, “The extent of orphan vulner-
abilities from code reuse in open source software,” in 2022 IEEE/ACM
44th International Conference on Software Engineering (ICSE), 2022.
S. Woo, D. Lee, S. Park, H. Lee, and S. Dietrich, “VOfinder: Discovering
the correct origin of publicly reported software vulnerabilities,”
in 30th USENIX Security Symposium (USENIX Security 21).
USENIX Association, Aug. 2021, pp. 3041-3058. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity21/presentation/woo
R. Geldreich. (2020) richgel999/jpeg-compressor . [Online]. Available:
https://github.com/richgel999/jpeg-compressor

The MITRE Corporation. (2017) Cve-2017-0700. [Online]. Available:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0700
Android. (2017) Android Security Bulletin—July 2017 . [Online].
Available: https://source.android.com/security/bulletin/2017-07-01
MusicIP. (2007) musicip-libofa [Online]. Available:
https://code.google.com/archive/p/musicip-libofa/

Synopsys Technology. (2021) 2021 open source
security and risk analysis. [Online]. Avail-
able: https://www.synopsys.com/software-integrity/resources/analyst-
reports/open-source-security-risk-analysis.html ?intcmp=sig-blog-ossral
S. Amreen, A. Karnauch, and A. Mockus, “Developer reputation es-
timator (dre),” in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2019, pp. 1082-1085.

Y. Ma, T. Dey, C. Bogart, S. Amreen, M. Valiev, A. Tutko, D. Kennard,
R. Zaretzki, and A. Mockus, “World of code: enabling a research

11

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

workflow for mining and analyzing the universe of open source vcs
data,” Empirical Software Engineering, vol. 26, 2021.
World of Code. (2022) World of Code. [Online].
https://worldofcode.org/

A. Mockus, D. Spinellis, Z. Kotti, and G. J. Dusing, “A complete set of
related git repositories identified via community detection approaches
based on shared commits,” in Proceedings of the 17th International
Conference on Mining Software Repositories, ser. MSR ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p.
513-517. [Online]. Available: https://doi.org/10.1145/3379597.3387499
J. Davies, “Measuring subversions: Security and legal risk in reused
software artifacts,” in Proceedings of the 33rd International Conference
on Software Engineering, ser. ICSE *11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 1149-1151. [Online].
Available: https://doi.org/10.1145/1985793.1986025

H. Borges and M. T. Valente, “What’s in a github star? understanding
repository starring practices in a social coding platform,” Journal of
Systems and Software, vol. 146, pp. 112-129, 2018.

S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local
algorithms for document fingerprinting,” in Proceedings of the 2003
ACM SIGMOD international conference on Management of data, 2003,

Available:

pp. 76-85.
Github. ~ (2021) About the dependency graph. [Online].
Available: https://docs.github.com/en/code-security/supply-chain-

security/understanding-your-software-supply-chain/about-the-
dependency-graph

Dependabot. (2021) Github Dependabot. [Online]. Available:
https://github.com/dependabot

Google. (2021) Open Source Insights. [Online]. Available:
https://deps.dev/

OWASP. (2022) OWASP Dependency-Check. [Online]. Available:

https://owasp.org/www-project-dependency-check/

H.-F. Chang and A. Mockus, “Constructing universal version history,”
in Proceedings of the 2006 International Workshop on Mining Software
Repositories, ser. MSR ’06. New York, NY, USA: Association
for Computing Machinery, 2006, p. 76-79. [Online]. Available:
https://doi.org/10.1145/1137983.1138002

——, “Evaluation of source code copy detection methods on freebsd,”
in Proceedings of the 2008 International Working Conference on
Mining Software Repositories, ser. MSR °08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 61-66. [Online].
Available: https://doi.org/10.1145/1370750.1370766

A. Mockus, “Large-scale code reuse in open source software,” in First
International Workshop on Emerging Trends in FLOSS Research and
Development (FLOSS’07: ICSE Workshops 2007), 2007, pp. 7-7.
Software Heritage. (2022) Software Heritage. [Online]. Available:
https://www.softwareheritage.org

A. Pietri, D. Spinellis, and S. Zacchiroli, “The software heritage
graph dataset: Public software development under one roof,” in 2019
IEEE/ACM 16th International Conference on Mining Software Reposi-
tories (MSR), 2019, pp. 138-142.

G. Rousseau, R. Di Cosmo, and S. Zacchiroli, “Software provenance
tracking at the scale of public source code,” in Empirical Software
Engineering, 2020.

P. Xia, M. Matsushita, N. Yoshida, and K. Inoue, “Studying reuse of out-
dated third-party code in open source projects,” Information and Media
Technologies, vol. 9, no. 2, pp. 155-161, 2014.

K. Inoue, Y. Sasaki, P. Xia, and Y. Manabe, “Where does this code come
from and where does it go? - integrated code history tracker for open
source systems,” in 2012 34th International Conference on Software
Engineering (ICSE), 2012, pp. 331-341.

J. Davies, D. German, M. Godfrey, and A. Hindle, “Software
bertillonage,” in Empirical Software Engineering, 2013. [Online].
Available: https://doi.org/10.1007/s10664-012-9199-7

M. W. Godfrey, D. M. German, J. Davies, and A. Hindle, “Determining
the provenance of software artifacts,” in Proceedings of the S5th
International Workshop on Software Clones, ser. INSC *11. New
York, NY, USA: Association for Computing Machinery, 2011, p
65-66. [Online]. Available: https://doi.org/10.1145/1985404.1985418
R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue,
“Do developers update their library dependencies?” Empirical Software
Engineering, vol. 23, no. 1, pp. 384-417, Feb 2018. [Online]. Available:
https://doi.org/10.1007/s10664-017-9521-5

[42] Y. Chen, A. E. Santosa, A. Sharma, and D. Lo, “Automated
identification of libraries from vulnerability data,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering:
Software Engineering in Practice, ser. ICSE-SEIP °20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 90-99.
[Online]. Available: https://doi.org/10.1145/3377813.3381360

[43] National Institute of Standards and Technology. (2021) National
Vulnerability Database. [Online]. Available: http://nvd.nist.gov

[44] D. M. German, M. Di Penta, and J. Davies, “Understanding and auditing
the licensing of open source software distributions,” in 2010 IEEE 18th
International Conference on Program Comprehension, 2010, pp. 84-93.

[45] Y. Wu, Y. Manabe, T. Kanda, D. M. German, and K. Inoue, “A method

to detect license inconsistencies in large-scale open source projects,”

in 2015 IEEE/ACM 12th Working Conference on Mining Software

Repositories, 2015, pp. 324-333.

T. Wolter, A. Barcomb, D. Riehle, and N. Harutyunyan, “Open source

license inconsistencies on github,” ACM Trans. Softw. Eng. Methodol.,

dec 2022. [Online]. Available: https://doi.org/10.1145/3571852

[47] S. Qiu, D. M. German, and K. Inoue, “Empirical study on dependency-
related license violation in the javascript package ecosystem,” Journal
of Information Processing, vol. 29, pp. 296-304, 2021.

[48] S. W. Flint, J. Chauhan, and R. Dyer, “Escaping the time pit: Pitfalls
and guidelines for using time-based git data,” in 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR), 2021.

[46

12

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

