
Applying the Universal Version History Concept to

Help De-Risk Copy-Based Code Reuse

David Reid

University of Tennessee

Knoxville, TN, USA

dreid6@vols.utk.edu

Audris Mockus

University of Tennessee

Knoxville, TN, USA

audris@utk.edu

Abstract—The ability to easily copy code among open source
projects makes it difficult to comply with the need to determine
the provenance of code essential for cybersecurity and for com-
plying with the licensing terms. Such provenance encompasses
the exact origin of each component and its license, and various
qualities of the component, such as absence of vulnerabilities and
high likelihood of future maintenance. With the aim to address
these challenges, we created an approach supported by a tool
prototype, UVHistory, that links each piece of source code to
all projects where it resides and, also, to its version histories
in all these projects. This combined version history of a file
from all open source projects we refer to as universal version
history. We exemplify UVHistory via scenarios illustrating how it
can help developers identify bugs and vulnerabilities and verify
that license terms are not violated. Specifically, using UVHistory,
developers can find the origin of a file including the open source
repository where it originated, follow the evolution of the file over
time and across different repositories, identify which authors
have worked on a file, and read all the log messages for any
modifications to that file in any repository. We also evaluate
UVHistory in two contexts: to identify license non-compliance
and to find instances of unfixed vulnerabilities. We find that
in active and popular projects both problems are common and
anyone can easily identify them using our approach.

I. INTRODUCTION

Version control systems were a major advance in software

engineering by automating storing and making accessible

a complete history of the source code within a repository.

The rapid growth in open source software (OSS) and its

widespread use made obvious the need to create Universal

Version History (UVH) (a full version history of a file across

all repositories and revision histories where either parents or

descendants of that file reside). More recently, the concept

of a UVH appears to be articulated in the “Improving the

Nation’s Cybersecurity” [1] U.S. Presidential order with the

key component of “Enhancing Software Supply Chain Se-

curity.” Specifically, “maintaining accurate provenance (i.e.,

origin) of software, providing a Software Bill of Materials, and

ensuring and attesting to the integrity and provenance of open

source software used within any portion of a product.” This

recent presidential order highlights an issue, software supply

chain security, that has long been known to be important for

various reasons but which is often overlooked. In addition

to the security implications explicit in the presidential order,

knowing the software provenance and providing a software bill

of materials is also vital for ensuring compliance with license

requirements, finding additional useful features that may be

available in different versions of the software, improving

code quality problems, and addressing aspects of developer

reputation. The realization of this idea, however, depends on

the ability to collect, clean, curate, and integrate VCS data

from over 100 million open source repositories, and remained

out of reach for many years.

In this paper, we present an approach to produce a universal

version history which links files across multiple reposito-

ries and multiple repository hosting platforms to construct a

single history by tracing the version of a single file across

all repositories and revision histories where either parents

or descendants of that file reside. We then show how this

approach can reduce the risks of copy-based code reuse.

Copying code for reuse in other projects is widespread [2],

[3], [4], [5]. Much of the work on software supply chain issues,

such as security and license management, focuses on software

dependencies. A software dependency is generally considered

an external component (such as a library or package) that is

used within a project. When the external component is copied

and committed into a project’s repository, it is no longer an

external component but rather is now part of the project. This

approach is sometimes called clone-and-own [6], [7], [8] or

vendoring [9], [10]. The cloned component is clearly part

of the supply chain, but is often overlooked because it is

considered part of the core project rather than a dependency

once it is committed into the project’s repository. This clone-

and-own method can cause problems with code maintenance

because of the lack of information about the connection

between the clone and the original. In fact, as we show below,

even the originating projects sometimes do not contain public

security vulnerability fixes implemented in projects that copied

the code.

Much of our work focuses on projects in languages like

C and C++ because they do not have a standard package

manager system. When using a package manager, it is easier

to find the origin of the code and any known vulnerabilities

or license issues. However, many projects using languages

with good package managers don’t take advantage of the

package manager. Therefore, we also look at languages like

Java, JavaScript, Python, etc, that do have standard package

manager systems.

In order to understand and address the risks associated with

1

2023 IEEE 23rd International Working Conference on Source Code Analysis and Manipulation (SCAM)

DOI 10.1109/SCAM59687.2023.00012

2
0
2
3
 I

E
E

E
 2

3
rd

 I
n
te

rn
at

io
n
al

 W
o
rk

in
g
 C

o
n
fe

re
n
ce

 o
n
 S

o
u
rc

e
C

o
d
e

A
n
al

y
si

s
an

d
 M

an
ip

u
la

ti
o
n
 (

S
C

A
M

)
| 9

7
9
-8

-3
5
0
3
-0

5
0
6
-7

/2
3
/$

3
1
.0

0
 ©

2
0
2
3
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/S

C
A

M
5
9
6
8
7
.2

0
2
3
.0

0
0
1
2

979-8-3503-0506-7/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

unknown provenance in open source software, we would first

like to create a tool that is able to automate the process of

producing a universal version history of a file across reposito-

ries and even across repository hosting platforms. Such a tool,

if widely deployed, would inform developers about potential

problems that might exist in code that they would like to reuse.

Second, we want to determine if unknown provenance causes

problems in real-world open source projects. For example, are

there potential license violations or security vulnerabilities that

are unknown to developers wishing to reuse code from another

project? We find a large class of instances where even the most

advanced licence violation detection tools can not (and do not)

work because it is not possible to find such violations without

knowing the complete history. Third, we would like to see

if constructing a universal version history can help mitigate

some of the problems caused by unknown provenance. Forth,

we want to determine if our proposed tool detects different

problems than popular dependency management products and

software composition analysis tools. Fifth, we would like to

see if our tool can produce useful results in a reasonable

amount of time.

To establish the feasibility of producing the universal ver-

sion history in general and in being able to address the issues

related to code copying, we introduce a prototype tool, UVHis-

tory, which automates the process of finding the universal

version history of a file across all open source repositories.

We build on the World of Code [11] infrastructure to discover

and report the complete history of code in any language from

a nearly complete collection of open source software. The

results can be used to look for new features or functionality

available in other revisions, look for security vulnerabilities

reported in other revisions, find which developers have worked

on the code throughout its evolution, look for license re-

quirements that may have been lost as the code propagated,

and more. Also, different revisions can be compared with

public sources, such as the National Vulnerability Database,

for known vulnerabilities or other bugs. This version history

tracks changes to a specific file even when the file is copied to

a new and possibly unrelated repository, allowing a developer

to trace changes over time and across different repositories

and different repository hosting platforms.

Our work makes the following contributions:

• We propose a computationally feasible approach to pro-

duce a universal version history which links source code

by content and its modification history across multiple

repositories and hosting platforms.

• We present a prototype tool, UVHistory, that implements

our proposed approach efficiently over the nearly com-

plete collection of open source software in World of

Code.

• We evaluate the application of the universal version

history concept to address two specific software engi-

neering problems identified in this paper. We show that

producing a universal version history can help mitigate

problems with potential license violations and security

vulnerabilities caused by copy-based code reuse.

• We show that the declared license of a project cannot

always be trusted, and we show how our tool can help

identify those projects with incorrect copyright and li-

cense information.

II. APPLICATION SCENARIOS

Source code with unknown history introduces risks such

as the possibility that the code could have been modified in

ways that unintentionally introduce security vulnerabilities or

other bugs, that intentionally include malware, or that violate

license terms. In this section, we describe in more detail

specific scenarios where the universal version history concept

and associated tools help de-risk copy-based code reuse.

A. Security Vulnerabilities

When a security vulnerability is discovered in open source

software, it is typically documented in the Common Vulner-

abilities and Exposures (CVE) system [12] maintained by

The Mitre Corporation. Developers know to look at the CVE

system for possible security vulnerabilities. However, when a

vulnerable file has been copied to other projects, those other

projects may not be listed in the CVE entry. When code with

security vulnerabilities is cloned, the target project may inherit

the vulnerability. When the vulnerability is found and fixed

in the original project, the fix may not be propagated to the

clone, especially when the target project does not maintain a

link to the parent. Reid et al. [13] coined the term “Orphan

Vulnerability” to refer to these kinds vulnerabilities that exist

in copied code even after they are fixed in another project. Our

proposed tool would aid developers in knowing the origin and

history of the code, which would allow them to learn about

the reported vulnerabilities in the original project.

It is also possible that a vulnerability is found and fixed in

a file copied from an original project, but the fix is not back

patched into the original project. Woo et al. [14] reported an

example of this in the jpeg-compressor project [15]. CVE-

2017-0700 [16] describes a vulnerability in the Android Sys-

tem UI that allows remote code execution. The file jpgd.cpp,

which is the source of the vulnerability, was copied from the

jpeg-compressor project. The vulnerability was discovered and

reported in the Android source code [17], and a CVE was

created. However, the vulnerability was not reported and not

fixed in the jpeg-compressor project, which is the original

source of the vulnerable file in Android. Therefore, developers

who copy and reuse the Android code can easily find the

vulnerability and the patch. However, developers who copy the

jpeg-compressor project are not easily able to find out about

that vulnerability, which was found and fixed in a derivative

work. Clearly, it is not safe to assume that the original source

is the best or most secure version. Our research aims to aid

developers in finding not only the origin, but all revisions of

a file across all open source repositories.

B. License Compliance

Another concern about copied code is license requirements.

If a developer wishes to reuse software, it is important to

2

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

understand the license terms of the original code. Trusting

the declared license terms is not always safe. In some cases,

the complete license information is not copied with the code.

We found many such cases. As just one example, libofa [18]

contains license information in a file named COPYING in

the top level directory. But the license information is not

included in every source code file. Our UVHistory tool found

several cases where projects copied the source files from libofa

without copying the file that contains the license information.

The result is that a developer who copies the copied code

without knowing the origin will not have the license informa-

tion, resulting in a potential license violation. It is important

to understand the origin of the code being copied in order to

comply with the license terms.

The 2021 Open Source Security and Risk Analysis report

(OSSRA) [19] indicates that 65% of the codebases audited

in 2020 have license conflicts with open source software.

Knowing the license requirements can be complicated when

a developer reuses an open source project which itself reuses

components from other projects. In some cases, the original

license information is not propagated with the code, which

means that the necessary knowledge required to answer the

license question is not available to the developer, making it

practically impossible to comply with the license requirements.

Therefore, finding the history of open source code is critical

to understanding and complying with license requirements

of reused code. The tool we present later in this paper,

UVHistory, traces a file to its origins which helps identify

missing license information.

C. Additional Scenarios

Our paper focuses on addressing security and licensing con-

cerns. The universal version history concept can be valuable

in other areas as well, including identifying other code flaws,

such as defects, incompatibilities, or even missing functional-

ity. It may even support better author attribution considered

an important motivation for open source developers [20].

We briefly describe those scenarios here, but leave in-depth

study of these areas for future work. Finding the complete

file history, including all ancestor and descendant code, can

be valuable for finding additional useful features available

for a piece of software. Source code is often copied into

different projects and then improved for use in that project.

These useful enhancements or fixed bugs would often be

valuable to other projects, but maintainers of other projects

are often unaware of them. An old clone may be missing

the latest enhancements/fixes that could add improved quality,

functionality, performance, or other benefits.

Widely copied code may indicate its high utility or other

aspects of quality. Knowing which developers have worked

on the specific code in question can help build trust in that

code. It may also serve as an indicator of popularity for other

developers who may benefit from the widely used functionality

implemented in such code. As such, a tool such as the one

we propose here could serve as a component of a code

recommender system. The tool could also be used to identify

the developers who create such widely used code and help

increase their reputation, direct support, or other resources, to

motivate such production.

III. UNIVERSAL VERSION HISTORY CONCEPT

The concept of a universal version history(UVH) is to

track the evolution of a source code file across multiple

repositories. It is the documented history of a file that has been

modified and potentially copied across different repositories

which may be hosted on different repository hosting platforms.

This documented history includes verifiable information about

revisions to the file, dates of those revisions, log messages for

every revision, and the chain of custody (who wrote the code,

who revised the code, and what projects included the code).

It is worth defining UVH more precisely and comparing to

a common version control system such as git. The essential

entities are versions of the source code (blobs). In git, each

blob can be associated with all versions (commits) of the

repository where it is present, and each version may be

associated with one or more filenames (including the full path

from the root of the repository). The blobs associated with

such file with a pathname can be used to determine a version

history of a file (and git provides several heuristics methods

on how to do that: the lack of determinism of file history

arises with merges). A particular commit “creates” a blob if

either there was no such file in the previous version (parent

commit(s)) or if the previous blob was different. We can thus

use the time of the first commit creating a blob (the same

blob can be created multiple times in different folders or even

in the same folder) to obtain the time when the blob was

introduced to a repository. Furthermore, each time a blob is

created by a commit, we link it to an old blob: a blob (if

any) that exists in the parent commit for the same filename.

Hence within a repository is simply a graph linking each blob

to the “old blob” and to commits that created it (including all

commit attributes such as time, author, commit message, and

the pathname of blob-associated file). Notice that it is a bit

different from version control systems such as CVS or SVN,

where versions of individual files are tracked. Notice that the

resulting graph has several distinct kinds of nodes (e.g., blobs

and commits), and multiples types of links (e.g., blob to old

blob, commit to parent commit, and blob to creating commit).

In UVH, we simply add one more type of node: a repository.

Each repository is linked to all commits within that repository

and, transitively, to all blobs contained therein. Blobs, on the

other hand, are linked to all commits in all repositories. The

first creation time for a blob is defined the same way. We thus

can identify the original commit and original author for every

version of the source code in World of Code. In addition to the

time of the commit, a partial temporal order based on the old-

new blob relation is available. Section VIII discusses in more

detail how we handle potentially inaccurate time recorded in

git commits. Notably, as we expand the scope of UVH across

repositories we lose some aspects of a sequence. For example,

let blob a be first created in repository A, then in B, and lastly

in C. In such case, without additional information (who did

3

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

the commit and what other blobs were created) it would be

impossible to determine if repository C got the blob from

repository A or from repository B. For some applications,

determining if the blob came from A or B is not as important

as identifying licenses, vulnerabilities, or other attributes of the

blob that may vary among these various repositories. In cases

where knowing the true origin is critical, the UVH reduces the

search space required so that manual inspection is feasible.

The tool cannot know the origin for sure, but can point to the

earliest commit into a public repository.

The universal version history (especially in combination

with techniques employed in Mining Software Repositories

field) can be used to find or infer other information about

the code such as copyright notices and license information,

the reputation of the authors, the quality of the code, what

coding standards were used, the use of (or lack of) secure

coding standards, what vulnerabilities have been reported,

what test methods were used, what security assessments were

done, the location where it was developed and modified, the

trustworthiness and reliability of the code, and the likelihood

that the project will continue to be maintained.

IV. THE UVHISTORY TOOL

UVHistory is our tool for automating the process of tracking

changes across all open source repositories and their version

histories by operationalizing the universal version history

concept introduced in section III. It supports the study of

issues concerning source code reuse in real-world open source

projects.

A. Infrastructure: World of Code

Before describing our tool, we need to introduce the infras-

tructure, World of Code(WoC), on which our tool is built.

World of Code [21] is a nearly complete collection of all

publicly available open source software. Software source code

is periodically collected from many sites including GitHub,

Bitbucket, SourceForge, and many others. The software is

then curated and stored using methods that allow for efficient

searching of the very large amount of source code collected.

World of Code, which aims to support research in software

engineering, currently contains over 20 billion Git objects

with over 100 million unique public repositories (not including

forks or empty repositories) [22].

This World of Code infrastructure, with its extensive collec-

tion of open source software, allows us to find code duplication

across projects where no link to the origin exists on a scale

that is not possible without this kind of infrastructure.

B. UVHistory

UVHistory takes as input the contents of a file and finds

all duplicate versions of that file or any revision of that file

across all of the open source software available in World of

Code.

UVHistory specifically looks for source code from open

source projects that is copied and committed into different

projects. This approach is different than most existing tools for

identifying vulnerabilities and licenses which look for external

libraries that are linked in or look at package management

systems for dependencies.

Some systems tie into the build process and detect any li-

braries or other third-party dependencies. But these approaches

miss code that is copied and committed into the source code

repository without any link to the original project. Our tool is

different than other tools in that it is specifically designed to

find these kind of file-level copy dependencies that have no

link to the original project and are therefore missed by existing

tools.

Since World of Code archives source code repositories over

time, we are able to trace the history even to projects which are

no longer available on public source code hosting platforms.

C. Algorithm

For simplicity we assume that our algorithm is provided one

or more sha1 hashes computed via the method used by Git. A

user of our tool may, instead, provide an entire repository or

a specific file name within a repository. In that case we have

simple scripts that collect either the complete set of blobs

in a repository or a complete set of blobs associated with a

particular filename. In any case, we start with one or more

sha1 hashes as input. These hashes correspond to one or more

blobs, which is our seed list from which to start finding more

files in the universal version history.

Next, we use WoC’s blob to old blob mapping recursively

to find all ancestor blobs. Similarly, we use WoC’s old blob

to blob mapping recursively to find all descendant blobs. For

each blob, we use WoC’s blob to commit mapping to find all

commits containing any of the blobs that have been found. We

now have all commits for all revisions of the file across all

source code repositories. The commit gives us the time, author,

pathname, and log message for that revision of the file. From

the commit, using WoC’s commit to project mapping (c2P),

we find all projects which contain a revision of the given file.

Now we have the information needed to construct a link to that

revision of the file on the repository hosting platform (such as

GitHub, Bitbucket, SourceForge, etc). The final output of the

tool shows the complete history of the file with all ancestor

and descendant revisions across all repositories. The history

includes the author of each revision, the date it was committed,

the log message of the commit, the link to the original source

of the project of which that revision is a component if the

project is still publicly available and accessible, and a link

to the specific revision of the file on the hosting platform (if

available).

For each blob, we sort all of the commits for that blob in

date order. We then sort the blobs by the date of the earliest

commit of that blob. The date we use is the date in the Git

commit. It is possible that the date in the Git commit is

not correct. We look for obvious discrepancies; for example,

values of 0 or dates that are in the future are clearly not correct.

In addition, if we see a date that is before Git was released

in 2005, we flag it as suspicious. It is possible that the early

date is correct, as it may be a file that was migrated from a

4

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

different source code control system such as SVN or CVS. We

also flag any dates prior to 1990 when CVS was introduced, as

it is somewhat unlikely that any date prior to the introduction

of CVS is accurate. We cannot guarantee that the date in the

Git commit is correct, which we note in the limitations section.

When identifying projects in the universal version history,

we want to find distinct projects. GitHub projects often have

many forks, sometimes tens of thousands. Most of those forks

are not independent projects; many were only created for

the purpose of issuing pull requests to the original project.

Showing tens of thousands of related forks makes it far more

difficult to find the useful information. Using the community

detection algorithm described by Mockus et al. [23], WoC

maps each Git repository to a central repository which is

expected to represent the same project. This mapping in WoC

allows us to create a list of deforked projects. UVHistory

displays the deforked projects on the main page and then

includes a link to a secondary page that contains a list of

all projects, including (possibly irrelevant) forks.

D. Output

Our final output contains:

• A list of all blobs in the universal version history. The list

is sorted by date in reverse chronological order. The blobs

are named by the sha1 hash of the blob as computed by

Git.

• For each blob, a list of all commits of which this blob

is a part. The commits are named by the sha1 hash of

the commit as computed by Git. The commit information

includes the author, time of commit, and the commit log

message.

• For each commit, a list of all of the projects where this

commit was applied, the full pathname of the file, and

the URL linking to the file on the source code hosting

platform (note that the link may be dead if the project is

no longer publicly accessible).

V. RESEARCH QUESTIONS

In this section, we present four research questions and the

research methods used to address each of the questions. Our

study is designed to show the relevance of the problem pre-

sented and also to evaluate the effectiveness of our proposed

solution. The results are presented in section VI.

Our goal is to see if constructing a universal version history

across repositories and across hosting platforms can help solve

the class of problems presented earlier in this paper. We

specifically look at two of the problems mentioned earlier:

potential license violations and security vulnerabilities. The

other issues are similar and can likely be solved in a similar

way, but we leave those for future work.

RQ1: Can the declared license in an open source software

be trusted?

The aim of this question is to see if it is common in real-

world open source software projects for code to be copied

from other projects without the correct copyright and license

information being retained and without a clear link back to the

original project where the copyright and license information

can be found. When code is copied, is the correct license

information copied along with it, or if not, is the correct license

readily available. We are specifically looking for real-world

projects, not toy projects or student assignments.

If we can trust that the license information provided in

projects is correct, then finding the universal version history

is not necessary to be able to properly understand and comply

with the license terms. If, however, we find that there are

frequent license violations due to missing or incorrect license

information in popular open source projects, then we will

conclude that it is worth our effort to find ways to mitigate

the problem. The specific problem we want to mitigate is the

problem of copying code without knowing or without having

an easy way to find the correct license terms for that code.

We want to determine if there is real-world benefit in a tool

to help mitigate this problem.

Our research method to answer RQ1 was an exploratory

study designed to see the extent of the problem. We examined

open source projects which have copied code from popular

open source projects to see if the correct copyright and license

information was propagated along with the copied code. We

developed some tools to select a set of projects that are likely

to contain license problems. We then manually inspected that

subset.

RQ2: Can our UVHistory tool, by constructing a universal

version history, help identify projects with missing copyright

and license information and help find the correct information

for the given code?

It is important, when reusing software, to comply with

the license terms. One cannot comply with terms of which

one is not aware. Reusing software without knowing the

correct license terms can cause someone to infringe intellectual

property without being aware of the infringement. We want

to see if our tool can help developers identify when correct

license terms are missing and help them find the correct

license.

Most open source licenses require the copyright and license

information to be retained. Cases where projects copy code,

but omit the copyright and license information, is a clear

violation of the license.

We used a case study to answer RQ2. We studied two cases

where license information was not properly propagated. The

two case were selected from results of the study for RQ1. The

case study method allowed us to look in-depth at two specific

projects.

RQ3: Can our UVHistory tool, by constructing a universal

version history, help identify projects which are subject to

security vulnerabilities that have been found and fixed in

another project but which still persist unknowingly in other

projects?

Previous research [13] [14] [24] has identified this as a real

problem in popular real-world projects. Due to the seriousness

of this problem, a tool that could help mitigate this problem

would have value.

5

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

We answered RQ3 with another case study. This case study

examined a case we introduced section II-A as one of the

motivating examples. Again, the case study method allowed

us to have an in-depth look at a project. This time, the project

studied contained a known security vulnerability propagated

through code reuse.

RQ4: Is the performance of UVHistory such that it can run

in reasonable time on commodity hardware for source code

files in typical open source projects?

In order to have practical value, the tool needs to be able

to produce results in reasonable time on reasonably affordable

hardware.

Our final RQ is addressed with a simple study to examine

the performance of our prototype tool on common projects

using specific hardware.

VI. EVALUATION

We evaluate our method and tool by answering each of

the four research questions, and we present the results in this

section.

A. RQ1: Can the declared license be trusted?

To answer our first research question, we searched for cases

where code was copied from one project to another, but the

copyright and license information was not copied. We were

not looking for projects that used package managers or linked

to external libraries, but only cases of code cloned from one

project and committed into the repository of another project.

We selected a small subset of projects to investigate in more

detail. We randomly selected 100 source code projects from

GitHub which include a top-level file named LICENSE.txt

containing a license that requires copies to retain the copyright

notice, had no reference to copyright or license information in

the individual source code files, and had more than 1,000 stars.

We chose projects with a top-level LICENSE.txt file because

it is common for projects to put the license information in a

single file in the top-level directory of a repository and not

duplicate the license in every source code file. LICENSE.txt

is one common filename used for the license file. When the

license information is not included in every source code file, it

is easy for a developer to copy a copyrighted source code file

without copying the relevant license information. We limited

our selection to repositories with more than 1,000 stars so that

we would find popular projects [25] that are likely to have files

that are copied into other projects. The selected projects were

composed of projects in a variety of languages and using a

variety of licenses.

For each of the 100 projects, we used our UVHistory tool to

trace the history of one of the files in the project to find other

projects which had copied code from the original project. We

then checked those other projects to see if the copyright and

license information had been propagated to the new project.

In the few cases where there were more than 500 clones of a

project, we limited our search to the first 500. Because of the

manual work involved in investigating each license, we had to

limit the scope. We looked at 100 original projects and up to

500 clones of each of those 100 original projects.

Our procedure for finding out if the projects containing

cloned code also contained the proper license was as follows:

First, we used UVHistory to find projects containing copies of

the code in question. Next, we used a tool we developed (also

layered on top of World of Code) to find all licenses used in

a project. The tool used the winnowing algorithm [26] to find

the most similar license from among 1862 licenses provided

by spdx1 for each blob in a project. The winnowing algorithm

relies on extracting a collection of signatures from text and

matching them among documents (blobs in the project and

blobs representing licenses). We compared the known license

in the original project to the licenses found by our tool to

see if there was a match. If there was an exact match, then

clearly the license information was correctly propagated with

the code. If there was not a match, we manually inspected

the project to make sure that, in fact, the correct license was

not included. We also checked to see if the project was still

publicly available, as World of Code will still have information

about removed projects but we only care about projects that

are currently publicly available. If neither our tool nor our

manual inspection found a match, then we conclude that the

correct license information is not properly included.

In 76 of the 100 projects, we found at least one case where

code from that project had been cloned to another project.

In 54 of the 100 projects, we found at least one case where

another project had copied the code but had not copied the

copyright and license information and did not include an

obvious link back to the original project where the copyright

and license information could be found. In total, we found

3,431 projects which had cloned code from one of the original

100 projects (Note that our 500 project limit reduced that

total). We found that 1,132 of those projects did not properly

retain the copyright and license information.

The answer to RQ1 is clearly no, the declared license

cannot always be trusted. License violations caused by license

omission are common in real world projects since we found

a high percentage of popular projects where code is copied

but the license and copyright information are not retained (as

required by the license) and there is no link from the copied

project back to the original project where the license can be

found. These non-compliant projects are publicly available,

which means that someone might very well copy and use the

code without being aware that they are violating the license

terms.

The answer to RQ1 suggests that future work involving a

large scale empirical study concerning license omissions in

cloned code would be valuable.

B. RQ2: Can UVHistory help with license compliance issues?

Based on the answer to RQ1, someone who wants to reuse

code from one of these non-compliant projects would have

no easy way to know the license terms that must be followed

1https://spdx.org/licenses

6

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

unless they obtained some additional information. Our second

research question considers whether our UVHistory tool can

provide the additional information necessary to ensure compli-

ance. To answer this question, we conduct a case study with

two cases looking in detail at specific projects chosen from

the ones identified in the section above.

The first project chosen was AIOHTTP2, an asynchronous

HTTP client/server framework. We chose AIOHTTP because

it has over 12,000 stars on GitHub, indicating it is a very

popular project likely to be copied, and because it has the

Apache license which is a very common license which requires

the copyright notice to be retained in all copies. We have

already discovered, in answering RQ1 above, that there are

projects which reuse AIOHTTP without following the license

terms that require attribution. To answer RQ2, we want to

find out if UVHistory can confirm that proper license terms

are followed or, if not followed, find the correct license for

the project. We start with projects that we know, from our

study of RQ1, do not comply with the license requirement

to include the copyright notice and do not provide a clear

link to the original project that contains the correct license

terms. There are many cases of projects that use AIOHTTP

without retaining the copyright notice as required. We pick

just one, Hackathon-Torrent3, to show that UVHistory is able

to identify the correct license and copyright notice that should

be included with any reuse of this project. Running UVHistory

on a source code file in the Hackathon-Torrent project, we find

the AIOHTTP project as the project in the universal version

history with the earliest date. Following the link produced by

the tool takes us to the AIOHTTP project on GitHub where

the license and copyright information is very clearly available.

This means that someone wishing to reuse the Hackathon-

Torrent project could, by looking at the universal version

history produced by UVHistory, find the correct license and

copyright information that is missing from Hackathon-Torrent.

The second project chosen was VirtualXposed4. We chose

this project because it is widely copied and because it has

a commercial license. The commercial license is particularly

problematic when copied into open source projects, especially

when the license information is not propagated with the copy.

We traced the code from the VirtualXposed project to its

origin, which is VirtualApp5. VirtualApp’s README is very

clear that in order to use this software you must purchase a

license. However, VirtualXposed includes the GPL license in

its LICENSE.txt file, which would make it appear that it is

available under GPL, but that is not completely correct since

it also includes commercially licensed code. VirtualXposed

has more than 15,000 stars on GitHub and more than 2,000

forks, indicating that it is a widely used and copied project.

Following the history of the project produced by UVHistory,

we find several copies of this code that include an open source

license such as Apache or no license at all. Without a tool like

2github.com/aio-libs/aiohttp
3github.com/AdoenLunnae/Hackathon-Torrent/
4github.com/android-hacker/VirtualXposed
5github.com/asLody/VirtualApp

UVHistory, there would be no way to know that these copies

of VirtualApp are restricted by a commercial license. Some

examples of projects that do not propagate the commercial

license follow. We only list a few examples, there are many

more than what we have listed here. VirtualDump6 contains

copies of some of the code that originated in VirtualApp, but

it does not include any license information or any link back to

the original VirtualApp project. YCVaHelpTool7, which also

uses code from VirtualApp, includes the Apache license in a

file named LICENSE. There is no mention of the VirtalApp or

the commercial license, leaving a developer wishing to reuse

the code assuming that it is available through the Apache

license. Following the universal version history to the origin

again leads to the correct license and copyright information.

The answer to RQ2 is yes, the universal version history

can help identify missing license information and find the

original project containing the correct license information. We

demonstrated that our UVHistory tool can effectively find the

original project, allowing developers wishing to reuse code to

be able to find the correct license information.

We contacted the project maintainers of these projects to

report license issues.

C. RQ3: Can UVHistory help identify projects with security

vulnerabilities?

To answer RQ3, we follow a similar procedure as for RQ2,

except our case study for RQ3 looks at projects with known

security vulnerabilities rather than potential license violations.

In section II-A, we used a security vulnerability in a jpeg

compression library as a motivating example for this work.

That case was particularly challenging because the fix for

the vulnerability was not in the original project from where

the code came, but rather in a project that had reused the

vulnerable code and then fixed it. Thus finding the origin is not

enough, we also need to look at other projects in the history.

The specific example we look at, Entropia Engine++8, is a

cross-platform game and application development framework.

With recent commits and a number of stars it appears to

be a reasonably active and popular project. It reuses the

vulnerable file jpgd.cpp. The header comment in that file

references the jpeg-compressor project from where the code

was copied. A developer wishing to reuse Entropia Engine++

could easily know from where it was copied. However, the

CVE identifying the vulnerability lists the Android System

UI9 where the vulnerability was fixed. Therefore, there is no

clear way for the developer reusing it to know that it in fact

contains the vulnerable version of jpgd.cpp. This is where

UVHistory proves its value. By finding the universal version

history using UVHistory, we are able to see not only the

original jpeg-compressor project, but also other projects which

reuse it, including Android. Searching the universal version

history for common strings like “CVE” or “vulnerability”

6github.com/LiveSalton/VirtualDump
7github.com/yangchong211/YCVaHelpTool
8github.com/SpartanJ/eepp
9source.android.com/security/bulletin/2017-07-01#system-ui

7

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

finds hints about potential problems. In this example, we

find 2 hits when searching for “vulnerabil”: “38889eb Fix

series of JPEG vulnerabilities by xxxxx” and “890381c Fix

security vulnerability by xxxxx”10, both from the Android

project. This allows a developer wishing to reuse Entropia

Engine++ to find the potential vulnerability CVE-2017-0700

by searching the universal version history. Commit 38889eb

fixes this vulnerability.

We contacted the project maintainers of the project with

the cloned vulnerability to let them know about the issue. The

issue was fixed on June 28, 2022 by updating to a new version

of jpeg-compressor, so the project is no longer vulnerable.

D. RQ4: Is the UVHistory prototype feasible?

Our final research question considers performance. We want

to understand if it is feasible to effectively identify code history

across repositories on such a large scale.

Our tests were performed on a machine with Intel(R)

Xeon(R) Gold 6148 CPUs running at 2.40GHz. We limited

our program to 16 threads running in parallel to limit the load

on the machine which is in heavy use by multiple users. As

a prototype tool, UVhistory is not optimized for performance.

Increased parallelism and other enhancements would improve

performance.

By leveraging the World of Code infrastructure, which has

already curated the data and stored useful information in a

database which can be efficiently searched, we are able to

produce results relatively quickly. We looked at the timing

on the 100 cases selected for RQ1. Our timing results varied

greatly based on how many different projects contain a cloned

version of the file in question. Most of the projects in our 100

cases had less than 500 clones. The elapsed time for a case

with 187 cloned projects was 9 minutes. The worst case, which

found clones in well over 10,000 projects, took just under 3

hours. Thus we conclude for RQ4 that, yes, UVHistory is able

to finish in practical time.

E. Evaluation of Existing Tools

The goal of our tool is similar to that of Software Compo-

sition Analysis (SCA) tools, but our methods are different and

therefore help developers find issues not found by SCA tools.

SCA tools identify the open source software in a codebase

in order to find security, license compliance, and code quality

issues. In this section, we identify existing tools, describe a

test case we set up to test those tools, and then present the

results of the test.

Current open source SCA tools that detect license compli-

ance issues look at licenses that are explicitly declared in a

project being reused through code clones or through a package

manager. They trust the declared license in a project or source

code file. What they fail to find are cases where code is

copied from project to project multiple times, and sometimes

modified, without the license information also being copied.

The history is lost, making it impossible to find the original

10Author names redacted for privacy

license. Commercial tools are harder to evaluate. Some tools

claim to find clones from a large collection of open source

software, but we do not have access to that collection and

cannot evaluate its completeness. Most tools appear to trust

the declared license without searching for the origin of the

cloned code. We tested some of those tools, both open source

and commercial, and present the results below.

Similarly, with vulnerabilities, current open source tools

fail to trace the history as a file is modified and copied

across repositories, and therefore often miss vulnerable code

that has been copied from a known vulnerable project to

a different project. Our research shows that cases like this

are common, and that our tool can help identify these cases.

Again, commercial tools are harder to evaluate. Most appear to

have the same limitations. We tested several using our example

project containing a cloned vulnerability.

We created a small test case example project where we

built a very simple HTTP client and server using code cloned

code from a vulnerable version of aiohttp11 (a project which

we identified when we collected data for RQ1). We cloned

only the directory that contains the source code, but we

did not clone the top-level directory, which contains the

License.txt file. We added an MIT license for our example

project. Our project cloned v3.7.3 of aiohttp, which is subject

to the vulnerability described in CVE-2021-21330. Anyone

wanting to reuse our project would assume everything in

the repository is available under the MIT license. It is not

immediately clear that parts of the project are actually subject

to a different license. Additionally, the project contains a

known vulnerability, but our project is not listed in any CVE

entry. This example project mimics real-world cases that we

found in many open source repositories.

Popular free dependency checker tools such as GitHub De-

pendency Graph [27], Dependabot [28], Google Open Source

Insights [29], and OWASP Dependency-Check [30] rely on

supported package ecosystems that use a supported file format

because they rely on the packaging information to find the

dependencies. This means that languages like C and C++,

which don’t have a standard package management system,

are not well supported by these kinds of tools. Even projects

using languages that have popular package management sys-

tems sometimes copy and commit the code into their own

repositories rather than using the package management system.

In our tests using our example project, none of these 4 tools

detected the license or security issue. This is as expected since

our example uses cloned code rather than a package manager.

We next tested two commercial SCA tools, which we refer

to as Tool A and Tool B. We chose those two because they

were listed in ”The Forrester Wave”12 2021 Q3 Report as hav-

ing strong market presence, and they have free downloadable

trials available. We did not look at commercial tools that do not

provide a free download of a trial version. While it is harder to

11github.com/aio-libs/aiohttp
12forrester.com/policies/forrester-wave-methodology/

8

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

know the exact capabilities of closed source tools, the public

documentation and trial versions give us good insight.

Tool A traditionally relied on package manager information

to find license compliance issues. They recently announced

support for “vendored code” (what we in our introduction call

“clone-and-own or vendoring”). We tried out their free version

(which supports license compliance but not vulnerability man-

agement) on our example project. Tool A did not detect the

missing license information from the cloned file we inserted.

Tool B provides tools which address both security vulner-

abilities and license issues. Tool B’s free version does not

support license compliance, so we signed up for their 14 day

free trial, which supports both vulnerability management and

license compliance. We ran the test with our example project

described above and Tool B did not report the license violation

or the security vulnerability.

Our tool’s purpose is to help developers find the provenance

(history and chain of custody) of a file, which can help them

find security and license issues. We make no claim that our

tool competes with these very impressive SCA tools. We only

claim that it can, in some specific cases, help a developer find

an issue that SCA tools miss.

VII. RELATED WORK

A. Universal History

Early work on finding a complete version history was

conducted by Chang and Mockus [31]. They looked for cases

where directories of source code contain many files with the

same names and then compared those files to find clones.

The matching files and their version histories were used

to construct the file history. In follow-up work [32], they

proposed a large-scale copy detection and validation process

and improved reuse detection. Mockus [33], using the same

algorithm, found significant large scale code reuse where many

files were copied. At the time of their work, there were no

complete collections of open source code like World of Code,

which limited their work to a small number of repositories and

only worked when multiple files in a directory were duplicated

and the filenames did not change. They concluded that there

was still a challenge to scale the work to very large numbers

of open source repositories [32]. World of Code provides the

infrastructure to meet that challenge, which is the goal of this

work.

B. Large Scale Software Archives

World of Code [22] and Software Heritage [34] provide

large scale code archives. Our tool is built on World of Code,

which we described earlier. In this section, we look at related

work that uses Software Heritage.

Software Heritage Graph Dataset [35] links together source

code file contents, which allows duplicate code to be found

across projects, much like what is provided by the World of

Code data maps that we use. What they do not include is the

linkage of the history of each file within a project to all other

projects containing any version of the file. This linkage is what

UVHistory provides.

Provenance work by Rousseau et al. [36] using Software

Heritage looks at occurrences of the “exact same file content.”

They specifically state that they do not look at “predecessors

or successors in a given development history” and that that is

“outside the scope of the present work”. The strength of our

work, and much of the effort to produce it, comes from tracing

the full history by following the predecessors and successors,

thus giving us a complete history that follows the evolution

of a file as it changes over time, not just instances of exact

copies.

C. Tracking Code Changes

Kawamitsu et al. [4] proposed a technique to find which file

revision a copied file comes from in another project for the

purpose of keeping copies up-to-date. They aimed to identify

which revision of a file was reused and how that file was

modified over time. Their method only looked at project pairs

to find files that were copied from one project to the other,

but it cannot handle a large number of projects. Ishio et al. [5]

expanded on the idea of tracking code changes by taking a

set of source files in C/C++ and Java and finding files that

are likely to include the original version of the file. They

look at a relatively small subset of projects compared to what

is available in World of Code. They note that tracking file

changes across repositories is tedious. We further expand code

change tracking by using World of Code’s massive collection

of projects to track modifications to files in any language

across a nearly complete collection of open source software.

D. Finding File Origin

Xia et al. [37] looked at reuse of third-party code and found

that 18.7% of the projects studied copied only the source

file but no companion files like readme or changelog files;

therefore, the version information and links back to the original

project are lost. This is particularly relevant to our study of

license terms as the license and copyright information is often

only in the companion files. They also discovered that third-

party code is sometimes mixed with other third-party code,

making it even harder to trace each file back to its original

project.

Inoue et al. [38] designed and implemented a tool that used

source code search engines to take source code fragments and

find sets of cloned code fragments in order to track the history

of the code. Limitations of those search engines, such as only

allowing keywords and/or code attributes as their inputs or

not allowing automated queries, posed challenges to the tool.

The source code search engines they used (Koders, Google

Codesearch, and SPARS/R) are no longer available. We use

World of Code, which is currently actively maintained.

Davies et al. [39] introduced a method to reduce the search

space when looking for the origin of a piece of code in

cases where a direct link to the origin is not clearly available.

Once the search space is reduced, manual inspection or other

expensive methods can be used to identify the origin from the

reduced set. They demonstrated their method on a collection

of Java files.

9

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

Godfrey et al. [40] pointed out that it is becoming increas-

ingly important to determine the origin of software in cases

where code is cloned into a new project with no clear link to

the origin, but that effective techniques for finding such code

provenance do not yet exist. We aim to help fill the gap that

they identified.

Woo et al. [14] proposed an approach to find the original

software where a vulnerability originated. They noted that

many CVE [12] reports do not give the correct origin of the

vulnerability. Finding the true origin can help mitigate further

propagation of the security risk. Their method uses function-

level clone detection methods, which can be more precise, but

not as efficient at large scale as the file-level clone detection

we use. They only used about 10,000 projects, and only from

GitHub, for their evaluation.

E. Security Issues

Davies et al. [24] performed manual license and security

audits in real-world applications and found potential legal and

security issues in some of the studied applications.

Kula et al. [41] looked at Java projects that use a dependency

management tool and found that 81.5% of projects in their

study still have outdated dependencies, many with security

vulnerabilities. They also, through surveys, found that 69%

of the developers were not aware of the vulnerability. We

hypothesize that the number of outdated cloned copies of files

that have no link back to the origin would be even higher.

Chen et al. [42] designed and implemented a machine

learning system to help identify which libraries in open source

dependencies contain vulnerabilities listed in the National

Vulnerability Database (NVD) [43]. It relies on package

management systems.

F. License Compliance Issues

German et al. [44], through an empirical study of license

issues in open source projects, show instances of incompatible

licenses when open source code is reused in different projects.

They found that there are often mismatches between the

declared license of a package and the license of the source

code within the package, and also incompatibilities between

packages contained within one project. They note that auditing

of license issues is “quite complex” and suggest that improving

automation is this area would be beneficial. This kind of

automation improvement is exactly the aim of our work.

Wu et al. [45] looked at license inconsistencies within large

projects. In their conclusion and future work section, they say

“These problems highlight the need for a method to find and

maintain provenance between applications”. Our work, using

World of Code, looks for inconsistencies across all open source

projects as they suggest.

Wolter et al. [46] found that the license declared at the top-

level of the repository does not always match the license found

in source code files.

Qiu et al. [47] looked at dependency-related license vio-

lation and report a relatively small number of dependency-

related violation in npm. The small number is in part because

permissive licenses are more common in npm. Our work looks

at code clones rather than dependencies.

The work cited in this section finds license inconsistencies.

Our work looks at cases where the license information is not

retained when code is cloned from one project to another,

possibly multiple times, and there is no clear link back to the

original project. Without being able to trace the history of the

file across repositories, someone reusing one of these projects

with missing license information would have no way to know

that they are violating the license when they reuse the code.

VIII. LIMITATIONS

Our UVHistory tool uses the vast source code archive in

World of Code to find clones of open source code. The tool

will not find clones of code that are not included in the World

of Code data.

If a source code file has been identified as containing a

security vulnerability, the project using that file might be

subject to the vulnerability. However, the project might not

be using the vulnerable file in a vulnerable way. Our tool can

help identify if a vulnerable file is included in a project, but

cannot identify whether it is used in a vulnerable way.

The tool trusts the timestamp and author information in the

Git commit. There are occasional cases where that information

is not correct. Flint et al. [48] demonstrated that while times-

tamps are usually accurate, there are unusual cases where the

timestamp is not correct.

The tool only looks at file-level copying. It will not detect

snippets of code that are included in a file. It will also not

detect a copy if a developer copies a file and modifies it before

committing to the new repository.

IX. CONCLUSION

In this paper, we articulate the concept of universal version

history and argue for its usefulness in the context of the en-

tirety of open source software. We introduce a prototype tool,

UVHistory, that leverages the World of Code infrastructure to

collect information about the source code and other artifacts

to help better understand and manage widespread copying

of source code. We demonstrate the value of the universal

version history concept by finding evidence of negative effects

of reuse, including reuse of outdated code that contains known

vulnerabilities or other bugs, is missing useful features, or

has different license restrictions. Our UVHistory tool helps

automate the production of the universal version history of

source code by tracing code among repositories and enables

finding the origins and version history for any source code file.

We have shown the potential of our approach by demonstrating

a solution in two different contexts which have practical

relevance: license compliance and security vulnerabilities.

ACKNOWLEDGMENT

This work was partially supported by NSF awards 1633437,

1901102, 1925615, and 2120429.

10

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] The White House. (2021) Executive order 14028
on improving the nation’s cybersecurity. [Online].
Available: https://www.whitehouse.gov/briefing-room/presidential-
actions/2021/05/12/executive-order-on-improving-the-nations-
cybersecurity

[2] J. Ossher, H. Sajnani, and C. Lopes, “File cloning in open source
java projects: The good, the bad, and the ugly,” in 2011 27th IEEE

International Conference on Software Maintenance (ICSM), 2011, pp.
283–292.

[3] M. Gharehyazie, B. Ray, and V. Filkov, “Some from here, some from
there: Cross-project code reuse in github,” in 2017 IEEE/ACM 14th

International Conference on Mining Software Repositories (MSR), 2017,
pp. 291–301.

[4] N. Kawamitsu, T. Ishio, T. Kanda, R. G. Kula, C. De Roover, and
K. Inoue, “Identifying source code reuse across repositories using lcs-
based source code similarity,” in 2014 IEEE 14th International Working

Conference on Source Code Analysis and Manipulation, 2014, pp. 305–
314.

[5] T. Ishio, Y. Sakaguchi, K. Ito, and K. Inoue, “Source file set search for
clone-and-own reuse analysis,” in 2017 IEEE/ACM 14th International

Conference on Mining Software Repositories (MSR), 2017, pp. 257–268.

[6] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “En-
hancing clone-and-own with systematic reuse for developing software
variants,” in 2014 IEEE International Conference on Software Mainte-

nance and Evolution, 2014, pp. 391–400.

[7] ——, “The ecco tool: Extraction and composition for clone-and-own,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software

Engineering, vol. 2, 2015, pp. 665–668.

[8] F. Pérez, M. Balları́n, R. Lapeña, and C. Cetina, “Locating clone-
and-own relationships in model-based industrial families of software
products to encourage reuse,” IEEE Access, vol. 6, pp. 56 815–56 827,
2018.

[9] T. Zimmermann, A First Look at an Emerging Model of Community

Organizations for the Long-Term Maintenance of Ecosystems’ Packages.
New York, NY, USA: Association for Computing Machinery, 2020, p.
711–718. [Online]. Available: https://doi.org/10.1145/3387940.3392209

[10] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “When and how
to make breaking changes: Policies and practices in 18 open source
software ecosystems,” ACM Trans. Softw. Eng. Methodol., vol. 30,
no. 4, jul 2021. [Online]. Available: https://doi.org/10.1145/3447245

[11] Y. Ma, C. Bogart, S. Amreen, R. Zaretzki, and A. Mockus, “World of
code: An infrastructure for mining the universe of open source vcs data,”
in 2019 IEEE/ACM 16th International Conference on Mining Software

Repositories (MSR), 2019, pp. 143–154.

[12] The MITRE Corporation. (2021) Common vulnerabilities and exposures
(cve). [Online]. Available: https://cve.mitre.org/

[13] D. Reid, M. Jahanshahi, and A. Mockus, “The extent of orphan vulner-
abilities from code reuse in open source software,” in 2022 IEEE/ACM

44th International Conference on Software Engineering (ICSE), 2022.

[14] S. Woo, D. Lee, S. Park, H. Lee, and S. Dietrich, “V0finder: Discovering
the correct origin of publicly reported software vulnerabilities,”
in 30th USENIX Security Symposium (USENIX Security 21).
USENIX Association, Aug. 2021, pp. 3041–3058. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity21/presentation/woo

[15] R. Geldreich. (2020) richgel999/jpeg-compressor . [Online]. Available:
https://github.com/richgel999/jpeg-compressor

[16] The MITRE Corporation. (2017) Cve-2017-0700. [Online]. Available:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0700

[17] Android. (2017) Android Security Bulletin—July 2017 . [Online].
Available: https://source.android.com/security/bulletin/2017-07-01

[18] MusicIP. (2007) musicip-libofa . [Online]. Available:
https://code.google.com/archive/p/musicip-libofa/

[19] Synopsys Technology. (2021) 2021 open source
security and risk analysis. [Online]. Avail-
able: https://www.synopsys.com/software-integrity/resources/analyst-
reports/open-source-security-risk-analysis.html?intcmp=sig-blog-ossra1

[20] S. Amreen, A. Karnauch, and A. Mockus, “Developer reputation es-
timator (dre),” in 2019 34th IEEE/ACM International Conference on

Automated Software Engineering (ASE), 2019, pp. 1082–1085.

[21] Y. Ma, T. Dey, C. Bogart, S. Amreen, M. Valiev, A. Tutko, D. Kennard,
R. Zaretzki, and A. Mockus, “World of code: enabling a research

workflow for mining and analyzing the universe of open source vcs
data,” Empirical Software Engineering, vol. 26, 2021.

[22] World of Code. (2022) World of Code. [Online]. Available:
https://worldofcode.org/

[23] A. Mockus, D. Spinellis, Z. Kotti, and G. J. Dusing, “A complete set of
related git repositories identified via community detection approaches
based on shared commits,” in Proceedings of the 17th International

Conference on Mining Software Repositories, ser. MSR ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p.
513–517. [Online]. Available: https://doi.org/10.1145/3379597.3387499

[24] J. Davies, “Measuring subversions: Security and legal risk in reused
software artifacts,” in Proceedings of the 33rd International Conference

on Software Engineering, ser. ICSE ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 1149–1151. [Online].
Available: https://doi.org/10.1145/1985793.1986025

[25] H. Borges and M. T. Valente, “What’s in a github star? understanding
repository starring practices in a social coding platform,” Journal of

Systems and Software, vol. 146, pp. 112–129, 2018.

[26] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local
algorithms for document fingerprinting,” in Proceedings of the 2003

ACM SIGMOD international conference on Management of data, 2003,
pp. 76–85.

[27] Github. (2021) About the dependency graph. [Online].
Available: https://docs.github.com/en/code-security/supply-chain-
security/understanding-your-software-supply-chain/about-the-
dependency-graph

[28] Dependabot. (2021) Github Dependabot. [Online]. Available:
https://github.com/dependabot

[29] Google. (2021) Open Source Insights. [Online]. Available:
https://deps.dev/

[30] OWASP. (2022) OWASP Dependency-Check. [Online]. Available:
https://owasp.org/www-project-dependency-check/

[31] H.-F. Chang and A. Mockus, “Constructing universal version history,”
in Proceedings of the 2006 International Workshop on Mining Software

Repositories, ser. MSR ’06. New York, NY, USA: Association
for Computing Machinery, 2006, p. 76–79. [Online]. Available:
https://doi.org/10.1145/1137983.1138002

[32] ——, “Evaluation of source code copy detection methods on freebsd,”
in Proceedings of the 2008 International Working Conference on

Mining Software Repositories, ser. MSR ’08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 61–66. [Online].
Available: https://doi.org/10.1145/1370750.1370766

[33] A. Mockus, “Large-scale code reuse in open source software,” in First

International Workshop on Emerging Trends in FLOSS Research and

Development (FLOSS’07: ICSE Workshops 2007), 2007, pp. 7–7.

[34] Software Heritage. (2022) Software Heritage. [Online]. Available:
https://www.softwareheritage.org

[35] A. Pietri, D. Spinellis, and S. Zacchiroli, “The software heritage
graph dataset: Public software development under one roof,” in 2019

IEEE/ACM 16th International Conference on Mining Software Reposi-

tories (MSR), 2019, pp. 138–142.

[36] G. Rousseau, R. Di Cosmo, and S. Zacchiroli, “Software provenance
tracking at the scale of public source code,” in Empirical Software

Engineering, 2020.

[37] P. Xia, M. Matsushita, N. Yoshida, and K. Inoue, “Studying reuse of out-
dated third-party code in open source projects,” Information and Media

Technologies, vol. 9, no. 2, pp. 155–161, 2014.

[38] K. Inoue, Y. Sasaki, P. Xia, and Y. Manabe, “Where does this code come
from and where does it go? - integrated code history tracker for open
source systems,” in 2012 34th International Conference on Software

Engineering (ICSE), 2012, pp. 331–341.

[39] J. Davies, D. German, M. Godfrey, and A. Hindle, “Software
bertillonage,” in Empirical Software Engineering, 2013. [Online].
Available: https://doi.org/10.1007/s10664-012-9199-7

[40] M. W. Godfrey, D. M. German, J. Davies, and A. Hindle, “Determining
the provenance of software artifacts,” in Proceedings of the 5th

International Workshop on Software Clones, ser. IWSC ’11. New
York, NY, USA: Association for Computing Machinery, 2011, p.
65–66. [Online]. Available: https://doi.org/10.1145/1985404.1985418

[41] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue,
“Do developers update their library dependencies?” Empirical Software

Engineering, vol. 23, no. 1, pp. 384–417, Feb 2018. [Online]. Available:
https://doi.org/10.1007/s10664-017-9521-5

11

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

[42] Y. Chen, A. E. Santosa, A. Sharma, and D. Lo, “Automated
identification of libraries from vulnerability data,” in Proceedings of the

ACM/IEEE 42nd International Conference on Software Engineering:

Software Engineering in Practice, ser. ICSE-SEIP ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 90–99.
[Online]. Available: https://doi.org/10.1145/3377813.3381360

[43] National Institute of Standards and Technology. (2021) National
Vulnerability Database. [Online]. Available: http://nvd.nist.gov

[44] D. M. German, M. Di Penta, and J. Davies, “Understanding and auditing
the licensing of open source software distributions,” in 2010 IEEE 18th

International Conference on Program Comprehension, 2010, pp. 84–93.
[45] Y. Wu, Y. Manabe, T. Kanda, D. M. German, and K. Inoue, “A method

to detect license inconsistencies in large-scale open source projects,”
in 2015 IEEE/ACM 12th Working Conference on Mining Software

Repositories, 2015, pp. 324–333.
[46] T. Wolter, A. Barcomb, D. Riehle, and N. Harutyunyan, “Open source

license inconsistencies on github,” ACM Trans. Softw. Eng. Methodol.,
dec 2022. [Online]. Available: https://doi.org/10.1145/3571852

[47] S. Qiu, D. M. German, and K. Inoue, “Empirical study on dependency-
related license violation in the javascript package ecosystem,” Journal

of Information Processing, vol. 29, pp. 296–304, 2021.
[48] S. W. Flint, J. Chauhan, and R. Dyer, “Escaping the time pit: Pitfalls

and guidelines for using time-based git data,” in 2021 IEEE/ACM 18th

International Conference on Mining Software Repositories (MSR), 2021.

12

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 29,2024 at 18:21:12 UTC from IEEE Xplore. Restrictions apply.

