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Abstract— Anticipating driver intention is an important task
when vehicles of mixed and varying levels of human/machine
autonomy share roadways. Driver intention can be leveraged
to improve road safety, such as warning surrounding vehicles
in the event the driver is attempting a dangerous maneuver.
In this work, we propose a novel method of utilizing both
in-cabin and external camera data to improve state-of-the-art
performance in predicting future driver actions. Compared
to existing methods, our approach explicitly extracts object
and road-level features from external camera data, which
we demonstrate are important features for predicting driver
intention. Using our handcrafted features as inputs for both a
transformer and a long-short-term-memory-based architecture,
we empirically show that jointly utilizing in-cabin and external
features improves performance compared to using in-cabin
features alone. Furthermore, our models predict driver ma-
neuvers more accurately and sooner than existing approaches,
with an accuracy of 87.5% and an average prediction time
of 4.35 seconds before the maneuver takes place. We release
our model configurations and training scripts on https://
github.com/ykung83/Driver—Intent—-Prediction.

I. INTRODUCTION

The number of vehicles being driven is continuously
increasing, but less than half of all drivers follow even basic
safety conduct like turning on a blinker before performing a
lane change [1]. To improve road safety, many safety-centric
Advanced Driver Assistance Systems (ADAS) and Auto-
mated Driving Systems (ADS) [2, 3] have been designed
to anticipate the actions of the driver and provide warnings
or assistive actions. These approaches measure success using
the prediction accuracy and average prediction time before
the maneuver takes place (time-until-maneuver, TUM).

To predict driver intentions, both in-cabin and external
information should be jointly utilized. It is well documented
that cephalo-ocular cues are an excellent indicator of driver
intent [4, 5]. However, the use of external data has been
shown [6] to decrease accuracy and TUM. Consequently,
follow-up work [7] purposely choose not to utilize external
sensing, relying on internal camera and vehicle dynamics
data. While there exist methods focused on the fusion of
external data streams with internal data [8], they cannot
match the state-of-the-art (SOTA) performance.

Despite these findings, we hypothesize that external sens-
ing provides invaluable information for understanding driver
intent. Vehicle surroundings provide context that may explain
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Fig. 1. Predicting Driver Intent Our proposed LSTM and transformer-
based architectures use eye gaze, head pose, object detections, and road
features from a real-world driving dataset to outperform state-of-the-art
methods for driver intent prediction.

observed cephalo-ocular cues and communicate which ma-
neuvers are possible. We propose explicitly extracting object
and road level features from road camera videos instead
of learning these features in an end-to-end manner. We
employ two model architectures proficient in handling time
dependencies to combine feature vectors from both in-cabin
and external cameras. Both models surpass other methods
when evaluated on a real-world dataset for predicting driver
intentions [9]. A high-level overview of our proposed method
is shown in Figure 1. In the remainder of the paper, we
review prior work, describe the experiment setup, explain
our model architectures, and conclude with an analysis of
our results.

II. RELATED WORK

A considerable amount of work has been done on driver
maneuver prediction. Early efforts [10, 11] predict three
different driving maneuvers: straight-line driving, left lane-
change, and right lane-change. Later attempts [6, 12, 7]
expand the action space to include left turn and right turn.
We analyze both 3- and 5-maneuver prediction methods but
focus on 5-maneuver prediction as it more closely resembles
the true action space available to drivers.

Z. Hao et al. [11] use a gated-recurrent unit (GRU) with
an attention mechanism for the 3-driving maneuver problem.
Their model uses solely vehicle dynamics to achieve high



accuracy and precision when predicting one second before
the driving maneuver takes place. However, both accuracy
and precision decrease substantially if asked to predict at an
earlier time step. N. Zhao et al. [10] employ a Convolutional
Neural Network (CNN) and a Long-Short-Term-Memory
(LSTM) based network to interpret driving dynamics and
roadway information provided by a simulator for 3-maneuver
prediction. Their method gives good accuracy but does not
provide information on how early the network can predict
driver intent before it occurs and only evaluates on simulated
driving data. P. Gebert et al. [6] utilize an end-to-end CNN
and LSTM-based network for the 5-maneuver problem. Their
approach feeds the raw interior camera data through an
optical flow estimation algorithm. They provide this output to
a CNN for classification and feature extraction and use these
features in an LSTM for prediction. Their method has an
accuracy of 83.12% and an average prediction time of 4.07
seconds using only interior camera data. When using external
video data, the accuracy drops to 75.5%. The paper [6] also
released their real-world driving dataset, which we use as a
benchmark. The other SOTA method is from N. Khairdoost
et al. [7]. They generate an LSTM-based network with driver
gaze, head pose, and vehicle dynamics data as inputs. The
work expresses gaze information as a histogram. Each bin
in the histogram correlates with a region of space in the
driver’s field of view. Despite video footage of the exterior
being available, the authors choose not to use it in their
network. Their method has an accuracy of 84.2% and an
average prediction time of 3.6 seconds.

The uni-modal study by L. Li and P. Li [13] shows
that there are only significant correlations between vehicle
dynamics and driving maneuvers 0.55 seconds before the ma-
neuver takes place. This means that when predicting driver
intent for longer TUM scenarios, vehicle dynamics will not
play a significant role. M. Hofbauer er al. [4] found that
regions of interest and situational awareness can be predicted
from driver gaze. This may allow us to better understand
the driver’s priorities and infer the intended maneuver well
before it is executed. A. Kar [5] provides a detailed list of
different gaze types and their intent. Some examples include
fixation, where the eye moves at less than 100 degrees per
millisecond and is indicative of cognitive processing and
attention; saccade, where the eye moves between 100 and
700 degrees per second and is indicative of moving between
targets of interest; and smooth pursuit, where the eye moves
at less than 100 degrees per second based on the targets
speed and is indicative of target tracking. This suggests that
a high-precision list of gaze locations ordered in time would
provide valuable insights into the driver’s intentions.

Despite the numerous and varied studies on this topic,
there exists a gap on how the surroundings of the vehicle
can be leveraged in tandem with the behavior of the driver
to provide earlier and more accurate maneuver predictions.

III. METHODOLOGY

We aim to increase the driver intent prediction accuracy
and extend the average TUM in this work. Since vehicle

dynamics seem only useful for short term maneuver pre-
diction [13], it is not used. Instead, we extract handcrafted
features from the in-cabin and external camera data. We fol-
low the evaluation procedure used by current SOTA methods
to ensure a fair comparison of results.

A. Data

We train and evaluate our methods on the publicly avail-
able Brains4Cars [9] dataset, which contains a collection of
naturalistic driving maneuvers for driver action prediction
containing RGB videos of both vehicle cabin and external
road views. While the original dataset reports 700 vehicle
maneuver videos, a portion of the training data is missing
and 634 videos are publicly available. These videos are
comprised of 234 driving straight, 124 left lane-change, 58
left turn, 123 right lane-change, and 55 right turn maneuvers.
Each video is 5 seconds and 150 frames long. Per [6], these
five-second snippets are from 6 seconds to 1 second before
the maneuver. Following standard convention, the time of
maneuver is based on the time the vehicle crosses the lane
line. Using this dataset allows direct result comparisons
between our methods and the prior work [6, 9, 14] because
they are all based on the same data. In addition to using
autonomous vehicle (AV) datasets, we considered predicting
robot operator intent on large-scale urban robotics datasets
like CODa [15]. However, we leave this for future work as
these datasets lack a driver focused camera.

B. Interior Camera

Much like Leonhardt et al. [7], we extract gaze and head
pose information from the interior camera. The difference
is that in [7], they have a built-in, non-contact 3D gaze
and head pose tracker running at 60 Hz while the dataset
from Brains4Cars only provides an RGB video feed from
the interior camera at 30 Hz. The work in [5] provides some
references to extract eye gaze from a single stationary video.

We use MediaPipe to extract face landmarks from the
driver in 2D and define a list of generic face landmarks
with their coordinates in 3D. Using the solvePnP solver from
OpenCYV, we use these two lists of landmarks to estimate the
projection of the rotation and translation of the driver’s face
onto a 2D plane using Eq. 1. S is an unknown scale factor,
u and v are points from the 2D image, M is an estimate of
the camera matrix, R is the rotation matrix, x, y, and z are
from the tuned 3D model, and ¢ is the translation vector.
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The rotation and translation vectors give us information on
the direction the driver is facing. This is our approximation
for the driver’s head pose. Next, we obtain the 3D coordi-
nates of the pupils by using the estimateAffline3D function
from OpenCV to estimate the transformation between the
estimated face coordinates and the model of a generic face.
This gives us a 3D representation of the driver’s pupils. Once
we have the eye center and the pupil location, we can project



a line through those two points onto the same 2D plane used
for the head pose to get the location of the gaze. This is
illustrated in Figure 2.

The representation of the driver’s head pose and gaze is
a 4-dimensional vector containing the x and y coordinates
of the intersection of the projected line from the driver’s
face and eyes with an imaginary 2D plane representing
the windshield of the car. We choose this representation of
the driver’s gaze because it provides sufficient information
for data-driven algorithms to distinguish fine-grained eye
movements that provide different connotations regarding
driver intent [S]. Prior histogram approaches [7] would not
be precise enough to make this differentiation.

C. Exterior Camera

Fig. 2.
Brains4Cars dataset. The red arrow projects their gaze to a point on the
imaginary plane.

Qualitative results of the gaze preprocessing algorithm on the

Our method uses the exterior camera to add lane and
object-level information inputs to our model. This is the first
method that directly incorporates object-level information
into the model. Comprehending the context of objects allows
methods to determine if maneuvers are unsafe due to nearby
objects. We leverage Grounding Dino [16], a SOTA zero-
shot 2D object detector to detect the following object classes:
CAR, BICYCLE, PERSON, TRAFFIC SIGN, TRAFFIC LIGHT,
and DATE. We omit the DATE class from the model and
store the bounding box centers, height, width, and class ID
as model inputs. Fig. 3 shows sample object detections on the
Brains4Cars dataset. For computational reasons, we provide
only the top 5 largest bounding boxes by area for each frame
to the model.

For lane information, we use the ground truth lane labels in
Brains4Cars, which contain the vehicle lane position, number
of lanes, and whether the car is near a road intersection.
This is useful because if there is no lane to the left of the
driver, it should be a significant indicator that the driver is
not attempting a left lane-change.

We use a 28-dimensional vector representation for the
exterior camera, comprised of a 25-dimensional vector that
describes the locations of surrounding objects and a 3-
dimensional vector that represents the composition of lanes
around the vehicle.

D. Evaluation

Like other SOTA methods, our method is evaluated on
model accuracy, F1 score, and the average TUM that the
model can correctly predict the driver’s intentions. The
accuracy and F1 scores are based on the performance of
the models when trained and tested on the full 5 seconds
of driving. We refer to this as Zero-time-to-maneuver. The
average TUM is assessed by training the model on various
time increments (1, 2, 3, 4, and 5 seconds) of driving data
and computing the prediction accuracy at the corresponding
time intervals before the maneuver actually occurs. We refer
to this as Varying-time-to-maneuver. This is consistent with
the approach taken by [6]. We train and evaluate with ten-fold
cross-validation and report the average performance across
all splits for each method.

Left Lane Change BEEEI

Fig. 3. Object detection pre-processing results on the Brains4Cars
dataset [9]. The object classes Car, Bicycle, Person, Traffic Sign, and Traffic
Light are mapped to classes 0, 1, 2, 3, and 4 in the images shown. Only
these object classes are used.

IV. EXPERIMENTS

We propose two machine-learning algorithms to predict
the driver’s intent. The first is based on fusing multiple
LSTM units which we refer to as the F-LSTM. The LSTM
is a standard method of predicting driver intent and is used
by both SOTA methods that our algorithms are evaluated
against [7] [6]. This makes it a good baseline to compare
with the SOTA to evaluate if the hand-tuned features we
use as inputs improve the prediction accuracy. The second
algorithm fuses multiple streams of data using a transformer
architecture which we refer to as F-TF. This method will be
evaluated against the F-LSTM to see if it can learn long-
term dependencies that would be difficult to capture with an
LSTM-based algorithm.

A. F-LSTM

The LSTM-based architecture is a natural choice given
that the problem is inherently dependent on time. LSTMs
store and interpret data as a hidden vector, and propagate
this hidden vector along each time step. This characteristic
is desirable because the inputs have different representations



and this hidden vector may be used to project their qualities
into a common representation.

Figure 4 shows the architecture of the F-LSTM. Separate
LSTMs are used to accept the inputs for head pose and gaze,
vehicle objects, and lane detections. This architecture allows
each LSTM to specialize in interpreting separate modes of
data. LSTM 1 accepts gaze and head pose information and
has a hidden dimension of 10. LSTM 2 accepts lane infor-
mation and has a hidden dimension of 5. LSTM 3 accepts
surrounding vehicle information and has a hidden dimension
of 10. The outputs of all three LSTMs are then flattened
and fully connected to a multi-layer perceptron (MLP). The
MLP consists of a 100 dimension fully connected layer with
ReLU activation followed by a 5 dimension fully connected
layer with sigmoid activation. The output from the last fully
connected layer is used to predict driver actions. Cross-
entropy loss is used to train the model.
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Fig. 4. LSTM-based architecture. The MLP is composed of a linear layer
with ReLU activation followed by a linear layer with sigmoid activation.
For the time-varying setup, we provide 30, 60, 90, 120, or 150 frames of the
original data and pad the input to hold the number of input frames constant.

The same architecture is also used for the time-varying
version of the problem. The only difference is that the
training sequences are no longer the full 150 frames but a
combination of the first 30, 60, 90, 120, and 150 frames of
the original data. The extra spaces are padded with zeros.
This keeps the time between predictions consistent with [6]
to allow for a fair comparison.

B. F-TF

While LSTM-based architectures have proven successful
for sequential tasks, prior works [17] demonstrate that they
are adversely affected by long-range time dependencies due
to increasing path length for signals. However, the self-
attention module in transformer architectures reduces the
path length, which can be leveraged to learn long-range
correlations in sequential tasks.

Figure 5 describes our transformer architecture. We
use three input representations: object detections,
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Fig. 5. Transformer-based architecture. All MLPs are composed of a Linear,
ReLU, and Linear layer. For the time-varying setup, we provide 30, 60, 90,
120, or 150 frames of the original data and pad the input to hold the number
of input frames constant.

road/intersection data, and driver gaze with head pose.
This gives feature vectors RE*F*P where B is the batch
size, F' is the number of images in the sequence, and P
is the number of dimensions in each feature vector. Fig. 5
states the size of P for each input representation: 4 features
for gaze and head pose; 25 features for object detections;
and 3 features for lane information. Each processed vector
is linearly projected to a common representation and added
with a 1D sinusoidal positional embedding before they
are all concatenated to form a unified latent vector. The
positional embedding is varied with the time dimension
to retain temporal information. We use separate trainable
linear projections for each processed vector because each
vector is different in both scale and resolution. Similar to
the F-LSTM architecture, we find that using a single linear
projection results in worse performance than using three
separate trainable linear projections. The MLP output vector
sizes are 32, 16, and 16 for the in-cabin, object, and road,
which provides the same representational power between
the in-cabin and external information.



We perform self-attention between all latent vectors for
a single image sequence before feeding them to a standard
feedforward module [18]. This allows our model to represent
long- and short-term time dependencies with the same path
length. Finally, we flatten the feedforward output to a 9600
dimensional vector and project this with a classification
head, implemented as an MLP with one hidden layer. The
MLP outputs a 5-dimensional feature vector to a softmax
function that represents the driver intent probability vector.
For the zero-time-to-maneuver experiments, we train using
the full 150 frames of data. In the time-varying benchmark,
we follow the same training setup as the F-LSTM for
consistency.

C. Ablative Testing

Additional ablative testing is conducted on the F-LSTM
and F-TF models to measure the performance contribution of
the exterior camera’s handcrafted features. The ablative tests
for the F-LSTM and the F-TF are named F-LSTM-A and
F-TF-A, respectively. These tests compare the performance
of our F-LSTM and F-TF models with and without the
external camera features. The original models are trained and
tested using both modes of data while the ablative models
are trained and tested using only features from the interior
camera. The results are covered in the following section.
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Fig. 6. Driver intent prediction scenarios that require long-term dependency
understanding. Our transformer and LSTM based architecture are abbrevi-
ated as F-TF and F-LSTM. Green and red text indicate correct and incorrect
predictions respectively.

V. RESULTS

Table I compares our methods’ results against other ap-
proaches in the literature. We observe that both the F-LSTM
and F-TF algorithms outperform other SOTA methods by a
significant margin.

A. Zero-time-to-maneuver

The F-LSTM can be directly compared with the methods
from [6] and [7] since they all use an LSTM-based architec-
ture. We conclude that our selected exterior features improve
the model performance.

The performance of the F-TF is expected due to the
ability of the self-attention module to attend to long-range
dependencies across each video sequence. Fig. 6 qualitatively
supports this property. In the upper scenario, the model must
understand the adjacent vehicle’s relative speed to infer that
it may still be on the driver’s right despite not being visible in
the road camera. In the bottom situation, the model discerns
that the driver refrained from changing lanes when there was
an opportunity in the past. This suggests that the driver is
less likely to make a lane change in the future, especially
when traffic is heavier. In both of these situations, the F-TF
accurately forecasts that the driver will continue straight, a
prediction that the F-LSTM fails to make correctly.

However, the F-TF has a high standard deviation across
the validation splits and is not significantly better than our F-
LSTM architecture. We believe this can be attributed to the
lack of training data available in the Brains4Cars dataset.
It is well understood that computer vision transformer ar-
chitectures [19] require internet-scale amounts of data to
significantly surpass CNN architectures. We claim that be-
cause the transformer assumes no prior information about
the sequential nature of the data, it requires far more data to
learn this property and attain good performance. On the other
hand, LSTM-based architectures are designed to leverage
prior knowledge about the temporal relationship between
frames, thus making it more data efficient. We postulate that
our F-TF architecture would scale more effectively than some
other methods if provided with far more training data.

TABLE 1
ZERO TIME-TO-MANEUVER ACCURACY AND F1 SCORE RESULTS.

Method Inside  Outside  Acc [%] o F1 [%] o
Baseline Methods

Chance - - 20 - 20 -

Prior - - 39 - - -

Methods from [9] and [14]

IOHMM X X - - 72.7 -

AIO-HMM X X - - 74.2 -

S-RNN X X - - 74.4 -

F-RNN-UL X X - - 78.9 -

F-RNN-EL X X - - 80.6 -
Methods from [6]

Outside - X 53.2 0.5 43.4 0.9

Inside X - 83.1 2.5 81.7 2.6

Two-stream X X 75.5 2.4 73.2 2.2
Method from [7]

Interior+VD X - 84.2 - 82.9 -

Our Methods
F-LSTM X X 87.2 2.3 85.6 34
F-TF X X 87.5 4.9 86.3 4.5

B. Varying-time-to-maneuver

Figure 7 compares our proposed model architectures’
performance against the top performing prior approach [6] on
the varying time-to-maneuver benchmark. Both the F-LSTM
and the F-TF outperform the SOTA methods in this category.
The F-LSTM and F-TF have an average prediction time of



4.34 and 4.35 seconds respectively compared to the 4.07
seconds from [6] and the 3.56 seconds from [7]. For a fair
comparison with SOTA methods, we adopt their evaluation
procedures. The accuracy of each method is compared using
only the amount of data the method would have received at
that time. At 5 seconds before the maneuver, each algorithm
would have the first 30 frames of data of interior and exterior
data. At 4 seconds before the maneuver, each algorithm
would have access to the first 60 frames of data, and so
on. Across all times before maneuver, our proposed methods
outperform the state-of-art by at least 12%.
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o

Fig. 7. Comparison of our methods with state of the art for varying-time-
to-maneuver. Higher accuracy indicates that the algorithm is able to predict
the driver action more accurately.

These findings corroborate our hypothesis that sequential
driver intention prediction benefits from having access to
a good external feature representation. Compared to our
method, which has a prediction accuracy of about 63% 5
seconds before the maneuver takes place, we see that the
prediction accuracy of the method proposed in [6] is as
low as 48%. Our method outperforms the SOTA at every
time interval. It is also worth noting that the decrease in
performance when switching from a zero-time-to-maneuver
problem to a varying-time-to-maneuver is much smaller for
our proposed algorithms than the one proposed in [6]. This
decrease can be quantified by comparing the accuracy of the
varying-time-to-maneuver model at 1 second with the zero-
time model. The accuracy of the F-LSTM decreases by 5.5%
and the accuracy of the F-TF decreases by 3.7%. The method
proposed by [6] degrades by 19.4% in accuracy from 83.1%
to approximately 67.0% between the zero-time-to-maneuver
and varying-time-to-maneuver problem. This would suggest
that our methods, particularly the F-TF, are more capable of
forecasting driver intent.

C. Ablative Tests

Ablative tests were also conducted to determine the con-
tribution of the exterior information on the performance of
our models. Table II demonstrates that the F-LSTM and F-
TF significantly outperform their counterparts that were only
trained with in-cabin features. This reinforces the idea that

TABLE I
ABLATIVE EXPERIMENTS ON THE EFFICACY OF THE HANDCRAFTED
FEATURES OF THE EXTERIOR.

Driver Maneuver F-LSTM-A F-LSTM F-TF-A F-TF
Straight driving 67.3 87.0 68.7 90.9
Left turn 69.2 86.8 81.0 85.1
Left lane change 64.3 91.8 71.9 91.4
Right turn 63.2 85.6 86.0 83.8
Right lane change 65.5 84.0 79.0 86.3
Overall accuracy 66.2 87.2 78.1 87.5

the hand-crafted feature space we designed to describe the
exterior view is helpful for predicting driver intent.

VI. CONCLUSIONS

In this work, we proposed a novel method to predict
driver intentions across 5 driving maneuvers that fuses hand-
crafted feature representations of the in-cabin and exterior
cameras. Since driver intentions are, in general, difficult to
predict, we show that prediction accuracy can be improved
by incorporating multiple sources of information that the
driver is likely considering instead of limiting the model to
somatic information from the driver and dynamic information
from the vehicle. We illustrate that our selection of external
features complements the in-cabin features, which is different
from previous methods that rely on learned exterior fea-
tures. Our approaches substantially surpass the state-of-the-
art methods in several key metrics. The F-LSTM and F-TF
architectures achieve an accuracy of 87.2% and 87.5% and
are able to correctly predict the driver intention an average
of 4.34 and 4.35 seconds before the maneuver occurs. This
provides a key insight about what features are important for
understanding driver intent. Interesting future directions to
improve performance include developing better data augmen-
tation strategies for additional data diversity, leveraging prior
knowledge from pre-trained LSTM architectures to boost
transformer learning efficiency, and expanding the driver
action space.
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