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Abstract— Anticipating driver intention is an important task
when vehicles of mixed and varying levels of human/machine
autonomy share roadways. Driver intention can be leveraged
to improve road safety, such as warning surrounding vehicles
in the event the driver is attempting a dangerous maneuver.
In this work, we propose a novel method of utilizing both
in-cabin and external camera data to improve state-of-the-art
performance in predicting future driver actions. Compared
to existing methods, our approach explicitly extracts object
and road-level features from external camera data, which
we demonstrate are important features for predicting driver
intention. Using our handcrafted features as inputs for both a
transformer and a long-short-term-memory-based architecture,
we empirically show that jointly utilizing in-cabin and external
features improves performance compared to using in-cabin
features alone. Furthermore, our models predict driver ma-
neuvers more accurately and sooner than existing approaches,
with an accuracy of 87.5% and an average prediction time
of 4.35 seconds before the maneuver takes place. We release
our model configurations and training scripts on https://
github.com/ykung83/Driver-Intent-Prediction.

I. INTRODUCTION

The number of vehicles being driven is continuously

increasing, but less than half of all drivers follow even basic

safety conduct like turning on a blinker before performing a

lane change [1]. To improve road safety, many safety-centric

Advanced Driver Assistance Systems (ADAS) and Auto-

mated Driving Systems (ADS) [2, 3] have been designed

to anticipate the actions of the driver and provide warnings

or assistive actions. These approaches measure success using

the prediction accuracy and average prediction time before

the maneuver takes place (time-until-maneuver, TUM).

To predict driver intentions, both in-cabin and external

information should be jointly utilized. It is well documented

that cephalo-ocular cues are an excellent indicator of driver

intent [4, 5]. However, the use of external data has been

shown [6] to decrease accuracy and TUM. Consequently,

follow-up work [7] purposely choose not to utilize external

sensing, relying on internal camera and vehicle dynamics

data. While there exist methods focused on the fusion of

external data streams with internal data [8], they cannot

match the state-of-the-art (SOTA) performance.

Despite these findings, we hypothesize that external sens-

ing provides invaluable information for understanding driver

intent. Vehicle surroundings provide context that may explain
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Fig. 1. Predicting Driver Intent Our proposed LSTM and transformer-
based architectures use eye gaze, head pose, object detections, and road
features from a real-world driving dataset to outperform state-of-the-art
methods for driver intent prediction.

observed cephalo-ocular cues and communicate which ma-

neuvers are possible. We propose explicitly extracting object

and road level features from road camera videos instead

of learning these features in an end-to-end manner. We

employ two model architectures proficient in handling time

dependencies to combine feature vectors from both in-cabin

and external cameras. Both models surpass other methods

when evaluated on a real-world dataset for predicting driver

intentions [9]. A high-level overview of our proposed method

is shown in Figure 1. In the remainder of the paper, we

review prior work, describe the experiment setup, explain

our model architectures, and conclude with an analysis of

our results.

II. RELATED WORK

A considerable amount of work has been done on driver

maneuver prediction. Early efforts [10, 11] predict three

different driving maneuvers: straight-line driving, left lane-

change, and right lane-change. Later attempts [6, 12, 7]

expand the action space to include left turn and right turn.

We analyze both 3- and 5-maneuver prediction methods but

focus on 5-maneuver prediction as it more closely resembles

the true action space available to drivers.

Z. Hao et al. [11] use a gated-recurrent unit (GRU) with

an attention mechanism for the 3-driving maneuver problem.

Their model uses solely vehicle dynamics to achieve high



accuracy and precision when predicting one second before

the driving maneuver takes place. However, both accuracy

and precision decrease substantially if asked to predict at an

earlier time step. N. Zhao et al. [10] employ a Convolutional

Neural Network (CNN) and a Long-Short-Term-Memory

(LSTM) based network to interpret driving dynamics and

roadway information provided by a simulator for 3-maneuver

prediction. Their method gives good accuracy but does not

provide information on how early the network can predict

driver intent before it occurs and only evaluates on simulated

driving data. P. Gebert et al. [6] utilize an end-to-end CNN

and LSTM-based network for the 5-maneuver problem. Their

approach feeds the raw interior camera data through an

optical flow estimation algorithm. They provide this output to

a CNN for classification and feature extraction and use these

features in an LSTM for prediction. Their method has an

accuracy of 83.12% and an average prediction time of 4.07

seconds using only interior camera data. When using external

video data, the accuracy drops to 75.5%. The paper [6] also

released their real-world driving dataset, which we use as a

benchmark. The other SOTA method is from N. Khairdoost

et al. [7]. They generate an LSTM-based network with driver

gaze, head pose, and vehicle dynamics data as inputs. The

work expresses gaze information as a histogram. Each bin

in the histogram correlates with a region of space in the

driver’s field of view. Despite video footage of the exterior

being available, the authors choose not to use it in their

network. Their method has an accuracy of 84.2% and an

average prediction time of 3.6 seconds.

The uni-modal study by L. Li and P. Li [13] shows

that there are only significant correlations between vehicle

dynamics and driving maneuvers 0.55 seconds before the ma-

neuver takes place. This means that when predicting driver

intent for longer TUM scenarios, vehicle dynamics will not

play a significant role. M. Hofbauer et al. [4] found that

regions of interest and situational awareness can be predicted

from driver gaze. This may allow us to better understand

the driver’s priorities and infer the intended maneuver well

before it is executed. A. Kar [5] provides a detailed list of

different gaze types and their intent. Some examples include

fixation, where the eye moves at less than 100 degrees per

millisecond and is indicative of cognitive processing and

attention; saccade, where the eye moves between 100 and

700 degrees per second and is indicative of moving between

targets of interest; and smooth pursuit, where the eye moves

at less than 100 degrees per second based on the targets

speed and is indicative of target tracking. This suggests that

a high-precision list of gaze locations ordered in time would

provide valuable insights into the driver’s intentions.

Despite the numerous and varied studies on this topic,

there exists a gap on how the surroundings of the vehicle

can be leveraged in tandem with the behavior of the driver

to provide earlier and more accurate maneuver predictions.

III. METHODOLOGY

We aim to increase the driver intent prediction accuracy

and extend the average TUM in this work. Since vehicle

dynamics seem only useful for short term maneuver pre-

diction [13], it is not used. Instead, we extract handcrafted

features from the in-cabin and external camera data. We fol-

low the evaluation procedure used by current SOTA methods

to ensure a fair comparison of results.

A. Data

We train and evaluate our methods on the publicly avail-

able Brains4Cars [9] dataset, which contains a collection of

naturalistic driving maneuvers for driver action prediction

containing RGB videos of both vehicle cabin and external

road views. While the original dataset reports 700 vehicle

maneuver videos, a portion of the training data is missing

and 634 videos are publicly available. These videos are

comprised of 234 driving straight, 124 left lane-change, 58

left turn, 123 right lane-change, and 55 right turn maneuvers.

Each video is 5 seconds and 150 frames long. Per [6], these

five-second snippets are from 6 seconds to 1 second before

the maneuver. Following standard convention, the time of

maneuver is based on the time the vehicle crosses the lane

line. Using this dataset allows direct result comparisons

between our methods and the prior work [6, 9, 14] because

they are all based on the same data. In addition to using

autonomous vehicle (AV) datasets, we considered predicting

robot operator intent on large-scale urban robotics datasets

like CODa [15]. However, we leave this for future work as

these datasets lack a driver focused camera.

B. Interior Camera

Much like Leonhardt et al. [7], we extract gaze and head

pose information from the interior camera. The difference

is that in [7], they have a built-in, non-contact 3D gaze

and head pose tracker running at 60 Hz while the dataset

from Brains4Cars only provides an RGB video feed from

the interior camera at 30 Hz. The work in [5] provides some

references to extract eye gaze from a single stationary video.

We use MediaPipe to extract face landmarks from the

driver in 2D and define a list of generic face landmarks

with their coordinates in 3D. Using the solvePnP solver from

OpenCV, we use these two lists of landmarks to estimate the

projection of the rotation and translation of the driver’s face

onto a 2D plane using Eq. 1. S is an unknown scale factor,

u and v are points from the 2D image, M is an estimate of

the camera matrix, R is the rotation matrix, x, y, and z are

from the tuned 3D model, and t is the translation vector.
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The rotation and translation vectors give us information on

the direction the driver is facing. This is our approximation

for the driver’s head pose. Next, we obtain the 3D coordi-

nates of the pupils by using the estimateAffline3D function

from OpenCV to estimate the transformation between the

estimated face coordinates and the model of a generic face.

This gives us a 3D representation of the driver’s pupils. Once

we have the eye center and the pupil location, we can project



a line through those two points onto the same 2D plane used

for the head pose to get the location of the gaze. This is

illustrated in Figure 2.

The representation of the driver’s head pose and gaze is

a 4-dimensional vector containing the x and y coordinates

of the intersection of the projected line from the driver’s

face and eyes with an imaginary 2D plane representing

the windshield of the car. We choose this representation of

the driver’s gaze because it provides sufficient information

for data-driven algorithms to distinguish fine-grained eye

movements that provide different connotations regarding

driver intent [5]. Prior histogram approaches [7] would not

be precise enough to make this differentiation.

C. Exterior Camera

Fig. 2. Qualitative results of the gaze preprocessing algorithm on the
Brains4Cars dataset. The red arrow projects their gaze to a point on the
imaginary plane.

Our method uses the exterior camera to add lane and

object-level information inputs to our model. This is the first

method that directly incorporates object-level information

into the model. Comprehending the context of objects allows

methods to determine if maneuvers are unsafe due to nearby

objects. We leverage Grounding Dino [16], a SOTA zero-

shot 2D object detector to detect the following object classes:

CAR, BICYCLE, PERSON, TRAFFIC SIGN, TRAFFIC LIGHT,

and DATE. We omit the DATE class from the model and

store the bounding box centers, height, width, and class ID

as model inputs. Fig. 3 shows sample object detections on the

Brains4Cars dataset. For computational reasons, we provide

only the top 5 largest bounding boxes by area for each frame

to the model.

For lane information, we use the ground truth lane labels in

Brains4Cars, which contain the vehicle lane position, number

of lanes, and whether the car is near a road intersection.

This is useful because if there is no lane to the left of the

driver, it should be a significant indicator that the driver is

not attempting a left lane-change.

We use a 28-dimensional vector representation for the

exterior camera, comprised of a 25-dimensional vector that

describes the locations of surrounding objects and a 3-

dimensional vector that represents the composition of lanes

around the vehicle.

D. Evaluation

Like other SOTA methods, our method is evaluated on

model accuracy, F1 score, and the average TUM that the

model can correctly predict the driver’s intentions. The

accuracy and F1 scores are based on the performance of

the models when trained and tested on the full 5 seconds

of driving. We refer to this as Zero-time-to-maneuver. The

average TUM is assessed by training the model on various

time increments (1, 2, 3, 4, and 5 seconds) of driving data

and computing the prediction accuracy at the corresponding

time intervals before the maneuver actually occurs. We refer

to this as Varying-time-to-maneuver. This is consistent with

the approach taken by [6]. We train and evaluate with ten-fold

cross-validation and report the average performance across

all splits for each method.

Fig. 3. Object detection pre-processing results on the Brains4Cars
dataset [9]. The object classes Car, Bicycle, Person, Traffic Sign, and Traffic
Light are mapped to classes 0, 1, 2, 3, and 4 in the images shown. Only
these object classes are used.

IV. EXPERIMENTS

We propose two machine-learning algorithms to predict

the driver’s intent. The first is based on fusing multiple

LSTM units which we refer to as the F-LSTM. The LSTM

is a standard method of predicting driver intent and is used

by both SOTA methods that our algorithms are evaluated

against [7] [6]. This makes it a good baseline to compare

with the SOTA to evaluate if the hand-tuned features we

use as inputs improve the prediction accuracy. The second

algorithm fuses multiple streams of data using a transformer

architecture which we refer to as F-TF. This method will be

evaluated against the F-LSTM to see if it can learn long-

term dependencies that would be difficult to capture with an

LSTM-based algorithm.

A. F-LSTM

The LSTM-based architecture is a natural choice given

that the problem is inherently dependent on time. LSTMs

store and interpret data as a hidden vector, and propagate

this hidden vector along each time step. This characteristic

is desirable because the inputs have different representations



and this hidden vector may be used to project their qualities

into a common representation.

Figure 4 shows the architecture of the F-LSTM. Separate

LSTMs are used to accept the inputs for head pose and gaze,

vehicle objects, and lane detections. This architecture allows

each LSTM to specialize in interpreting separate modes of

data. LSTM 1 accepts gaze and head pose information and

has a hidden dimension of 10. LSTM 2 accepts lane infor-

mation and has a hidden dimension of 5. LSTM 3 accepts

surrounding vehicle information and has a hidden dimension

of 10. The outputs of all three LSTMs are then flattened

and fully connected to a multi-layer perceptron (MLP). The

MLP consists of a 100 dimension fully connected layer with

ReLU activation followed by a 5 dimension fully connected

layer with sigmoid activation. The output from the last fully

connected layer is used to predict driver actions. Cross-

entropy loss is used to train the model.

Fig. 4. LSTM-based architecture. The MLP is composed of a linear layer
with ReLU activation followed by a linear layer with sigmoid activation.
For the time-varying setup, we provide 30, 60, 90, 120, or 150 frames of the
original data and pad the input to hold the number of input frames constant.

The same architecture is also used for the time-varying

version of the problem. The only difference is that the

training sequences are no longer the full 150 frames but a

combination of the first 30, 60, 90, 120, and 150 frames of

the original data. The extra spaces are padded with zeros.

This keeps the time between predictions consistent with [6]

to allow for a fair comparison.

B. F-TF

While LSTM-based architectures have proven successful

for sequential tasks, prior works [17] demonstrate that they

are adversely affected by long-range time dependencies due

to increasing path length for signals. However, the self-

attention module in transformer architectures reduces the

path length, which can be leveraged to learn long-range

correlations in sequential tasks.

Figure 5 describes our transformer architecture. We

use three input representations: object detections,

Fig. 5. Transformer-based architecture. All MLPs are composed of a Linear,
ReLU, and Linear layer. For the time-varying setup, we provide 30, 60, 90,
120, or 150 frames of the original data and pad the input to hold the number
of input frames constant.

road/intersection data, and driver gaze with head pose.

This gives feature vectors R
B×F×P , where B is the batch

size, F is the number of images in the sequence, and P

is the number of dimensions in each feature vector. Fig. 5

states the size of P for each input representation: 4 features

for gaze and head pose; 25 features for object detections;

and 3 features for lane information. Each processed vector

is linearly projected to a common representation and added

with a 1D sinusoidal positional embedding before they

are all concatenated to form a unified latent vector. The

positional embedding is varied with the time dimension

to retain temporal information. We use separate trainable

linear projections for each processed vector because each

vector is different in both scale and resolution. Similar to

the F-LSTM architecture, we find that using a single linear

projection results in worse performance than using three

separate trainable linear projections. The MLP output vector

sizes are 32, 16, and 16 for the in-cabin, object, and road,

which provides the same representational power between

the in-cabin and external information.



We perform self-attention between all latent vectors for

a single image sequence before feeding them to a standard

feedforward module [18]. This allows our model to represent

long- and short-term time dependencies with the same path

length. Finally, we flatten the feedforward output to a 9600

dimensional vector and project this with a classification

head, implemented as an MLP with one hidden layer. The

MLP outputs a 5-dimensional feature vector to a softmax

function that represents the driver intent probability vector.

For the zero-time-to-maneuver experiments, we train using

the full 150 frames of data. In the time-varying benchmark,

we follow the same training setup as the F-LSTM for

consistency.

C. Ablative Testing

Additional ablative testing is conducted on the F-LSTM

and F-TF models to measure the performance contribution of

the exterior camera’s handcrafted features. The ablative tests

for the F-LSTM and the F-TF are named F-LSTM-A and

F-TF-A, respectively. These tests compare the performance

of our F-LSTM and F-TF models with and without the

external camera features. The original models are trained and

tested using both modes of data while the ablative models

are trained and tested using only features from the interior

camera. The results are covered in the following section.

Fig. 6. Driver intent prediction scenarios that require long-term dependency
understanding. Our transformer and LSTM based architecture are abbrevi-
ated as F-TF and F-LSTM. Green and red text indicate correct and incorrect
predictions respectively.

V. RESULTS

Table I compares our methods’ results against other ap-

proaches in the literature. We observe that both the F-LSTM

and F-TF algorithms outperform other SOTA methods by a

significant margin.

A. Zero-time-to-maneuver

The F-LSTM can be directly compared with the methods

from [6] and [7] since they all use an LSTM-based architec-

ture. We conclude that our selected exterior features improve

the model performance.

The performance of the F-TF is expected due to the

ability of the self-attention module to attend to long-range

dependencies across each video sequence. Fig. 6 qualitatively

supports this property. In the upper scenario, the model must

understand the adjacent vehicle’s relative speed to infer that

it may still be on the driver’s right despite not being visible in

the road camera. In the bottom situation, the model discerns

that the driver refrained from changing lanes when there was

an opportunity in the past. This suggests that the driver is

less likely to make a lane change in the future, especially

when traffic is heavier. In both of these situations, the F-TF

accurately forecasts that the driver will continue straight, a

prediction that the F-LSTM fails to make correctly.

However, the F-TF has a high standard deviation across

the validation splits and is not significantly better than our F-

LSTM architecture. We believe this can be attributed to the

lack of training data available in the Brains4Cars dataset.

It is well understood that computer vision transformer ar-

chitectures [19] require internet-scale amounts of data to

significantly surpass CNN architectures. We claim that be-

cause the transformer assumes no prior information about

the sequential nature of the data, it requires far more data to

learn this property and attain good performance. On the other

hand, LSTM-based architectures are designed to leverage

prior knowledge about the temporal relationship between

frames, thus making it more data efficient. We postulate that

our F-TF architecture would scale more effectively than some

other methods if provided with far more training data.

TABLE I

ZERO TIME-TO-MANEUVER ACCURACY AND F1 SCORE RESULTS.

Method Inside Outside Acc [%] σ F1 [%] σ

Baseline Methods

Chance - - 20 - 20 -

Prior - - 39 - - -

Methods from [9] and [14]

IOHMM X X - - 72.7 -

AIO-HMM X X - - 74.2 -

S-RNN X X - - 74.4 -

F-RNN-UL X X - - 78.9 -

F-RNN-EL X X - - 80.6 -

Methods from [6]

Outside - X 53.2 0.5 43.4 0.9

Inside X - 83.1 2.5 81.7 2.6

Two-stream X X 75.5 2.4 73.2 2.2

Method from [7]

Interior+VD X - 84.2 - 82.9 -

Our Methods

F-LSTM X X 87.2 2.3 85.6 3.4

F-TF X X 87.5 4.9 86.3 4.5

B. Varying-time-to-maneuver

Figure 7 compares our proposed model architectures’

performance against the top performing prior approach [6] on

the varying time-to-maneuver benchmark. Both the F-LSTM

and the F-TF outperform the SOTA methods in this category.

The F-LSTM and F-TF have an average prediction time of



4.34 and 4.35 seconds respectively compared to the 4.07

seconds from [6] and the 3.56 seconds from [7]. For a fair

comparison with SOTA methods, we adopt their evaluation

procedures. The accuracy of each method is compared using

only the amount of data the method would have received at

that time. At 5 seconds before the maneuver, each algorithm

would have the first 30 frames of data of interior and exterior

data. At 4 seconds before the maneuver, each algorithm

would have access to the first 60 frames of data, and so

on. Across all times before maneuver, our proposed methods

outperform the state-of-art by at least 12%.

Fig. 7. Comparison of our methods with state of the art for varying-time-
to-maneuver. Higher accuracy indicates that the algorithm is able to predict
the driver action more accurately.

These findings corroborate our hypothesis that sequential

driver intention prediction benefits from having access to

a good external feature representation. Compared to our

method, which has a prediction accuracy of about 63% 5

seconds before the maneuver takes place, we see that the

prediction accuracy of the method proposed in [6] is as

low as 48%. Our method outperforms the SOTA at every

time interval. It is also worth noting that the decrease in

performance when switching from a zero-time-to-maneuver

problem to a varying-time-to-maneuver is much smaller for

our proposed algorithms than the one proposed in [6]. This

decrease can be quantified by comparing the accuracy of the

varying-time-to-maneuver model at 1 second with the zero-

time model. The accuracy of the F-LSTM decreases by 5.5%

and the accuracy of the F-TF decreases by 3.7%. The method

proposed by [6] degrades by 19.4% in accuracy from 83.1%

to approximately 67.0% between the zero-time-to-maneuver

and varying-time-to-maneuver problem. This would suggest

that our methods, particularly the F-TF, are more capable of

forecasting driver intent.

C. Ablative Tests

Ablative tests were also conducted to determine the con-

tribution of the exterior information on the performance of

our models. Table II demonstrates that the F-LSTM and F-

TF significantly outperform their counterparts that were only

trained with in-cabin features. This reinforces the idea that

TABLE II

ABLATIVE EXPERIMENTS ON THE EFFICACY OF THE HANDCRAFTED

FEATURES OF THE EXTERIOR.

Driver Maneuver F-LSTM-A F-LSTM F-TF-A F-TF

Straight driving 67.3 87.0 68.7 90.9

Left turn 69.2 86.8 81.0 85.1

Left lane change 64.3 91.8 77.9 91.4

Right turn 63.2 85.6 86.0 83.8

Right lane change 65.5 84.0 79.0 86.3

Overall accuracy 66.2 87.2 78.1 87.5

the hand-crafted feature space we designed to describe the

exterior view is helpful for predicting driver intent.

VI. CONCLUSIONS

In this work, we proposed a novel method to predict

driver intentions across 5 driving maneuvers that fuses hand-

crafted feature representations of the in-cabin and exterior

cameras. Since driver intentions are, in general, difficult to

predict, we show that prediction accuracy can be improved

by incorporating multiple sources of information that the

driver is likely considering instead of limiting the model to

somatic information from the driver and dynamic information

from the vehicle. We illustrate that our selection of external

features complements the in-cabin features, which is different

from previous methods that rely on learned exterior fea-

tures. Our approaches substantially surpass the state-of-the-

art methods in several key metrics. The F-LSTM and F-TF

architectures achieve an accuracy of 87.2% and 87.5% and

are able to correctly predict the driver intention an average

of 4.34 and 4.35 seconds before the maneuver occurs. This

provides a key insight about what features are important for

understanding driver intent. Interesting future directions to

improve performance include developing better data augmen-

tation strategies for additional data diversity, leveraging prior

knowledge from pre-trained LSTM architectures to boost

transformer learning efficiency, and expanding the driver

action space.
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