Check for
Updates

Large Scale Study of Orphan Vulnerabilities in the Software
Supply Chain

David Reid
University of Tennessee
Knoxville, TN, USA
dreid6@vols.utk.edu

ABSTRACT

The security of the software supply chain has become a critical
issue in an era where the majority of software projects use open
source software dependencies, exposing them to vulnerabilities in
those dependencies. Awareness of this issue has led to the creation
of dependency tracking tools that can identify and remediate such
vulnerabilities. These tools rely on package manager metadata
to identify dependencies, but open source developers often copy
dependencies into their repositories manually without the use of a
package manager.

In order to understand the size and impact of this problem, we
designed a large scale empirical study to investigate vulnerabilities
propagated through copying of dependencies. Such vulnerabilities
are called orphan vulnerabilities. We created a tool, VCAnalyzer, to
find orphan vulnerabilities copied from an initial set of vulnerable
files. Starting from an initial set of 3,615 vulnerable files from the
CVEfixes dataset, we constructed a dataset of more than three mil-
lion orphan vulnerabilities found in over seven hundred thousand
open source projects.

We found that 83.4% of the vulnerable files from the CVEfixes
dataset were copied at least once. A majority (59.3%) of copied
vulnerable files contained C source code. Only 1.3% of orphan vul-
nerabilities were ever remediated. Remediation took 469 days on
average, with half of vulnerabilities in active projects requiring
more than three years to fix. Our findings demonstrate that the
number of orphan vulnerabilities not trackable by dependency
managers is large and point to a need for improving how software
supply chain tools identify dependencies. We make our VCAnalyzer
tool and our dataset publicly available.

CCS CONCEPTS

« Software and its engineering — Software libraries and reposito-
ries.

KEYWORDS

Orphan Vulnerabilities, Copy-based Code Reuse, Software Supply
Chain

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PROMISE °23, December 8, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0375-1/23/12...$15.00
https://doi.org/10.1145/3617555.3617872

Kristiina Rahkema
University of Tartu
Tartu , Estonia
kristiina.rahkema@ut.ee

22

James Walden
Northern Kentucky University
Highland Heights, KY , USA
waldenj@nku.edu

ACM Reference Format:

David Reid, Kristiina Rahkema, and James Walden. 2023. Large Scale Study
of Orphan Vulnerabilities in the Software Supply Chain. In Proceedings of
the 19th International Conference on Predictive Models and Data Analytics in
Software Engineering (PROMISE °23), December 8, 2023, San Francisco, CA,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3617555.
3617872

1 INTRODUCTION

Open source software is an essential component of the software
supply chain, found in 97% of commercial codebases [39]. Open
source is not only found in most code bases; it also makes up the
large majority (78%) of code in commercial software projects [39].
Using open source libraries improves developer productivity by
eliminating time spent on duplicating functionality already present
in open source code. Such use of open source code has been shown
to improve productivity at the enterprise level [29].

While widespread use of open source libraries improves produc-
tivity, it also exposes software to vulnerabilities discovered in those
libraries. A vulnerability in a single package, log4j, a popular Java
logging library, exposed more than 17,000 packages in the Maven
Central repository to the log4shell remote code execution vulnera-
bility [41]. A software project that used any of those thousands of
packages was exposed to the vulnerability.

The spread of vulnerabilities in open source software depen-
dency networks and how fast they are fixed has been studied for
multiple open source software ecosystems [7, 11, 21, 45]. Although
developers may be reluctant to update their library dependencies
[21], dependency tools exist that can make the task of fixing vul-
nerable dependencies easier.

If developers use package management software to install and
update their open source library dependencies, then software de-
pendencies can be identified by analyzing metadata stored in the
repository by the package manager. There is a wide variety of de-
pendency checking and software bill of materials (SBOM) tools that
use this metadata to identify dependencies, then cross-reference
software dependency data with vulnerability databases to iden-
tify which vulnerabilities an application is exposed to. Tools like
GitHub Dependabot! even submit pull requests to update vulnera-
ble software components. However, there are vulnerabilities that
are hidden from dependency tracking tools because these vulnera-
bilities exist in dependencies that are not documented in package
management metadata. Some developers use open source software
libraries by copying the software into the code repository of a
project that uses the library instead of using a package manager.

Thttps://github.com/dependabot

PROMISE ’23, December 8, 2023, San Francisco, CA, USA

Reid et al. [36] use the term “orphan vulnerabilities” to describe
vulnerabilities in software dependencies that have been copied
into repositories without the use of a package management tool.
Their study used the World of Code? to track orphan vulnerabilities
copied from an initial set of four vulnerabilities. They discovered
thousands of projects that included copies of the vulnerable code,
with many of the projects still containing the vulnerable code in
their most recent version. They used an exploratory case study
approach to investigate 4 vulnerabilities in depth since the current
understanding of the problem is limited. As is typical with case
studies, they primarily looked at qualitative data. Based on their
results, it is clear that a larger scale empirical study addressing
additional questions is warranted. We expand on their work by
starting our investigation with a significantly larger set of initial
vulnerabilities, considering the project characteristics that may
affect the likelihood of a project being fixed, and investigating how
long it took to apply a fix. Our tool, VCAanlyzer, collects additional
quantitative data as described in Section 5. We use this data to
better understand which projects are more or less likely to include
orphan vulnerabilities and to be fixed. We also look at the time it
takes to apply a fix. The purpose is to identify ways to mitigate
these types of security risks. To secure the software supply chain,
developers need to identify and remediate orphan vulnerabilities in
addition to vulnerabilities detected by dependency tracking tools.

In this study, we examine the prevalence and characteristics of
orphan vulnerabilities at scale. We use the CVEfixes dataset [3] as
our initial set of vulnerabilities. This dataset consists of all vulnera-
bility fixing commits that the authors could automatically identify
from the National Vulnerability Database. We identify orphan vul-
nerabilities by searching for versions of files identified in CVEfixes
that existed before vulnerability fixing commits were applied in the
World of Code [24], a dataset of 173 million open source code repos-
itories and 3.1 billion commits from multiple hosting platforms,
including GitHub, GitLab, and Bitbucket. We created a custom tool
to find files with orphan vulnerabilities in the billions of files in the
World of Code by matching file hashes. This approach allows us to
scale to the size of the World of Code - nearly all of open source.

Our work makes the following contributions:

e We conduct the first large scale empirical study of orphan vul-
nerabilities in open source software, describing the frequency
of their creation and mitigation, identifying the impact of
programming languages on these features, and analyzing
the properties of projects that create and remediate orphan
vulnerabilities. Using the World of Code infrastructure, we
are able to analyze the extent of cloning vulnerable files at a
scale that has traditionally been very difficult

o We present the design and implementation of a tool, VCAn-
alyzer, which finds source code files in any language that
contain orphan vulnerabilities. We make the tool publicly
available.

e Using VCAnalyzer, we produce a dataset, which we make
publicly available, containing over 3 million files with or-
phan vulnerabilities that have been copied into over 700,000
unique open source projects. The dataset also contains meta-
data about each project.

Zhttps://worldofcode.org

23

David Reid, Kristiina Rahkema, and James Walden

The rest of the paper is organized as follows: we start with our
research questions in Section 2, discuss related work in Section 3,
present our data sources in Section 4, and discuss our VCAnalyzer
tool in Section 5, We describe our research methods in Section 6,
present results in Section 7, discuss the impacts of our results in
Section 8, address threats to validity in Section 9, and summarize
our findings in Section 10.

2 RESEARCH QUESTIONS

Motivated by previous research showing vulnerabilities propa-
gated by copy-based code reuse in a small number of vulnerable
projects [20, 22, 36], we planned a large scale empirical study of
orphan vulnerabilities. We focused on cases where files containing
vulnerable code are copied from one project and committed into
another project, as these could be detected in a scalable manner
using the World of Code infrastructure.

As our first step, we wanted to measure the prevalence of or-
phan vulnerabilities, including determining how many original
vulnerabilities are copied and how frequently they are copied. We
investigated the impact of programming language on the frequency
of orphan vulnerabilities, and examined the 20 most copied orphan
vulnerabilities in detail.

Research Question 1: How prevalent are orphan vulnerabili-
ties? What are the characteristics of orphan vulnerabilities?

For our second question, we investigated characteristics of open
source projects that contained orphan vulnerabilities. We measured
how many vulnerabilities were copied in each project. We also
examined project activity, including duration of activity, numbers
of commits, authors, stars, and additional metadata to find com-
monalities among these projects.

Research Question 2: What are the characteristics of projects
that have orphan vulnerabilities?

We investigated the fixing of orphan vulnerabilities. While all
of the vulnerabilities in our dataset have been fixed in the original
project, we wanted to see how many of the orphan vulnerabilities
were fixed. Some of our copied vulnerable files could have been
created using package managers that install packages locally under
the development directory, but many other copies were created
through manually copying the code. While dependency tracking
tools can help developers remediate packages installed through
package managers, there is no means of informing users of manually
copied code when security patches become available.

Research Question 3: How many orphan vulnerabilities are
fixed?

We know that projects behave differently when updating vul-
nerabilities using package management tools. While some projects
may not fix any orphan vulnerabilities, others may fix some or
all of the orphan vulnerabilities. We studied which projects fixed
vulnerabilities, and what percentage of vulnerabilities were fixed in
projects that fixed any vulnerabilities. We also studied how project
and vulnerability characteristics, e.g. the programming language
used or project activity, affect whether vulnerabilities are fixed.

Research Question 4: How do different characteristics of
projects affect how many vulnerabilities are fixed?

Large Scale Study of Orphan Vulnerabilities in the Software Supply Chain

Lastly, we investigated the time required to fix orphan vulner-
abilities. To secure systems, it is important to fix vulnerabilities
before they begin to be widely exploited. A late fix may be no im-
provement over no fix if the software was exploited before the fix
was deployed. We also examined the impact of project activity on
the time required to remediate vulnerabilities.

Research Question 5: How long does it take for an orphan
vulnerability to be fixed?

3 RELATED WORK

3.1 Copy-based Code Reuse

Our work looks at vulnerabilities propagated through copy-based
code reuse. There is significant research in the area of copy-based
code reuse [8, 19, 27, 35, 44], sometimes called vendoring [4, 46]
or clone-and-own [12, 13, 34]. Gharehyazie et al. [14] analyzed
copy-based code reuse by looking at 5,753 Java projects on GitHub,
and found that cross-project code reuse is prevalent. Schwarz et
al. [38] studied cloned methods in 2,705 projects in the Squeak-
source ecosystem and found that 15% to 18% of methods were
cloned. Ossher et al. [31] studied 13,000 Java projects from the
Sourcerer Repository, and found that over 10% of all files are clones
and that 15% of projects contain at least one cloned file. Xia et
al. [44], using OpenCCFinder [43], looked at C language reuse of
out-of-date code. OpenCCFinder only returns small subset of open
source projects. Tang et. al. [40] introduce CCScanner, a tool to find
dependencies in C/C++ projects, and they evaluate the tool with
a dataset of 24,000 projects. Kim et. al. [20] propose VUDDY, an
approach for the scaleable detection of vulnerable code clones, and
test it with a pool of 25,253 C/C++ projects. All of the previously
mentioned works are limited to a small number of repositories
relative to the totality of open source projects, and are limited to
a small number of languages. Newer technologies such as World
of Code [25] and Software Heritage [9] provide an infrastructure
to find copied files across a much larger set of software reposito-
ries and across all languages. Our work utilizes the World of Code
infrastructure containing over 173 million projects, allowing us to
study vulnerabilities propagated through copy-based code reuse on
a scale much larger than previous work.

3.2 Software Provenance

Software provenance refers to the history and chain of custody
of software. Godfrey et al. [16] noted the importance of finding
software provenance and the lack of current tools and techniques
in that area. We aim to fill part of the gap they identified with our
VCAnalyzer tool, which traces the evolution of source code files
that are copied and modified over time and across different source
code repositories.

Woo et al. [42] created a tool, VOFinder, to find the origin of
a vulnerability. They use function-level clone detection, which
allows fine-grained detection of vulnerabilities, but cannot scale
to the number of repositories that we are able to search using file-
level hash matching. Inoue et al. [18] created a tool to trace code
origin and evolution. They used source code search engines Koders,
Google Codesearch, and SPARS/R, all of which had limitations and

24

PROMISE ’23, December 8, 2023, San Francisco, CA, USA

are no longer available. We use World of Code, which contains a
larger set of projects and is currently actively maintained.

Rousseau et al [37] used Software Heritage to look at copies
of file content over time and across repositories, similar to what
VCAnalyzer does using World of Code. One key difference is that
they do not look at “predecessors or successors in a given devel-
opment history” VCAnalyzer specifically looks at all parents and
descendants of a file when tracing file evolution over time and
across repositories, allowing the tool to find files that are copied
and then modified.

3.3 Package Managers

Part of the motivation for our work arises from a lack of research
and tools dealing with copy-based reuse induced vulnerabilities.
Popular dependency checking tools such as GitHub Dependency
Graph [15], Google Open Source Insights [17], and OWASP Depen-
dency Check [32] depend on package management metadata and
thus miss copy-based code reuse. Much prior research on vulner-
abilities arising from code reuse looks at reuse through package
managers [1, 2, 11, 45]. Kula et al. [21] studied how developers up-
date library dependencies in over 4600 GitHub projects. They found
that 81.5% of the analyzed projects contain outdated dependencies,
and that 69% of the interviewees claimed to be unaware of their
vulnerable library dependencies. Zimmermann et al. [45] studied
dependencies between package maintainers, as well as the packages
themselves. They examined 609 vulnerabilities in 5,386,237 package
versions with 199,327 maintainers. Decan et al. [7] studied 399 vul-
nerability reports affecting 269 npm packages and 6,752 releases of
those packages. They found that 72,470 other packages are affected
by those vulnerable releases through dependencies. Pashchenko
et al. [33] studied dependency managements and its security im-
plications by interviewing developers. They found that developers
focus on functionality over security when choosing dependencies.

4 DATA

In this section, we describe the two primary data sources that we
use to conduct our analysis: CVEfixes and the World of Code.

4.1 CVEfixes Dataset

Vulnerability databases such as the National Vulnerability Database
(NVD)? contain information on publicly reported vulnerabilities.
Each NVD vulnerability has been assigned a Common Vulnerabili-
ties and Exposures (CVE) identifier before inclusion in the database.
The NVD provides a description, severity metrics, affected software
configurations, and links to references about the vulnerability.

Bhandari et al. [3] extracted CVEs with fixing commits, analyzed
the files changed by these commits, and created a dataset containing
vulnerabilities and their fixes - the CVEfixes dataset. This dataset
contains information on 5,495 vulnerability fixing commits in 1,754
projects covering 5,365 CVEs. They also provided the code used to
generate their dataset, so that future researchers could generate
updated versions of the dataset.

Shttps://nvd.nist.gov
*https://github.com/securel T-project/CVEfixes

PROMISE ’23, December 8, 2023, San Francisco, CA, USA

We ran the CVEfixes code to generate a current database of CVEs
with fixing commits as of November 2022. We removed vulnerabil-
ities whose fixes were identified as being in non-executable files
like READMEs from the dataset. We also eliminated vulnerabilities
where more than one file was modified in the fixing commit, as our
data collection was designed to handle one file per vulnerability.
The resulting dataset contained 3,615 CVE entries.

4.2 World of Code

The World of Code (WoC) [24] is a large collection of open source
project repository data collected from many different source code
repository hosting platforms, including GitHub, GitLab, Bitbucket,
SourceForge, etc. WoC contains detailed version control data, in-
cluding commits, authors, and file blobs of more than 173 million
repositories, encompassing a nearly complete collection of open
source software. We used WoC version U, which includes data
collected in October and November of 2021.

In the WoC, commits are linked to files changed in that commit.
Files are linked to metadata, such as timestamps and authorship,
as well as file contents, which are called blobs. As a file changes
over time, it is associated with different blobs, representing the
contents of the file after each change. Blobs can belong to multiple
commits and even multiple repositories. If a blob is connected to
two repositories, this indicates that both repositories contain a file
with identical contents. Therefore, it is possible to compare blobs
to quickly find exact copies of any file in the WoC.

Our VCAnalyzer tool is layered on top of the WoC infrastructure
to leverage this huge collection of open source repositories, allow-
ing us to study copy-based code reuse on a very large scale. The
World of Code’s periodically updated and curated data allows our
tool to efficiently search for code duplication in any programming
language across multiple source code repository hosting platforms.

Using VCAnalyzer, we constructed a dataset of more than three
million copied files containing orphan vulnerabilities from the CVE-
fixes dataset. The dataset includes CVEs, as well as file and project
metadata, including pathnames, timestamps, project activity, etc.

5 THE VCAnalyzer TOOL

To study orphan vulnerabilities at a very large scale, we created
the VCAnalyzer (Vulnerable Clones Analyzer) tool. VCAnalyzer
leverages the World of Code infrastructure to find vulnerabilities
that are propagated through copy-based code reuse in open source
projects at a scale that has traditionally been infeasible. The tool
starts with an initial set of vulnerabilities with fixing commits. For
each vulnerability, it searches for projects which have copied a vul-
nerable file, and collects statistics about those projects. VCAnalyzer
uses the World of Code to find duplicated files. It collects data about
files and projects from both World of Code and APIs provided by
code hosting platforms such as GitHub, GitLab, and Bitbucket.
The input to VCAnalyzer is the CVEfixes dataset CSV file, which
describes one vulnerability per line. Each line identifies the vulner-
ability by its CVE number and includes the URL of the repository
containing the vulnerable code, the path of the original vulnerable
file, the identifier for the git commit that fixed the vulnerability, the
date of the fix, and the date on which the CVE record was created.
VCAnalyzer uses hash-based matching of files to quickly identify

25

David Reid, Kristiina Rahkema, and James Walden

copies of vulnerable files in World of Code. VCAnalyzer examines
the entire history of a file, starting by retrieving the entire commit
history of the original vulnerable file. It then finds all revisions
of the vulnerable file before the fixing commit and all revisions
after the fixing commit. The commit history is retrieved using the
API of the hosting platforms. File revisions that predate the fixing
commit are potentially vulnerable files. We refer to these as bad
blobs. A blob refers to the contents of a file at a specific commit.
We refer to the blob created by the fixing commit and blobs that
postdate the fixing commit as good blobs, as they do not contain
the vulnerability. VCAnalyzer also identifies blobs that are found in
both lists, which indicates that a fixed version of the file has been
replaced by a vulnerable version of the file, possibly because the
fix introduced bugs or incompatibilities. If the fixing commit is not
found in the default repository branch, the tool skips that CVE.

VCAnalyzer searches World of Code for projects that have ever
contained blobs from the bad blob list to identify projects that have
contained orphan vulnerabilities. These projects are found by first
using the World of Code’s blob to commit (b2c) mapping to find
all commits containing each bad blob, and then using the commit
to project (c2P) mapping to find all deforked projects containing
those commits. These are the projects that have copied a known
vulnerable file and thus contain an orphan vulnerability. The c2P
mapping uses a community detection algorithm [28] to find unre-
lated projects. The mapping excludes forks and exact copies, unless
a fork is developed into an independent project. For each such
project, VCAnalyzer determines if the project has been fixed by
finding projects that contain a blob from the good blobs list. The
tool identifies the date on which the project copied a vulnerable file
as the date on which a bad blob was first committed to the project.
It identifies the vulnerability fixing date as the first date on which
a good blob was committed. Many vulnerabilities are never fixed,
so the fixing date may be NULL.

If a project only contains vulnerable versions of the file (from the
bad blobs list), then the project is considered still vulnerable. If the
vulnerable file has been replaced with a fixed version of a file from
the good blobs list, then the project is considered not vulnerable. If
the vulnerable file has been replaced by a file that is in neither the
good blobs nor the bad blobs list, then it is categorized as unknown,
as we know the vulnerable file has been changed, but we do not
know if the change fixed the vulnerability.

Finally, VCAnalyzer collects statistics on each project copying a
vulnerable file. Most statistics are available from World of Code. For
some statistics, the tool uses the API of the repository hosting plat-
form to retrieve the information directly. The information collected
includes the number of authors, date of earliest commit, date of
latest commit, number of months the project was active, root fork,
number of stars, number of core developers (who commit more
that 80% of the code), community size, total number of commits,
number of forks, and the most used language in this project.

6 METHOD

We conducted a large scale empirical study by mining open source
software using the VCAnalyzer tool described above. We studied
copy-based code reuse of files containing publicly disclosed vulner-
abilities, and used those results to answer our research questions.

Large Scale Study of Orphan Vulnerabilities in the Software Supply Chain

We cleaned the CVEfixes data by removing vulnerable files
whose names indicate that the file is not part of the source code
that would be executed with the program is run. We removed files
with the names CHANGES, KConfig, and README, as well as files with
the following suffixes: .md, .old, . txt, and . svn-base. Files with
those suffixes will not be treated as source code. Files with the
.svn-base extension are part of subversion repository structure
and might have been included in a git repository when a subversion
repository was converted into a git repository. We can ignore these
files, as any changes to the actual copy of the vulnerable file would
not be reflected in the subversion repository structure. We also
removed copies of vulnerable files identified by VCAnalyzer, where
VCAnalyzer reported missing data in critical fields like the iden-
tification of the first vulnerable version, the pathname, or project
activity.

We only consider files that are currently publicly available. World
of Code maintains copies of all files in all projects, even if they are
removed or made private. If the potentially vulnerable file is re-
moved from a project or if the project is no longer publicly available,
we exclude that project from our results.

To compute the number of occurrences of orphan vulnerabilities,
we count the number of vulnerable files identified by VCAnalyzer
outside the original project for each CVE identifier. For each original
and copied vulnerability, our dataset contains the pathname of the
file containing the vulnerability. We identify the programming
language used in vulnerable source files by the file suffix found in
pathnames. For example, we identify files as C source code by the
presence of either . c or .h file extensions.

Each vulnerability in the CVEfixes dataset includes the URL for
the git repository in which the vulnerability was found. Multiple
vulnerabilities can share the same URL if they were found in the
same repository. VCAnalyzer creates project names for each vul-
nerability using the hosting platform name and the last two path
components of the git repository. Project names are case sensitive.
We do not merge projects with similar names. The same process is
used when creating project names for copied vulnerabilities found
in the World of Code. The collection of project metadata is explained
in Section 5 above.

We create a subset of projects with high levels of activity by
selecting projects with at least 100 GitHub stars. We use GitHub
stars as a metric, since the numbers of commits and authors are
copied to the new project when a project is forked, while the number
of GitHub stars is not. The threshold of 100 stars is often used in
prior work [10, 40].

We compute multiple project metrics. The first metric we ex-
amine is the primary programming language of the project. This
metric is provided by the World of Code. As projects often use
multiple programming languages, we also identify the program-
ming language used in the vulnerable file using the file suffix, as
described above. If a filename does not contain a “”, the file suffix
is blank. For each project metric, we filter out values over the 99th
percentile to exclude possible outliers.

We classify orphan vulnerabilities as fixed, unfixed, or unknown
using the approach described in Section 5. For each orphan vulner-
ability that was fixed, we calculate the survival time by computing
the time difference between the first fixing commit and either the
first vulnerability introduction commit or the original vulnerability

26

PROMISE ’23, December 8, 2023, San Francisco, CA, USA

fix time, depending on which came later. We then report character-
istics of the survival time.

7 RESULTS

7.1 RQ1: Prevalence of Orphan Vulnerabilities

We found that 3,014 (83.3%) of the 3,615 vulnerable files from our
CVEfixes dataset were copied into 3,044,644 files. While 601 original
vulnerabilities were not copied into other projects, there are more
than a thousand orphan vulnerabilities on average for each original
vulnerability that was copied. We found that 95.4% of copied vulner-
able files shared directory paths with the original vulnerable files,
which indicates that orphan vulnerabilities are typically introduced
by copying an entire dependency into the project’s repository.

The majority of original vulnerable files that were copied are
written in the C programming language (59.3%), while another
10.2% are written in C++. An even larger percentage of orphan
vulnerabilities are found in copied C source code files (63.7%). These
facts can be explained in part by the fact that most developers
do not use package management tools like Conan for C and C++
projects [26], and prefer to either use system libraries or to copy
code into their repositories [40].

We find that vulnerable C++ files are much less likely to be
copied than vulnerable C files. Although C++ files represent 10.2%
of original vulnerable files, only 38,533 (1.3%) copied vulnerable
source files are written in C++. While a relatively small quantity
(5.7%) of original vulnerable files are written in JavaScript, 24.3% of
orphan vulnerabilities are found in JavaScript files. We found that
overrepresentation of JavaScript files among the copies is due to
use of the npm package manager.

While typical use of a package manager calls for committing
metadata files that indicate which packages are used rather than
committing the packages themselves, we found that some projects
committed dependencies as well as metadata into their repositories.
As a result, some of the copied vulnerabilities we discovered were
copied using package managers instead of through direct copying
of the code. To check if a package manager was used, we checked
the most common file path prefixes used by package managers for
each programming language. We discovered some file path prefixes
that indicated the use of package managers, such as node_modules,
Pods, and Carthage. The percentage of vulnerable files included
through package managers rather than manual copying is 17% for
C++ files, 36% for Go files, 67% for JavaScript files, 66% for JSON
files, 47% for PHP files, 9% for Ruby files, and 53% for Swift files.
For all other languages, the percentage of files copied by package
managers was less than 5%.

While the majority of both original vulnerable files and copied
files are written in C, PHP, and C++ are underrepresented among
copied files, making up 6.4% (compared to 15.1% of original files)
and 1.3% (compared to 10.1% of original files) respectively. Table 2
shows the top 10 programming languages found in copied files.

While the mean number of times a particular vulnerability is
copied is 1,010, the standard deviation is 4,581, indicating a wide
variance in the number of times vulnerabilities are copied. At the
low end, 305 (10.1%) vulnerabilities are copied only once, while
at the high end 380 (12.6%) vulnerabilities are copied more than a
thousand times.

PROMISE ’23, December 8, 2023, San Francisco, CA, USA

Table 1: Original Vulnerable Files by Language

Language Vulnerable Files Percent of Files
C 1789 59.3%
PHP 455 15.1%
C++ 307 10.2%
JavaScript 157 5.7%
Python 59 2.0%
Java 44 1.5%
Ruby 29 1.0%
Go 22 0.7%
Perl 18 0.6%
TypeScript 10 0.3%

Table 2: Copied Vulnerable Files by Language

Language copied files Percent of Copies
C 1,939,190 63.7%
JavaScript 741,433 24.3%
PHP 194,991 6.4%
Ruby 102,986 3.4%
C++ 38,533 1.3%
Python 17,478 0.6%
Go 1,758 0.06%
Perl 1,282 0.04%
Zsh 1,253 0.04%
Java 963 0.03%

CVE-2013-7223

CVE-2019-10913

CVE-2020-19316

CVE-2020-28037

CVE-2018-13818 .

CVE-2021-21401 .

CVE-2020-5235 .

CVE-2022-24785 .

CVE-2022-31129 .

CVE-2022-2318 .

C

CVE-2020-25669 .

CVE-2021-3715 .

CVE-2019-15922 .

CVE-2019-19051 .

CVE-2019-15923 .

CVE-2020-12652 .

CVE-2018-11506 .

CVE-2021-454801 @

CVE-2019-19074 .

CVE-2017-182167 @

Figure 1: Top 20 CVEs by Number of Times Copied

25000

50000
Number of Orphan Vulnerabilities

75000

27

David Reid, Kristiina Rahkema, and James Walden

The most copied vulnerabilities are dominated by files copied
via the npm package manager, with CVE-2021-32640 being copied
112,297 times. After eliminating files copied by npm, the twenty
most commonly copied vulnerabilities are shown in Figure 1. The
most commonly copied vulnerability, CVE-2013-7223, is a cross-site
request forgery vulnerability in Fat Free CRM, a customer relation-
ship management platform written in Ruby. It was copied 87,808
times. The second through fifth most commonly copied vulnera-
bilities are from PHP software, including the Symfony framework
for web projects, Laravel Framework, WordPress, and the Twig
templating system. Numbers of orphan vulnerabilities ranged from
19,005 for CVE-2018-13818 in Twig to 41,564 for CVE-2019-10913
in Symfony.

The sixth and seventh most commonly copied vulnerabilities
are both from nanopb, an implementation of the protocol buffers
serialization mechanism written in C. Both vulnerabilities were
copied more than 18,000 times, with CVE-2021-24401 being copied
38 times more than CVE-2021-5235. The eighth and ninth most
commonly copied vulnerabilities are from Moment. js, a JavaScript
date library, with both being copied more than 17,000 times. The
tenth through twentieth most commonly copied vulnerabilities are
all found in C source code files originating in the Linux kernel, with
numbers of copies ranging from 12,785 to 14,253. It is worth noting
that the majority of the top 20 most commonly copied orphan
vulnerabilities are not found in libraries, and thus would not be
detected by software supply chain tools that focus on third-party
library dependencies.

7.2 RQ2: Characteristics of Projects that Copy
Vulnerabilities

There are 1,114 open source projects in the CVEfixes dataset. Of
these projects, 800 (71.8%) had orphan vulnerabilities. Vulnerable
files from these 800 projects were copied into 719,131 different
projects found in the World of Code. While a majority (58.3%) of
the 719,131 projects contain only a single orphan vulnerability
and 97.5% of projects have 10 or fewer such vulnerabilities, 9428
(1.3%) projects include 100 or more copied vulnerable files up to a
maximum of 806. Seven of the ten projects with the highest numbers
of vulnerable copies have the words “linux” or “kernel” in their
project names, suggesting that they are copies of the Linux kernel,
which is the project with the highest number of vulnerable files in
our CVEfixes dataset.

We analyzed project activity through several metrics, including
active project lifetime and counts of commits, authors, and GitHub
stars. With a dataset of so many projects, it is unsurprising that
commit activity varied widely, ranging from a low of one commit to
a high of over 36 million commits. Most projects have low levels of
commit activity, with 94.3% of projects having 100 or fewer commits
and 61.3% having 10 or fewer commits. Additionally, 99% of projects
have 10 or fewer commit authors, with 71% of projects having only
a single commit author. The number of active months varies widely
between projects, from 1 to 428 (35 years). Projects with more than
30 years of history include some well known projects like Emacs,
FreeBSD, gcc, Kerberos, and Python.

The vast majority (98.5%) of our projects have repositories on
GitHub, so we also examined the number of GitHub stars for those

Large Scale Study of Orphan Vulnerabilities in the Software Supply Chain

projects. The majority of projects had no stars on GitHub (83.3% of
GitHub projects). A substantial number of projects (10.4%) had re-
ceived a single star, with a small number of outliers having received
more than one.

Most projects that contain orphan vulnerabilities do not have
GitHub security policies as documented in the SECURITY.md file.
These files describe how to report security vulnerabilities to project
maintainers. Only 1.7% of projects with orphan vulnerabilities in-
clude a security policy file. Summary statistics of project metrics,
authors, commits, stars, and vulnerabilities can be found in Table 3.

Table 3: Project Activity Metrics

Metric Min Median Mean StdDev Max
Active Months 1 1 3.18 8.6 428
Authors 1 1 5.15 263.5 109,725
Commits 1 7 353 53,916 36,468,369
GitHub Stars 0 0 11.2 757.5 357,516
Vulnerabilities 1 1 4.23 18.5 806

We created a subset of 2,021 projects that had high levels of
activity by selecting projects with at least 100 GitHub stars. These
projects have means of over 6 years (82 months) of activity, 58
authors, 2,413 commits, and 544 stars. They contain an average of
6.28 copied vulnerabilities compared to 4.23 for all projects. While
active projects have almost 50% more copied vulnerable files on
average, they are more likely to have published a security policy,
with 11.6% of active projects having a SECURITY.md file compared
to 1.7% of all projects. A summary of statistics for active projects
is available in Table 4. Although the smallest number of commits
for active projects was 3, only 0.013% of the active projects had less
than 100 commits.

Table 4: Active Subset Project Metrics

Metric Min Median Mean StdDev Max
Active Months 1 64 82.0 69.6 428
Authors 1 15 58.0 2864 93,072
Commits 3 410 2413 499,701 17,719,890
GitHub Stars 100 204 544 13,617 357,516
Vulnerabilities 1 1 6.28 31.4 677

7.3 RQ3: Orphan Vulnerabilities that are Fixed

We find that there are only 100,889 (3.3%) files out of over three mil-
lion copied files in the World of Code dataset, where the vulnerable
file was replaced at a later time with the fixed version of the file
from the original project. Another 68,760 copied files (2.3%) were
modified from the original vulnerable version, but we do not know
whether the modifications were to remediate the vulnerability or
for another purpose. The remaining 2,875,018 (94.4%) copied files
remained identical to the original vulnerable file throughout the
history of the project that copied them.

28

PROMISE ’23, December 8, 2023, San Francisco, CA, USA

Fixed vulnerabilities are found in 26,801 (3.7%) of the 719,204
projects. We found that more than half of projects that fixed one vul-
nerability have fixed all of their vulnerabilities, though it is worth
noting that of the 14,276 projects have fixed all of their vulnerabili-
ties, 11,627 (79%) had only one vulnerability to fix. However, only
1.6% of World of Code projects with a single copied vulnerable file
have fixed that vulnerability.

7.4 RQ4: Projects that Fix Orphan
Vulnerabilities

We analyzed the relationship between different characteristics of
projects and the percentage of fixed vulnerabilities. We looked at the
following project characteristics: project language, vulnerable file
language, number of commits, number of contributors, community
size, number of core contributors, number of active months, and
number of stars.

For project language, we analyzed the primary language of the
project provided by the World of Code, which uses heuristics to
determine the primary language of the project. In total, vulnerabili-
ties originated from projects written in 14 different programming
languages. Not all projects had a primary programming language
indicated in the World of Code. Table 5 shows percentages of copied
vulnerabilities with status fixed, not fixed, and unknown for each
project language. For most languages, over 90% of copied vulnera-
bilities are not fixed. Clear outliers are Rust, Go, SQL where 36.3%,
17.1%, and 10.9% of copied vulnerabilities were fixed, respectively.

Table 5: Percentage of copied vulnerabilities with status fixed,
not fixed, and unknown for each project language

Project Language Not Fixed Fixed Unknown

98.9 0.6 0.5
C/C++ 92.9 41 3.0
Fortran 96.4 29 0.7
Go 79.4 17.1 3.5
Java 95.8 2.8 1.4
JavaScript 97.9 1.6 0.5
Lua 83.5 9.7 6.8
PHP 954 2.5 2.1
Perl 95.4 33 1.3
Python 90.1 9.1 0.8
Ruby 97.4 2.1 0.5
Rust 62.3 35.3 2.5
Sql 88.1 10.9 1.0
Swift 97.4 1.7 0.9
TypeScript 94.4 0.6 5.0

Next, we looked at the percentage of fixed and not fixed copied
files based on the language in which the vulnerable file was written.
To simplify determining the project language, we used the suffix
of the vulnerable file to identify the programming language. The
following analysis is performed on the 17 most often occurring
file endings in the dataset. Percentages of fixed, not fixed, and
unknown copied vulnerabilities are listed in Table 6. For most file
endings, as with programming languages, the percentage of copied

PROMISE °23, December 8, 2023, San Francisco, CA, USA

vulnerabilities not being fixed was over 90%. Outliers include the file
suffixes *.S’, ".go’, *h’, py’ and ’.swift’. Interestingly, vulnerabilities
in .S’ (assembly language) files are fixed in 73.1% of cases.

Table 6: Percentage of copied vulnerabilities with status fixed,
not fixed, and unknown for each file ending

File Suffix Not Fixed Fixed Unknown

.c 92.9 4.1 3.0
.cc 99.0 0.2 0.8
.cpp 95.1 3.2 1.7
.cs 94.4 3.5 21
.80 769 19.1 4.0
h 88.6 9.6 1.7
.htm 94.8 43 0.9
Jjava 93.3 2.8 3.9
js 98.2 1.5 0.3
json 90.9 0.0 9.1
.php 95.2 2.6 22
.pm 98.5 0.7 0.8
Py 87.1 121 0.8
.rb 97.4 0.4 2.2
S 26.8 73.1 0.1
swift 88.9 9.1 2.0
.zsh 98.2 0.0 1.8

We analyzed how different project metrics affected the percent-
age of fixed and unfixed orphan vulnerabilities. Figure 2 shows how
the percentage of fixed and unfixed vulnerabilities changes with the
growth of each of the following metrics: number of commits, num-
ber of active months, number of community size, number of core
members, number of forks, and number of GitHub stars. There is an
overall trend in the percentage of unfixed vulnerabilities decreasing
when any of the project metrics is growing, which might indicate
that larger and more frequently updated projects are more likely
to fix a copied vulnerability. It is important to note that for large
projects there is still a significant number of copied vulnerabilities
that are not fixed.

The strongest trends are found with number of active months
and number of stars, indicating that long lived projects and very
popular projects are more likely to fix copied vulnerabilities.

We checked if vulnerable copies that were copied through a pack-
age manager were more likely to be fixed. Surprisingly, we found
no consistent clear trend over different programming languages.

Lastly, we analyzed how the percentage of fixed orphan vul-
nerabilities changes for large projects. We analyzed a subset of
projects having at least 100 GitHub stars. The GitHub star rating
was chosen to mitigate issues arising from other metrics (such as
commit count) being transferred to a project through forking. The
number of GitHub stars is not a perfect metric, but is beneficial for
our purposes [6]. Table 7 shows the percentage of copied vulnera-
bilities that are fixed, not fixed, and with status unknown for the
top 10 file suffixes. For some file suffixes, the majority of orphan
vulnerabilities are fixed in large projects. We found, however, that
a large percentage of orphan vulnerabilities are not fixed even in
large and popular projects.

David Reid, Kristiina Rahkema, and James Walden

1.0 1.0
—— Fixed —— Fixed
08 Not fixed Not fixed
Unknown o8 Unknown
0.6 0.6
0.4 0.4
0.2 . i 0.2 2= /7
% < — /7‘::,’/75\//, -
0017 001 =
0 500 1000 1500 2000 2500 o 10 20 30 40 50 60

NumCommits NumActiveMon

(a) number of commits (b) number of active months

— Fixed —— Fixed

Not fixed 0.8 Not fixed
0.8 —— Unknown - Unknown
0.6 0.6
0.4 0.4
0.2 0.2 A
. ,,,//ﬁiiﬁ;\//\k/
001 — 00l 7
0 5 10 15 20 25 0 20 40 60 80 100
CommunitySize NumCore

(c) number of community size (d) number of core members

—— Fixed —— Fixeg
Not fixed 0.8 Not/fixed
0.8 %
—— Unknown — Ur; no\
0.6 0.6 \ /
04 0.4 /\/ oo
0.2 /
- 0.2 / o -
S L = y
| [N \¥
' 0 5 10 15 20 25 0 200 400 600 800 1000 1200
NumForks NumStars

(e) number of forks (f) number of stars
Figure 2: Percentage copied vulnerabilities with status fixed,
not fixed, and unknown for growing (a) number of commits,
(b) number of active months, (c) community size, (d) number
of core members, (¢) number of forks, and (f) number of
stars.

Table 7: Percentage of copied vulnerabilities with status
fixed, not fixed, and unknown for each file ending for ac-
tive projects.

File Suffix Not Fixed Fixed Unknown

.c 303 61.6 8.1
.cc 75.2 2.2 22.6
.cpp 425 415 16.0
h 36.9 56.0 7.1
Js 40.0 53.1 6.9
.json 31.2 6.2 31.2
php 294 492 21.4
Py 102 795 10.2
.rb 675 273 5.2

Large Scale Study of Orphan Vulnerabilities in the Software Supply Chain

7.5 RQ5: Survival of orphan vulnerabilities

We analyzed how long it takes for an orphan vulnerability to be
fixed. We calculated the time difference between the first fixing
commit and either the first vulnerability introduction commit or
the original vulnerability fix time, depending on which came later.

Looking at all projects, we found that 15.6% of copied vulnerabili-
ties had a negative time delta, meaning that the orphan vulnerability
was fixed before it was fixed in the original project. 84.3% of the
copied vulnerabilities had a positive time delta.

The mean number of days required to fix an orphan vulnerability
was 459. Orphan vulnerabilities were fixed in 0 to 1 days in 15%
of the cases, indicating that the fix might have been introduced
through automated updates. While half of the orphan vulnerabili-
ties were fixed in less than 80 days, 25% of orphan vulnerabilities
remained in the repository over 560 days. We checked if copied
vulnerabilities that were likely included through package managers
were more likely to be fixed very quickly (in less than a day) aorth-
ern Kentuckynd found the opposite to be true.

Additionally, we analyzed how long copied vulnerabilities re-
mained in larger projects, expecting vulnerabilities to be fixed
sooner in more popular and active projects. In projects with at
least 100 GitHub stars, 75% of the orphan vulnerabilities remained
in the project for longer than 426 days. For half of the orphan vul-
nerabilities that we found, the orphan vulnerability remained in
the project over three years.

8 DISCUSSION

We found that orphan vulnerabilities are widespread in open source
software. Out of the 3,615 vulnerable files in our CVEfixes dataset,
3,014 (83.3%) were copied, resulting in more than three million
orphan vulnerabilities. The orphan vulnerabilities came from 800
(71.8%) of the projects in the CVEfixes dataset and were distributed
across 719,131 projects found in the World of Code. The majority
of the original vulnerable files (59.3%) and their copies (63.7%) are
written in the C programming language, which predates the use of
package managers.

While most projects containing orphan vulnerabilities displayed
low levels of commit activity and had small numbers of contributors,
we examined a subset of 2021 projects that had at least 100 GitHub
stars. These active projects had an average of over 6 years of activity.
While the number of copied vulnerable files was about 50% higher
in active projects than the entire dataset, active projects were much
more likely (11.6% compared to 1.7%) to have published a security
policy.

We found that only 100,889 (1.3%) out of over three million or-
phan vulnerabilities were fixed by replacing the file’s contents with
the fixed version of the file from the CVE fixes database. Another
68,760 (2.3%) copied files had their contents modified, but we do
not know if these modifications remediated the vulnerability or
not. Fixed vulnerabilities were only found in 26,801 (3.7%) of the
more than seven hundred thousand projects that contained orphan
vulnerabilities.

We found that larger, more active, and longer-lived projects are
more likely to fix copied vulnerabilities, but even for the largest
projects, the large majority of vulnerabilities are not remediated.
When dividing projects by primary programming language, we

30

PROMISE ’23, December 8, 2023, San Francisco, CA, USA

found that 90% of vulnerabilities are not fixed for most languages.
However, projects using a few languages, like Rust, Go, and SQL
fixed more than 10% of their orphan vulnerabilities.

Orphan vulnerabilities that were fixed required an average of
459 days to be remediated. However, 15% of projects fixed orphan
vulnerabilities in less than one day, indicating constant watching of
security updates or automated update tools. Orphan vulnerabilities
survived a long time even in active projects, where half of orphan
vulnerabilities required more than three years to remediate.

For all popular projects with orphan vulnerabilities we searched
for repositories that contained a SECURITY.md file. For each of
these repositories, we checked if the copied vulnerable file was still
present in the repository and if the repository corresponded to an
actual project (not a collection of samples or a collection of vulnera-
bilities). We contacted the e-mail address listed in the SECURITY.md
file to disclose the vulnerability. We received responses from two-
thirds of the projects with promises to either look into the potential
security issue or to update the vulnerable file. One month after the
disclosure, half of the projects with disclosed orphan vulnerabil-
ities had fixed the vulnerabilities by either upgrading the library
dependency or by removing the vulnerable file.

The case where files from a package manager are copied into
and committed to the project’s repository posed a dilemma for our
research. On one hand, we are specifically looking for files that
are copied from one repository and committed into another, and
not cases where files are included via a package manager. This
suggests that we should exclude these files. On the other hand,
those file might have been copied from another repository that
used a package manager. And since they are committed, they may
be copied into other projects. Since we are studying copy-based
code reuse, any file committed into a public repository is of interest.
In either case, the vulnerable files are committed to a publicly
available repository, thus able to be copied. Since our motivation
is to mitigate vulnerabilities caused by copy-based code reuse, we
chose to include these files. Section 7.1 addresses the prevalence of
package manager files that are committed to repositories.

For developers, we recommend identifying and documenting
copied code, so that it can be updated when vulnerabilities are
reported. We also recommend using package managers instead
of copying source code directly, so that vulnerabilities are easier
to find with existing tools. Software security teams need to be
aware that most software supply chain tools do not detect orphan
vulnerabilities and that orphan vulnerabilities are common in C/C++
code. New tools that can identify orphan vulnerabilities are needed.

Tool builders have an opportunity to develop tools for orphan
vulnerabilities that are similar to tools for other types of copied
vulnerabilities. Better tools could improve the accuracy of copied
code detection, be easily integrated into developer’s workflows,
track code provenance at the scale of all open source code, work
with any programming language, and integrate with vulnerability
databases. Our VCAnalyzer tool provides foundational work in that
area, but it is only a beginning.

Researchers also need to be aware of the limitations of software
supply chain tools and the high prevalence of orphan vulnerabili-
ties. Studies are needed to advance our understanding of the risks
associated with copy-based code reuse and identify best practices
for minimizing these risks. Researchers can also help identify and

PROMISE ’23, December 8, 2023, San Francisco, CA, USA

analyze the specific types of vulnerabilities that are most commonly
introduced through copy-based code reuse, as well as the factors
that contribute to the prevalence of this practice.

9 THREATS TO VALIDITY

We rely on data from the CVEfixes® dataset being correct. As this
dataset is extracted from the NVD, we indirectly rely on NVD data
about fixing commits being correct. Nguyen et al. [30] demonstrated
some errors in vulnerability reporting in NVD.

Since we are looking to see if a project fixes a vulnerability and
how long it takes, we only look at the small fraction of vulnera-
bilities where the fixing commit can be automatically identified.
Furthermore, we only consider vulnerabilities where the patch
commit only changed a single file. As a result, our count of orphan
vulnerabilities is an undercount, based on 3,615 initial vulnerabili-
ties out of the more than 200,000 vulnerabilities found in NVD.

World of Code provides a nearly complete collection of publicly
available open source software. We rely on World of Code to find
open source repositories. We will miss any projects that are not
available in World of Code. This will also lead to undercounting
orphan vulnerabilities.

Our tool looks at file-level copy-based code reuse of vulnerable
files using hash-based matching of files in order to scale to the entire
World of Code, which includes nearly all open-source repositories.
We are not aware of any algorithms or tools that could detect code
clones at the method or line level that would scale to that level. It
is important to note that our tool does not only look at one version
of the vulnerable file, but also finds copies for previous versions
of the vulnerable file. While our current tool will only find file-
level copies, we still find an alarming number of projects that have
copied public vulnerabilities in a way that will not be detected
by dependency tracking tools. We understand that this number of
projects is a minimum bound on the number of projects that have
copied vulnerable code.

We created a subset of projects with over 100 GitHub stars so that
we could find active projects and eliminate many useless projects.
GitHub stars is not a perfect measure, but is useful in many cases [6].
We found that excluding projects with fewer than 100 commits
would only reduce the number of projects by 0.013% from what we
get when only excluding projects with less than 100 stars.

We only check if the project contains a vulnerable file, not if
the project is vulnerable. It is important for project maintainers to
understand if a project contains a vulnerable file, even if it does not
use the code in a vulnerable way. A developer may later make a
change that uses the code in a vulnerable way, thus unknowingly
making the project vulnerable.

If we know when a vulnerability was introduced, VCAnalyzer
has the ability to look at only revisions between the introduction
and fix of the vulnerability. Since CVEfixes does not give us the
introduction date, we look at all prior revisions since the prior
revisions are likely to also contain the vulnerability. This gives us
all revisions before the fix. Revisions before the fix may include
revisions before the vulnerability was introduced. In these cases,
we count projects that are not vulnerable (although they contain
a revision before the fix), causing us to overestimate vulnerable

Shttps://github.com/securel T-project/CVEfixes

31

David Reid, Kristiina Rahkema, and James Walden

projects. Tools like SZZ unleashed [5] can be used to find some but
not all vulnerability introduction dates, but do not scale to the size
of the WoC.

We are specifically interested in cases where files are copied
from one project to be reused in another unrelated project. We
do not want to include forks that are only created to submit pull
requests, or cases of re-appropriation of entire projects as described
by Lopes et al. [23]. Our VCAnalyzer tool uses World of Code’s
commit to deforked project (c2P) mapping. This mapping uses the
community detection algorithm described by Mockus et al. [28] to
find unrelated repositories, and it excludes most forks and complete
copies of projects. If the c2P mapping returns related projects, we
will over-count duplicates.

10 CONCLUSION

In this paper, we described a large scale empirical study of orphan
vulnerabilities, which are vulnerabilities directly copied into open
source repositories. We investigated the scale of the problem, along
with characteristics of vulnerable projects and fixed projects. We
developed a tool to find copied files and their project’s characteris-
tics across the expansive software collection in World of Code, and
created a dataset of vulnerable copied files and their fixes.

Copy-based reuse of vulnerable code is widespread in open
source software. We found that 83.4% of the 3,615 vulnerabilities
in our CVEfixes dataset were copied into more than three million
files found in over seven hundred thousand open source projects in
the World of Code. The majority (63.7%) of vulnerable copied files
were C source or header files.

We discovered that orphan vulnerabilities are rarely fixed. Only
100,889 (1.3%) of the three million vulnerable copied files were ever
replaced with the fixed version of those files. Fixed vulnerabilities
were only found in 26,801 (3.7%) of projects that contained orphan
vulnerabilities. While large, active projects were more likely to
remediate some vulnerabilities, the large majority of vulnerabilities
were not remediated in such projects.

The time from introduction to remediation of orphan vulnerabili-
ties was long, averaging 459 days. orphan vulnerabilities survived a
long time even in active projects, with half of orphan vulnerabilities
requiring more than three years to be fixed. However, it is worth
noting that a substantial minority (15%) of orphan vulnerabilities
were repaired in under a day.

ACKNOWLEDGMENTS

This work was partially supported by NSF awards 1633437, 1901102,
1925615, and 2120429, the Austrian ministries BMVIT and BMDW,
the Province of Upper Austria in frame of the Software Competence
Center Hagenberg (SCCH), and grant PRG1226 of the Estonian
Research Council.

REFERENCES

[1] Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. 2021. Empirical anal-
ysis of security vulnerabilities in python packages. In 2021 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
446-457.

Sultan S. Alqahtani, Ellis E. Eghan, and Juergen Rilling. 2016. SV-AF — A Security
Vulnerability Analysis Framework. In 2016 IEEE 27th International Symposium on
Software Reliability Engineering (ISSRE). 219-229. https://doi.org/10.1109/ISSRE.
2016.12

[2

=

=

uy
ot

Large Scale Study of Orphan Vulnerabilities in the Software Supply Chain

[3] Guru Bhandari, Amara Naseer, and Leon Moonen. 2021. CVEfixes: automated

collection of vulnerabilities and their fixes from open-source software. In Proceed-
ings of the 17th International Conference on Predictive Models and Data Analytics
in Software Engineering. 30-39.

Chris Bogart, Christian Késtner, James Herbsleb, and Ferdian Thung. 2021. When
and How to Make Breaking Changes: Policies and Practices in 18 Open Source
Software Ecosystems. ACM Trans. Softw. Eng. Methodol. 30, 4, Article 42 (jul
2021), 56 pages. https://doi.org/10.1145/3447245

Markus Borg, Oscar Svensson, Kristian Berg, and Daniel Hansson. 2019. SZZ
Unleashed: An Open Implementation of the SZZ Algorithm - Featuring Example
Usage in a Study of Just-in-Time Bug Prediction for the Jenkins Project. In
Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning
Techniques for Software Quality Evaluation (Tallinn, Estonia) (MaLTeSQuE 2019).
Association for Computing Machinery, New York, NY, USA, 7-12. https://doi.
org/10.1145/3340482.3342742

Hudson Borges and Marco Tulio Valente. 2018. What’s in a github star? under-
standing repository starring practices in a social coding platform. Journal of
Systems and Software 146 (2018), 112-129.

Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of
security vulnerabilities in the npm package dependency network. In Proceedings
of the 15th international conference on mining software repositories. 181-191.
Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the Impact of
Security Vulnerabilities in the Npm Package Dependency Network. In Proceedings
of the 15th International Conference on Mining Software Repositories (Gothenburg,
Sweden) (MSR ’18). Association for Computing Machinery, New York, NY, USA,
181-191. https://doi.org/10.1145/3196398.3196401

Roberto Di Cosmo and Stefano Zacchiroli. 2017. Software heritage: Why and how
to preserve software source code. In iPRES 2017-14th International Conference on
Digital Preservation. 1-10.

Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo Kim, and Wenke Lee. 2017. Iden-
tifying open-source license violation and 1-day security risk at large scale. In
Proceedings of the 2017 ACM SIGSAC Conference on computer and communications
security. 2169-2185.

[11] Johannes Diising and Ben Hermann. 2021. Analyzing the Direct and Transitive

Impact of Vulnerabilities onto Different Artifact Repositories. Digital Threats:
Research and Practice (2021).

Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing Clone-and-Own with Systematic Reuse for Developing
Software Variants. In 2014 IEEE International Conference on Software Maintenance
and Evolution. 391-400. https://doi.org/10.1109/ICSME.2014.61

Stefan Fischer, Lukas Linsbauer, Roberto E. Lopez-Herrejon, and Alexander Egyed.
2015. The ECCO Tool: Extraction and Composition for Clone-and-Own. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 2.
665-668. https://doi.org/10.1109/ICSE.2015.218

Mohammad Gharehyazie, Baishakhi Ray, and Vladimir Filkov. 2017. Some from
here, some from there: Cross-project code reuse in github. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). IEEE, 291-301.
Github. 2021. About the dependency graph. https://docs.github.com/en/code-
security/supply-chain-security/understanding-your-software-supply-
chain/about-the-dependency-graph

Michael W. Godfrey, Daniel M. German, Julius Davies, and Abram Hindle. 2011.
Determining the Provenance of Software Artifacts. In Proceedings of the 5th
International Workshop on Software Clones (Waikiki, Honolulu, HI, USA) (IWSC
’11). Association for Computing Machinery, New York, NY, USA, 65-66. https:
//doi.org/10.1145/1985404.1985418

Google. 2021. Open Source Insights. https://deps.dev/

Katsuro Inoue, Yusuke Sasaki, Pei Xia, and Yuki Manabe. 2012. Where does this
code come from and where does it go? - Integrated code history tracker for open
source systems. In 2012 34th International Conference on Software Engineering
(ICSE). 331-341. https://doi.org/10.1109/ICSE.2012.6227181

N. Kawamitsu, T. Ishio, T. Kanda, R. G. Kula, C. De Roover, and K. Inoue. 2014.
Identifying Source Code Reuse across Repositories Using LCS-Based Source Code
Similarity. In 2014 IEEE 14th International Working Conference on Source Code
Analysis and Manipulation. 305-314.

Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. 2017. VUDDY: A
Scalable Approach for Vulnerable Code Clone Discovery. In 2017 IEEE Symposium
on Security and Privacy (SP). 595-614. https://doi.org/10.1109/SP.2017.62

Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2018. Do developers update their library dependencies? Empirical Software
Engineering 23, 1 (2018), 384-417.

Zhen Liu, Qiang Wei, and Yan Cao. 2017. VFDETECT: A vulnerable code clone
detection system based on vulnerability fingerprint. In 2017 IEEE 3rd Information
Technology and Mechatronics Engineering Conference (ITOEC). 548-553. https:
//doi.org/10.1109/ITOEC.2017.8122356

Cristina V Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. 2017. DéjaVu: a map of code duplicates on GitHub.
Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 1-28.

[24]

[25

&
&

[29

[30

[32

[33

[34

[35

&
2

[37

[38

[39

[40

(41

[42

[43

[44

[45

[46]

PROMISE ’23, December 8, 2023, San Francisco, CA, USA

Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus.
2019. World of code: an infrastructure for mining the universe of open source
VCS data. In 2019 IEEE/ACM 16th international conference on mining software
repositories (MSR). IEEE, 143-154.

Yuxing Ma, Tapajit Dey, Chris Bogart, Sadika Amreen, Marat Valiev, Adam Tutko,
David Kennard, Russell Zaretzki, and Audris Mockus. 2021. World of code:
enabling a research workflow for mining and analyzing the universe of open
source VCS data. Empirical Software Engineering 26 (2021). https://doi.org/10.
1007/s10664-020-09905-9

André Miranda and Jodo Pimentel. 2018. On the use of package managers by the
C++ open-source community. In Proceedings of the 33rd Annual ACM Symposium
on Applied Computing. 1483-1491.

A. Mockus. 2007. Large-Scale Code Reuse in Open Source Software. In First
International Workshop on Emerging Trends in FLOSS Research and Development
(FLOSS’07: ICSE Workshops 2007). 7-17.

Audris Mockus, Diomidis Spinellis, Zoe Kotti, and Gabriel John Dusing. 2020.
A complete set of related git repositories identified via community detection
approaches based on shared commits. In Proceedings of the 17th International
Conference on Mining Software Repositories. 513-517.

Frank Nagle. 2019. Open source software and firm productivity. Management
Science 65, 3 (2019), 1191-1215.

Viet Hung Nguyen and Fabio Massacci. 2013. The (un) reliability of nvd vulnerable
versions data: An empirical experiment on google chrome vulnerabilities. In
Proceedings of the 8th ACM SIGSAC symposium on Information, computer and
communications security. 493-498.

Joel Ossher, Hitesh Sajnani, and Cristina Lopes. 2011. File cloning in open source
java projects: The good, the bad, and the ugly. In 2011 27th IEEE International
Conference on Software Maintenance (ICSM). IEEE, 283-292.

OWASP. 2022. OWASP Dependency-Check. https://owasp.org/www-project-
dependency-check/

Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci. 2020. A qualitative study of
dependency management and its security implications. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security. 1513-1531.
Francisca Pérez, Manuel Ballarin, Radl Laperia, and Carlos Cetina. 2018. Locating
Clone-and-Own Relationships in Model-Based Industrial Families of Software
Products to Encourage Reuse. IEEE Access 6 (2018), 56815-56827. https://doi.
org/10.1109/ACCESS.2018.2873509

David Reid, Kalvin Eng, Chris Bogart, and Adam Tutko. 2021. Tracing Vulnerable
Code Lineage. In 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR). IEEE, 621-623.

David Reid, Mahmoud Jahanshahi, and Audris Mockus. 2022. The Extent of
Orphan Vulnerabilities from Code Reuse in Open Source Software. International
Conference on Software Engineering (2022), 2104-2115. https://doi.org/10.1145/
3510003.3510216

Guillaume Rousseau, Roberto Di Cosmo, and Stefano Zacchiroli. 2020. Software
provenance tracking at the scale of public source code. In Empirical Software
Engineering. https://doi.org/10.1007/s10664-020-09828-5

Niko Schwarz, Mircea Lungu, and Romain Robbes. 2012. On how often code
is cloned across repositories. In 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 1289-1292.

Sonatype. 2022. Open Source Security and Risk Analysis Report. https://www.
synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2022.pdf
Wei Tang, Zhengzi Xu, Chengwei Liu, Jiahui Wu, Shouguo Yang, Yi Li, Ping Luo,
and Yang Liu. 2022. Towards Understanding Third-party Library Dependency
in C/C++ Ecosystem. In 37th I[EEE/ACM International Conference on Automated
Software Engineering. 1-12.

James Wetter and Nicky Ringland. 2021. Understanding the Impact of Apache
Log4j Vulnerability. https://security.googleblog.com/2021/12/understanding-
impact-of-apache-log4j.html

Seunghoon Woo, Dongwook Lee, Sunghan Park, Heejo Lee, and Sven Dietrich.
2021. {VOFinder}: Discovering the Correct Origin of Publicly Reported Software
Vulnerabilities. In 30th USENIX Security Symposium. 3041-3058.

Pei Xia, Yuki Manabe, Norihiro Yoshida, and Katsuro Inoue. 2012. Development
of a Code Clone Search Tool for Open Source Repositories. Information and
Media Technologies 7, 4 (2012), 1370-1376. https://doi.org/10.11185/imt.7.1370
Pei Xia, Makoto Matsushita, Norihiro Yoshida, and Katsuro Inoue. 2014. Studying
Reuse of Out-dated Third-party Code in Open Source Projects. Information and
Media Technologies 9, 2 (2014), 155-161. https://doi.org/10.11185/imt.9.155
Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael Pradel.
2019. Small world with high risks: A study of security threats in the npm
ecosystem. In 28th USENIX Security Symposium (USENIX Security 19). 995-1010.
Théo Zimmermann. 2020. A First Look at an Emerging Model of Community
Organizations for the Long-Term Maintenance of Ecosystems’ Packages. Association
for Computing Machinery, New York, NY, USA, 711-718. https://doi.org/10.
1145/3387940.3392209

Received 2023-07-07; accepted 2023-07-28

	Abstract
	1 Introduction
	2 Research Questions
	3 Related Work
	3.1 Copy-based Code Reuse
	3.2 Software Provenance
	3.3 Package Managers

	4 Data
	4.1 CVEfixes Dataset
	4.2 World of Code

	5 The VCAnalyzer Tool
	6 Method
	7 Results
	7.1 RQ1: Prevalence of Orphan Vulnerabilities
	7.2 RQ2: Characteristics of Projects that Copy Vulnerabilities
	7.3 RQ3: Orphan Vulnerabilities that are Fixed
	7.4 RQ4: Projects that Fix Orphan Vulnerabilities
	7.5 RQ5: Survival of orphan vulnerabilities

	8 Discussion
	9 Threats to Validity
	10 Conclusion
	Acknowledgments
	References

