


PROMISE ’23, December 8, 2023, San Francisco, CA, USA David Reid, Kristiina Rahkema, and James Walden

Reid et al. [36] use the term “orphan vulnerabilities” to describe

vulnerabilities in software dependencies that have been copied

into repositories without the use of a package management tool.

Their study used the World of Code2 to track orphan vulnerabilities

copied from an initial set of four vulnerabilities. They discovered

thousands of projects that included copies of the vulnerable code,

with many of the projects still containing the vulnerable code in

their most recent version. They used an exploratory case study

approach to investigate 4 vulnerabilities in depth since the current

understanding of the problem is limited. As is typical with case

studies, they primarily looked at qualitative data. Based on their

results, it is clear that a larger scale empirical study addressing

additional questions is warranted. We expand on their work by

starting our investigation with a signi�cantly larger set of initial

vulnerabilities, considering the project characteristics that may

a�ect the likelihood of a project being �xed, and investigating how

long it took to apply a �x. Our tool, VCAanlyzer, collects additional

quantitative data as described in Section 5. We use this data to

better understand which projects are more or less likely to include

orphan vulnerabilities and to be �xed. We also look at the time it

takes to apply a �x. The purpose is to identify ways to mitigate

these types of security risks. To secure the software supply chain,

developers need to identify and remediate orphan vulnerabilities in

addition to vulnerabilities detected by dependency tracking tools.

In this study, we examine the prevalence and characteristics of

orphan vulnerabilities at scale. We use the CVE�xes dataset [3] as

our initial set of vulnerabilities. This dataset consists of all vulnera-

bility �xing commits that the authors could automatically identify

from the National Vulnerability Database. We identify orphan vul-

nerabilities by searching for versions of �les identi�ed in CVE�xes

that existed before vulnerability �xing commits were applied in the

World of Code [24], a dataset of 173 million open source code repos-

itories and 3.1 billion commits from multiple hosting platforms,

including GitHub, GitLab, and Bitbucket. We created a custom tool

to �nd �les with orphan vulnerabilities in the billions of �les in the

World of Code by matching �le hashes. This approach allows us to

scale to the size of the World of Code - nearly all of open source.

Our work makes the following contributions:

• We conduct the �rst large scale empirical study of orphan vul-

nerabilities in open source software, describing the frequency

of their creation and mitigation, identifying the impact of

programming languages on these features, and analyzing

the properties of projects that create and remediate orphan

vulnerabilities. Using the World of Code infrastructure, we

are able to analyze the extent of cloning vulnerable �les at a

scale that has traditionally been very di�cult

• We present the design and implementation of a tool, VCAn-

alyzer, which �nds source code �les in any language that

contain orphan vulnerabilities. We make the tool publicly

available.

• Using VCAnalyzer, we produce a dataset, which we make

publicly available, containing over 3 million �les with or-

phan vulnerabilities that have been copied into over 700,000

unique open source projects. The dataset also contains meta-

data about each project.

2https://worldofcode.org

The rest of the paper is organized as follows: we start with our

research questions in Section 2, discuss related work in Section 3,

present our data sources in Section 4, and discuss our VCAnalyzer

tool in Section 5, We describe our research methods in Section 6,

present results in Section 7, discuss the impacts of our results in

Section 8, address threats to validity in Section 9, and summarize

our �ndings in Section 10.

2 RESEARCH QUESTIONS

Motivated by previous research showing vulnerabilities propa-

gated by copy-based code reuse in a small number of vulnerable

projects [20, 22, 36], we planned a large scale empirical study of

orphan vulnerabilities. We focused on cases where �les containing

vulnerable code are copied from one project and committed into

another project, as these could be detected in a scalable manner

using the World of Code infrastructure.

As our �rst step, we wanted to measure the prevalence of or-

phan vulnerabilities, including determining how many original

vulnerabilities are copied and how frequently they are copied. We

investigated the impact of programming language on the frequency

of orphan vulnerabilities, and examined the 20 most copied orphan

vulnerabilities in detail.

Research Question 1: How prevalent are orphan vulnerabili-

ties? What are the characteristics of orphan vulnerabilities?

For our second question, we investigated characteristics of open

source projects that contained orphan vulnerabilities. We measured

how many vulnerabilities were copied in each project. We also

examined project activity, including duration of activity, numbers

of commits, authors, stars, and additional metadata to �nd com-

monalities among these projects.

Research Question 2: What are the characteristics of projects

that have orphan vulnerabilities?

We investigated the �xing of orphan vulnerabilities. While all

of the vulnerabilities in our dataset have been �xed in the original

project, we wanted to see how many of the orphan vulnerabilities

were �xed. Some of our copied vulnerable �les could have been

created using package managers that install packages locally under

the development directory, but many other copies were created

through manually copying the code. While dependency tracking

tools can help developers remediate packages installed through

packagemanagers, there is nomeans of informing users ofmanually

copied code when security patches become available.

Research Question 3: How many orphan vulnerabilities are

�xed?

We know that projects behave di�erently when updating vul-

nerabilities using package management tools. While some projects

may not �x any orphan vulnerabilities, others may �x some or

all of the orphan vulnerabilities. We studied which projects �xed

vulnerabilities, and what percentage of vulnerabilities were �xed in

projects that �xed any vulnerabilities. We also studied how project

and vulnerability characteristics, e.g. the programming language

used or project activity, a�ect whether vulnerabilities are �xed.

Research Question 4: How do di�erent characteristics of

projects a�ect how many vulnerabilities are �xed?

23



Large Scale Study of Orphan Vulnerabilities in the So�ware Supply Chain PROMISE ’23, December 8, 2023, San Francisco, CA, USA

Lastly, we investigated the time required to �x orphan vulner-

abilities. To secure systems, it is important to �x vulnerabilities

before they begin to be widely exploited. A late �x may be no im-

provement over no �x if the software was exploited before the �x

was deployed. We also examined the impact of project activity on

the time required to remediate vulnerabilities.

Research Question 5: How long does it take for an orphan

vulnerability to be �xed?

3 RELATED WORK

3.1 Copy-based Code Reuse

Our work looks at vulnerabilities propagated through copy-based

code reuse. There is signi�cant research in the area of copy-based

code reuse [8, 19, 27, 35, 44], sometimes called vendoring [4, 46]

or clone-and-own [12, 13, 34]. Gharehyazie et al. [14] analyzed

copy-based code reuse by looking at 5,753 Java projects on GitHub,

and found that cross-project code reuse is prevalent. Schwarz et

al. [38] studied cloned methods in 2,705 projects in the Squeak-

source ecosystem and found that 15% to 18% of methods were

cloned. Ossher et al. [31] studied 13,000 Java projects from the

Sourcerer Repository, and found that over 10% of all �les are clones

and that 15% of projects contain at least one cloned �le. Xia et

al. [44], using OpenCCFinder [43], looked at C language reuse of

out-of-date code. OpenCCFinder only returns small subset of open

source projects. Tang et. al. [40] introduce CCScanner, a tool to �nd

dependencies in C/C++ projects, and they evaluate the tool with

a dataset of 24,000 projects. Kim et. al. [20] propose VUDDY, an

approach for the scaleable detection of vulnerable code clones, and

test it with a pool of 25,253 C/C++ projects. All of the previously

mentioned works are limited to a small number of repositories

relative to the totality of open source projects, and are limited to

a small number of languages. Newer technologies such as World

of Code [25] and Software Heritage [9] provide an infrastructure

to �nd copied �les across a much larger set of software reposito-

ries and across all languages. Our work utilizes the World of Code

infrastructure containing over 173 million projects, allowing us to

study vulnerabilities propagated through copy-based code reuse on

a scale much larger than previous work.

3.2 Software Provenance

Software provenance refers to the history and chain of custody

of software. Godfrey et al. [16] noted the importance of �nding

software provenance and the lack of current tools and techniques

in that area. We aim to �ll part of the gap they identi�ed with our

VCAnalyzer tool, which traces the evolution of source code �les

that are copied and modi�ed over time and across di�erent source

code repositories.

Woo et al. [42] created a tool, V0Finder, to �nd the origin of

a vulnerability. They use function-level clone detection, which

allows �ne-grained detection of vulnerabilities, but cannot scale

to the number of repositories that we are able to search using �le-

level hash matching. Inoue et al. [18] created a tool to trace code

origin and evolution. They used source code search engines Koders,

Google Codesearch, and SPARS/R, all of which had limitations and

are no longer available. We use World of Code, which contains a

larger set of projects and is currently actively maintained.

Rousseau et al [37] used Software Heritage to look at copies

of �le content over time and across repositories, similar to what

VCAnalyzer does using World of Code. One key di�erence is that

they do not look at “predecessors or successors in a given devel-

opment history.” VCAnalyzer speci�cally looks at all parents and

descendants of a �le when tracing �le evolution over time and

across repositories, allowing the tool to �nd �les that are copied

and then modi�ed.

3.3 Package Managers

Part of the motivation for our work arises from a lack of research

and tools dealing with copy-based reuse induced vulnerabilities.

Popular dependency checking tools such as GitHub Dependency

Graph [15], Google Open Source Insights [17], and OWASP Depen-

dency Check [32] depend on package management metadata and

thus miss copy-based code reuse. Much prior research on vulner-

abilities arising from code reuse looks at reuse through package

managers [1, 2, 11, 45]. Kula et al. [21] studied how developers up-

date library dependencies in over 4600 GitHub projects. They found

that 81.5% of the analyzed projects contain outdated dependencies,

and that 69% of the interviewees claimed to be unaware of their

vulnerable library dependencies. Zimmermann et al. [45] studied

dependencies between package maintainers, as well as the packages

themselves. They examined 609 vulnerabilities in 5,386,237 package

versions with 199,327 maintainers. Decan et al. [7] studied 399 vul-

nerability reports a�ecting 269 npm packages and 6,752 releases of

those packages. They found that 72,470 other packages are a�ected

by those vulnerable releases through dependencies. Pashchenko

et al. [33] studied dependency managements and its security im-

plications by interviewing developers. They found that developers

focus on functionality over security when choosing dependencies.

4 DATA

In this section, we describe the two primary data sources that we

use to conduct our analysis: CVE�xes and the World of Code.

4.1 CVE�xes Dataset

Vulnerability databases such as the National Vulnerability Database

(NVD)3 contain information on publicly reported vulnerabilities.

Each NVD vulnerability has been assigned a Common Vulnerabili-

ties and Exposures (CVE) identi�er before inclusion in the database.

The NVD provides a description, severity metrics, a�ected software

con�gurations, and links to references about the vulnerability.

Bhandari et al. [3] extracted CVEs with �xing commits, analyzed

the �les changed by these commits, and created a dataset containing

vulnerabilities and their �xes - the CVE�xes dataset.4 This dataset

contains information on 5,495 vulnerability �xing commits in 1,754

projects covering 5,365 CVEs. They also provided the code used to

generate their dataset, so that future researchers could generate

updated versions of the dataset.

3https://nvd.nist.gov
4https://github.com/secureIT-project/CVE�xes

24



PROMISE ’23, December 8, 2023, San Francisco, CA, USA David Reid, Kristiina Rahkema, and James Walden

We ran the CVE�xes code to generate a current database of CVEs

with �xing commits as of November 2022. We removed vulnerabil-

ities whose �xes were identi�ed as being in non-executable �les

like READMEs from the dataset. We also eliminated vulnerabilities

where more than one �le was modi�ed in the �xing commit, as our

data collection was designed to handle one �le per vulnerability.

The resulting dataset contained 3,615 CVE entries.

4.2 World of Code

The World of Code (WoC) [24] is a large collection of open source

project repository data collected from many di�erent source code

repository hosting platforms, including GitHub, GitLab, Bitbucket,

SourceForge, etc. WoC contains detailed version control data, in-

cluding commits, authors, and �le blobs of more than 173 million

repositories, encompassing a nearly complete collection of open

source software. We used WoC version U, which includes data

collected in October and November of 2021.

In the WoC, commits are linked to �les changed in that commit.

Files are linked to metadata, such as timestamps and authorship,

as well as �le contents, which are called blobs. As a �le changes

over time, it is associated with di�erent blobs, representing the

contents of the �le after each change. Blobs can belong to multiple

commits and even multiple repositories. If a blob is connected to

two repositories, this indicates that both repositories contain a �le

with identical contents. Therefore, it is possible to compare blobs

to quickly �nd exact copies of any �le in the WoC.

Our VCAnalyzer tool is layered on top of the WoC infrastructure

to leverage this huge collection of open source repositories, allow-

ing us to study copy-based code reuse on a very large scale. The

World of Code’s periodically updated and curated data allows our

tool to e�ciently search for code duplication in any programming

language across multiple source code repository hosting platforms.

Using VCAnalyzer, we constructed a dataset of more than three

million copied �les containing orphan vulnerabilities from the CVE-

�xes dataset. The dataset includes CVEs, as well as �le and project

metadata, including pathnames, timestamps, project activity, etc.

5 THE VCAnalyzer TOOL

To study orphan vulnerabilities at a very large scale, we created

the VCAnalyzer (Vulnerable Clones Analyzer) tool. VCAnalyzer

leverages the World of Code infrastructure to �nd vulnerabilities

that are propagated through copy-based code reuse in open source

projects at a scale that has traditionally been infeasible. The tool

starts with an initial set of vulnerabilities with �xing commits. For

each vulnerability, it searches for projects which have copied a vul-

nerable �le, and collects statistics about those projects. VCAnalyzer

uses the World of Code to �nd duplicated �les. It collects data about

�les and projects from both World of Code and APIs provided by

code hosting platforms such as GitHub, GitLab, and Bitbucket.

The input to VCAnalyzer is the CVE�xes dataset CSV �le, which

describes one vulnerability per line. Each line identi�es the vulner-

ability by its CVE number and includes the URL of the repository

containing the vulnerable code, the path of the original vulnerable

�le, the identi�er for the git commit that �xed the vulnerability, the

date of the �x, and the date on which the CVE record was created.

VCAnalyzer uses hash-based matching of �les to quickly identify

copies of vulnerable �les in World of Code. VCAnalyzer examines

the entire history of a �le, starting by retrieving the entire commit

history of the original vulnerable �le. It then �nds all revisions

of the vulnerable �le before the �xing commit and all revisions

after the �xing commit. The commit history is retrieved using the

API of the hosting platforms. File revisions that predate the �xing

commit are potentially vulnerable �les. We refer to these as bad

blobs. A blob refers to the contents of a �le at a speci�c commit.

We refer to the blob created by the �xing commit and blobs that

postdate the �xing commit as good blobs, as they do not contain

the vulnerability. VCAnalyzer also identi�es blobs that are found in

both lists, which indicates that a �xed version of the �le has been

replaced by a vulnerable version of the �le, possibly because the

�x introduced bugs or incompatibilities. If the �xing commit is not

found in the default repository branch, the tool skips that CVE.

VCAnalyzer searches World of Code for projects that have ever

contained blobs from the bad blob list to identify projects that have

contained orphan vulnerabilities. These projects are found by �rst

using the World of Code’s blob to commit (b2c) mapping to �nd

all commits containing each bad blob, and then using the commit

to project (c2P) mapping to �nd all deforked projects containing

those commits. These are the projects that have copied a known

vulnerable �le and thus contain an orphan vulnerability. The c2P

mapping uses a community detection algorithm [28] to �nd unre-

lated projects. The mapping excludes forks and exact copies, unless

a fork is developed into an independent project. For each such

project, VCAnalyzer determines if the project has been �xed by

�nding projects that contain a blob from the good blobs list. The

tool identi�es the date on which the project copied a vulnerable �le

as the date on which a bad blob was �rst committed to the project.

It identi�es the vulnerability �xing date as the �rst date on which

a good blob was committed. Many vulnerabilities are never �xed,

so the �xing date may be NULL.

If a project only contains vulnerable versions of the �le (from the

bad blobs list), then the project is considered still vulnerable. If the

vulnerable �le has been replaced with a �xed version of a �le from

the good blobs list, then the project is considered not vulnerable. If

the vulnerable �le has been replaced by a �le that is in neither the

good blobs nor the bad blobs list, then it is categorized as unknown,

as we know the vulnerable �le has been changed, but we do not

know if the change �xed the vulnerability.

Finally, VCAnalyzer collects statistics on each project copying a

vulnerable �le. Most statistics are available fromWorld of Code. For

some statistics, the tool uses the API of the repository hosting plat-

form to retrieve the information directly. The information collected

includes the number of authors, date of earliest commit, date of

latest commit, number of months the project was active, root fork,

number of stars, number of core developers (who commit more

that 80% of the code), community size, total number of commits,

number of forks, and the most used language in this project.

6 METHOD

We conducted a large scale empirical study by mining open source

software using the VCAnalyzer tool described above. We studied

copy-based code reuse of �les containing publicly disclosed vulner-

abilities, and used those results to answer our research questions.

25



Large Scale Study of Orphan Vulnerabilities in the So�ware Supply Chain PROMISE ’23, December 8, 2023, San Francisco, CA, USA

We cleaned the CVE�xes data by removing vulnerable �les

whose names indicate that the �le is not part of the source code

that would be executed with the program is run. We removed �les

with the names CHANGES, KConfig, and README, as well as �les with

the following su�xes: .md, .old, .txt, and .svn-base. Files with

those su�xes will not be treated as source code. Files with the

.svn-base extension are part of subversion repository structure

and might have been included in a git repository when a subversion

repository was converted into a git repository. We can ignore these

�les, as any changes to the actual copy of the vulnerable �le would

not be re�ected in the subversion repository structure. We also

removed copies of vulnerable �les identi�ed by VCAnalyzer, where

VCAnalyzer reported missing data in critical �elds like the iden-

ti�cation of the �rst vulnerable version, the pathname, or project

activity.

We only consider �les that are currently publicly available.World

of Code maintains copies of all �les in all projects, even if they are

removed or made private. If the potentially vulnerable �le is re-

moved from a project or if the project is no longer publicly available,

we exclude that project from our results.

To compute the number of occurrences of orphan vulnerabilities,

we count the number of vulnerable �les identi�ed by VCAnalyzer

outside the original project for each CVE identi�er. For each original

and copied vulnerability, our dataset contains the pathname of the

�le containing the vulnerability. We identify the programming

language used in vulnerable source �les by the �le su�x found in

pathnames. For example, we identify �les as C source code by the

presence of either .c or .h �le extensions.

Each vulnerability in the CVE�xes dataset includes the URL for

the git repository in which the vulnerability was found. Multiple

vulnerabilities can share the same URL if they were found in the

same repository. VCAnalyzer creates project names for each vul-

nerability using the hosting platform name and the last two path

components of the git repository. Project names are case sensitive.

We do not merge projects with similar names. The same process is

used when creating project names for copied vulnerabilities found

in theWorld of Code. The collection of project metadata is explained

in Section 5 above.

We create a subset of projects with high levels of activity by

selecting projects with at least 100 GitHub stars. We use GitHub

stars as a metric, since the numbers of commits and authors are

copied to the new project when a project is forked, while the number

of GitHub stars is not. The threshold of 100 stars is often used in

prior work [10, 40].

We compute multiple project metrics. The �rst metric we ex-

amine is the primary programming language of the project. This

metric is provided by the World of Code. As projects often use

multiple programming languages, we also identify the program-

ming language used in the vulnerable �le using the �le su�x, as

described above. If a �lename does not contain a “.”, the �le su�x

is blank. For each project metric, we �lter out values over the 99th

percentile to exclude possible outliers.

We classify orphan vulnerabilities as �xed, un�xed, or unknown

using the approach described in Section 5. For each orphan vulner-

ability that was �xed, we calculate the survival time by computing

the time di�erence between the �rst �xing commit and either the

�rst vulnerability introduction commit or the original vulnerability

�x time, depending on which came later. We then report character-

istics of the survival time.

7 RESULTS

7.1 RQ1: Prevalence of Orphan Vulnerabilities

We found that 3,014 (83.3%) of the 3,615 vulnerable �les from our

CVE�xes dataset were copied into 3,044,644 �les. While 601 original

vulnerabilities were not copied into other projects, there are more

than a thousand orphan vulnerabilities on average for each original

vulnerability that was copied. We found that 95.4% of copied vulner-

able �les shared directory paths with the original vulnerable �les,

which indicates that orphan vulnerabilities are typically introduced

by copying an entire dependency into the project’s repository.

The majority of original vulnerable �les that were copied are

written in the C programming language (59.3%), while another

10.2% are written in C++. An even larger percentage of orphan

vulnerabilities are found in copied C source code �les (63.7%). These

facts can be explained in part by the fact that most developers

do not use package management tools like Conan for C and C++

projects [26], and prefer to either use system libraries or to copy

code into their repositories [40].

We �nd that vulnerable C++ �les are much less likely to be

copied than vulnerable C �les. Although C++ �les represent 10.2%

of original vulnerable �les, only 38,533 (1.3%) copied vulnerable

source �les are written in C++. While a relatively small quantity

(5.7%) of original vulnerable �les are written in JavaScript, 24.3% of

orphan vulnerabilities are found in JavaScript �les. We found that

overrepresentation of JavaScript �les among the copies is due to

use of the npm package manager.

While typical use of a package manager calls for committing

metadata �les that indicate which packages are used rather than

committing the packages themselves, we found that some projects

committed dependencies as well as metadata into their repositories.

As a result, some of the copied vulnerabilities we discovered were

copied using package managers instead of through direct copying

of the code. To check if a package manager was used, we checked

the most common �le path pre�xes used by package managers for

each programming language. We discovered some �le path pre�xes

that indicated the use of package managers, such as node_modules,

Pods, and Carthage. The percentage of vulnerable �les included

through package managers rather than manual copying is 17% for

C++ �les, 36% for Go �les, 67% for JavaScript �les, 66% for JSON

�les, 47% for PHP �les, 9% for Ruby �les, and 53% for Swift �les.

For all other languages, the percentage of �les copied by package

managers was less than 5%.

While the majority of both original vulnerable �les and copied

�les are written in C, PHP, and C++ are underrepresented among

copied �les, making up 6.4% (compared to 15.1% of original �les)

and 1.3% (compared to 10.1% of original �les) respectively. Table 2

shows the top 10 programming languages found in copied �les.

While the mean number of times a particular vulnerability is

copied is 1,010, the standard deviation is 4,581, indicating a wide

variance in the number of times vulnerabilities are copied. At the

low end, 305 (10.1%) vulnerabilities are copied only once, while

at the high end 380 (12.6%) vulnerabilities are copied more than a

thousand times.

26



PROMISE ’23, December 8, 2023, San Francisco, CA, USA David Reid, Kristiina Rahkema, and James Walden

Table 1: Original Vulnerable Files by Language

Language Vulnerable Files Percent of Files

C 1789 59.3%

PHP 455 15.1%

C++ 307 10.2%

JavaScript 157 5.7%

Python 59 2.0%

Java 44 1.5%

Ruby 29 1.0%

Go 22 0.7%

Perl 18 0.6%

TypeScript 10 0.3%

Table 2: Copied Vulnerable Files by Language

Language copied �les Percent of Copies

C 1,939,190 63.7%

JavaScript 741,433 24.3%

PHP 194,991 6.4%

Ruby 102,986 3.4%

C++ 38,533 1.3%

Python 17,478 0.6%

Go 1,758 0.06%

Perl 1,282 0.04%

Zsh 1,253 0.04%

Java 963 0.03%

CVE−2017−18216

CVE−2019−19074

CVE−2021−45480

CVE−2018−11506

CVE−2020−12652

CVE−2019−15923

CVE−2019−19051

CVE−2019−15922

CVE−2021−3715

CVE−2020−25669

CVE−2022−2318

CVE−2022−31129

CVE−2022−24785

CVE−2020−5235

CVE−2021−21401

CVE−2018−13818

CVE−2020−28037

CVE−2020−19316

CVE−2019−10913

CVE−2013−7223

25000 50000 75000

Number of Orphan Vulnerabilities

C
V

E

Figure 1: Top 20 CVEs by Number of Times Copied

The most copied vulnerabilities are dominated by �les copied

via the npm package manager, with CVE-2021-32640 being copied

112,297 times. After eliminating �les copied by npm, the twenty

most commonly copied vulnerabilities are shown in Figure 1. The

most commonly copied vulnerability, CVE-2013-7223, is a cross-site

request forgery vulnerability in Fat Free CRM, a customer relation-

ship management platform written in Ruby. It was copied 87,808

times. The second through �fth most commonly copied vulnera-

bilities are from PHP software, including the Symfony framework

for web projects, Laravel Framework, WordPress, and the Twig

templating system. Numbers of orphan vulnerabilities ranged from

19,005 for CVE-2018-13818 in Twig to 41,564 for CVE-2019-10913

in Symfony.

The sixth and seventh most commonly copied vulnerabilities

are both from nanopb, an implementation of the protocol bu�ers

serialization mechanism written in C. Both vulnerabilities were

copied more than 18,000 times, with CVE-2021-24401 being copied

38 times more than CVE-2021-5235. The eighth and ninth most

commonly copied vulnerabilities are from Moment.js, a JavaScript

date library, with both being copied more than 17,000 times. The

tenth through twentieth most commonly copied vulnerabilities are

all found in C source code �les originating in the Linux kernel, with

numbers of copies ranging from 12,785 to 14,253. It is worth noting

that the majority of the top 20 most commonly copied orphan

vulnerabilities are not found in libraries, and thus would not be

detected by software supply chain tools that focus on third-party

library dependencies.

7.2 RQ2: Characteristics of Projects that Copy

Vulnerabilities

There are 1,114 open source projects in the CVE�xes dataset. Of

these projects, 800 (71.8%) had orphan vulnerabilities. Vulnerable

�les from these 800 projects were copied into 719,131 di�erent

projects found in the World of Code. While a majority (58.3%) of

the 719,131 projects contain only a single orphan vulnerability

and 97.5% of projects have 10 or fewer such vulnerabilities, 9428

(1.3%) projects include 100 or more copied vulnerable �les up to a

maximum of 806. Seven of the ten projects with the highest numbers

of vulnerable copies have the words “linux” or “kernel” in their

project names, suggesting that they are copies of the Linux kernel,

which is the project with the highest number of vulnerable �les in

our CVE�xes dataset.

We analyzed project activity through several metrics, including

active project lifetime and counts of commits, authors, and GitHub

stars. With a dataset of so many projects, it is unsurprising that

commit activity varied widely, ranging from a low of one commit to

a high of over 36 million commits. Most projects have low levels of

commit activity, with 94.3% of projects having 100 or fewer commits

and 61.3% having 10 or fewer commits. Additionally, 99% of projects

have 10 or fewer commit authors, with 71% of projects having only

a single commit author. The number of active months varies widely

between projects, from 1 to 428 (35 years). Projects with more than

30 years of history include some well known projects like Emacs,

FreeBSD, gcc, Kerberos, and Python.

The vast majority (98.5%) of our projects have repositories on

GitHub, so we also examined the number of GitHub stars for those

27



Large Scale Study of Orphan Vulnerabilities in the So�ware Supply Chain PROMISE ’23, December 8, 2023, San Francisco, CA, USA

projects. The majority of projects had no stars on GitHub (83.3% of

GitHub projects). A substantial number of projects (10.4%) had re-

ceived a single star, with a small number of outliers having received

more than one.

Most projects that contain orphan vulnerabilities do not have

GitHub security policies as documented in the SECURITY.md �le.

These �les describe how to report security vulnerabilities to project

maintainers. Only 1.7% of projects with orphan vulnerabilities in-

clude a security policy �le. Summary statistics of project metrics,

authors, commits, stars, and vulnerabilities can be found in Table 3.

Table 3: Project Activity Metrics

Metric Min Median Mean StdDev Max

Active Months 1 1 3.18 8.6 428

Authors 1 1 5.15 263.5 109,725

Commits 1 7 353 53,916 36,468,369

GitHub Stars 0 0 11.2 757.5 357,516

Vulnerabilities 1 1 4.23 18.5 806

We created a subset of 2,021 projects that had high levels of

activity by selecting projects with at least 100 GitHub stars. These

projects have means of over 6 years (82 months) of activity, 58

authors, 2,413 commits, and 544 stars. They contain an average of

6.28 copied vulnerabilities compared to 4.23 for all projects. While

active projects have almost 50% more copied vulnerable �les on

average, they are more likely to have published a security policy,

with 11.6% of active projects having a SECURITY.md �le compared

to 1.7% of all projects. A summary of statistics for active projects

is available in Table 4. Although the smallest number of commits

for active projects was 3, only 0.013% of the active projects had less

than 100 commits.

Table 4: Active Subset Project Metrics

Metric Min Median Mean StdDev Max

Active Months 1 64 82.0 69.6 428

Authors 1 15 58.0 2864 93,072

Commits 3 410 2413 499,701 17,719,890

GitHub Stars 100 204 544 13,617 357,516

Vulnerabilities 1 1 6.28 31.4 677

7.3 RQ3: Orphan Vulnerabilities that are Fixed

We �nd that there are only 100,889 (3.3%) �les out of over three mil-

lion copied �les in the World of Code dataset, where the vulnerable

�le was replaced at a later time with the �xed version of the �le

from the original project. Another 68,760 copied �les (2.3%) were

modi�ed from the original vulnerable version, but we do not know

whether the modi�cations were to remediate the vulnerability or

for another purpose. The remaining 2,875,018 (94.4%) copied �les

remained identical to the original vulnerable �le throughout the

history of the project that copied them.

Fixed vulnerabilities are found in 26,801 (3.7%) of the 719,204

projects. We found that more than half of projects that �xed one vul-

nerability have �xed all of their vulnerabilities, though it is worth

noting that of the 14,276 projects have �xed all of their vulnerabili-

ties, 11,627 (79%) had only one vulnerability to �x. However, only

1.6% of World of Code projects with a single copied vulnerable �le

have �xed that vulnerability.

7.4 RQ4: Projects that Fix Orphan

Vulnerabilities

We analyzed the relationship between di�erent characteristics of

projects and the percentage of �xed vulnerabilities.We looked at the

following project characteristics: project language, vulnerable �le

language, number of commits, number of contributors, community

size, number of core contributors, number of active months, and

number of stars.

For project language, we analyzed the primary language of the

project provided by the World of Code, which uses heuristics to

determine the primary language of the project. In total, vulnerabili-

ties originated from projects written in 14 di�erent programming

languages. Not all projects had a primary programming language

indicated in theWorld of Code. Table 5 shows percentages of copied

vulnerabilities with status �xed, not �xed, and unknown for each

project language. For most languages, over 90% of copied vulnera-

bilities are not �xed. Clear outliers are Rust, Go, SQL where 36.3%,

17.1%, and 10.9% of copied vulnerabilities were �xed, respectively.

Table 5: Percentage of copied vulnerabilities with status �xed,

not �xed, and unknown for each project language

Project Language Not Fixed Fixed Unknown

98.9 0.6 0.5

C/C++ 92.9 4.1 3.0

Fortran 96.4 2.9 0.7

Go 79.4 17.1 3.5

Java 95.8 2.8 1.4

JavaScript 97.9 1.6 0.5

Lua 83.5 9.7 6.8

PHP 95.4 2.5 2.1

Perl 95.4 3.3 1.3

Python 90.1 9.1 0.8

Ruby 97.4 2.1 0.5

Rust 62.3 35.3 2.5

Sql 88.1 10.9 1.0

Swift 97.4 1.7 0.9

TypeScript 94.4 0.6 5.0

Next, we looked at the percentage of �xed and not �xed copied

�les based on the language in which the vulnerable �le was written.

To simplify determining the project language, we used the su�x

of the vulnerable �le to identify the programming language. The

following analysis is performed on the 17 most often occurring

�le endings in the dataset. Percentages of �xed, not �xed, and

unknown copied vulnerabilities are listed in Table 6. For most �le

endings, as with programming languages, the percentage of copied

28



29



Large Scale Study of Orphan Vulnerabilities in the So�ware Supply Chain PROMISE ’23, December 8, 2023, San Francisco, CA, USA

7.5 RQ5: Survival of orphan vulnerabilities

We analyzed how long it takes for an orphan vulnerability to be

�xed. We calculated the time di�erence between the �rst �xing

commit and either the �rst vulnerability introduction commit or

the original vulnerability �x time, depending on which came later.

Looking at all projects, we found that 15.6% of copied vulnerabili-

ties had a negative time delta, meaning that the orphan vulnerability

was �xed before it was �xed in the original project. 84.3% of the

copied vulnerabilities had a positive time delta.

The mean number of days required to �x an orphan vulnerability

was 459. Orphan vulnerabilities were �xed in 0 to 1 days in 15%

of the cases, indicating that the �x might have been introduced

through automated updates. While half of the orphan vulnerabili-

ties were �xed in less than 80 days, 25% of orphan vulnerabilities

remained in the repository over 560 days. We checked if copied

vulnerabilities that were likely included through package managers

were more likely to be �xed very quickly (in less than a day) aorth-

ern Kentuckynd found the opposite to be true.

Additionally, we analyzed how long copied vulnerabilities re-

mained in larger projects, expecting vulnerabilities to be �xed

sooner in more popular and active projects. In projects with at

least 100 GitHub stars, 75% of the orphan vulnerabilities remained

in the project for longer than 426 days. For half of the orphan vul-

nerabilities that we found, the orphan vulnerability remained in

the project over three years.

8 DISCUSSION

We found that orphan vulnerabilities are widespread in open source

software. Out of the 3,615 vulnerable �les in our CVE�xes dataset,

3,014 (83.3%) were copied, resulting in more than three million

orphan vulnerabilities. The orphan vulnerabilities came from 800

(71.8%) of the projects in the CVE�xes dataset and were distributed

across 719,131 projects found in the World of Code. The majority

of the original vulnerable �les (59.3%) and their copies (63.7%) are

written in the C programming language, which predates the use of

package managers.

While most projects containing orphan vulnerabilities displayed

low levels of commit activity and had small numbers of contributors,

we examined a subset of 2021 projects that had at least 100 GitHub

stars. These active projects had an average of over 6 years of activity.

While the number of copied vulnerable �les was about 50% higher

in active projects than the entire dataset, active projects were much

more likely (11.6% compared to 1.7%) to have published a security

policy.

We found that only 100,889 (1.3%) out of over three million or-

phan vulnerabilities were �xed by replacing the �le’s contents with

the �xed version of the �le from the CVE �xes database. Another

68,760 (2.3%) copied �les had their contents modi�ed, but we do

not know if these modi�cations remediated the vulnerability or

not. Fixed vulnerabilities were only found in 26,801 (3.7%) of the

more than seven hundred thousand projects that contained orphan

vulnerabilities.

We found that larger, more active, and longer-lived projects are

more likely to �x copied vulnerabilities, but even for the largest

projects, the large majority of vulnerabilities are not remediated.

When dividing projects by primary programming language, we

found that 90% of vulnerabilities are not �xed for most languages.

However, projects using a few languages, like Rust, Go, and SQL

�xed more than 10% of their orphan vulnerabilities.

Orphan vulnerabilities that were �xed required an average of

459 days to be remediated. However, 15% of projects �xed orphan

vulnerabilities in less than one day, indicating constant watching of

security updates or automated update tools. Orphan vulnerabilities

survived a long time even in active projects, where half of orphan

vulnerabilities required more than three years to remediate.

For all popular projects with orphan vulnerabilities we searched

for repositories that contained a SECURITY.md �le. For each of

these repositories, we checked if the copied vulnerable �le was still

present in the repository and if the repository corresponded to an

actual project (not a collection of samples or a collection of vulnera-

bilities). We contacted the e-mail address listed in the SECURITY.md

�le to disclose the vulnerability. We received responses from two-

thirds of the projects with promises to either look into the potential

security issue or to update the vulnerable �le. One month after the

disclosure, half of the projects with disclosed orphan vulnerabil-

ities had �xed the vulnerabilities by either upgrading the library

dependency or by removing the vulnerable �le.

The case where �les from a package manager are copied into

and committed to the project’s repository posed a dilemma for our

research. On one hand, we are speci�cally looking for �les that

are copied from one repository and committed into another, and

not cases where �les are included via a package manager. This

suggests that we should exclude these �les. On the other hand,

those �le might have been copied from another repository that

used a package manager. And since they are committed, they may

be copied into other projects. Since we are studying copy-based

code reuse, any �le committed into a public repository is of interest.

In either case, the vulnerable �les are committed to a publicly

available repository, thus able to be copied. Since our motivation

is to mitigate vulnerabilities caused by copy-based code reuse, we

chose to include these �les. Section 7.1 addresses the prevalence of

package manager �les that are committed to repositories.

For developers, we recommend identifying and documenting

copied code, so that it can be updated when vulnerabilities are

reported. We also recommend using package managers instead

of copying source code directly, so that vulnerabilities are easier

to �nd with existing tools. Software security teams need to be

aware that most software supply chain tools do not detect orphan

vulnerabilities and that orphan vulnerabilities are common in C/C++

code. New tools that can identify orphan vulnerabilities are needed.

Tool builders have an opportunity to develop tools for orphan

vulnerabilities that are similar to tools for other types of copied

vulnerabilities. Better tools could improve the accuracy of copied

code detection, be easily integrated into developer’s work�ows,

track code provenance at the scale of all open source code, work

with any programming language, and integrate with vulnerability

databases. Our VCAnalyzer tool provides foundational work in that

area, but it is only a beginning.

Researchers also need to be aware of the limitations of software

supply chain tools and the high prevalence of orphan vulnerabili-

ties. Studies are needed to advance our understanding of the risks

associated with copy-based code reuse and identify best practices

for minimizing these risks. Researchers can also help identify and

30



PROMISE ’23, December 8, 2023, San Francisco, CA, USA David Reid, Kristiina Rahkema, and James Walden

analyze the speci�c types of vulnerabilities that are most commonly

introduced through copy-based code reuse, as well as the factors

that contribute to the prevalence of this practice.

9 THREATS TO VALIDITY

We rely on data from the CVE�xes5 dataset being correct. As this

dataset is extracted from the NVD, we indirectly rely on NVD data

about �xing commits being correct. Nguyen et al. [30] demonstrated

some errors in vulnerability reporting in NVD.

Since we are looking to see if a project �xes a vulnerability and

how long it takes, we only look at the small fraction of vulnera-

bilities where the �xing commit can be automatically identi�ed.

Furthermore, we only consider vulnerabilities where the patch

commit only changed a single �le. As a result, our count of orphan

vulnerabilities is an undercount, based on 3,615 initial vulnerabili-

ties out of the more than 200,000 vulnerabilities found in NVD.

World of Code provides a nearly complete collection of publicly

available open source software. We rely on World of Code to �nd

open source repositories. We will miss any projects that are not

available in World of Code. This will also lead to undercounting

orphan vulnerabilities.

Our tool looks at �le-level copy-based code reuse of vulnerable

�les using hash-basedmatching of �les in order to scale to the entire

World of Code, which includes nearly all open-source repositories.

We are not aware of any algorithms or tools that could detect code

clones at the method or line level that would scale to that level. It

is important to note that our tool does not only look at one version

of the vulnerable �le, but also �nds copies for previous versions

of the vulnerable �le. While our current tool will only �nd �le-

level copies, we still �nd an alarming number of projects that have

copied public vulnerabilities in a way that will not be detected

by dependency tracking tools. We understand that this number of

projects is a minimum bound on the number of projects that have

copied vulnerable code.

We created a subset of projects with over 100 GitHub stars so that

we could �nd active projects and eliminate many useless projects.

GitHub stars is not a perfect measure, but is useful in many cases [6].

We found that excluding projects with fewer than 100 commits

would only reduce the number of projects by 0.013% from what we

get when only excluding projects with less than 100 stars.

We only check if the project contains a vulnerable �le, not if

the project is vulnerable. It is important for project maintainers to

understand if a project contains a vulnerable �le, even if it does not

use the code in a vulnerable way. A developer may later make a

change that uses the code in a vulnerable way, thus unknowingly

making the project vulnerable.

If we know when a vulnerability was introduced, VCAnalyzer

has the ability to look at only revisions between the introduction

and �x of the vulnerability. Since CVE�xes does not give us the

introduction date, we look at all prior revisions since the prior

revisions are likely to also contain the vulnerability. This gives us

all revisions before the �x. Revisions before the �x may include

revisions before the vulnerability was introduced. In these cases,

we count projects that are not vulnerable (although they contain

a revision before the �x), causing us to overestimate vulnerable

5https://github.com/secureIT-project/CVE�xes

projects. Tools like SZZ unleashed [5] can be used to �nd some but

not all vulnerability introduction dates, but do not scale to the size

of the WoC.

We are speci�cally interested in cases where �les are copied

from one project to be reused in another unrelated project. We

do not want to include forks that are only created to submit pull

requests, or cases of re-appropriation of entire projects as described

by Lopes et al. [23]. Our VCAnalyzer tool uses World of Code’s

commit to deforked project (c2P) mapping. This mapping uses the

community detection algorithm described by Mockus et al. [28] to

�nd unrelated repositories, and it excludes most forks and complete

copies of projects. If the c2P mapping returns related projects, we

will over-count duplicates.

10 CONCLUSION

In this paper, we described a large scale empirical study of orphan

vulnerabilities, which are vulnerabilities directly copied into open

source repositories. We investigated the scale of the problem, along

with characteristics of vulnerable projects and �xed projects. We

developed a tool to �nd copied �les and their project’s characteris-

tics across the expansive software collection in World of Code, and

created a dataset of vulnerable copied �les and their �xes.

Copy-based reuse of vulnerable code is widespread in open

source software. We found that 83.4% of the 3,615 vulnerabilities

in our CVE�xes dataset were copied into more than three million

�les found in over seven hundred thousand open source projects in

the World of Code. The majority (63.7%) of vulnerable copied �les

were C source or header �les.

We discovered that orphan vulnerabilities are rarely �xed. Only

100,889 (1.3%) of the three million vulnerable copied �les were ever

replaced with the �xed version of those �les. Fixed vulnerabilities

were only found in 26,801 (3.7%) of projects that contained orphan

vulnerabilities. While large, active projects were more likely to

remediate some vulnerabilities, the large majority of vulnerabilities

were not remediated in such projects.

The time from introduction to remediation of orphan vulnerabili-

ties was long, averaging 459 days. orphan vulnerabilities survived a

long time even in active projects, with half of orphan vulnerabilities

requiring more than three years to be �xed. However, it is worth

noting that a substantial minority (15%) of orphan vulnerabilities

were repaired in under a day.

ACKNOWLEDGMENTS

This work was partially supported by NSF awards 1633437, 1901102,

1925615, and 2120429, the Austrian ministries BMVIT and BMDW,

the Province of Upper Austria in frame of the Software Competence

Center Hagenberg (SCCH), and grant PRG1226 of the Estonian

Research Council.

REFERENCES
[1] Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. 2021. Empirical anal-

ysis of security vulnerabilities in python packages. In 2021 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
446–457.

[2] Sultan S. Alqahtani, Ellis E. Eghan, and Juergen Rilling. 2016. SV-AF — A Security
Vulnerability Analysis Framework. In 2016 IEEE 27th International Symposium on
Software Reliability Engineering (ISSRE). 219–229. https://doi.org/10.1109/ISSRE.
2016.12

31



Large Scale Study of Orphan Vulnerabilities in the So�ware Supply Chain PROMISE ’23, December 8, 2023, San Francisco, CA, USA

[3] Guru Bhandari, Amara Naseer, and Leon Moonen. 2021. CVE�xes: automated
collection of vulnerabilities and their �xes from open-source software. In Proceed-
ings of the 17th International Conference on Predictive Models and Data Analytics
in Software Engineering. 30–39.

[4] Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2021. When
and How to Make Breaking Changes: Policies and Practices in 18 Open Source
Software Ecosystems. ACM Trans. Softw. Eng. Methodol. 30, 4, Article 42 (jul
2021), 56 pages. https://doi.org/10.1145/3447245

[5] Markus Borg, Oscar Svensson, Kristian Berg, and Daniel Hansson. 2019. SZZ
Unleashed: An Open Implementation of the SZZ Algorithm - Featuring Example
Usage in a Study of Just-in-Time Bug Prediction for the Jenkins Project. In
Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning
Techniques for Software Quality Evaluation (Tallinn, Estonia) (MaLTeSQuE 2019).
Association for Computing Machinery, New York, NY, USA, 7–12. https://doi.
org/10.1145/3340482.3342742

[6] Hudson Borges and Marco Tulio Valente. 2018. What’s in a github star? under-
standing repository starring practices in a social coding platform. Journal of
Systems and Software 146 (2018), 112–129.

[7] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of
security vulnerabilities in the npm package dependency network. In Proceedings
of the 15th international conference on mining software repositories. 181–191.

[8] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the Impact of
Security Vulnerabilities in the Npm Package Dependency Network. In Proceedings
of the 15th International Conference on Mining Software Repositories (Gothenburg,
Sweden) (MSR ’18). Association for Computing Machinery, New York, NY, USA,
181–191. https://doi.org/10.1145/3196398.3196401

[9] Roberto Di Cosmo and Stefano Zacchiroli. 2017. Software heritage: Why and how
to preserve software source code. In iPRES 2017-14th International Conference on
Digital Preservation. 1–10.

[10] Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo Kim, and Wenke Lee. 2017. Iden-
tifying open-source license violation and 1-day security risk at large scale. In
Proceedings of the 2017 ACM SIGSAC Conference on computer and communications
security. 2169–2185.

[11] Johannes Düsing and Ben Hermann. 2021. Analyzing the Direct and Transitive
Impact of Vulnerabilities onto Di�erent Artifact Repositories. Digital Threats:
Research and Practice (2021).

[12] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing Clone-and-Own with Systematic Reuse for Developing
Software Variants. In 2014 IEEE International Conference on Software Maintenance
and Evolution. 391–400. https://doi.org/10.1109/ICSME.2014.61

[13] Stefan Fischer, Lukas Linsbauer, Roberto E. Lopez-Herrejon, and Alexander Egyed.
2015. The ECCO Tool: Extraction and Composition for Clone-and-Own. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 2.
665–668. https://doi.org/10.1109/ICSE.2015.218

[14] Mohammad Gharehyazie, Baishakhi Ray, and Vladimir Filkov. 2017. Some from
here, some from there: Cross-project code reuse in github. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). IEEE, 291–301.

[15] Github. 2021. About the dependency graph. https://docs.github.com/en/code-
security/supply-chain-security/understanding-your-software-supply-
chain/about-the-dependency-graph

[16] Michael W. Godfrey, Daniel M. German, Julius Davies, and Abram Hindle. 2011.
Determining the Provenance of Software Artifacts. In Proceedings of the 5th
International Workshop on Software Clones (Waikiki, Honolulu, HI, USA) (IWSC
’11). Association for Computing Machinery, New York, NY, USA, 65–66. https:
//doi.org/10.1145/1985404.1985418

[17] Google. 2021. Open Source Insights. https://deps.dev/
[18] Katsuro Inoue, Yusuke Sasaki, Pei Xia, and Yuki Manabe. 2012. Where does this

code come from and where does it go? - Integrated code history tracker for open
source systems. In 2012 34th International Conference on Software Engineering
(ICSE). 331–341. https://doi.org/10.1109/ICSE.2012.6227181

[19] N. Kawamitsu, T. Ishio, T. Kanda, R. G. Kula, C. De Roover, and K. Inoue. 2014.
Identifying Source Code Reuse across Repositories Using LCS-Based Source Code
Similarity. In 2014 IEEE 14th International Working Conference on Source Code
Analysis and Manipulation. 305–314.

[20] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. 2017. VUDDY: A
Scalable Approach for Vulnerable Code Clone Discovery. In 2017 IEEE Symposium
on Security and Privacy (SP). 595–614. https://doi.org/10.1109/SP.2017.62

[21] Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2018. Do developers update their library dependencies? Empirical Software
Engineering 23, 1 (2018), 384–417.

[22] Zhen Liu, Qiang Wei, and Yan Cao. 2017. VFDETECT: A vulnerable code clone
detection system based on vulnerability �ngerprint. In 2017 IEEE 3rd Information
Technology and Mechatronics Engineering Conference (ITOEC). 548–553. https:
//doi.org/10.1109/ITOEC.2017.8122356

[23] Cristina V Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. 2017. DéjàVu: a map of code duplicates on GitHub.
Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 1–28.

[24] Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus.
2019. World of code: an infrastructure for mining the universe of open source
VCS data. In 2019 IEEE/ACM 16th international conference on mining software
repositories (MSR). IEEE, 143–154.

[25] Yuxing Ma, Tapajit Dey, Chris Bogart, Sadika Amreen, Marat Valiev, Adam Tutko,
David Kennard, Russell Zaretzki, and Audris Mockus. 2021. World of code:
enabling a research work�ow for mining and analyzing the universe of open
source VCS data. Empirical Software Engineering 26 (2021). https://doi.org/10.
1007/s10664-020-09905-9

[26] André Miranda and João Pimentel. 2018. On the use of package managers by the
C++ open-source community. In Proceedings of the 33rd Annual ACM Symposium
on Applied Computing. 1483–1491.

[27] A. Mockus. 2007. Large-Scale Code Reuse in Open Source Software. In First
International Workshop on Emerging Trends in FLOSS Research and Development
(FLOSS’07: ICSE Workshops 2007). 7–7.

[28] Audris Mockus, Diomidis Spinellis, Zoe Kotti, and Gabriel John Dusing. 2020.
A complete set of related git repositories identi�ed via community detection
approaches based on shared commits. In Proceedings of the 17th International
Conference on Mining Software Repositories. 513–517.

[29] Frank Nagle. 2019. Open source software and �rm productivity. Management
Science 65, 3 (2019), 1191–1215.

[30] Viet HungNguyen and FabioMassacci. 2013. The (un) reliability of nvd vulnerable
versions data: An empirical experiment on google chrome vulnerabilities. In
Proceedings of the 8th ACM SIGSAC symposium on Information, computer and
communications security. 493–498.

[31] Joel Ossher, Hitesh Sajnani, and Cristina Lopes. 2011. File cloning in open source
java projects: The good, the bad, and the ugly. In 2011 27th IEEE International
Conference on Software Maintenance (ICSM). IEEE, 283–292.

[32] OWASP. 2022. OWASP Dependency-Check. https://owasp.org/www-project-
dependency-check/

[33] Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci. 2020. A qualitative study of
dependency management and its security implications. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security. 1513–1531.

[34] Francisca Pérez, Manuel Ballarín, Raúl Lapeña, and Carlos Cetina. 2018. Locating
Clone-and-Own Relationships in Model-Based Industrial Families of Software
Products to Encourage Reuse. IEEE Access 6 (2018), 56815–56827. https://doi.
org/10.1109/ACCESS.2018.2873509

[35] David Reid, Kalvin Eng, Chris Bogart, and Adam Tutko. 2021. Tracing Vulnerable
Code Lineage. In 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR). IEEE, 621–623.

[36] David Reid, Mahmoud Jahanshahi, and Audris Mockus. 2022. The Extent of
Orphan Vulnerabilities from Code Reuse in Open Source Software. International
Conference on Software Engineering (2022), 2104–2115. https://doi.org/10.1145/
3510003.3510216

[37] Guillaume Rousseau, Roberto Di Cosmo, and Stefano Zacchiroli. 2020. Software
provenance tracking at the scale of public source code. In Empirical Software
Engineering. https://doi.org/10.1007/s10664-020-09828-5

[38] Niko Schwarz, Mircea Lungu, and Romain Robbes. 2012. On how often code
is cloned across repositories. In 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 1289–1292.

[39] Sonatype. 2022. Open Source Security and Risk Analysis Report. https://www.
synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2022.pdf

[40] Wei Tang, Zhengzi Xu, Chengwei Liu, Jiahui Wu, Shouguo Yang, Yi Li, Ping Luo,
and Yang Liu. 2022. Towards Understanding Third-party Library Dependency
in C/C++ Ecosystem. In 37th IEEE/ACM International Conference on Automated
Software Engineering. 1–12.

[41] James Wetter and Nicky Ringland. 2021. Understanding the Impact of Apache
Log4j Vulnerability. https://security.googleblog.com/2021/12/understanding-
impact-of-apache-log4j.html

[42] Seunghoon Woo, Dongwook Lee, Sunghan Park, Heejo Lee, and Sven Dietrich.
2021. {V0Finder}: Discovering the Correct Origin of Publicly Reported Software
Vulnerabilities. In 30th USENIX Security Symposium. 3041–3058.

[43] Pei Xia, Yuki Manabe, Norihiro Yoshida, and Katsuro Inoue. 2012. Development
of a Code Clone Search Tool for Open Source Repositories. Information and
Media Technologies 7, 4 (2012), 1370–1376. https://doi.org/10.11185/imt.7.1370

[44] Pei Xia, Makoto Matsushita, Norihiro Yoshida, and Katsuro Inoue. 2014. Studying
Reuse of Out-dated Third-party Code in Open Source Projects. Information and
Media Technologies 9, 2 (2014), 155–161. https://doi.org/10.11185/imt.9.155

[45] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.
2019. Small world with high risks: A study of security threats in the npm
ecosystem. In 28th USENIX Security Symposium (USENIX Security 19). 995–1010.

[46] Théo Zimmermann. 2020. A First Look at an Emerging Model of Community
Organizations for the Long-TermMaintenance of Ecosystems’ Packages. Association
for Computing Machinery, New York, NY, USA, 711–718. https://doi.org/10.
1145/3387940.3392209

Received 2023-07-07; accepted 2023-07-28

32


	Abstract
	1 Introduction
	2 Research Questions
	3 Related Work
	3.1 Copy-based Code Reuse
	3.2 Software Provenance
	3.3 Package Managers

	4 Data
	4.1 CVEfixes Dataset
	4.2 World of Code

	5 The VCAnalyzer Tool
	6 Method
	7 Results
	7.1 RQ1: Prevalence of Orphan Vulnerabilities
	7.2 RQ2: Characteristics of Projects that Copy Vulnerabilities
	7.3 RQ3: Orphan Vulnerabilities that are Fixed
	7.4 RQ4: Projects that Fix Orphan Vulnerabilities
	7.5 RQ5: Survival of orphan vulnerabilities

	8 Discussion
	9 Threats to Validity
	10 Conclusion
	Acknowledgments
	References

